linux/fs/btrfs/super.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
  44#include <linux/btrfs.h>
  45#include "compat.h"
  46#include "delayed-inode.h"
  47#include "ctree.h"
  48#include "disk-io.h"
  49#include "transaction.h"
  50#include "btrfs_inode.h"
  51#include "print-tree.h"
  52#include "xattr.h"
  53#include "volumes.h"
  54#include "version.h"
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58#include "dev-replace.h"
  59#include "free-space-cache.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/btrfs.h>
  63
  64static const struct super_operations btrfs_super_ops;
  65static struct file_system_type btrfs_fs_type;
  66
  67static const char *btrfs_decode_error(int errno)
  68{
  69        char *errstr = "unknown";
  70
  71        switch (errno) {
  72        case -EIO:
  73                errstr = "IO failure";
  74                break;
  75        case -ENOMEM:
  76                errstr = "Out of memory";
  77                break;
  78        case -EROFS:
  79                errstr = "Readonly filesystem";
  80                break;
  81        case -EEXIST:
  82                errstr = "Object already exists";
  83                break;
  84        case -ENOSPC:
  85                errstr = "No space left";
  86                break;
  87        case -ENOENT:
  88                errstr = "No such entry";
  89                break;
  90        }
  91
  92        return errstr;
  93}
  94
  95static void save_error_info(struct btrfs_fs_info *fs_info)
  96{
  97        /*
  98         * today we only save the error info into ram.  Long term we'll
  99         * also send it down to the disk
 100         */
 101        set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 102}
 103
 104/* btrfs handle error by forcing the filesystem readonly */
 105static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 106{
 107        struct super_block *sb = fs_info->sb;
 108
 109        if (sb->s_flags & MS_RDONLY)
 110                return;
 111
 112        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 113                sb->s_flags |= MS_RDONLY;
 114                btrfs_info(fs_info, "forced readonly");
 115                /*
 116                 * Note that a running device replace operation is not
 117                 * canceled here although there is no way to update
 118                 * the progress. It would add the risk of a deadlock,
 119                 * therefore the canceling is ommited. The only penalty
 120                 * is that some I/O remains active until the procedure
 121                 * completes. The next time when the filesystem is
 122                 * mounted writeable again, the device replace
 123                 * operation continues.
 124                 */
 125        }
 126}
 127
 128#ifdef CONFIG_PRINTK
 129/*
 130 * __btrfs_std_error decodes expected errors from the caller and
 131 * invokes the approciate error response.
 132 */
 133void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 134                       unsigned int line, int errno, const char *fmt, ...)
 135{
 136        struct super_block *sb = fs_info->sb;
 137        const char *errstr;
 138
 139        /*
 140         * Special case: if the error is EROFS, and we're already
 141         * under MS_RDONLY, then it is safe here.
 142         */
 143        if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 144                return;
 145
 146        errstr = btrfs_decode_error(errno);
 147        if (fmt) {
 148                struct va_format vaf;
 149                va_list args;
 150
 151                va_start(args, fmt);
 152                vaf.fmt = fmt;
 153                vaf.va = &args;
 154
 155                printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 156                        sb->s_id, function, line, errno, errstr, &vaf);
 157                va_end(args);
 158        } else {
 159                printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
 160                        sb->s_id, function, line, errno, errstr);
 161        }
 162
 163        /* Don't go through full error handling during mount */
 164        save_error_info(fs_info);
 165        if (sb->s_flags & MS_BORN)
 166                btrfs_handle_error(fs_info);
 167}
 168
 169static const char * const logtypes[] = {
 170        "emergency",
 171        "alert",
 172        "critical",
 173        "error",
 174        "warning",
 175        "notice",
 176        "info",
 177        "debug",
 178};
 179
 180void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 181{
 182        struct super_block *sb = fs_info->sb;
 183        char lvl[4];
 184        struct va_format vaf;
 185        va_list args;
 186        const char *type = logtypes[4];
 187        int kern_level;
 188
 189        va_start(args, fmt);
 190
 191        kern_level = printk_get_level(fmt);
 192        if (kern_level) {
 193                size_t size = printk_skip_level(fmt) - fmt;
 194                memcpy(lvl, fmt,  size);
 195                lvl[size] = '\0';
 196                fmt += size;
 197                type = logtypes[kern_level - '0'];
 198        } else
 199                *lvl = '\0';
 200
 201        vaf.fmt = fmt;
 202        vaf.va = &args;
 203
 204        printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
 205
 206        va_end(args);
 207}
 208
 209#else
 210
 211void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 212                       unsigned int line, int errno, const char *fmt, ...)
 213{
 214        struct super_block *sb = fs_info->sb;
 215
 216        /*
 217         * Special case: if the error is EROFS, and we're already
 218         * under MS_RDONLY, then it is safe here.
 219         */
 220        if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 221                return;
 222
 223        /* Don't go through full error handling during mount */
 224        if (sb->s_flags & MS_BORN) {
 225                save_error_info(fs_info);
 226                btrfs_handle_error(fs_info);
 227        }
 228}
 229#endif
 230
 231/*
 232 * We only mark the transaction aborted and then set the file system read-only.
 233 * This will prevent new transactions from starting or trying to join this
 234 * one.
 235 *
 236 * This means that error recovery at the call site is limited to freeing
 237 * any local memory allocations and passing the error code up without
 238 * further cleanup. The transaction should complete as it normally would
 239 * in the call path but will return -EIO.
 240 *
 241 * We'll complete the cleanup in btrfs_end_transaction and
 242 * btrfs_commit_transaction.
 243 */
 244void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 245                               struct btrfs_root *root, const char *function,
 246                               unsigned int line, int errno)
 247{
 248        /*
 249         * Report first abort since mount
 250         */
 251        if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
 252                                &root->fs_info->fs_state)) {
 253                WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
 254                                errno);
 255        }
 256        trans->aborted = errno;
 257        /* Nothing used. The other threads that have joined this
 258         * transaction may be able to continue. */
 259        if (!trans->blocks_used) {
 260                const char *errstr;
 261
 262                errstr = btrfs_decode_error(errno);
 263                btrfs_warn(root->fs_info,
 264                           "%s:%d: Aborting unused transaction(%s).",
 265                           function, line, errstr);
 266                return;
 267        }
 268        ACCESS_ONCE(trans->transaction->aborted) = errno;
 269        __btrfs_std_error(root->fs_info, function, line, errno, NULL);
 270}
 271/*
 272 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 273 * issues an alert, and either panics or BUGs, depending on mount options.
 274 */
 275void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 276                   unsigned int line, int errno, const char *fmt, ...)
 277{
 278        char *s_id = "<unknown>";
 279        const char *errstr;
 280        struct va_format vaf = { .fmt = fmt };
 281        va_list args;
 282
 283        if (fs_info)
 284                s_id = fs_info->sb->s_id;
 285
 286        va_start(args, fmt);
 287        vaf.va = &args;
 288
 289        errstr = btrfs_decode_error(errno);
 290        if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
 291                panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 292                        s_id, function, line, &vaf, errno, errstr);
 293
 294        printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 295               s_id, function, line, &vaf, errno, errstr);
 296        va_end(args);
 297        /* Caller calls BUG() */
 298}
 299
 300static void btrfs_put_super(struct super_block *sb)
 301{
 302        (void)close_ctree(btrfs_sb(sb)->tree_root);
 303        /* FIXME: need to fix VFS to return error? */
 304        /* AV: return it _where_?  ->put_super() can be triggered by any number
 305         * of async events, up to and including delivery of SIGKILL to the
 306         * last process that kept it busy.  Or segfault in the aforementioned
 307         * process...  Whom would you report that to?
 308         */
 309}
 310
 311enum {
 312        Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 313        Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 314        Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 315        Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 316        Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 317        Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 318        Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
 319        Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
 320        Opt_check_integrity, Opt_check_integrity_including_extent_data,
 321        Opt_check_integrity_print_mask, Opt_fatal_errors,
 322        Opt_err,
 323};
 324
 325static match_table_t tokens = {
 326        {Opt_degraded, "degraded"},
 327        {Opt_subvol, "subvol=%s"},
 328        {Opt_subvolid, "subvolid=%d"},
 329        {Opt_device, "device=%s"},
 330        {Opt_nodatasum, "nodatasum"},
 331        {Opt_nodatacow, "nodatacow"},
 332        {Opt_nobarrier, "nobarrier"},
 333        {Opt_max_inline, "max_inline=%s"},
 334        {Opt_alloc_start, "alloc_start=%s"},
 335        {Opt_thread_pool, "thread_pool=%d"},
 336        {Opt_compress, "compress"},
 337        {Opt_compress_type, "compress=%s"},
 338        {Opt_compress_force, "compress-force"},
 339        {Opt_compress_force_type, "compress-force=%s"},
 340        {Opt_ssd, "ssd"},
 341        {Opt_ssd_spread, "ssd_spread"},
 342        {Opt_nossd, "nossd"},
 343        {Opt_noacl, "noacl"},
 344        {Opt_notreelog, "notreelog"},
 345        {Opt_flushoncommit, "flushoncommit"},
 346        {Opt_ratio, "metadata_ratio=%d"},
 347        {Opt_discard, "discard"},
 348        {Opt_space_cache, "space_cache"},
 349        {Opt_clear_cache, "clear_cache"},
 350        {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 351        {Opt_enospc_debug, "enospc_debug"},
 352        {Opt_subvolrootid, "subvolrootid=%d"},
 353        {Opt_defrag, "autodefrag"},
 354        {Opt_inode_cache, "inode_cache"},
 355        {Opt_no_space_cache, "nospace_cache"},
 356        {Opt_recovery, "recovery"},
 357        {Opt_skip_balance, "skip_balance"},
 358        {Opt_check_integrity, "check_int"},
 359        {Opt_check_integrity_including_extent_data, "check_int_data"},
 360        {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 361        {Opt_fatal_errors, "fatal_errors=%s"},
 362        {Opt_err, NULL},
 363};
 364
 365/*
 366 * Regular mount options parser.  Everything that is needed only when
 367 * reading in a new superblock is parsed here.
 368 * XXX JDM: This needs to be cleaned up for remount.
 369 */
 370int btrfs_parse_options(struct btrfs_root *root, char *options)
 371{
 372        struct btrfs_fs_info *info = root->fs_info;
 373        substring_t args[MAX_OPT_ARGS];
 374        char *p, *num, *orig = NULL;
 375        u64 cache_gen;
 376        int intarg;
 377        int ret = 0;
 378        char *compress_type;
 379        bool compress_force = false;
 380
 381        cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 382        if (cache_gen)
 383                btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 384
 385        if (!options)
 386                goto out;
 387
 388        /*
 389         * strsep changes the string, duplicate it because parse_options
 390         * gets called twice
 391         */
 392        options = kstrdup(options, GFP_NOFS);
 393        if (!options)
 394                return -ENOMEM;
 395
 396        orig = options;
 397
 398        while ((p = strsep(&options, ",")) != NULL) {
 399                int token;
 400                if (!*p)
 401                        continue;
 402
 403                token = match_token(p, tokens, args);
 404                switch (token) {
 405                case Opt_degraded:
 406                        printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 407                        btrfs_set_opt(info->mount_opt, DEGRADED);
 408                        break;
 409                case Opt_subvol:
 410                case Opt_subvolid:
 411                case Opt_subvolrootid:
 412                case Opt_device:
 413                        /*
 414                         * These are parsed by btrfs_parse_early_options
 415                         * and can be happily ignored here.
 416                         */
 417                        break;
 418                case Opt_nodatasum:
 419                        printk(KERN_INFO "btrfs: setting nodatasum\n");
 420                        btrfs_set_opt(info->mount_opt, NODATASUM);
 421                        break;
 422                case Opt_nodatacow:
 423                        if (!btrfs_test_opt(root, COMPRESS) ||
 424                                !btrfs_test_opt(root, FORCE_COMPRESS)) {
 425                                        printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
 426                        } else {
 427                                printk(KERN_INFO "btrfs: setting nodatacow\n");
 428                        }
 429                        info->compress_type = BTRFS_COMPRESS_NONE;
 430                        btrfs_clear_opt(info->mount_opt, COMPRESS);
 431                        btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 432                        btrfs_set_opt(info->mount_opt, NODATACOW);
 433                        btrfs_set_opt(info->mount_opt, NODATASUM);
 434                        break;
 435                case Opt_compress_force:
 436                case Opt_compress_force_type:
 437                        compress_force = true;
 438                        /* Fallthrough */
 439                case Opt_compress:
 440                case Opt_compress_type:
 441                        if (token == Opt_compress ||
 442                            token == Opt_compress_force ||
 443                            strcmp(args[0].from, "zlib") == 0) {
 444                                compress_type = "zlib";
 445                                info->compress_type = BTRFS_COMPRESS_ZLIB;
 446                                btrfs_set_opt(info->mount_opt, COMPRESS);
 447                                btrfs_clear_opt(info->mount_opt, NODATACOW);
 448                                btrfs_clear_opt(info->mount_opt, NODATASUM);
 449                        } else if (strcmp(args[0].from, "lzo") == 0) {
 450                                compress_type = "lzo";
 451                                info->compress_type = BTRFS_COMPRESS_LZO;
 452                                btrfs_set_opt(info->mount_opt, COMPRESS);
 453                                btrfs_clear_opt(info->mount_opt, NODATACOW);
 454                                btrfs_clear_opt(info->mount_opt, NODATASUM);
 455                                btrfs_set_fs_incompat(info, COMPRESS_LZO);
 456                        } else if (strncmp(args[0].from, "no", 2) == 0) {
 457                                compress_type = "no";
 458                                info->compress_type = BTRFS_COMPRESS_NONE;
 459                                btrfs_clear_opt(info->mount_opt, COMPRESS);
 460                                btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 461                                compress_force = false;
 462                        } else {
 463                                ret = -EINVAL;
 464                                goto out;
 465                        }
 466
 467                        if (compress_force) {
 468                                btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 469                                pr_info("btrfs: force %s compression\n",
 470                                        compress_type);
 471                        } else
 472                                pr_info("btrfs: use %s compression\n",
 473                                        compress_type);
 474                        break;
 475                case Opt_ssd:
 476                        printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 477                        btrfs_set_opt(info->mount_opt, SSD);
 478                        break;
 479                case Opt_ssd_spread:
 480                        printk(KERN_INFO "btrfs: use spread ssd "
 481                               "allocation scheme\n");
 482                        btrfs_set_opt(info->mount_opt, SSD);
 483                        btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 484                        break;
 485                case Opt_nossd:
 486                        printk(KERN_INFO "btrfs: not using ssd allocation "
 487                               "scheme\n");
 488                        btrfs_set_opt(info->mount_opt, NOSSD);
 489                        btrfs_clear_opt(info->mount_opt, SSD);
 490                        btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 491                        break;
 492                case Opt_nobarrier:
 493                        printk(KERN_INFO "btrfs: turning off barriers\n");
 494                        btrfs_set_opt(info->mount_opt, NOBARRIER);
 495                        break;
 496                case Opt_thread_pool:
 497                        intarg = 0;
 498                        match_int(&args[0], &intarg);
 499                        if (intarg)
 500                                info->thread_pool_size = intarg;
 501                        break;
 502                case Opt_max_inline:
 503                        num = match_strdup(&args[0]);
 504                        if (num) {
 505                                info->max_inline = memparse(num, NULL);
 506                                kfree(num);
 507
 508                                if (info->max_inline) {
 509                                        info->max_inline = max_t(u64,
 510                                                info->max_inline,
 511                                                root->sectorsize);
 512                                }
 513                                printk(KERN_INFO "btrfs: max_inline at %llu\n",
 514                                        (unsigned long long)info->max_inline);
 515                        }
 516                        break;
 517                case Opt_alloc_start:
 518                        num = match_strdup(&args[0]);
 519                        if (num) {
 520                                mutex_lock(&info->chunk_mutex);
 521                                info->alloc_start = memparse(num, NULL);
 522                                mutex_unlock(&info->chunk_mutex);
 523                                kfree(num);
 524                                printk(KERN_INFO
 525                                        "btrfs: allocations start at %llu\n",
 526                                        (unsigned long long)info->alloc_start);
 527                        }
 528                        break;
 529                case Opt_noacl:
 530                        root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 531                        break;
 532                case Opt_notreelog:
 533                        printk(KERN_INFO "btrfs: disabling tree log\n");
 534                        btrfs_set_opt(info->mount_opt, NOTREELOG);
 535                        break;
 536                case Opt_flushoncommit:
 537                        printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 538                        btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 539                        break;
 540                case Opt_ratio:
 541                        intarg = 0;
 542                        match_int(&args[0], &intarg);
 543                        if (intarg) {
 544                                info->metadata_ratio = intarg;
 545                                printk(KERN_INFO "btrfs: metadata ratio %d\n",
 546                                       info->metadata_ratio);
 547                        }
 548                        break;
 549                case Opt_discard:
 550                        btrfs_set_opt(info->mount_opt, DISCARD);
 551                        break;
 552                case Opt_space_cache:
 553                        btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 554                        break;
 555                case Opt_no_space_cache:
 556                        printk(KERN_INFO "btrfs: disabling disk space caching\n");
 557                        btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
 558                        break;
 559                case Opt_inode_cache:
 560                        printk(KERN_INFO "btrfs: enabling inode map caching\n");
 561                        btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 562                        break;
 563                case Opt_clear_cache:
 564                        printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 565                        btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 566                        break;
 567                case Opt_user_subvol_rm_allowed:
 568                        btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 569                        break;
 570                case Opt_enospc_debug:
 571                        btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 572                        break;
 573                case Opt_defrag:
 574                        printk(KERN_INFO "btrfs: enabling auto defrag\n");
 575                        btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 576                        break;
 577                case Opt_recovery:
 578                        printk(KERN_INFO "btrfs: enabling auto recovery\n");
 579                        btrfs_set_opt(info->mount_opt, RECOVERY);
 580                        break;
 581                case Opt_skip_balance:
 582                        btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 583                        break;
 584#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 585                case Opt_check_integrity_including_extent_data:
 586                        printk(KERN_INFO "btrfs: enabling check integrity"
 587                               " including extent data\n");
 588                        btrfs_set_opt(info->mount_opt,
 589                                      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 590                        btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 591                        break;
 592                case Opt_check_integrity:
 593                        printk(KERN_INFO "btrfs: enabling check integrity\n");
 594                        btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 595                        break;
 596                case Opt_check_integrity_print_mask:
 597                        intarg = 0;
 598                        match_int(&args[0], &intarg);
 599                        if (intarg) {
 600                                info->check_integrity_print_mask = intarg;
 601                                printk(KERN_INFO "btrfs:"
 602                                       " check_integrity_print_mask 0x%x\n",
 603                                       info->check_integrity_print_mask);
 604                        }
 605                        break;
 606#else
 607                case Opt_check_integrity_including_extent_data:
 608                case Opt_check_integrity:
 609                case Opt_check_integrity_print_mask:
 610                        printk(KERN_ERR "btrfs: support for check_integrity*"
 611                               " not compiled in!\n");
 612                        ret = -EINVAL;
 613                        goto out;
 614#endif
 615                case Opt_fatal_errors:
 616                        if (strcmp(args[0].from, "panic") == 0)
 617                                btrfs_set_opt(info->mount_opt,
 618                                              PANIC_ON_FATAL_ERROR);
 619                        else if (strcmp(args[0].from, "bug") == 0)
 620                                btrfs_clear_opt(info->mount_opt,
 621                                              PANIC_ON_FATAL_ERROR);
 622                        else {
 623                                ret = -EINVAL;
 624                                goto out;
 625                        }
 626                        break;
 627                case Opt_err:
 628                        printk(KERN_INFO "btrfs: unrecognized mount option "
 629                               "'%s'\n", p);
 630                        ret = -EINVAL;
 631                        goto out;
 632                default:
 633                        break;
 634                }
 635        }
 636out:
 637        if (!ret && btrfs_test_opt(root, SPACE_CACHE))
 638                printk(KERN_INFO "btrfs: disk space caching is enabled\n");
 639        kfree(orig);
 640        return ret;
 641}
 642
 643/*
 644 * Parse mount options that are required early in the mount process.
 645 *
 646 * All other options will be parsed on much later in the mount process and
 647 * only when we need to allocate a new super block.
 648 */
 649static int btrfs_parse_early_options(const char *options, fmode_t flags,
 650                void *holder, char **subvol_name, u64 *subvol_objectid,
 651                struct btrfs_fs_devices **fs_devices)
 652{
 653        substring_t args[MAX_OPT_ARGS];
 654        char *device_name, *opts, *orig, *p;
 655        int error = 0;
 656        int intarg;
 657
 658        if (!options)
 659                return 0;
 660
 661        /*
 662         * strsep changes the string, duplicate it because parse_options
 663         * gets called twice
 664         */
 665        opts = kstrdup(options, GFP_KERNEL);
 666        if (!opts)
 667                return -ENOMEM;
 668        orig = opts;
 669
 670        while ((p = strsep(&opts, ",")) != NULL) {
 671                int token;
 672                if (!*p)
 673                        continue;
 674
 675                token = match_token(p, tokens, args);
 676                switch (token) {
 677                case Opt_subvol:
 678                        kfree(*subvol_name);
 679                        *subvol_name = match_strdup(&args[0]);
 680                        break;
 681                case Opt_subvolid:
 682                        intarg = 0;
 683                        error = match_int(&args[0], &intarg);
 684                        if (!error) {
 685                                /* we want the original fs_tree */
 686                                if (!intarg)
 687                                        *subvol_objectid =
 688                                                BTRFS_FS_TREE_OBJECTID;
 689                                else
 690                                        *subvol_objectid = intarg;
 691                        }
 692                        break;
 693                case Opt_subvolrootid:
 694                        printk(KERN_WARNING
 695                                "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
 696                        break;
 697                case Opt_device:
 698                        device_name = match_strdup(&args[0]);
 699                        if (!device_name) {
 700                                error = -ENOMEM;
 701                                goto out;
 702                        }
 703                        error = btrfs_scan_one_device(device_name,
 704                                        flags, holder, fs_devices);
 705                        kfree(device_name);
 706                        if (error)
 707                                goto out;
 708                        break;
 709                default:
 710                        break;
 711                }
 712        }
 713
 714out:
 715        kfree(orig);
 716        return error;
 717}
 718
 719static struct dentry *get_default_root(struct super_block *sb,
 720                                       u64 subvol_objectid)
 721{
 722        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 723        struct btrfs_root *root = fs_info->tree_root;
 724        struct btrfs_root *new_root;
 725        struct btrfs_dir_item *di;
 726        struct btrfs_path *path;
 727        struct btrfs_key location;
 728        struct inode *inode;
 729        u64 dir_id;
 730        int new = 0;
 731
 732        /*
 733         * We have a specific subvol we want to mount, just setup location and
 734         * go look up the root.
 735         */
 736        if (subvol_objectid) {
 737                location.objectid = subvol_objectid;
 738                location.type = BTRFS_ROOT_ITEM_KEY;
 739                location.offset = (u64)-1;
 740                goto find_root;
 741        }
 742
 743        path = btrfs_alloc_path();
 744        if (!path)
 745                return ERR_PTR(-ENOMEM);
 746        path->leave_spinning = 1;
 747
 748        /*
 749         * Find the "default" dir item which points to the root item that we
 750         * will mount by default if we haven't been given a specific subvolume
 751         * to mount.
 752         */
 753        dir_id = btrfs_super_root_dir(fs_info->super_copy);
 754        di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 755        if (IS_ERR(di)) {
 756                btrfs_free_path(path);
 757                return ERR_CAST(di);
 758        }
 759        if (!di) {
 760                /*
 761                 * Ok the default dir item isn't there.  This is weird since
 762                 * it's always been there, but don't freak out, just try and
 763                 * mount to root most subvolume.
 764                 */
 765                btrfs_free_path(path);
 766                dir_id = BTRFS_FIRST_FREE_OBJECTID;
 767                new_root = fs_info->fs_root;
 768                goto setup_root;
 769        }
 770
 771        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 772        btrfs_free_path(path);
 773
 774find_root:
 775        new_root = btrfs_read_fs_root_no_name(fs_info, &location);
 776        if (IS_ERR(new_root))
 777                return ERR_CAST(new_root);
 778
 779        if (btrfs_root_refs(&new_root->root_item) == 0)
 780                return ERR_PTR(-ENOENT);
 781
 782        dir_id = btrfs_root_dirid(&new_root->root_item);
 783setup_root:
 784        location.objectid = dir_id;
 785        location.type = BTRFS_INODE_ITEM_KEY;
 786        location.offset = 0;
 787
 788        inode = btrfs_iget(sb, &location, new_root, &new);
 789        if (IS_ERR(inode))
 790                return ERR_CAST(inode);
 791
 792        /*
 793         * If we're just mounting the root most subvol put the inode and return
 794         * a reference to the dentry.  We will have already gotten a reference
 795         * to the inode in btrfs_fill_super so we're good to go.
 796         */
 797        if (!new && sb->s_root->d_inode == inode) {
 798                iput(inode);
 799                return dget(sb->s_root);
 800        }
 801
 802        return d_obtain_alias(inode);
 803}
 804
 805static int btrfs_fill_super(struct super_block *sb,
 806                            struct btrfs_fs_devices *fs_devices,
 807                            void *data, int silent)
 808{
 809        struct inode *inode;
 810        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 811        struct btrfs_key key;
 812        int err;
 813
 814        sb->s_maxbytes = MAX_LFS_FILESIZE;
 815        sb->s_magic = BTRFS_SUPER_MAGIC;
 816        sb->s_op = &btrfs_super_ops;
 817        sb->s_d_op = &btrfs_dentry_operations;
 818        sb->s_export_op = &btrfs_export_ops;
 819        sb->s_xattr = btrfs_xattr_handlers;
 820        sb->s_time_gran = 1;
 821#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 822        sb->s_flags |= MS_POSIXACL;
 823#endif
 824        sb->s_flags |= MS_I_VERSION;
 825        err = open_ctree(sb, fs_devices, (char *)data);
 826        if (err) {
 827                printk("btrfs: open_ctree failed\n");
 828                return err;
 829        }
 830
 831        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 832        key.type = BTRFS_INODE_ITEM_KEY;
 833        key.offset = 0;
 834        inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
 835        if (IS_ERR(inode)) {
 836                err = PTR_ERR(inode);
 837                goto fail_close;
 838        }
 839
 840        sb->s_root = d_make_root(inode);
 841        if (!sb->s_root) {
 842                err = -ENOMEM;
 843                goto fail_close;
 844        }
 845
 846        save_mount_options(sb, data);
 847        cleancache_init_fs(sb);
 848        sb->s_flags |= MS_ACTIVE;
 849        return 0;
 850
 851fail_close:
 852        close_ctree(fs_info->tree_root);
 853        return err;
 854}
 855
 856int btrfs_sync_fs(struct super_block *sb, int wait)
 857{
 858        struct btrfs_trans_handle *trans;
 859        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 860        struct btrfs_root *root = fs_info->tree_root;
 861
 862        trace_btrfs_sync_fs(wait);
 863
 864        if (!wait) {
 865                filemap_flush(fs_info->btree_inode->i_mapping);
 866                return 0;
 867        }
 868
 869        btrfs_wait_ordered_extents(root, 1);
 870
 871        trans = btrfs_attach_transaction_barrier(root);
 872        if (IS_ERR(trans)) {
 873                /* no transaction, don't bother */
 874                if (PTR_ERR(trans) == -ENOENT)
 875                        return 0;
 876                return PTR_ERR(trans);
 877        }
 878        return btrfs_commit_transaction(trans, root);
 879}
 880
 881static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
 882{
 883        struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
 884        struct btrfs_root *root = info->tree_root;
 885        char *compress_type;
 886
 887        if (btrfs_test_opt(root, DEGRADED))
 888                seq_puts(seq, ",degraded");
 889        if (btrfs_test_opt(root, NODATASUM))
 890                seq_puts(seq, ",nodatasum");
 891        if (btrfs_test_opt(root, NODATACOW))
 892                seq_puts(seq, ",nodatacow");
 893        if (btrfs_test_opt(root, NOBARRIER))
 894                seq_puts(seq, ",nobarrier");
 895        if (info->max_inline != 8192 * 1024)
 896                seq_printf(seq, ",max_inline=%llu",
 897                           (unsigned long long)info->max_inline);
 898        if (info->alloc_start != 0)
 899                seq_printf(seq, ",alloc_start=%llu",
 900                           (unsigned long long)info->alloc_start);
 901        if (info->thread_pool_size !=  min_t(unsigned long,
 902                                             num_online_cpus() + 2, 8))
 903                seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 904        if (btrfs_test_opt(root, COMPRESS)) {
 905                if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 906                        compress_type = "zlib";
 907                else
 908                        compress_type = "lzo";
 909                if (btrfs_test_opt(root, FORCE_COMPRESS))
 910                        seq_printf(seq, ",compress-force=%s", compress_type);
 911                else
 912                        seq_printf(seq, ",compress=%s", compress_type);
 913        }
 914        if (btrfs_test_opt(root, NOSSD))
 915                seq_puts(seq, ",nossd");
 916        if (btrfs_test_opt(root, SSD_SPREAD))
 917                seq_puts(seq, ",ssd_spread");
 918        else if (btrfs_test_opt(root, SSD))
 919                seq_puts(seq, ",ssd");
 920        if (btrfs_test_opt(root, NOTREELOG))
 921                seq_puts(seq, ",notreelog");
 922        if (btrfs_test_opt(root, FLUSHONCOMMIT))
 923                seq_puts(seq, ",flushoncommit");
 924        if (btrfs_test_opt(root, DISCARD))
 925                seq_puts(seq, ",discard");
 926        if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 927                seq_puts(seq, ",noacl");
 928        if (btrfs_test_opt(root, SPACE_CACHE))
 929                seq_puts(seq, ",space_cache");
 930        else
 931                seq_puts(seq, ",nospace_cache");
 932        if (btrfs_test_opt(root, CLEAR_CACHE))
 933                seq_puts(seq, ",clear_cache");
 934        if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 935                seq_puts(seq, ",user_subvol_rm_allowed");
 936        if (btrfs_test_opt(root, ENOSPC_DEBUG))
 937                seq_puts(seq, ",enospc_debug");
 938        if (btrfs_test_opt(root, AUTO_DEFRAG))
 939                seq_puts(seq, ",autodefrag");
 940        if (btrfs_test_opt(root, INODE_MAP_CACHE))
 941                seq_puts(seq, ",inode_cache");
 942        if (btrfs_test_opt(root, SKIP_BALANCE))
 943                seq_puts(seq, ",skip_balance");
 944        if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
 945                seq_puts(seq, ",fatal_errors=panic");
 946        return 0;
 947}
 948
 949static int btrfs_test_super(struct super_block *s, void *data)
 950{
 951        struct btrfs_fs_info *p = data;
 952        struct btrfs_fs_info *fs_info = btrfs_sb(s);
 953
 954        return fs_info->fs_devices == p->fs_devices;
 955}
 956
 957static int btrfs_set_super(struct super_block *s, void *data)
 958{
 959        int err = set_anon_super(s, data);
 960        if (!err)
 961                s->s_fs_info = data;
 962        return err;
 963}
 964
 965/*
 966 * subvolumes are identified by ino 256
 967 */
 968static inline int is_subvolume_inode(struct inode *inode)
 969{
 970        if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
 971                return 1;
 972        return 0;
 973}
 974
 975/*
 976 * This will strip out the subvol=%s argument for an argument string and add
 977 * subvolid=0 to make sure we get the actual tree root for path walking to the
 978 * subvol we want.
 979 */
 980static char *setup_root_args(char *args)
 981{
 982        unsigned len = strlen(args) + 2 + 1;
 983        char *src, *dst, *buf;
 984
 985        /*
 986         * We need the same args as before, but with this substitution:
 987         * s!subvol=[^,]+!subvolid=0!
 988         *
 989         * Since the replacement string is up to 2 bytes longer than the
 990         * original, allocate strlen(args) + 2 + 1 bytes.
 991         */
 992
 993        src = strstr(args, "subvol=");
 994        /* This shouldn't happen, but just in case.. */
 995        if (!src)
 996                return NULL;
 997
 998        buf = dst = kmalloc(len, GFP_NOFS);
 999        if (!buf)
1000                return NULL;
1001
1002        /*
1003         * If the subvol= arg is not at the start of the string,
1004         * copy whatever precedes it into buf.
1005         */
1006        if (src != args) {
1007                *src++ = '\0';
1008                strcpy(buf, args);
1009                dst += strlen(args);
1010        }
1011
1012        strcpy(dst, "subvolid=0");
1013        dst += strlen("subvolid=0");
1014
1015        /*
1016         * If there is a "," after the original subvol=... string,
1017         * copy that suffix into our buffer.  Otherwise, we're done.
1018         */
1019        src = strchr(src, ',');
1020        if (src)
1021                strcpy(dst, src);
1022
1023        return buf;
1024}
1025
1026static struct dentry *mount_subvol(const char *subvol_name, int flags,
1027                                   const char *device_name, char *data)
1028{
1029        struct dentry *root;
1030        struct vfsmount *mnt;
1031        char *newargs;
1032
1033        newargs = setup_root_args(data);
1034        if (!newargs)
1035                return ERR_PTR(-ENOMEM);
1036        mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1037                             newargs);
1038        kfree(newargs);
1039        if (IS_ERR(mnt))
1040                return ERR_CAST(mnt);
1041
1042        root = mount_subtree(mnt, subvol_name);
1043
1044        if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1045                struct super_block *s = root->d_sb;
1046                dput(root);
1047                root = ERR_PTR(-EINVAL);
1048                deactivate_locked_super(s);
1049                printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1050                                subvol_name);
1051        }
1052
1053        return root;
1054}
1055
1056/*
1057 * Find a superblock for the given device / mount point.
1058 *
1059 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1060 *        for multiple device setup.  Make sure to keep it in sync.
1061 */
1062static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1063                const char *device_name, void *data)
1064{
1065        struct block_device *bdev = NULL;
1066        struct super_block *s;
1067        struct dentry *root;
1068        struct btrfs_fs_devices *fs_devices = NULL;
1069        struct btrfs_fs_info *fs_info = NULL;
1070        fmode_t mode = FMODE_READ;
1071        char *subvol_name = NULL;
1072        u64 subvol_objectid = 0;
1073        int error = 0;
1074
1075        if (!(flags & MS_RDONLY))
1076                mode |= FMODE_WRITE;
1077
1078        error = btrfs_parse_early_options(data, mode, fs_type,
1079                                          &subvol_name, &subvol_objectid,
1080                                          &fs_devices);
1081        if (error) {
1082                kfree(subvol_name);
1083                return ERR_PTR(error);
1084        }
1085
1086        if (subvol_name) {
1087                root = mount_subvol(subvol_name, flags, device_name, data);
1088                kfree(subvol_name);
1089                return root;
1090        }
1091
1092        error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1093        if (error)
1094                return ERR_PTR(error);
1095
1096        /*
1097         * Setup a dummy root and fs_info for test/set super.  This is because
1098         * we don't actually fill this stuff out until open_ctree, but we need
1099         * it for searching for existing supers, so this lets us do that and
1100         * then open_ctree will properly initialize everything later.
1101         */
1102        fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1103        if (!fs_info)
1104                return ERR_PTR(-ENOMEM);
1105
1106        fs_info->fs_devices = fs_devices;
1107
1108        fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109        fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1110        if (!fs_info->super_copy || !fs_info->super_for_commit) {
1111                error = -ENOMEM;
1112                goto error_fs_info;
1113        }
1114
1115        error = btrfs_open_devices(fs_devices, mode, fs_type);
1116        if (error)
1117                goto error_fs_info;
1118
1119        if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1120                error = -EACCES;
1121                goto error_close_devices;
1122        }
1123
1124        bdev = fs_devices->latest_bdev;
1125        s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1126                 fs_info);
1127        if (IS_ERR(s)) {
1128                error = PTR_ERR(s);
1129                goto error_close_devices;
1130        }
1131
1132        if (s->s_root) {
1133                btrfs_close_devices(fs_devices);
1134                free_fs_info(fs_info);
1135                if ((flags ^ s->s_flags) & MS_RDONLY)
1136                        error = -EBUSY;
1137        } else {
1138                char b[BDEVNAME_SIZE];
1139
1140                strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1141                btrfs_sb(s)->bdev_holder = fs_type;
1142                error = btrfs_fill_super(s, fs_devices, data,
1143                                         flags & MS_SILENT ? 1 : 0);
1144        }
1145
1146        root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1147        if (IS_ERR(root))
1148                deactivate_locked_super(s);
1149
1150        return root;
1151
1152error_close_devices:
1153        btrfs_close_devices(fs_devices);
1154error_fs_info:
1155        free_fs_info(fs_info);
1156        return ERR_PTR(error);
1157}
1158
1159static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1160{
1161        spin_lock_irq(&workers->lock);
1162        workers->max_workers = new_limit;
1163        spin_unlock_irq(&workers->lock);
1164}
1165
1166static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1167                                     int new_pool_size, int old_pool_size)
1168{
1169        if (new_pool_size == old_pool_size)
1170                return;
1171
1172        fs_info->thread_pool_size = new_pool_size;
1173
1174        printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1175               old_pool_size, new_pool_size);
1176
1177        btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1178        btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1179        btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1180        btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1181        btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1182        btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1183        btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1184        btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1185        btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1186        btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1187        btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1188        btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1189        btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1190        btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1191                              new_pool_size);
1192}
1193
1194static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1195{
1196        set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1197}
1198
1199static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1200                                       unsigned long old_opts, int flags)
1201{
1202        if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1203            (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1204             (flags & MS_RDONLY))) {
1205                /* wait for any defraggers to finish */
1206                wait_event(fs_info->transaction_wait,
1207                           (atomic_read(&fs_info->defrag_running) == 0));
1208                if (flags & MS_RDONLY)
1209                        sync_filesystem(fs_info->sb);
1210        }
1211}
1212
1213static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1214                                         unsigned long old_opts)
1215{
1216        /*
1217         * We need cleanup all defragable inodes if the autodefragment is
1218         * close or the fs is R/O.
1219         */
1220        if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1221            (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1222             (fs_info->sb->s_flags & MS_RDONLY))) {
1223                btrfs_cleanup_defrag_inodes(fs_info);
1224        }
1225
1226        clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1227}
1228
1229static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1230{
1231        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1232        struct btrfs_root *root = fs_info->tree_root;
1233        unsigned old_flags = sb->s_flags;
1234        unsigned long old_opts = fs_info->mount_opt;
1235        unsigned long old_compress_type = fs_info->compress_type;
1236        u64 old_max_inline = fs_info->max_inline;
1237        u64 old_alloc_start = fs_info->alloc_start;
1238        int old_thread_pool_size = fs_info->thread_pool_size;
1239        unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1240        int ret;
1241
1242        btrfs_remount_prepare(fs_info);
1243
1244        ret = btrfs_parse_options(root, data);
1245        if (ret) {
1246                ret = -EINVAL;
1247                goto restore;
1248        }
1249
1250        btrfs_remount_begin(fs_info, old_opts, *flags);
1251        btrfs_resize_thread_pool(fs_info,
1252                fs_info->thread_pool_size, old_thread_pool_size);
1253
1254        if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1255                goto out;
1256
1257        if (*flags & MS_RDONLY) {
1258                /*
1259                 * this also happens on 'umount -rf' or on shutdown, when
1260                 * the filesystem is busy.
1261                 */
1262                sb->s_flags |= MS_RDONLY;
1263
1264                btrfs_dev_replace_suspend_for_unmount(fs_info);
1265                btrfs_scrub_cancel(fs_info);
1266                btrfs_pause_balance(fs_info);
1267
1268                ret = btrfs_commit_super(root);
1269                if (ret)
1270                        goto restore;
1271        } else {
1272                if (fs_info->fs_devices->rw_devices == 0) {
1273                        ret = -EACCES;
1274                        goto restore;
1275                }
1276
1277                if (fs_info->fs_devices->missing_devices >
1278                     fs_info->num_tolerated_disk_barrier_failures &&
1279                    !(*flags & MS_RDONLY)) {
1280                        printk(KERN_WARNING
1281                               "Btrfs: too many missing devices, writeable remount is not allowed\n");
1282                        ret = -EACCES;
1283                        goto restore;
1284                }
1285
1286                if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1287                        ret = -EINVAL;
1288                        goto restore;
1289                }
1290
1291                ret = btrfs_cleanup_fs_roots(fs_info);
1292                if (ret)
1293                        goto restore;
1294
1295                /* recover relocation */
1296                ret = btrfs_recover_relocation(root);
1297                if (ret)
1298                        goto restore;
1299
1300                ret = btrfs_resume_balance_async(fs_info);
1301                if (ret)
1302                        goto restore;
1303
1304                ret = btrfs_resume_dev_replace_async(fs_info);
1305                if (ret) {
1306                        pr_warn("btrfs: failed to resume dev_replace\n");
1307                        goto restore;
1308                }
1309                sb->s_flags &= ~MS_RDONLY;
1310        }
1311out:
1312        btrfs_remount_cleanup(fs_info, old_opts);
1313        return 0;
1314
1315restore:
1316        /* We've hit an error - don't reset MS_RDONLY */
1317        if (sb->s_flags & MS_RDONLY)
1318                old_flags |= MS_RDONLY;
1319        sb->s_flags = old_flags;
1320        fs_info->mount_opt = old_opts;
1321        fs_info->compress_type = old_compress_type;
1322        fs_info->max_inline = old_max_inline;
1323        mutex_lock(&fs_info->chunk_mutex);
1324        fs_info->alloc_start = old_alloc_start;
1325        mutex_unlock(&fs_info->chunk_mutex);
1326        btrfs_resize_thread_pool(fs_info,
1327                old_thread_pool_size, fs_info->thread_pool_size);
1328        fs_info->metadata_ratio = old_metadata_ratio;
1329        btrfs_remount_cleanup(fs_info, old_opts);
1330        return ret;
1331}
1332
1333/* Used to sort the devices by max_avail(descending sort) */
1334static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1335                                       const void *dev_info2)
1336{
1337        if (((struct btrfs_device_info *)dev_info1)->max_avail >
1338            ((struct btrfs_device_info *)dev_info2)->max_avail)
1339                return -1;
1340        else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1341                 ((struct btrfs_device_info *)dev_info2)->max_avail)
1342                return 1;
1343        else
1344        return 0;
1345}
1346
1347/*
1348 * sort the devices by max_avail, in which max free extent size of each device
1349 * is stored.(Descending Sort)
1350 */
1351static inline void btrfs_descending_sort_devices(
1352                                        struct btrfs_device_info *devices,
1353                                        size_t nr_devices)
1354{
1355        sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1356             btrfs_cmp_device_free_bytes, NULL);
1357}
1358
1359/*
1360 * The helper to calc the free space on the devices that can be used to store
1361 * file data.
1362 */
1363static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1364{
1365        struct btrfs_fs_info *fs_info = root->fs_info;
1366        struct btrfs_device_info *devices_info;
1367        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1368        struct btrfs_device *device;
1369        u64 skip_space;
1370        u64 type;
1371        u64 avail_space;
1372        u64 used_space;
1373        u64 min_stripe_size;
1374        int min_stripes = 1, num_stripes = 1;
1375        int i = 0, nr_devices;
1376        int ret;
1377
1378        nr_devices = fs_info->fs_devices->open_devices;
1379        BUG_ON(!nr_devices);
1380
1381        devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1382                               GFP_NOFS);
1383        if (!devices_info)
1384                return -ENOMEM;
1385
1386        /* calc min stripe number for data space alloction */
1387        type = btrfs_get_alloc_profile(root, 1);
1388        if (type & BTRFS_BLOCK_GROUP_RAID0) {
1389                min_stripes = 2;
1390                num_stripes = nr_devices;
1391        } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1392                min_stripes = 2;
1393                num_stripes = 2;
1394        } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1395                min_stripes = 4;
1396                num_stripes = 4;
1397        }
1398
1399        if (type & BTRFS_BLOCK_GROUP_DUP)
1400                min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1401        else
1402                min_stripe_size = BTRFS_STRIPE_LEN;
1403
1404        list_for_each_entry(device, &fs_devices->devices, dev_list) {
1405                if (!device->in_fs_metadata || !device->bdev ||
1406                    device->is_tgtdev_for_dev_replace)
1407                        continue;
1408
1409                avail_space = device->total_bytes - device->bytes_used;
1410
1411                /* align with stripe_len */
1412                do_div(avail_space, BTRFS_STRIPE_LEN);
1413                avail_space *= BTRFS_STRIPE_LEN;
1414
1415                /*
1416                 * In order to avoid overwritting the superblock on the drive,
1417                 * btrfs starts at an offset of at least 1MB when doing chunk
1418                 * allocation.
1419                 */
1420                skip_space = 1024 * 1024;
1421
1422                /* user can set the offset in fs_info->alloc_start. */
1423                if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1424                    device->total_bytes)
1425                        skip_space = max(fs_info->alloc_start, skip_space);
1426
1427                /*
1428                 * btrfs can not use the free space in [0, skip_space - 1],
1429                 * we must subtract it from the total. In order to implement
1430                 * it, we account the used space in this range first.
1431                 */
1432                ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1433                                                     &used_space);
1434                if (ret) {
1435                        kfree(devices_info);
1436                        return ret;
1437                }
1438
1439                /* calc the free space in [0, skip_space - 1] */
1440                skip_space -= used_space;
1441
1442                /*
1443                 * we can use the free space in [0, skip_space - 1], subtract
1444                 * it from the total.
1445                 */
1446                if (avail_space && avail_space >= skip_space)
1447                        avail_space -= skip_space;
1448                else
1449                        avail_space = 0;
1450
1451                if (avail_space < min_stripe_size)
1452                        continue;
1453
1454                devices_info[i].dev = device;
1455                devices_info[i].max_avail = avail_space;
1456
1457                i++;
1458        }
1459
1460        nr_devices = i;
1461
1462        btrfs_descending_sort_devices(devices_info, nr_devices);
1463
1464        i = nr_devices - 1;
1465        avail_space = 0;
1466        while (nr_devices >= min_stripes) {
1467                if (num_stripes > nr_devices)
1468                        num_stripes = nr_devices;
1469
1470                if (devices_info[i].max_avail >= min_stripe_size) {
1471                        int j;
1472                        u64 alloc_size;
1473
1474                        avail_space += devices_info[i].max_avail * num_stripes;
1475                        alloc_size = devices_info[i].max_avail;
1476                        for (j = i + 1 - num_stripes; j <= i; j++)
1477                                devices_info[j].max_avail -= alloc_size;
1478                }
1479                i--;
1480                nr_devices--;
1481        }
1482
1483        kfree(devices_info);
1484        *free_bytes = avail_space;
1485        return 0;
1486}
1487
1488static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1489{
1490        struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1491        struct btrfs_super_block *disk_super = fs_info->super_copy;
1492        struct list_head *head = &fs_info->space_info;
1493        struct btrfs_space_info *found;
1494        u64 total_used = 0;
1495        u64 total_free_data = 0;
1496        int bits = dentry->d_sb->s_blocksize_bits;
1497        __be32 *fsid = (__be32 *)fs_info->fsid;
1498        int ret;
1499
1500        /* holding chunk_muext to avoid allocating new chunks */
1501        mutex_lock(&fs_info->chunk_mutex);
1502        rcu_read_lock();
1503        list_for_each_entry_rcu(found, head, list) {
1504                if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1505                        total_free_data += found->disk_total - found->disk_used;
1506                        total_free_data -=
1507                                btrfs_account_ro_block_groups_free_space(found);
1508                }
1509
1510                total_used += found->disk_used;
1511        }
1512        rcu_read_unlock();
1513
1514        buf->f_namelen = BTRFS_NAME_LEN;
1515        buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1516        buf->f_bfree = buf->f_blocks - (total_used >> bits);
1517        buf->f_bsize = dentry->d_sb->s_blocksize;
1518        buf->f_type = BTRFS_SUPER_MAGIC;
1519        buf->f_bavail = total_free_data;
1520        ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1521        if (ret) {
1522                mutex_unlock(&fs_info->chunk_mutex);
1523                return ret;
1524        }
1525        buf->f_bavail += total_free_data;
1526        buf->f_bavail = buf->f_bavail >> bits;
1527        mutex_unlock(&fs_info->chunk_mutex);
1528
1529        /* We treat it as constant endianness (it doesn't matter _which_)
1530           because we want the fsid to come out the same whether mounted
1531           on a big-endian or little-endian host */
1532        buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1533        buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1534        /* Mask in the root object ID too, to disambiguate subvols */
1535        buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1536        buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1537
1538        return 0;
1539}
1540
1541static void btrfs_kill_super(struct super_block *sb)
1542{
1543        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1544        kill_anon_super(sb);
1545        free_fs_info(fs_info);
1546}
1547
1548static struct file_system_type btrfs_fs_type = {
1549        .owner          = THIS_MODULE,
1550        .name           = "btrfs",
1551        .mount          = btrfs_mount,
1552        .kill_sb        = btrfs_kill_super,
1553        .fs_flags       = FS_REQUIRES_DEV,
1554};
1555MODULE_ALIAS_FS("btrfs");
1556
1557/*
1558 * used by btrfsctl to scan devices when no FS is mounted
1559 */
1560static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1561                                unsigned long arg)
1562{
1563        struct btrfs_ioctl_vol_args *vol;
1564        struct btrfs_fs_devices *fs_devices;
1565        int ret = -ENOTTY;
1566
1567        if (!capable(CAP_SYS_ADMIN))
1568                return -EPERM;
1569
1570        vol = memdup_user((void __user *)arg, sizeof(*vol));
1571        if (IS_ERR(vol))
1572                return PTR_ERR(vol);
1573
1574        switch (cmd) {
1575        case BTRFS_IOC_SCAN_DEV:
1576                ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1577                                            &btrfs_fs_type, &fs_devices);
1578                break;
1579        case BTRFS_IOC_DEVICES_READY:
1580                ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1581                                            &btrfs_fs_type, &fs_devices);
1582                if (ret)
1583                        break;
1584                ret = !(fs_devices->num_devices == fs_devices->total_devices);
1585                break;
1586        }
1587
1588        kfree(vol);
1589        return ret;
1590}
1591
1592static int btrfs_freeze(struct super_block *sb)
1593{
1594        struct btrfs_trans_handle *trans;
1595        struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1596
1597        trans = btrfs_attach_transaction_barrier(root);
1598        if (IS_ERR(trans)) {
1599                /* no transaction, don't bother */
1600                if (PTR_ERR(trans) == -ENOENT)
1601                        return 0;
1602                return PTR_ERR(trans);
1603        }
1604        return btrfs_commit_transaction(trans, root);
1605}
1606
1607static int btrfs_unfreeze(struct super_block *sb)
1608{
1609        return 0;
1610}
1611
1612static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1613{
1614        struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1615        struct btrfs_fs_devices *cur_devices;
1616        struct btrfs_device *dev, *first_dev = NULL;
1617        struct list_head *head;
1618        struct rcu_string *name;
1619
1620        mutex_lock(&fs_info->fs_devices->device_list_mutex);
1621        cur_devices = fs_info->fs_devices;
1622        while (cur_devices) {
1623                head = &cur_devices->devices;
1624                list_for_each_entry(dev, head, dev_list) {
1625                        if (dev->missing)
1626                                continue;
1627                        if (!first_dev || dev->devid < first_dev->devid)
1628                                first_dev = dev;
1629                }
1630                cur_devices = cur_devices->seed;
1631        }
1632
1633        if (first_dev) {
1634                rcu_read_lock();
1635                name = rcu_dereference(first_dev->name);
1636                seq_escape(m, name->str, " \t\n\\");
1637                rcu_read_unlock();
1638        } else {
1639                WARN_ON(1);
1640        }
1641        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1642        return 0;
1643}
1644
1645static const struct super_operations btrfs_super_ops = {
1646        .drop_inode     = btrfs_drop_inode,
1647        .evict_inode    = btrfs_evict_inode,
1648        .put_super      = btrfs_put_super,
1649        .sync_fs        = btrfs_sync_fs,
1650        .show_options   = btrfs_show_options,
1651        .show_devname   = btrfs_show_devname,
1652        .write_inode    = btrfs_write_inode,
1653        .alloc_inode    = btrfs_alloc_inode,
1654        .destroy_inode  = btrfs_destroy_inode,
1655        .statfs         = btrfs_statfs,
1656        .remount_fs     = btrfs_remount,
1657        .freeze_fs      = btrfs_freeze,
1658        .unfreeze_fs    = btrfs_unfreeze,
1659};
1660
1661static const struct file_operations btrfs_ctl_fops = {
1662        .unlocked_ioctl  = btrfs_control_ioctl,
1663        .compat_ioctl = btrfs_control_ioctl,
1664        .owner   = THIS_MODULE,
1665        .llseek = noop_llseek,
1666};
1667
1668static struct miscdevice btrfs_misc = {
1669        .minor          = BTRFS_MINOR,
1670        .name           = "btrfs-control",
1671        .fops           = &btrfs_ctl_fops
1672};
1673
1674MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1675MODULE_ALIAS("devname:btrfs-control");
1676
1677static int btrfs_interface_init(void)
1678{
1679        return misc_register(&btrfs_misc);
1680}
1681
1682static void btrfs_interface_exit(void)
1683{
1684        if (misc_deregister(&btrfs_misc) < 0)
1685                printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1686}
1687
1688static int __init init_btrfs_fs(void)
1689{
1690        int err;
1691
1692        err = btrfs_init_sysfs();
1693        if (err)
1694                return err;
1695
1696        btrfs_init_compress();
1697
1698        err = btrfs_init_cachep();
1699        if (err)
1700                goto free_compress;
1701
1702        err = extent_io_init();
1703        if (err)
1704                goto free_cachep;
1705
1706        err = extent_map_init();
1707        if (err)
1708                goto free_extent_io;
1709
1710        err = ordered_data_init();
1711        if (err)
1712                goto free_extent_map;
1713
1714        err = btrfs_delayed_inode_init();
1715        if (err)
1716                goto free_ordered_data;
1717
1718        err = btrfs_auto_defrag_init();
1719        if (err)
1720                goto free_delayed_inode;
1721
1722        err = btrfs_delayed_ref_init();
1723        if (err)
1724                goto free_auto_defrag;
1725
1726        err = btrfs_interface_init();
1727        if (err)
1728                goto free_delayed_ref;
1729
1730        err = register_filesystem(&btrfs_fs_type);
1731        if (err)
1732                goto unregister_ioctl;
1733
1734        btrfs_init_lockdep();
1735
1736#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1737        btrfs_test_free_space_cache();
1738#endif
1739
1740        printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1741        return 0;
1742
1743unregister_ioctl:
1744        btrfs_interface_exit();
1745free_delayed_ref:
1746        btrfs_delayed_ref_exit();
1747free_auto_defrag:
1748        btrfs_auto_defrag_exit();
1749free_delayed_inode:
1750        btrfs_delayed_inode_exit();
1751free_ordered_data:
1752        ordered_data_exit();
1753free_extent_map:
1754        extent_map_exit();
1755free_extent_io:
1756        extent_io_exit();
1757free_cachep:
1758        btrfs_destroy_cachep();
1759free_compress:
1760        btrfs_exit_compress();
1761        btrfs_exit_sysfs();
1762        return err;
1763}
1764
1765static void __exit exit_btrfs_fs(void)
1766{
1767        btrfs_destroy_cachep();
1768        btrfs_delayed_ref_exit();
1769        btrfs_auto_defrag_exit();
1770        btrfs_delayed_inode_exit();
1771        ordered_data_exit();
1772        extent_map_exit();
1773        extent_io_exit();
1774        btrfs_interface_exit();
1775        unregister_filesystem(&btrfs_fs_type);
1776        btrfs_exit_sysfs();
1777        btrfs_cleanup_fs_uuids();
1778        btrfs_exit_compress();
1779}
1780
1781module_init(init_btrfs_fs)
1782module_exit(exit_btrfs_fs)
1783
1784MODULE_LICENSE("GPL");
1785