linux/fs/btrfs/transaction.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/writeback.h>
  23#include <linux/pagemap.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include "ctree.h"
  27#include "disk-io.h"
  28#include "transaction.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "inode-map.h"
  32#include "volumes.h"
  33#include "dev-replace.h"
  34
  35#define BTRFS_ROOT_TRANS_TAG 0
  36
  37static void put_transaction(struct btrfs_transaction *transaction)
  38{
  39        WARN_ON(atomic_read(&transaction->use_count) == 0);
  40        if (atomic_dec_and_test(&transaction->use_count)) {
  41                BUG_ON(!list_empty(&transaction->list));
  42                WARN_ON(transaction->delayed_refs.root.rb_node);
  43                kmem_cache_free(btrfs_transaction_cachep, transaction);
  44        }
  45}
  46
  47static noinline void switch_commit_root(struct btrfs_root *root)
  48{
  49        free_extent_buffer(root->commit_root);
  50        root->commit_root = btrfs_root_node(root);
  51}
  52
  53static inline int can_join_transaction(struct btrfs_transaction *trans,
  54                                       int type)
  55{
  56        return !(trans->in_commit &&
  57                 type != TRANS_JOIN &&
  58                 type != TRANS_JOIN_NOLOCK);
  59}
  60
  61/*
  62 * either allocate a new transaction or hop into the existing one
  63 */
  64static noinline int join_transaction(struct btrfs_root *root, int type)
  65{
  66        struct btrfs_transaction *cur_trans;
  67        struct btrfs_fs_info *fs_info = root->fs_info;
  68
  69        spin_lock(&fs_info->trans_lock);
  70loop:
  71        /* The file system has been taken offline. No new transactions. */
  72        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  73                spin_unlock(&fs_info->trans_lock);
  74                return -EROFS;
  75        }
  76
  77        if (fs_info->trans_no_join) {
  78                /* 
  79                 * If we are JOIN_NOLOCK we're already committing a current
  80                 * transaction, we just need a handle to deal with something
  81                 * when committing the transaction, such as inode cache and
  82                 * space cache. It is a special case.
  83                 */
  84                if (type != TRANS_JOIN_NOLOCK) {
  85                        spin_unlock(&fs_info->trans_lock);
  86                        return -EBUSY;
  87                }
  88        }
  89
  90        cur_trans = fs_info->running_transaction;
  91        if (cur_trans) {
  92                if (cur_trans->aborted) {
  93                        spin_unlock(&fs_info->trans_lock);
  94                        return cur_trans->aborted;
  95                }
  96                if (!can_join_transaction(cur_trans, type)) {
  97                        spin_unlock(&fs_info->trans_lock);
  98                        return -EBUSY;
  99                }
 100                atomic_inc(&cur_trans->use_count);
 101                atomic_inc(&cur_trans->num_writers);
 102                cur_trans->num_joined++;
 103                spin_unlock(&fs_info->trans_lock);
 104                return 0;
 105        }
 106        spin_unlock(&fs_info->trans_lock);
 107
 108        /*
 109         * If we are ATTACH, we just want to catch the current transaction,
 110         * and commit it. If there is no transaction, just return ENOENT.
 111         */
 112        if (type == TRANS_ATTACH)
 113                return -ENOENT;
 114
 115        cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
 116        if (!cur_trans)
 117                return -ENOMEM;
 118
 119        spin_lock(&fs_info->trans_lock);
 120        if (fs_info->running_transaction) {
 121                /*
 122                 * someone started a transaction after we unlocked.  Make sure
 123                 * to redo the trans_no_join checks above
 124                 */
 125                kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 126                goto loop;
 127        } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 128                spin_unlock(&fs_info->trans_lock);
 129                kmem_cache_free(btrfs_transaction_cachep, cur_trans);
 130                return -EROFS;
 131        }
 132
 133        atomic_set(&cur_trans->num_writers, 1);
 134        cur_trans->num_joined = 0;
 135        init_waitqueue_head(&cur_trans->writer_wait);
 136        init_waitqueue_head(&cur_trans->commit_wait);
 137        cur_trans->in_commit = 0;
 138        cur_trans->blocked = 0;
 139        /*
 140         * One for this trans handle, one so it will live on until we
 141         * commit the transaction.
 142         */
 143        atomic_set(&cur_trans->use_count, 2);
 144        cur_trans->commit_done = 0;
 145        cur_trans->start_time = get_seconds();
 146
 147        cur_trans->delayed_refs.root = RB_ROOT;
 148        cur_trans->delayed_refs.num_entries = 0;
 149        cur_trans->delayed_refs.num_heads_ready = 0;
 150        cur_trans->delayed_refs.num_heads = 0;
 151        cur_trans->delayed_refs.flushing = 0;
 152        cur_trans->delayed_refs.run_delayed_start = 0;
 153
 154        /*
 155         * although the tree mod log is per file system and not per transaction,
 156         * the log must never go across transaction boundaries.
 157         */
 158        smp_mb();
 159        if (!list_empty(&fs_info->tree_mod_seq_list))
 160                WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
 161                        "creating a fresh transaction\n");
 162        if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
 163                WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
 164                        "creating a fresh transaction\n");
 165        atomic64_set(&fs_info->tree_mod_seq, 0);
 166
 167        spin_lock_init(&cur_trans->commit_lock);
 168        spin_lock_init(&cur_trans->delayed_refs.lock);
 169        atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
 170        atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
 171        init_waitqueue_head(&cur_trans->delayed_refs.wait);
 172
 173        INIT_LIST_HEAD(&cur_trans->pending_snapshots);
 174        INIT_LIST_HEAD(&cur_trans->ordered_operations);
 175        list_add_tail(&cur_trans->list, &fs_info->trans_list);
 176        extent_io_tree_init(&cur_trans->dirty_pages,
 177                             fs_info->btree_inode->i_mapping);
 178        fs_info->generation++;
 179        cur_trans->transid = fs_info->generation;
 180        fs_info->running_transaction = cur_trans;
 181        cur_trans->aborted = 0;
 182        spin_unlock(&fs_info->trans_lock);
 183
 184        return 0;
 185}
 186
 187/*
 188 * this does all the record keeping required to make sure that a reference
 189 * counted root is properly recorded in a given transaction.  This is required
 190 * to make sure the old root from before we joined the transaction is deleted
 191 * when the transaction commits
 192 */
 193static int record_root_in_trans(struct btrfs_trans_handle *trans,
 194                               struct btrfs_root *root)
 195{
 196        if (root->ref_cows && root->last_trans < trans->transid) {
 197                WARN_ON(root == root->fs_info->extent_root);
 198                WARN_ON(root->commit_root != root->node);
 199
 200                /*
 201                 * see below for in_trans_setup usage rules
 202                 * we have the reloc mutex held now, so there
 203                 * is only one writer in this function
 204                 */
 205                root->in_trans_setup = 1;
 206
 207                /* make sure readers find in_trans_setup before
 208                 * they find our root->last_trans update
 209                 */
 210                smp_wmb();
 211
 212                spin_lock(&root->fs_info->fs_roots_radix_lock);
 213                if (root->last_trans == trans->transid) {
 214                        spin_unlock(&root->fs_info->fs_roots_radix_lock);
 215                        return 0;
 216                }
 217                radix_tree_tag_set(&root->fs_info->fs_roots_radix,
 218                           (unsigned long)root->root_key.objectid,
 219                           BTRFS_ROOT_TRANS_TAG);
 220                spin_unlock(&root->fs_info->fs_roots_radix_lock);
 221                root->last_trans = trans->transid;
 222
 223                /* this is pretty tricky.  We don't want to
 224                 * take the relocation lock in btrfs_record_root_in_trans
 225                 * unless we're really doing the first setup for this root in
 226                 * this transaction.
 227                 *
 228                 * Normally we'd use root->last_trans as a flag to decide
 229                 * if we want to take the expensive mutex.
 230                 *
 231                 * But, we have to set root->last_trans before we
 232                 * init the relocation root, otherwise, we trip over warnings
 233                 * in ctree.c.  The solution used here is to flag ourselves
 234                 * with root->in_trans_setup.  When this is 1, we're still
 235                 * fixing up the reloc trees and everyone must wait.
 236                 *
 237                 * When this is zero, they can trust root->last_trans and fly
 238                 * through btrfs_record_root_in_trans without having to take the
 239                 * lock.  smp_wmb() makes sure that all the writes above are
 240                 * done before we pop in the zero below
 241                 */
 242                btrfs_init_reloc_root(trans, root);
 243                smp_wmb();
 244                root->in_trans_setup = 0;
 245        }
 246        return 0;
 247}
 248
 249
 250int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
 251                               struct btrfs_root *root)
 252{
 253        if (!root->ref_cows)
 254                return 0;
 255
 256        /*
 257         * see record_root_in_trans for comments about in_trans_setup usage
 258         * and barriers
 259         */
 260        smp_rmb();
 261        if (root->last_trans == trans->transid &&
 262            !root->in_trans_setup)
 263                return 0;
 264
 265        mutex_lock(&root->fs_info->reloc_mutex);
 266        record_root_in_trans(trans, root);
 267        mutex_unlock(&root->fs_info->reloc_mutex);
 268
 269        return 0;
 270}
 271
 272/* wait for commit against the current transaction to become unblocked
 273 * when this is done, it is safe to start a new transaction, but the current
 274 * transaction might not be fully on disk.
 275 */
 276static void wait_current_trans(struct btrfs_root *root)
 277{
 278        struct btrfs_transaction *cur_trans;
 279
 280        spin_lock(&root->fs_info->trans_lock);
 281        cur_trans = root->fs_info->running_transaction;
 282        if (cur_trans && cur_trans->blocked) {
 283                atomic_inc(&cur_trans->use_count);
 284                spin_unlock(&root->fs_info->trans_lock);
 285
 286                wait_event(root->fs_info->transaction_wait,
 287                           !cur_trans->blocked);
 288                put_transaction(cur_trans);
 289        } else {
 290                spin_unlock(&root->fs_info->trans_lock);
 291        }
 292}
 293
 294static int may_wait_transaction(struct btrfs_root *root, int type)
 295{
 296        if (root->fs_info->log_root_recovering)
 297                return 0;
 298
 299        if (type == TRANS_USERSPACE)
 300                return 1;
 301
 302        if (type == TRANS_START &&
 303            !atomic_read(&root->fs_info->open_ioctl_trans))
 304                return 1;
 305
 306        return 0;
 307}
 308
 309static struct btrfs_trans_handle *
 310start_transaction(struct btrfs_root *root, u64 num_items, int type,
 311                  enum btrfs_reserve_flush_enum flush)
 312{
 313        struct btrfs_trans_handle *h;
 314        struct btrfs_transaction *cur_trans;
 315        u64 num_bytes = 0;
 316        int ret;
 317        u64 qgroup_reserved = 0;
 318
 319        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
 320                return ERR_PTR(-EROFS);
 321
 322        if (current->journal_info) {
 323                WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
 324                h = current->journal_info;
 325                h->use_count++;
 326                WARN_ON(h->use_count > 2);
 327                h->orig_rsv = h->block_rsv;
 328                h->block_rsv = NULL;
 329                goto got_it;
 330        }
 331
 332        /*
 333         * Do the reservation before we join the transaction so we can do all
 334         * the appropriate flushing if need be.
 335         */
 336        if (num_items > 0 && root != root->fs_info->chunk_root) {
 337                if (root->fs_info->quota_enabled &&
 338                    is_fstree(root->root_key.objectid)) {
 339                        qgroup_reserved = num_items * root->leafsize;
 340                        ret = btrfs_qgroup_reserve(root, qgroup_reserved);
 341                        if (ret)
 342                                return ERR_PTR(ret);
 343                }
 344
 345                num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
 346                ret = btrfs_block_rsv_add(root,
 347                                          &root->fs_info->trans_block_rsv,
 348                                          num_bytes, flush);
 349                if (ret)
 350                        goto reserve_fail;
 351        }
 352again:
 353        h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
 354        if (!h) {
 355                ret = -ENOMEM;
 356                goto alloc_fail;
 357        }
 358
 359        /*
 360         * If we are JOIN_NOLOCK we're already committing a transaction and
 361         * waiting on this guy, so we don't need to do the sb_start_intwrite
 362         * because we're already holding a ref.  We need this because we could
 363         * have raced in and did an fsync() on a file which can kick a commit
 364         * and then we deadlock with somebody doing a freeze.
 365         *
 366         * If we are ATTACH, it means we just want to catch the current
 367         * transaction and commit it, so we needn't do sb_start_intwrite(). 
 368         */
 369        if (type < TRANS_JOIN_NOLOCK)
 370                sb_start_intwrite(root->fs_info->sb);
 371
 372        if (may_wait_transaction(root, type))
 373                wait_current_trans(root);
 374
 375        do {
 376                ret = join_transaction(root, type);
 377                if (ret == -EBUSY) {
 378                        wait_current_trans(root);
 379                        if (unlikely(type == TRANS_ATTACH))
 380                                ret = -ENOENT;
 381                }
 382        } while (ret == -EBUSY);
 383
 384        if (ret < 0) {
 385                /* We must get the transaction if we are JOIN_NOLOCK. */
 386                BUG_ON(type == TRANS_JOIN_NOLOCK);
 387                goto join_fail;
 388        }
 389
 390        cur_trans = root->fs_info->running_transaction;
 391
 392        h->transid = cur_trans->transid;
 393        h->transaction = cur_trans;
 394        h->blocks_used = 0;
 395        h->bytes_reserved = 0;
 396        h->root = root;
 397        h->delayed_ref_updates = 0;
 398        h->use_count = 1;
 399        h->adding_csums = 0;
 400        h->block_rsv = NULL;
 401        h->orig_rsv = NULL;
 402        h->aborted = 0;
 403        h->qgroup_reserved = 0;
 404        h->delayed_ref_elem.seq = 0;
 405        h->type = type;
 406        h->allocating_chunk = false;
 407        INIT_LIST_HEAD(&h->qgroup_ref_list);
 408        INIT_LIST_HEAD(&h->new_bgs);
 409
 410        smp_mb();
 411        if (cur_trans->blocked && may_wait_transaction(root, type)) {
 412                btrfs_commit_transaction(h, root);
 413                goto again;
 414        }
 415
 416        if (num_bytes) {
 417                trace_btrfs_space_reservation(root->fs_info, "transaction",
 418                                              h->transid, num_bytes, 1);
 419                h->block_rsv = &root->fs_info->trans_block_rsv;
 420                h->bytes_reserved = num_bytes;
 421        }
 422        h->qgroup_reserved = qgroup_reserved;
 423
 424got_it:
 425        btrfs_record_root_in_trans(h, root);
 426
 427        if (!current->journal_info && type != TRANS_USERSPACE)
 428                current->journal_info = h;
 429        return h;
 430
 431join_fail:
 432        if (type < TRANS_JOIN_NOLOCK)
 433                sb_end_intwrite(root->fs_info->sb);
 434        kmem_cache_free(btrfs_trans_handle_cachep, h);
 435alloc_fail:
 436        if (num_bytes)
 437                btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
 438                                        num_bytes);
 439reserve_fail:
 440        if (qgroup_reserved)
 441                btrfs_qgroup_free(root, qgroup_reserved);
 442        return ERR_PTR(ret);
 443}
 444
 445struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
 446                                                   int num_items)
 447{
 448        return start_transaction(root, num_items, TRANS_START,
 449                                 BTRFS_RESERVE_FLUSH_ALL);
 450}
 451
 452struct btrfs_trans_handle *btrfs_start_transaction_lflush(
 453                                        struct btrfs_root *root, int num_items)
 454{
 455        return start_transaction(root, num_items, TRANS_START,
 456                                 BTRFS_RESERVE_FLUSH_LIMIT);
 457}
 458
 459struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
 460{
 461        return start_transaction(root, 0, TRANS_JOIN, 0);
 462}
 463
 464struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
 465{
 466        return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
 467}
 468
 469struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
 470{
 471        return start_transaction(root, 0, TRANS_USERSPACE, 0);
 472}
 473
 474/*
 475 * btrfs_attach_transaction() - catch the running transaction
 476 *
 477 * It is used when we want to commit the current the transaction, but
 478 * don't want to start a new one.
 479 *
 480 * Note: If this function return -ENOENT, it just means there is no
 481 * running transaction. But it is possible that the inactive transaction
 482 * is still in the memory, not fully on disk. If you hope there is no
 483 * inactive transaction in the fs when -ENOENT is returned, you should
 484 * invoke
 485 *     btrfs_attach_transaction_barrier()
 486 */
 487struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
 488{
 489        return start_transaction(root, 0, TRANS_ATTACH, 0);
 490}
 491
 492/*
 493 * btrfs_attach_transaction() - catch the running transaction
 494 *
 495 * It is similar to the above function, the differentia is this one
 496 * will wait for all the inactive transactions until they fully
 497 * complete.
 498 */
 499struct btrfs_trans_handle *
 500btrfs_attach_transaction_barrier(struct btrfs_root *root)
 501{
 502        struct btrfs_trans_handle *trans;
 503
 504        trans = start_transaction(root, 0, TRANS_ATTACH, 0);
 505        if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
 506                btrfs_wait_for_commit(root, 0);
 507
 508        return trans;
 509}
 510
 511/* wait for a transaction commit to be fully complete */
 512static noinline void wait_for_commit(struct btrfs_root *root,
 513                                    struct btrfs_transaction *commit)
 514{
 515        wait_event(commit->commit_wait, commit->commit_done);
 516}
 517
 518int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
 519{
 520        struct btrfs_transaction *cur_trans = NULL, *t;
 521        int ret = 0;
 522
 523        if (transid) {
 524                if (transid <= root->fs_info->last_trans_committed)
 525                        goto out;
 526
 527                ret = -EINVAL;
 528                /* find specified transaction */
 529                spin_lock(&root->fs_info->trans_lock);
 530                list_for_each_entry(t, &root->fs_info->trans_list, list) {
 531                        if (t->transid == transid) {
 532                                cur_trans = t;
 533                                atomic_inc(&cur_trans->use_count);
 534                                ret = 0;
 535                                break;
 536                        }
 537                        if (t->transid > transid) {
 538                                ret = 0;
 539                                break;
 540                        }
 541                }
 542                spin_unlock(&root->fs_info->trans_lock);
 543                /* The specified transaction doesn't exist */
 544                if (!cur_trans)
 545                        goto out;
 546        } else {
 547                /* find newest transaction that is committing | committed */
 548                spin_lock(&root->fs_info->trans_lock);
 549                list_for_each_entry_reverse(t, &root->fs_info->trans_list,
 550                                            list) {
 551                        if (t->in_commit) {
 552                                if (t->commit_done)
 553                                        break;
 554                                cur_trans = t;
 555                                atomic_inc(&cur_trans->use_count);
 556                                break;
 557                        }
 558                }
 559                spin_unlock(&root->fs_info->trans_lock);
 560                if (!cur_trans)
 561                        goto out;  /* nothing committing|committed */
 562        }
 563
 564        wait_for_commit(root, cur_trans);
 565        put_transaction(cur_trans);
 566out:
 567        return ret;
 568}
 569
 570void btrfs_throttle(struct btrfs_root *root)
 571{
 572        if (!atomic_read(&root->fs_info->open_ioctl_trans))
 573                wait_current_trans(root);
 574}
 575
 576static int should_end_transaction(struct btrfs_trans_handle *trans,
 577                                  struct btrfs_root *root)
 578{
 579        int ret;
 580
 581        ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
 582        return ret ? 1 : 0;
 583}
 584
 585int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
 586                                 struct btrfs_root *root)
 587{
 588        struct btrfs_transaction *cur_trans = trans->transaction;
 589        int updates;
 590        int err;
 591
 592        smp_mb();
 593        if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
 594                return 1;
 595
 596        updates = trans->delayed_ref_updates;
 597        trans->delayed_ref_updates = 0;
 598        if (updates) {
 599                err = btrfs_run_delayed_refs(trans, root, updates);
 600                if (err) /* Error code will also eval true */
 601                        return err;
 602        }
 603
 604        return should_end_transaction(trans, root);
 605}
 606
 607static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
 608                          struct btrfs_root *root, int throttle)
 609{
 610        struct btrfs_transaction *cur_trans = trans->transaction;
 611        struct btrfs_fs_info *info = root->fs_info;
 612        int count = 0;
 613        int lock = (trans->type != TRANS_JOIN_NOLOCK);
 614        int err = 0;
 615
 616        if (--trans->use_count) {
 617                trans->block_rsv = trans->orig_rsv;
 618                return 0;
 619        }
 620
 621        /*
 622         * do the qgroup accounting as early as possible
 623         */
 624        err = btrfs_delayed_refs_qgroup_accounting(trans, info);
 625
 626        btrfs_trans_release_metadata(trans, root);
 627        trans->block_rsv = NULL;
 628
 629        if (trans->qgroup_reserved) {
 630                /*
 631                 * the same root has to be passed here between start_transaction
 632                 * and end_transaction. Subvolume quota depends on this.
 633                 */
 634                btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
 635                trans->qgroup_reserved = 0;
 636        }
 637
 638        if (!list_empty(&trans->new_bgs))
 639                btrfs_create_pending_block_groups(trans, root);
 640
 641        while (count < 1) {
 642                unsigned long cur = trans->delayed_ref_updates;
 643                trans->delayed_ref_updates = 0;
 644                if (cur &&
 645                    trans->transaction->delayed_refs.num_heads_ready > 64) {
 646                        trans->delayed_ref_updates = 0;
 647                        btrfs_run_delayed_refs(trans, root, cur);
 648                } else {
 649                        break;
 650                }
 651                count++;
 652        }
 653
 654        btrfs_trans_release_metadata(trans, root);
 655        trans->block_rsv = NULL;
 656
 657        if (!list_empty(&trans->new_bgs))
 658                btrfs_create_pending_block_groups(trans, root);
 659
 660        if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
 661            should_end_transaction(trans, root)) {
 662                trans->transaction->blocked = 1;
 663                smp_wmb();
 664        }
 665
 666        if (lock && cur_trans->blocked && !cur_trans->in_commit) {
 667                if (throttle) {
 668                        /*
 669                         * We may race with somebody else here so end up having
 670                         * to call end_transaction on ourselves again, so inc
 671                         * our use_count.
 672                         */
 673                        trans->use_count++;
 674                        return btrfs_commit_transaction(trans, root);
 675                } else {
 676                        wake_up_process(info->transaction_kthread);
 677                }
 678        }
 679
 680        if (trans->type < TRANS_JOIN_NOLOCK)
 681                sb_end_intwrite(root->fs_info->sb);
 682
 683        WARN_ON(cur_trans != info->running_transaction);
 684        WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
 685        atomic_dec(&cur_trans->num_writers);
 686
 687        smp_mb();
 688        if (waitqueue_active(&cur_trans->writer_wait))
 689                wake_up(&cur_trans->writer_wait);
 690        put_transaction(cur_trans);
 691
 692        if (current->journal_info == trans)
 693                current->journal_info = NULL;
 694
 695        if (throttle)
 696                btrfs_run_delayed_iputs(root);
 697
 698        if (trans->aborted ||
 699            test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
 700                err = -EIO;
 701        assert_qgroups_uptodate(trans);
 702
 703        kmem_cache_free(btrfs_trans_handle_cachep, trans);
 704        return err;
 705}
 706
 707int btrfs_end_transaction(struct btrfs_trans_handle *trans,
 708                          struct btrfs_root *root)
 709{
 710        return __btrfs_end_transaction(trans, root, 0);
 711}
 712
 713int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
 714                                   struct btrfs_root *root)
 715{
 716        return __btrfs_end_transaction(trans, root, 1);
 717}
 718
 719int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
 720                                struct btrfs_root *root)
 721{
 722        return __btrfs_end_transaction(trans, root, 1);
 723}
 724
 725/*
 726 * when btree blocks are allocated, they have some corresponding bits set for
 727 * them in one of two extent_io trees.  This is used to make sure all of
 728 * those extents are sent to disk but does not wait on them
 729 */
 730int btrfs_write_marked_extents(struct btrfs_root *root,
 731                               struct extent_io_tree *dirty_pages, int mark)
 732{
 733        int err = 0;
 734        int werr = 0;
 735        struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 736        struct extent_state *cached_state = NULL;
 737        u64 start = 0;
 738        u64 end;
 739        struct blk_plug plug;
 740
 741        blk_start_plug(&plug);
 742        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 743                                      mark, &cached_state)) {
 744                convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 745                                   mark, &cached_state, GFP_NOFS);
 746                cached_state = NULL;
 747                err = filemap_fdatawrite_range(mapping, start, end);
 748                if (err)
 749                        werr = err;
 750                cond_resched();
 751                start = end + 1;
 752        }
 753        if (err)
 754                werr = err;
 755        blk_finish_plug(&plug);
 756        return werr;
 757}
 758
 759/*
 760 * when btree blocks are allocated, they have some corresponding bits set for
 761 * them in one of two extent_io trees.  This is used to make sure all of
 762 * those extents are on disk for transaction or log commit.  We wait
 763 * on all the pages and clear them from the dirty pages state tree
 764 */
 765int btrfs_wait_marked_extents(struct btrfs_root *root,
 766                              struct extent_io_tree *dirty_pages, int mark)
 767{
 768        int err = 0;
 769        int werr = 0;
 770        struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
 771        struct extent_state *cached_state = NULL;
 772        u64 start = 0;
 773        u64 end;
 774
 775        while (!find_first_extent_bit(dirty_pages, start, &start, &end,
 776                                      EXTENT_NEED_WAIT, &cached_state)) {
 777                clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
 778                                 0, 0, &cached_state, GFP_NOFS);
 779                err = filemap_fdatawait_range(mapping, start, end);
 780                if (err)
 781                        werr = err;
 782                cond_resched();
 783                start = end + 1;
 784        }
 785        if (err)
 786                werr = err;
 787        return werr;
 788}
 789
 790/*
 791 * when btree blocks are allocated, they have some corresponding bits set for
 792 * them in one of two extent_io trees.  This is used to make sure all of
 793 * those extents are on disk for transaction or log commit
 794 */
 795int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
 796                                struct extent_io_tree *dirty_pages, int mark)
 797{
 798        int ret;
 799        int ret2;
 800
 801        ret = btrfs_write_marked_extents(root, dirty_pages, mark);
 802        ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
 803
 804        if (ret)
 805                return ret;
 806        if (ret2)
 807                return ret2;
 808        return 0;
 809}
 810
 811int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
 812                                     struct btrfs_root *root)
 813{
 814        if (!trans || !trans->transaction) {
 815                struct inode *btree_inode;
 816                btree_inode = root->fs_info->btree_inode;
 817                return filemap_write_and_wait(btree_inode->i_mapping);
 818        }
 819        return btrfs_write_and_wait_marked_extents(root,
 820                                           &trans->transaction->dirty_pages,
 821                                           EXTENT_DIRTY);
 822}
 823
 824/*
 825 * this is used to update the root pointer in the tree of tree roots.
 826 *
 827 * But, in the case of the extent allocation tree, updating the root
 828 * pointer may allocate blocks which may change the root of the extent
 829 * allocation tree.
 830 *
 831 * So, this loops and repeats and makes sure the cowonly root didn't
 832 * change while the root pointer was being updated in the metadata.
 833 */
 834static int update_cowonly_root(struct btrfs_trans_handle *trans,
 835                               struct btrfs_root *root)
 836{
 837        int ret;
 838        u64 old_root_bytenr;
 839        u64 old_root_used;
 840        struct btrfs_root *tree_root = root->fs_info->tree_root;
 841
 842        old_root_used = btrfs_root_used(&root->root_item);
 843        btrfs_write_dirty_block_groups(trans, root);
 844
 845        while (1) {
 846                old_root_bytenr = btrfs_root_bytenr(&root->root_item);
 847                if (old_root_bytenr == root->node->start &&
 848                    old_root_used == btrfs_root_used(&root->root_item))
 849                        break;
 850
 851                btrfs_set_root_node(&root->root_item, root->node);
 852                ret = btrfs_update_root(trans, tree_root,
 853                                        &root->root_key,
 854                                        &root->root_item);
 855                if (ret)
 856                        return ret;
 857
 858                old_root_used = btrfs_root_used(&root->root_item);
 859                ret = btrfs_write_dirty_block_groups(trans, root);
 860                if (ret)
 861                        return ret;
 862        }
 863
 864        if (root != root->fs_info->extent_root)
 865                switch_commit_root(root);
 866
 867        return 0;
 868}
 869
 870/*
 871 * update all the cowonly tree roots on disk
 872 *
 873 * The error handling in this function may not be obvious. Any of the
 874 * failures will cause the file system to go offline. We still need
 875 * to clean up the delayed refs.
 876 */
 877static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
 878                                         struct btrfs_root *root)
 879{
 880        struct btrfs_fs_info *fs_info = root->fs_info;
 881        struct list_head *next;
 882        struct extent_buffer *eb;
 883        int ret;
 884
 885        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 886        if (ret)
 887                return ret;
 888
 889        eb = btrfs_lock_root_node(fs_info->tree_root);
 890        ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
 891                              0, &eb);
 892        btrfs_tree_unlock(eb);
 893        free_extent_buffer(eb);
 894
 895        if (ret)
 896                return ret;
 897
 898        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 899        if (ret)
 900                return ret;
 901
 902        ret = btrfs_run_dev_stats(trans, root->fs_info);
 903        WARN_ON(ret);
 904        ret = btrfs_run_dev_replace(trans, root->fs_info);
 905        WARN_ON(ret);
 906
 907        ret = btrfs_run_qgroups(trans, root->fs_info);
 908        BUG_ON(ret);
 909
 910        /* run_qgroups might have added some more refs */
 911        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
 912        BUG_ON(ret);
 913
 914        while (!list_empty(&fs_info->dirty_cowonly_roots)) {
 915                next = fs_info->dirty_cowonly_roots.next;
 916                list_del_init(next);
 917                root = list_entry(next, struct btrfs_root, dirty_list);
 918
 919                ret = update_cowonly_root(trans, root);
 920                if (ret)
 921                        return ret;
 922        }
 923
 924        down_write(&fs_info->extent_commit_sem);
 925        switch_commit_root(fs_info->extent_root);
 926        up_write(&fs_info->extent_commit_sem);
 927
 928        btrfs_after_dev_replace_commit(fs_info);
 929
 930        return 0;
 931}
 932
 933/*
 934 * dead roots are old snapshots that need to be deleted.  This allocates
 935 * a dirty root struct and adds it into the list of dead roots that need to
 936 * be deleted
 937 */
 938int btrfs_add_dead_root(struct btrfs_root *root)
 939{
 940        spin_lock(&root->fs_info->trans_lock);
 941        list_add_tail(&root->root_list, &root->fs_info->dead_roots);
 942        spin_unlock(&root->fs_info->trans_lock);
 943        return 0;
 944}
 945
 946/*
 947 * update all the cowonly tree roots on disk
 948 */
 949static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
 950                                    struct btrfs_root *root)
 951{
 952        struct btrfs_root *gang[8];
 953        struct btrfs_fs_info *fs_info = root->fs_info;
 954        int i;
 955        int ret;
 956        int err = 0;
 957
 958        spin_lock(&fs_info->fs_roots_radix_lock);
 959        while (1) {
 960                ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
 961                                                 (void **)gang, 0,
 962                                                 ARRAY_SIZE(gang),
 963                                                 BTRFS_ROOT_TRANS_TAG);
 964                if (ret == 0)
 965                        break;
 966                for (i = 0; i < ret; i++) {
 967                        root = gang[i];
 968                        radix_tree_tag_clear(&fs_info->fs_roots_radix,
 969                                        (unsigned long)root->root_key.objectid,
 970                                        BTRFS_ROOT_TRANS_TAG);
 971                        spin_unlock(&fs_info->fs_roots_radix_lock);
 972
 973                        btrfs_free_log(trans, root);
 974                        btrfs_update_reloc_root(trans, root);
 975                        btrfs_orphan_commit_root(trans, root);
 976
 977                        btrfs_save_ino_cache(root, trans);
 978
 979                        /* see comments in should_cow_block() */
 980                        root->force_cow = 0;
 981                        smp_wmb();
 982
 983                        if (root->commit_root != root->node) {
 984                                mutex_lock(&root->fs_commit_mutex);
 985                                switch_commit_root(root);
 986                                btrfs_unpin_free_ino(root);
 987                                mutex_unlock(&root->fs_commit_mutex);
 988
 989                                btrfs_set_root_node(&root->root_item,
 990                                                    root->node);
 991                        }
 992
 993                        err = btrfs_update_root(trans, fs_info->tree_root,
 994                                                &root->root_key,
 995                                                &root->root_item);
 996                        spin_lock(&fs_info->fs_roots_radix_lock);
 997                        if (err)
 998                                break;
 999                }
1000        }
1001        spin_unlock(&fs_info->fs_roots_radix_lock);
1002        return err;
1003}
1004
1005/*
1006 * defrag a given btree.
1007 * Every leaf in the btree is read and defragged.
1008 */
1009int btrfs_defrag_root(struct btrfs_root *root)
1010{
1011        struct btrfs_fs_info *info = root->fs_info;
1012        struct btrfs_trans_handle *trans;
1013        int ret;
1014
1015        if (xchg(&root->defrag_running, 1))
1016                return 0;
1017
1018        while (1) {
1019                trans = btrfs_start_transaction(root, 0);
1020                if (IS_ERR(trans))
1021                        return PTR_ERR(trans);
1022
1023                ret = btrfs_defrag_leaves(trans, root);
1024
1025                btrfs_end_transaction(trans, root);
1026                btrfs_btree_balance_dirty(info->tree_root);
1027                cond_resched();
1028
1029                if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1030                        break;
1031
1032                if (btrfs_defrag_cancelled(root->fs_info)) {
1033                        printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1034                        ret = -EAGAIN;
1035                        break;
1036                }
1037        }
1038        root->defrag_running = 0;
1039        return ret;
1040}
1041
1042/*
1043 * new snapshots need to be created at a very specific time in the
1044 * transaction commit.  This does the actual creation.
1045 *
1046 * Note:
1047 * If the error which may affect the commitment of the current transaction
1048 * happens, we should return the error number. If the error which just affect
1049 * the creation of the pending snapshots, just return 0.
1050 */
1051static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1052                                   struct btrfs_fs_info *fs_info,
1053                                   struct btrfs_pending_snapshot *pending)
1054{
1055        struct btrfs_key key;
1056        struct btrfs_root_item *new_root_item;
1057        struct btrfs_root *tree_root = fs_info->tree_root;
1058        struct btrfs_root *root = pending->root;
1059        struct btrfs_root *parent_root;
1060        struct btrfs_block_rsv *rsv;
1061        struct inode *parent_inode;
1062        struct btrfs_path *path;
1063        struct btrfs_dir_item *dir_item;
1064        struct dentry *dentry;
1065        struct extent_buffer *tmp;
1066        struct extent_buffer *old;
1067        struct timespec cur_time = CURRENT_TIME;
1068        int ret = 0;
1069        u64 to_reserve = 0;
1070        u64 index = 0;
1071        u64 objectid;
1072        u64 root_flags;
1073        uuid_le new_uuid;
1074
1075        path = btrfs_alloc_path();
1076        if (!path) {
1077                pending->error = -ENOMEM;
1078                return 0;
1079        }
1080
1081        new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1082        if (!new_root_item) {
1083                pending->error = -ENOMEM;
1084                goto root_item_alloc_fail;
1085        }
1086
1087        pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1088        if (pending->error)
1089                goto no_free_objectid;
1090
1091        btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1092
1093        if (to_reserve > 0) {
1094                pending->error = btrfs_block_rsv_add(root,
1095                                                     &pending->block_rsv,
1096                                                     to_reserve,
1097                                                     BTRFS_RESERVE_NO_FLUSH);
1098                if (pending->error)
1099                        goto no_free_objectid;
1100        }
1101
1102        pending->error = btrfs_qgroup_inherit(trans, fs_info,
1103                                              root->root_key.objectid,
1104                                              objectid, pending->inherit);
1105        if (pending->error)
1106                goto no_free_objectid;
1107
1108        key.objectid = objectid;
1109        key.offset = (u64)-1;
1110        key.type = BTRFS_ROOT_ITEM_KEY;
1111
1112        rsv = trans->block_rsv;
1113        trans->block_rsv = &pending->block_rsv;
1114        trans->bytes_reserved = trans->block_rsv->reserved;
1115
1116        dentry = pending->dentry;
1117        parent_inode = pending->dir;
1118        parent_root = BTRFS_I(parent_inode)->root;
1119        record_root_in_trans(trans, parent_root);
1120
1121        /*
1122         * insert the directory item
1123         */
1124        ret = btrfs_set_inode_index(parent_inode, &index);
1125        BUG_ON(ret); /* -ENOMEM */
1126
1127        /* check if there is a file/dir which has the same name. */
1128        dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1129                                         btrfs_ino(parent_inode),
1130                                         dentry->d_name.name,
1131                                         dentry->d_name.len, 0);
1132        if (dir_item != NULL && !IS_ERR(dir_item)) {
1133                pending->error = -EEXIST;
1134                goto dir_item_existed;
1135        } else if (IS_ERR(dir_item)) {
1136                ret = PTR_ERR(dir_item);
1137                btrfs_abort_transaction(trans, root, ret);
1138                goto fail;
1139        }
1140        btrfs_release_path(path);
1141
1142        /*
1143         * pull in the delayed directory update
1144         * and the delayed inode item
1145         * otherwise we corrupt the FS during
1146         * snapshot
1147         */
1148        ret = btrfs_run_delayed_items(trans, root);
1149        if (ret) {      /* Transaction aborted */
1150                btrfs_abort_transaction(trans, root, ret);
1151                goto fail;
1152        }
1153
1154        record_root_in_trans(trans, root);
1155        btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1156        memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1157        btrfs_check_and_init_root_item(new_root_item);
1158
1159        root_flags = btrfs_root_flags(new_root_item);
1160        if (pending->readonly)
1161                root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1162        else
1163                root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1164        btrfs_set_root_flags(new_root_item, root_flags);
1165
1166        btrfs_set_root_generation_v2(new_root_item,
1167                        trans->transid);
1168        uuid_le_gen(&new_uuid);
1169        memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1170        memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1171                        BTRFS_UUID_SIZE);
1172        if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1173                memset(new_root_item->received_uuid, 0,
1174                       sizeof(new_root_item->received_uuid));
1175                memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1176                memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1177                btrfs_set_root_stransid(new_root_item, 0);
1178                btrfs_set_root_rtransid(new_root_item, 0);
1179        }
1180        new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1181        new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1182        btrfs_set_root_otransid(new_root_item, trans->transid);
1183
1184        old = btrfs_lock_root_node(root);
1185        ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1186        if (ret) {
1187                btrfs_tree_unlock(old);
1188                free_extent_buffer(old);
1189                btrfs_abort_transaction(trans, root, ret);
1190                goto fail;
1191        }
1192
1193        btrfs_set_lock_blocking(old);
1194
1195        ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1196        /* clean up in any case */
1197        btrfs_tree_unlock(old);
1198        free_extent_buffer(old);
1199        if (ret) {
1200                btrfs_abort_transaction(trans, root, ret);
1201                goto fail;
1202        }
1203
1204        /* see comments in should_cow_block() */
1205        root->force_cow = 1;
1206        smp_wmb();
1207
1208        btrfs_set_root_node(new_root_item, tmp);
1209        /* record when the snapshot was created in key.offset */
1210        key.offset = trans->transid;
1211        ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1212        btrfs_tree_unlock(tmp);
1213        free_extent_buffer(tmp);
1214        if (ret) {
1215                btrfs_abort_transaction(trans, root, ret);
1216                goto fail;
1217        }
1218
1219        /*
1220         * insert root back/forward references
1221         */
1222        ret = btrfs_add_root_ref(trans, tree_root, objectid,
1223                                 parent_root->root_key.objectid,
1224                                 btrfs_ino(parent_inode), index,
1225                                 dentry->d_name.name, dentry->d_name.len);
1226        if (ret) {
1227                btrfs_abort_transaction(trans, root, ret);
1228                goto fail;
1229        }
1230
1231        key.offset = (u64)-1;
1232        pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1233        if (IS_ERR(pending->snap)) {
1234                ret = PTR_ERR(pending->snap);
1235                btrfs_abort_transaction(trans, root, ret);
1236                goto fail;
1237        }
1238
1239        ret = btrfs_reloc_post_snapshot(trans, pending);
1240        if (ret) {
1241                btrfs_abort_transaction(trans, root, ret);
1242                goto fail;
1243        }
1244
1245        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1246        if (ret) {
1247                btrfs_abort_transaction(trans, root, ret);
1248                goto fail;
1249        }
1250
1251        ret = btrfs_insert_dir_item(trans, parent_root,
1252                                    dentry->d_name.name, dentry->d_name.len,
1253                                    parent_inode, &key,
1254                                    BTRFS_FT_DIR, index);
1255        /* We have check then name at the beginning, so it is impossible. */
1256        BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1257        if (ret) {
1258                btrfs_abort_transaction(trans, root, ret);
1259                goto fail;
1260        }
1261
1262        btrfs_i_size_write(parent_inode, parent_inode->i_size +
1263                                         dentry->d_name.len * 2);
1264        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1265        ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1266        if (ret)
1267                btrfs_abort_transaction(trans, root, ret);
1268fail:
1269        pending->error = ret;
1270dir_item_existed:
1271        trans->block_rsv = rsv;
1272        trans->bytes_reserved = 0;
1273no_free_objectid:
1274        kfree(new_root_item);
1275root_item_alloc_fail:
1276        btrfs_free_path(path);
1277        return ret;
1278}
1279
1280/*
1281 * create all the snapshots we've scheduled for creation
1282 */
1283static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1284                                             struct btrfs_fs_info *fs_info)
1285{
1286        struct btrfs_pending_snapshot *pending, *next;
1287        struct list_head *head = &trans->transaction->pending_snapshots;
1288        int ret = 0;
1289
1290        list_for_each_entry_safe(pending, next, head, list) {
1291                list_del(&pending->list);
1292                ret = create_pending_snapshot(trans, fs_info, pending);
1293                if (ret)
1294                        break;
1295        }
1296        return ret;
1297}
1298
1299static void update_super_roots(struct btrfs_root *root)
1300{
1301        struct btrfs_root_item *root_item;
1302        struct btrfs_super_block *super;
1303
1304        super = root->fs_info->super_copy;
1305
1306        root_item = &root->fs_info->chunk_root->root_item;
1307        super->chunk_root = root_item->bytenr;
1308        super->chunk_root_generation = root_item->generation;
1309        super->chunk_root_level = root_item->level;
1310
1311        root_item = &root->fs_info->tree_root->root_item;
1312        super->root = root_item->bytenr;
1313        super->generation = root_item->generation;
1314        super->root_level = root_item->level;
1315        if (btrfs_test_opt(root, SPACE_CACHE))
1316                super->cache_generation = root_item->generation;
1317}
1318
1319int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1320{
1321        int ret = 0;
1322        spin_lock(&info->trans_lock);
1323        if (info->running_transaction)
1324                ret = info->running_transaction->in_commit;
1325        spin_unlock(&info->trans_lock);
1326        return ret;
1327}
1328
1329int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1330{
1331        int ret = 0;
1332        spin_lock(&info->trans_lock);
1333        if (info->running_transaction)
1334                ret = info->running_transaction->blocked;
1335        spin_unlock(&info->trans_lock);
1336        return ret;
1337}
1338
1339/*
1340 * wait for the current transaction commit to start and block subsequent
1341 * transaction joins
1342 */
1343static void wait_current_trans_commit_start(struct btrfs_root *root,
1344                                            struct btrfs_transaction *trans)
1345{
1346        wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1347}
1348
1349/*
1350 * wait for the current transaction to start and then become unblocked.
1351 * caller holds ref.
1352 */
1353static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1354                                         struct btrfs_transaction *trans)
1355{
1356        wait_event(root->fs_info->transaction_wait,
1357                   trans->commit_done || (trans->in_commit && !trans->blocked));
1358}
1359
1360/*
1361 * commit transactions asynchronously. once btrfs_commit_transaction_async
1362 * returns, any subsequent transaction will not be allowed to join.
1363 */
1364struct btrfs_async_commit {
1365        struct btrfs_trans_handle *newtrans;
1366        struct btrfs_root *root;
1367        struct work_struct work;
1368};
1369
1370static void do_async_commit(struct work_struct *work)
1371{
1372        struct btrfs_async_commit *ac =
1373                container_of(work, struct btrfs_async_commit, work);
1374
1375        /*
1376         * We've got freeze protection passed with the transaction.
1377         * Tell lockdep about it.
1378         */
1379        if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1380                rwsem_acquire_read(
1381                     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1382                     0, 1, _THIS_IP_);
1383
1384        current->journal_info = ac->newtrans;
1385
1386        btrfs_commit_transaction(ac->newtrans, ac->root);
1387        kfree(ac);
1388}
1389
1390int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1391                                   struct btrfs_root *root,
1392                                   int wait_for_unblock)
1393{
1394        struct btrfs_async_commit *ac;
1395        struct btrfs_transaction *cur_trans;
1396
1397        ac = kmalloc(sizeof(*ac), GFP_NOFS);
1398        if (!ac)
1399                return -ENOMEM;
1400
1401        INIT_WORK(&ac->work, do_async_commit);
1402        ac->root = root;
1403        ac->newtrans = btrfs_join_transaction(root);
1404        if (IS_ERR(ac->newtrans)) {
1405                int err = PTR_ERR(ac->newtrans);
1406                kfree(ac);
1407                return err;
1408        }
1409
1410        /* take transaction reference */
1411        cur_trans = trans->transaction;
1412        atomic_inc(&cur_trans->use_count);
1413
1414        btrfs_end_transaction(trans, root);
1415
1416        /*
1417         * Tell lockdep we've released the freeze rwsem, since the
1418         * async commit thread will be the one to unlock it.
1419         */
1420        if (trans->type < TRANS_JOIN_NOLOCK)
1421                rwsem_release(
1422                        &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1423                        1, _THIS_IP_);
1424
1425        schedule_work(&ac->work);
1426
1427        /* wait for transaction to start and unblock */
1428        if (wait_for_unblock)
1429                wait_current_trans_commit_start_and_unblock(root, cur_trans);
1430        else
1431                wait_current_trans_commit_start(root, cur_trans);
1432
1433        if (current->journal_info == trans)
1434                current->journal_info = NULL;
1435
1436        put_transaction(cur_trans);
1437        return 0;
1438}
1439
1440
1441static void cleanup_transaction(struct btrfs_trans_handle *trans,
1442                                struct btrfs_root *root, int err)
1443{
1444        struct btrfs_transaction *cur_trans = trans->transaction;
1445        DEFINE_WAIT(wait);
1446
1447        WARN_ON(trans->use_count > 1);
1448
1449        btrfs_abort_transaction(trans, root, err);
1450
1451        spin_lock(&root->fs_info->trans_lock);
1452
1453        if (list_empty(&cur_trans->list)) {
1454                spin_unlock(&root->fs_info->trans_lock);
1455                btrfs_end_transaction(trans, root);
1456                return;
1457        }
1458
1459        list_del_init(&cur_trans->list);
1460        if (cur_trans == root->fs_info->running_transaction) {
1461                root->fs_info->trans_no_join = 1;
1462                spin_unlock(&root->fs_info->trans_lock);
1463                wait_event(cur_trans->writer_wait,
1464                           atomic_read(&cur_trans->num_writers) == 1);
1465
1466                spin_lock(&root->fs_info->trans_lock);
1467                root->fs_info->running_transaction = NULL;
1468        }
1469        spin_unlock(&root->fs_info->trans_lock);
1470
1471        btrfs_cleanup_one_transaction(trans->transaction, root);
1472
1473        put_transaction(cur_trans);
1474        put_transaction(cur_trans);
1475
1476        trace_btrfs_transaction_commit(root);
1477
1478        btrfs_scrub_continue(root);
1479
1480        if (current->journal_info == trans)
1481                current->journal_info = NULL;
1482
1483        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1484
1485        spin_lock(&root->fs_info->trans_lock);
1486        root->fs_info->trans_no_join = 0;
1487        spin_unlock(&root->fs_info->trans_lock);
1488}
1489
1490static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1491                                          struct btrfs_root *root)
1492{
1493        int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1494        int snap_pending = 0;
1495        int ret;
1496
1497        if (!flush_on_commit) {
1498                spin_lock(&root->fs_info->trans_lock);
1499                if (!list_empty(&trans->transaction->pending_snapshots))
1500                        snap_pending = 1;
1501                spin_unlock(&root->fs_info->trans_lock);
1502        }
1503
1504        if (flush_on_commit || snap_pending) {
1505                ret = btrfs_start_delalloc_inodes(root, 1);
1506                if (ret)
1507                        return ret;
1508                btrfs_wait_ordered_extents(root, 1);
1509        }
1510
1511        ret = btrfs_run_delayed_items(trans, root);
1512        if (ret)
1513                return ret;
1514
1515        /*
1516         * running the delayed items may have added new refs. account
1517         * them now so that they hinder processing of more delayed refs
1518         * as little as possible.
1519         */
1520        btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1521
1522        /*
1523         * rename don't use btrfs_join_transaction, so, once we
1524         * set the transaction to blocked above, we aren't going
1525         * to get any new ordered operations.  We can safely run
1526         * it here and no for sure that nothing new will be added
1527         * to the list
1528         */
1529        ret = btrfs_run_ordered_operations(trans, root, 1);
1530
1531        return ret;
1532}
1533
1534/*
1535 * btrfs_transaction state sequence:
1536 *    in_commit = 0, blocked = 0  (initial)
1537 *    in_commit = 1, blocked = 1
1538 *    blocked = 0
1539 *    commit_done = 1
1540 */
1541int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1542                             struct btrfs_root *root)
1543{
1544        unsigned long joined = 0;
1545        struct btrfs_transaction *cur_trans = trans->transaction;
1546        struct btrfs_transaction *prev_trans = NULL;
1547        DEFINE_WAIT(wait);
1548        int ret;
1549        int should_grow = 0;
1550        unsigned long now = get_seconds();
1551
1552        ret = btrfs_run_ordered_operations(trans, root, 0);
1553        if (ret) {
1554                btrfs_abort_transaction(trans, root, ret);
1555                btrfs_end_transaction(trans, root);
1556                return ret;
1557        }
1558
1559        /* Stop the commit early if ->aborted is set */
1560        if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1561                ret = cur_trans->aborted;
1562                btrfs_end_transaction(trans, root);
1563                return ret;
1564        }
1565
1566        /* make a pass through all the delayed refs we have so far
1567         * any runnings procs may add more while we are here
1568         */
1569        ret = btrfs_run_delayed_refs(trans, root, 0);
1570        if (ret) {
1571                btrfs_end_transaction(trans, root);
1572                return ret;
1573        }
1574
1575        btrfs_trans_release_metadata(trans, root);
1576        trans->block_rsv = NULL;
1577        if (trans->qgroup_reserved) {
1578                btrfs_qgroup_free(root, trans->qgroup_reserved);
1579                trans->qgroup_reserved = 0;
1580        }
1581
1582        cur_trans = trans->transaction;
1583
1584        /*
1585         * set the flushing flag so procs in this transaction have to
1586         * start sending their work down.
1587         */
1588        cur_trans->delayed_refs.flushing = 1;
1589
1590        if (!list_empty(&trans->new_bgs))
1591                btrfs_create_pending_block_groups(trans, root);
1592
1593        ret = btrfs_run_delayed_refs(trans, root, 0);
1594        if (ret) {
1595                btrfs_end_transaction(trans, root);
1596                return ret;
1597        }
1598
1599        spin_lock(&cur_trans->commit_lock);
1600        if (cur_trans->in_commit) {
1601                spin_unlock(&cur_trans->commit_lock);
1602                atomic_inc(&cur_trans->use_count);
1603                ret = btrfs_end_transaction(trans, root);
1604
1605                wait_for_commit(root, cur_trans);
1606
1607                put_transaction(cur_trans);
1608
1609                return ret;
1610        }
1611
1612        trans->transaction->in_commit = 1;
1613        trans->transaction->blocked = 1;
1614        spin_unlock(&cur_trans->commit_lock);
1615        wake_up(&root->fs_info->transaction_blocked_wait);
1616
1617        spin_lock(&root->fs_info->trans_lock);
1618        if (cur_trans->list.prev != &root->fs_info->trans_list) {
1619                prev_trans = list_entry(cur_trans->list.prev,
1620                                        struct btrfs_transaction, list);
1621                if (!prev_trans->commit_done) {
1622                        atomic_inc(&prev_trans->use_count);
1623                        spin_unlock(&root->fs_info->trans_lock);
1624
1625                        wait_for_commit(root, prev_trans);
1626
1627                        put_transaction(prev_trans);
1628                } else {
1629                        spin_unlock(&root->fs_info->trans_lock);
1630                }
1631        } else {
1632                spin_unlock(&root->fs_info->trans_lock);
1633        }
1634
1635        if (!btrfs_test_opt(root, SSD) &&
1636            (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1637                should_grow = 1;
1638
1639        do {
1640                joined = cur_trans->num_joined;
1641
1642                WARN_ON(cur_trans != trans->transaction);
1643
1644                ret = btrfs_flush_all_pending_stuffs(trans, root);
1645                if (ret)
1646                        goto cleanup_transaction;
1647
1648                prepare_to_wait(&cur_trans->writer_wait, &wait,
1649                                TASK_UNINTERRUPTIBLE);
1650
1651                if (atomic_read(&cur_trans->num_writers) > 1)
1652                        schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1653                else if (should_grow)
1654                        schedule_timeout(1);
1655
1656                finish_wait(&cur_trans->writer_wait, &wait);
1657        } while (atomic_read(&cur_trans->num_writers) > 1 ||
1658                 (should_grow && cur_trans->num_joined != joined));
1659
1660        ret = btrfs_flush_all_pending_stuffs(trans, root);
1661        if (ret)
1662                goto cleanup_transaction;
1663
1664        /*
1665         * Ok now we need to make sure to block out any other joins while we
1666         * commit the transaction.  We could have started a join before setting
1667         * no_join so make sure to wait for num_writers to == 1 again.
1668         */
1669        spin_lock(&root->fs_info->trans_lock);
1670        root->fs_info->trans_no_join = 1;
1671        spin_unlock(&root->fs_info->trans_lock);
1672        wait_event(cur_trans->writer_wait,
1673                   atomic_read(&cur_trans->num_writers) == 1);
1674
1675        /* ->aborted might be set after the previous check, so check it */
1676        if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1677                ret = cur_trans->aborted;
1678                goto cleanup_transaction;
1679        }
1680        /*
1681         * the reloc mutex makes sure that we stop
1682         * the balancing code from coming in and moving
1683         * extents around in the middle of the commit
1684         */
1685        mutex_lock(&root->fs_info->reloc_mutex);
1686
1687        /*
1688         * We needn't worry about the delayed items because we will
1689         * deal with them in create_pending_snapshot(), which is the
1690         * core function of the snapshot creation.
1691         */
1692        ret = create_pending_snapshots(trans, root->fs_info);
1693        if (ret) {
1694                mutex_unlock(&root->fs_info->reloc_mutex);
1695                goto cleanup_transaction;
1696        }
1697
1698        /*
1699         * We insert the dir indexes of the snapshots and update the inode
1700         * of the snapshots' parents after the snapshot creation, so there
1701         * are some delayed items which are not dealt with. Now deal with
1702         * them.
1703         *
1704         * We needn't worry that this operation will corrupt the snapshots,
1705         * because all the tree which are snapshoted will be forced to COW
1706         * the nodes and leaves.
1707         */
1708        ret = btrfs_run_delayed_items(trans, root);
1709        if (ret) {
1710                mutex_unlock(&root->fs_info->reloc_mutex);
1711                goto cleanup_transaction;
1712        }
1713
1714        ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1715        if (ret) {
1716                mutex_unlock(&root->fs_info->reloc_mutex);
1717                goto cleanup_transaction;
1718        }
1719
1720        /*
1721         * make sure none of the code above managed to slip in a
1722         * delayed item
1723         */
1724        btrfs_assert_delayed_root_empty(root);
1725
1726        WARN_ON(cur_trans != trans->transaction);
1727
1728        btrfs_scrub_pause(root);
1729        /* btrfs_commit_tree_roots is responsible for getting the
1730         * various roots consistent with each other.  Every pointer
1731         * in the tree of tree roots has to point to the most up to date
1732         * root for every subvolume and other tree.  So, we have to keep
1733         * the tree logging code from jumping in and changing any
1734         * of the trees.
1735         *
1736         * At this point in the commit, there can't be any tree-log
1737         * writers, but a little lower down we drop the trans mutex
1738         * and let new people in.  By holding the tree_log_mutex
1739         * from now until after the super is written, we avoid races
1740         * with the tree-log code.
1741         */
1742        mutex_lock(&root->fs_info->tree_log_mutex);
1743
1744        ret = commit_fs_roots(trans, root);
1745        if (ret) {
1746                mutex_unlock(&root->fs_info->tree_log_mutex);
1747                mutex_unlock(&root->fs_info->reloc_mutex);
1748                goto cleanup_transaction;
1749        }
1750
1751        /* commit_fs_roots gets rid of all the tree log roots, it is now
1752         * safe to free the root of tree log roots
1753         */
1754        btrfs_free_log_root_tree(trans, root->fs_info);
1755
1756        ret = commit_cowonly_roots(trans, root);
1757        if (ret) {
1758                mutex_unlock(&root->fs_info->tree_log_mutex);
1759                mutex_unlock(&root->fs_info->reloc_mutex);
1760                goto cleanup_transaction;
1761        }
1762
1763        /*
1764         * The tasks which save the space cache and inode cache may also
1765         * update ->aborted, check it.
1766         */
1767        if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1768                ret = cur_trans->aborted;
1769                mutex_unlock(&root->fs_info->tree_log_mutex);
1770                mutex_unlock(&root->fs_info->reloc_mutex);
1771                goto cleanup_transaction;
1772        }
1773
1774        btrfs_prepare_extent_commit(trans, root);
1775
1776        cur_trans = root->fs_info->running_transaction;
1777
1778        btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1779                            root->fs_info->tree_root->node);
1780        switch_commit_root(root->fs_info->tree_root);
1781
1782        btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1783                            root->fs_info->chunk_root->node);
1784        switch_commit_root(root->fs_info->chunk_root);
1785
1786        assert_qgroups_uptodate(trans);
1787        update_super_roots(root);
1788
1789        if (!root->fs_info->log_root_recovering) {
1790                btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1791                btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1792        }
1793
1794        memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1795               sizeof(*root->fs_info->super_copy));
1796
1797        trans->transaction->blocked = 0;
1798        spin_lock(&root->fs_info->trans_lock);
1799        root->fs_info->running_transaction = NULL;
1800        root->fs_info->trans_no_join = 0;
1801        spin_unlock(&root->fs_info->trans_lock);
1802        mutex_unlock(&root->fs_info->reloc_mutex);
1803
1804        wake_up(&root->fs_info->transaction_wait);
1805
1806        ret = btrfs_write_and_wait_transaction(trans, root);
1807        if (ret) {
1808                btrfs_error(root->fs_info, ret,
1809                            "Error while writing out transaction");
1810                mutex_unlock(&root->fs_info->tree_log_mutex);
1811                goto cleanup_transaction;
1812        }
1813
1814        ret = write_ctree_super(trans, root, 0);
1815        if (ret) {
1816                mutex_unlock(&root->fs_info->tree_log_mutex);
1817                goto cleanup_transaction;
1818        }
1819
1820        /*
1821         * the super is written, we can safely allow the tree-loggers
1822         * to go about their business
1823         */
1824        mutex_unlock(&root->fs_info->tree_log_mutex);
1825
1826        btrfs_finish_extent_commit(trans, root);
1827
1828        cur_trans->commit_done = 1;
1829
1830        root->fs_info->last_trans_committed = cur_trans->transid;
1831
1832        wake_up(&cur_trans->commit_wait);
1833
1834        spin_lock(&root->fs_info->trans_lock);
1835        list_del_init(&cur_trans->list);
1836        spin_unlock(&root->fs_info->trans_lock);
1837
1838        put_transaction(cur_trans);
1839        put_transaction(cur_trans);
1840
1841        if (trans->type < TRANS_JOIN_NOLOCK)
1842                sb_end_intwrite(root->fs_info->sb);
1843
1844        trace_btrfs_transaction_commit(root);
1845
1846        btrfs_scrub_continue(root);
1847
1848        if (current->journal_info == trans)
1849                current->journal_info = NULL;
1850
1851        kmem_cache_free(btrfs_trans_handle_cachep, trans);
1852
1853        if (current != root->fs_info->transaction_kthread)
1854                btrfs_run_delayed_iputs(root);
1855
1856        return ret;
1857
1858cleanup_transaction:
1859        btrfs_trans_release_metadata(trans, root);
1860        trans->block_rsv = NULL;
1861        if (trans->qgroup_reserved) {
1862                btrfs_qgroup_free(root, trans->qgroup_reserved);
1863                trans->qgroup_reserved = 0;
1864        }
1865        btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1866        if (current->journal_info == trans)
1867                current->journal_info = NULL;
1868        cleanup_transaction(trans, root, ret);
1869
1870        return ret;
1871}
1872
1873/*
1874 * return < 0 if error
1875 * 0 if there are no more dead_roots at the time of call
1876 * 1 there are more to be processed, call me again
1877 *
1878 * The return value indicates there are certainly more snapshots to delete, but
1879 * if there comes a new one during processing, it may return 0. We don't mind,
1880 * because btrfs_commit_super will poke cleaner thread and it will process it a
1881 * few seconds later.
1882 */
1883int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1884{
1885        int ret;
1886        struct btrfs_fs_info *fs_info = root->fs_info;
1887
1888        if (fs_info->sb->s_flags & MS_RDONLY) {
1889                pr_debug("btrfs: cleaner called for RO fs!\n");
1890                return 0;
1891        }
1892
1893        spin_lock(&fs_info->trans_lock);
1894        if (list_empty(&fs_info->dead_roots)) {
1895                spin_unlock(&fs_info->trans_lock);
1896                return 0;
1897        }
1898        root = list_first_entry(&fs_info->dead_roots,
1899                        struct btrfs_root, root_list);
1900        list_del(&root->root_list);
1901        spin_unlock(&fs_info->trans_lock);
1902
1903        pr_debug("btrfs: cleaner removing %llu\n",
1904                        (unsigned long long)root->objectid);
1905
1906        btrfs_kill_all_delayed_nodes(root);
1907
1908        if (btrfs_header_backref_rev(root->node) <
1909                        BTRFS_MIXED_BACKREF_REV)
1910                ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1911        else
1912                ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1913        /*
1914         * If we encounter a transaction abort during snapshot cleaning, we
1915         * don't want to crash here
1916         */
1917        BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
1918        return 1;
1919}
1920