linux/fs/ecryptfs/crypto.c
<<
>>
Prefs
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2004 Erez Zadok
   5 * Copyright (C) 2001-2004 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *              Michael C. Thompson <mcthomps@us.ibm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 of the
  13 * License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23 * 02111-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/mount.h>
  28#include <linux/pagemap.h>
  29#include <linux/random.h>
  30#include <linux/compiler.h>
  31#include <linux/key.h>
  32#include <linux/namei.h>
  33#include <linux/crypto.h>
  34#include <linux/file.h>
  35#include <linux/scatterlist.h>
  36#include <linux/slab.h>
  37#include <asm/unaligned.h>
  38#include "ecryptfs_kernel.h"
  39
  40static int
  41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  42                             struct page *dst_page, int dst_offset,
  43                             struct page *src_page, int src_offset, int size,
  44                             unsigned char *iv);
  45static int
  46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  47                             struct page *dst_page, int dst_offset,
  48                             struct page *src_page, int src_offset, int size,
  49                             unsigned char *iv);
  50
  51/**
  52 * ecryptfs_to_hex
  53 * @dst: Buffer to take hex character representation of contents of
  54 *       src; must be at least of size (src_size * 2)
  55 * @src: Buffer to be converted to a hex string respresentation
  56 * @src_size: number of bytes to convert
  57 */
  58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  59{
  60        int x;
  61
  62        for (x = 0; x < src_size; x++)
  63                sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  64}
  65
  66/**
  67 * ecryptfs_from_hex
  68 * @dst: Buffer to take the bytes from src hex; must be at least of
  69 *       size (src_size / 2)
  70 * @src: Buffer to be converted from a hex string respresentation to raw value
  71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  72 */
  73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  74{
  75        int x;
  76        char tmp[3] = { 0, };
  77
  78        for (x = 0; x < dst_size; x++) {
  79                tmp[0] = src[x * 2];
  80                tmp[1] = src[x * 2 + 1];
  81                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  82        }
  83}
  84
  85/**
  86 * ecryptfs_calculate_md5 - calculates the md5 of @src
  87 * @dst: Pointer to 16 bytes of allocated memory
  88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  89 * @src: Data to be md5'd
  90 * @len: Length of @src
  91 *
  92 * Uses the allocated crypto context that crypt_stat references to
  93 * generate the MD5 sum of the contents of src.
  94 */
  95static int ecryptfs_calculate_md5(char *dst,
  96                                  struct ecryptfs_crypt_stat *crypt_stat,
  97                                  char *src, int len)
  98{
  99        struct scatterlist sg;
 100        struct hash_desc desc = {
 101                .tfm = crypt_stat->hash_tfm,
 102                .flags = CRYPTO_TFM_REQ_MAY_SLEEP
 103        };
 104        int rc = 0;
 105
 106        mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
 107        sg_init_one(&sg, (u8 *)src, len);
 108        if (!desc.tfm) {
 109                desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
 110                                             CRYPTO_ALG_ASYNC);
 111                if (IS_ERR(desc.tfm)) {
 112                        rc = PTR_ERR(desc.tfm);
 113                        ecryptfs_printk(KERN_ERR, "Error attempting to "
 114                                        "allocate crypto context; rc = [%d]\n",
 115                                        rc);
 116                        goto out;
 117                }
 118                crypt_stat->hash_tfm = desc.tfm;
 119        }
 120        rc = crypto_hash_init(&desc);
 121        if (rc) {
 122                printk(KERN_ERR
 123                       "%s: Error initializing crypto hash; rc = [%d]\n",
 124                       __func__, rc);
 125                goto out;
 126        }
 127        rc = crypto_hash_update(&desc, &sg, len);
 128        if (rc) {
 129                printk(KERN_ERR
 130                       "%s: Error updating crypto hash; rc = [%d]\n",
 131                       __func__, rc);
 132                goto out;
 133        }
 134        rc = crypto_hash_final(&desc, dst);
 135        if (rc) {
 136                printk(KERN_ERR
 137                       "%s: Error finalizing crypto hash; rc = [%d]\n",
 138                       __func__, rc);
 139                goto out;
 140        }
 141out:
 142        mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
 143        return rc;
 144}
 145
 146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 147                                                  char *cipher_name,
 148                                                  char *chaining_modifier)
 149{
 150        int cipher_name_len = strlen(cipher_name);
 151        int chaining_modifier_len = strlen(chaining_modifier);
 152        int algified_name_len;
 153        int rc;
 154
 155        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 156        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 157        if (!(*algified_name)) {
 158                rc = -ENOMEM;
 159                goto out;
 160        }
 161        snprintf((*algified_name), algified_name_len, "%s(%s)",
 162                 chaining_modifier, cipher_name);
 163        rc = 0;
 164out:
 165        return rc;
 166}
 167
 168/**
 169 * ecryptfs_derive_iv
 170 * @iv: destination for the derived iv vale
 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 172 * @offset: Offset of the extent whose IV we are to derive
 173 *
 174 * Generate the initialization vector from the given root IV and page
 175 * offset.
 176 *
 177 * Returns zero on success; non-zero on error.
 178 */
 179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 180                       loff_t offset)
 181{
 182        int rc = 0;
 183        char dst[MD5_DIGEST_SIZE];
 184        char src[ECRYPTFS_MAX_IV_BYTES + 16];
 185
 186        if (unlikely(ecryptfs_verbosity > 0)) {
 187                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 188                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 189        }
 190        /* TODO: It is probably secure to just cast the least
 191         * significant bits of the root IV into an unsigned long and
 192         * add the offset to that rather than go through all this
 193         * hashing business. -Halcrow */
 194        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 195        memset((src + crypt_stat->iv_bytes), 0, 16);
 196        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 197        if (unlikely(ecryptfs_verbosity > 0)) {
 198                ecryptfs_printk(KERN_DEBUG, "source:\n");
 199                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 200        }
 201        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 202                                    (crypt_stat->iv_bytes + 16));
 203        if (rc) {
 204                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 205                                "MD5 while generating IV for a page\n");
 206                goto out;
 207        }
 208        memcpy(iv, dst, crypt_stat->iv_bytes);
 209        if (unlikely(ecryptfs_verbosity > 0)) {
 210                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 211                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 212        }
 213out:
 214        return rc;
 215}
 216
 217/**
 218 * ecryptfs_init_crypt_stat
 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 220 *
 221 * Initialize the crypt_stat structure.
 222 */
 223void
 224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 225{
 226        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 227        INIT_LIST_HEAD(&crypt_stat->keysig_list);
 228        mutex_init(&crypt_stat->keysig_list_mutex);
 229        mutex_init(&crypt_stat->cs_mutex);
 230        mutex_init(&crypt_stat->cs_tfm_mutex);
 231        mutex_init(&crypt_stat->cs_hash_tfm_mutex);
 232        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 233}
 234
 235/**
 236 * ecryptfs_destroy_crypt_stat
 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 238 *
 239 * Releases all memory associated with a crypt_stat struct.
 240 */
 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 242{
 243        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 244
 245        if (crypt_stat->tfm)
 246                crypto_free_ablkcipher(crypt_stat->tfm);
 247        if (crypt_stat->hash_tfm)
 248                crypto_free_hash(crypt_stat->hash_tfm);
 249        list_for_each_entry_safe(key_sig, key_sig_tmp,
 250                                 &crypt_stat->keysig_list, crypt_stat_list) {
 251                list_del(&key_sig->crypt_stat_list);
 252                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 253        }
 254        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 255}
 256
 257void ecryptfs_destroy_mount_crypt_stat(
 258        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 259{
 260        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 261
 262        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 263                return;
 264        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 265        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 266                                 &mount_crypt_stat->global_auth_tok_list,
 267                                 mount_crypt_stat_list) {
 268                list_del(&auth_tok->mount_crypt_stat_list);
 269                if (auth_tok->global_auth_tok_key
 270                    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 271                        key_put(auth_tok->global_auth_tok_key);
 272                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 273        }
 274        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 275        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 276}
 277
 278/**
 279 * virt_to_scatterlist
 280 * @addr: Virtual address
 281 * @size: Size of data; should be an even multiple of the block size
 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 283 *      the number of scatterlist structs required in array
 284 * @sg_size: Max array size
 285 *
 286 * Fills in a scatterlist array with page references for a passed
 287 * virtual address.
 288 *
 289 * Returns the number of scatterlist structs in array used
 290 */
 291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 292                        int sg_size)
 293{
 294        int i = 0;
 295        struct page *pg;
 296        int offset;
 297        int remainder_of_page;
 298
 299        sg_init_table(sg, sg_size);
 300
 301        while (size > 0 && i < sg_size) {
 302                pg = virt_to_page(addr);
 303                offset = offset_in_page(addr);
 304                sg_set_page(&sg[i], pg, 0, offset);
 305                remainder_of_page = PAGE_CACHE_SIZE - offset;
 306                if (size >= remainder_of_page) {
 307                        sg[i].length = remainder_of_page;
 308                        addr += remainder_of_page;
 309                        size -= remainder_of_page;
 310                } else {
 311                        sg[i].length = size;
 312                        addr += size;
 313                        size = 0;
 314                }
 315                i++;
 316        }
 317        if (size > 0)
 318                return -ENOMEM;
 319        return i;
 320}
 321
 322struct extent_crypt_result {
 323        struct completion completion;
 324        int rc;
 325};
 326
 327static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 328{
 329        struct extent_crypt_result *ecr = req->data;
 330
 331        if (rc == -EINPROGRESS)
 332                return;
 333
 334        ecr->rc = rc;
 335        complete(&ecr->completion);
 336}
 337
 338/**
 339 * encrypt_scatterlist
 340 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 341 * @dest_sg: Destination of encrypted data
 342 * @src_sg: Data to be encrypted
 343 * @size: Length of data to be encrypted
 344 * @iv: iv to use during encryption
 345 *
 346 * Returns the number of bytes encrypted; negative value on error
 347 */
 348static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 349                               struct scatterlist *dest_sg,
 350                               struct scatterlist *src_sg, int size,
 351                               unsigned char *iv)
 352{
 353        struct ablkcipher_request *req = NULL;
 354        struct extent_crypt_result ecr;
 355        int rc = 0;
 356
 357        BUG_ON(!crypt_stat || !crypt_stat->tfm
 358               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 359        if (unlikely(ecryptfs_verbosity > 0)) {
 360                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 361                                crypt_stat->key_size);
 362                ecryptfs_dump_hex(crypt_stat->key,
 363                                  crypt_stat->key_size);
 364        }
 365
 366        init_completion(&ecr.completion);
 367
 368        mutex_lock(&crypt_stat->cs_tfm_mutex);
 369        req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 370        if (!req) {
 371                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 372                rc = -ENOMEM;
 373                goto out;
 374        }
 375
 376        ablkcipher_request_set_callback(req,
 377                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 378                        extent_crypt_complete, &ecr);
 379        /* Consider doing this once, when the file is opened */
 380        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 381                rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 382                                              crypt_stat->key_size);
 383                if (rc) {
 384                        ecryptfs_printk(KERN_ERR,
 385                                        "Error setting key; rc = [%d]\n",
 386                                        rc);
 387                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 388                        rc = -EINVAL;
 389                        goto out;
 390                }
 391                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 392        }
 393        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 394        ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
 395        ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
 396        rc = crypto_ablkcipher_encrypt(req);
 397        if (rc == -EINPROGRESS || rc == -EBUSY) {
 398                struct extent_crypt_result *ecr = req->base.data;
 399
 400                wait_for_completion(&ecr->completion);
 401                rc = ecr->rc;
 402                INIT_COMPLETION(ecr->completion);
 403        }
 404out:
 405        ablkcipher_request_free(req);
 406        return rc;
 407}
 408
 409/**
 410 * ecryptfs_lower_offset_for_extent
 411 *
 412 * Convert an eCryptfs page index into a lower byte offset
 413 */
 414static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
 415                                             struct ecryptfs_crypt_stat *crypt_stat)
 416{
 417        (*offset) = ecryptfs_lower_header_size(crypt_stat)
 418                    + (crypt_stat->extent_size * extent_num);
 419}
 420
 421/**
 422 * ecryptfs_encrypt_extent
 423 * @enc_extent_page: Allocated page into which to encrypt the data in
 424 *                   @page
 425 * @crypt_stat: crypt_stat containing cryptographic context for the
 426 *              encryption operation
 427 * @page: Page containing plaintext data extent to encrypt
 428 * @extent_offset: Page extent offset for use in generating IV
 429 *
 430 * Encrypts one extent of data.
 431 *
 432 * Return zero on success; non-zero otherwise
 433 */
 434static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
 435                                   struct ecryptfs_crypt_stat *crypt_stat,
 436                                   struct page *page,
 437                                   unsigned long extent_offset)
 438{
 439        loff_t extent_base;
 440        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 441        int rc;
 442
 443        extent_base = (((loff_t)page->index)
 444                       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 445        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 446                                (extent_base + extent_offset));
 447        if (rc) {
 448                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 449                        "extent [0x%.16llx]; rc = [%d]\n",
 450                        (unsigned long long)(extent_base + extent_offset), rc);
 451                goto out;
 452        }
 453        rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
 454                                          page, (extent_offset
 455                                                 * crypt_stat->extent_size),
 456                                          crypt_stat->extent_size, extent_iv);
 457        if (rc < 0) {
 458                printk(KERN_ERR "%s: Error attempting to encrypt page with "
 459                       "page->index = [%ld], extent_offset = [%ld]; "
 460                       "rc = [%d]\n", __func__, page->index, extent_offset,
 461                       rc);
 462                goto out;
 463        }
 464        rc = 0;
 465out:
 466        return rc;
 467}
 468
 469/**
 470 * ecryptfs_encrypt_page
 471 * @page: Page mapped from the eCryptfs inode for the file; contains
 472 *        decrypted content that needs to be encrypted (to a temporary
 473 *        page; not in place) and written out to the lower file
 474 *
 475 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 476 * that eCryptfs pages may straddle the lower pages -- for instance,
 477 * if the file was created on a machine with an 8K page size
 478 * (resulting in an 8K header), and then the file is copied onto a
 479 * host with a 32K page size, then when reading page 0 of the eCryptfs
 480 * file, 24K of page 0 of the lower file will be read and decrypted,
 481 * and then 8K of page 1 of the lower file will be read and decrypted.
 482 *
 483 * Returns zero on success; negative on error
 484 */
 485int ecryptfs_encrypt_page(struct page *page)
 486{
 487        struct inode *ecryptfs_inode;
 488        struct ecryptfs_crypt_stat *crypt_stat;
 489        char *enc_extent_virt;
 490        struct page *enc_extent_page = NULL;
 491        loff_t extent_offset;
 492        int rc = 0;
 493
 494        ecryptfs_inode = page->mapping->host;
 495        crypt_stat =
 496                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 497        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 498        enc_extent_page = alloc_page(GFP_USER);
 499        if (!enc_extent_page) {
 500                rc = -ENOMEM;
 501                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 502                                "encrypted extent\n");
 503                goto out;
 504        }
 505        enc_extent_virt = kmap(enc_extent_page);
 506        for (extent_offset = 0;
 507             extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 508             extent_offset++) {
 509                loff_t offset;
 510
 511                rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
 512                                             extent_offset);
 513                if (rc) {
 514                        printk(KERN_ERR "%s: Error encrypting extent; "
 515                               "rc = [%d]\n", __func__, rc);
 516                        goto out;
 517                }
 518                ecryptfs_lower_offset_for_extent(
 519                        &offset, ((((loff_t)page->index)
 520                                   * (PAGE_CACHE_SIZE
 521                                      / crypt_stat->extent_size))
 522                                  + extent_offset), crypt_stat);
 523                rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
 524                                          offset, crypt_stat->extent_size);
 525                if (rc < 0) {
 526                        ecryptfs_printk(KERN_ERR, "Error attempting "
 527                                        "to write lower page; rc = [%d]"
 528                                        "\n", rc);
 529                        goto out;
 530                }
 531        }
 532        rc = 0;
 533out:
 534        if (enc_extent_page) {
 535                kunmap(enc_extent_page);
 536                __free_page(enc_extent_page);
 537        }
 538        return rc;
 539}
 540
 541static int ecryptfs_decrypt_extent(struct page *page,
 542                                   struct ecryptfs_crypt_stat *crypt_stat,
 543                                   struct page *enc_extent_page,
 544                                   unsigned long extent_offset)
 545{
 546        loff_t extent_base;
 547        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 548        int rc;
 549
 550        extent_base = (((loff_t)page->index)
 551                       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 552        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 553                                (extent_base + extent_offset));
 554        if (rc) {
 555                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 556                        "extent [0x%.16llx]; rc = [%d]\n",
 557                        (unsigned long long)(extent_base + extent_offset), rc);
 558                goto out;
 559        }
 560        rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
 561                                          (extent_offset
 562                                           * crypt_stat->extent_size),
 563                                          enc_extent_page, 0,
 564                                          crypt_stat->extent_size, extent_iv);
 565        if (rc < 0) {
 566                printk(KERN_ERR "%s: Error attempting to decrypt to page with "
 567                       "page->index = [%ld], extent_offset = [%ld]; "
 568                       "rc = [%d]\n", __func__, page->index, extent_offset,
 569                       rc);
 570                goto out;
 571        }
 572        rc = 0;
 573out:
 574        return rc;
 575}
 576
 577/**
 578 * ecryptfs_decrypt_page
 579 * @page: Page mapped from the eCryptfs inode for the file; data read
 580 *        and decrypted from the lower file will be written into this
 581 *        page
 582 *
 583 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 584 * that eCryptfs pages may straddle the lower pages -- for instance,
 585 * if the file was created on a machine with an 8K page size
 586 * (resulting in an 8K header), and then the file is copied onto a
 587 * host with a 32K page size, then when reading page 0 of the eCryptfs
 588 * file, 24K of page 0 of the lower file will be read and decrypted,
 589 * and then 8K of page 1 of the lower file will be read and decrypted.
 590 *
 591 * Returns zero on success; negative on error
 592 */
 593int ecryptfs_decrypt_page(struct page *page)
 594{
 595        struct inode *ecryptfs_inode;
 596        struct ecryptfs_crypt_stat *crypt_stat;
 597        char *enc_extent_virt;
 598        struct page *enc_extent_page = NULL;
 599        unsigned long extent_offset;
 600        int rc = 0;
 601
 602        ecryptfs_inode = page->mapping->host;
 603        crypt_stat =
 604                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 605        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 606        enc_extent_page = alloc_page(GFP_USER);
 607        if (!enc_extent_page) {
 608                rc = -ENOMEM;
 609                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 610                                "encrypted extent\n");
 611                goto out;
 612        }
 613        enc_extent_virt = kmap(enc_extent_page);
 614        for (extent_offset = 0;
 615             extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 616             extent_offset++) {
 617                loff_t offset;
 618
 619                ecryptfs_lower_offset_for_extent(
 620                        &offset, ((page->index * (PAGE_CACHE_SIZE
 621                                                  / crypt_stat->extent_size))
 622                                  + extent_offset), crypt_stat);
 623                rc = ecryptfs_read_lower(enc_extent_virt, offset,
 624                                         crypt_stat->extent_size,
 625                                         ecryptfs_inode);
 626                if (rc < 0) {
 627                        ecryptfs_printk(KERN_ERR, "Error attempting "
 628                                        "to read lower page; rc = [%d]"
 629                                        "\n", rc);
 630                        goto out;
 631                }
 632                rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
 633                                             extent_offset);
 634                if (rc) {
 635                        printk(KERN_ERR "%s: Error encrypting extent; "
 636                               "rc = [%d]\n", __func__, rc);
 637                        goto out;
 638                }
 639        }
 640out:
 641        if (enc_extent_page) {
 642                kunmap(enc_extent_page);
 643                __free_page(enc_extent_page);
 644        }
 645        return rc;
 646}
 647
 648/**
 649 * decrypt_scatterlist
 650 * @crypt_stat: Cryptographic context
 651 * @dest_sg: The destination scatterlist to decrypt into
 652 * @src_sg: The source scatterlist to decrypt from
 653 * @size: The number of bytes to decrypt
 654 * @iv: The initialization vector to use for the decryption
 655 *
 656 * Returns the number of bytes decrypted; negative value on error
 657 */
 658static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 659                               struct scatterlist *dest_sg,
 660                               struct scatterlist *src_sg, int size,
 661                               unsigned char *iv)
 662{
 663        struct ablkcipher_request *req = NULL;
 664        struct extent_crypt_result ecr;
 665        int rc = 0;
 666
 667        BUG_ON(!crypt_stat || !crypt_stat->tfm
 668               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 669        if (unlikely(ecryptfs_verbosity > 0)) {
 670                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 671                                crypt_stat->key_size);
 672                ecryptfs_dump_hex(crypt_stat->key,
 673                                  crypt_stat->key_size);
 674        }
 675
 676        init_completion(&ecr.completion);
 677
 678        mutex_lock(&crypt_stat->cs_tfm_mutex);
 679        req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 680        if (!req) {
 681                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 682                rc = -ENOMEM;
 683                goto out;
 684        }
 685
 686        ablkcipher_request_set_callback(req,
 687                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 688                        extent_crypt_complete, &ecr);
 689        /* Consider doing this once, when the file is opened */
 690        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 691                rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 692                                              crypt_stat->key_size);
 693                if (rc) {
 694                        ecryptfs_printk(KERN_ERR,
 695                                        "Error setting key; rc = [%d]\n",
 696                                        rc);
 697                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 698                        rc = -EINVAL;
 699                        goto out;
 700                }
 701                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 702        }
 703        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 704        ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
 705        ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
 706        rc = crypto_ablkcipher_decrypt(req);
 707        if (rc == -EINPROGRESS || rc == -EBUSY) {
 708                struct extent_crypt_result *ecr = req->base.data;
 709
 710                wait_for_completion(&ecr->completion);
 711                rc = ecr->rc;
 712                INIT_COMPLETION(ecr->completion);
 713        }
 714out:
 715        ablkcipher_request_free(req);
 716        return rc;
 717
 718}
 719
 720/**
 721 * ecryptfs_encrypt_page_offset
 722 * @crypt_stat: The cryptographic context
 723 * @dst_page: The page to encrypt into
 724 * @dst_offset: The offset in the page to encrypt into
 725 * @src_page: The page to encrypt from
 726 * @src_offset: The offset in the page to encrypt from
 727 * @size: The number of bytes to encrypt
 728 * @iv: The initialization vector to use for the encryption
 729 *
 730 * Returns the number of bytes encrypted
 731 */
 732static int
 733ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 734                             struct page *dst_page, int dst_offset,
 735                             struct page *src_page, int src_offset, int size,
 736                             unsigned char *iv)
 737{
 738        struct scatterlist src_sg, dst_sg;
 739
 740        sg_init_table(&src_sg, 1);
 741        sg_init_table(&dst_sg, 1);
 742
 743        sg_set_page(&src_sg, src_page, size, src_offset);
 744        sg_set_page(&dst_sg, dst_page, size, dst_offset);
 745        return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 746}
 747
 748/**
 749 * ecryptfs_decrypt_page_offset
 750 * @crypt_stat: The cryptographic context
 751 * @dst_page: The page to decrypt into
 752 * @dst_offset: The offset in the page to decrypt into
 753 * @src_page: The page to decrypt from
 754 * @src_offset: The offset in the page to decrypt from
 755 * @size: The number of bytes to decrypt
 756 * @iv: The initialization vector to use for the decryption
 757 *
 758 * Returns the number of bytes decrypted
 759 */
 760static int
 761ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 762                             struct page *dst_page, int dst_offset,
 763                             struct page *src_page, int src_offset, int size,
 764                             unsigned char *iv)
 765{
 766        struct scatterlist src_sg, dst_sg;
 767
 768        sg_init_table(&src_sg, 1);
 769        sg_set_page(&src_sg, src_page, size, src_offset);
 770
 771        sg_init_table(&dst_sg, 1);
 772        sg_set_page(&dst_sg, dst_page, size, dst_offset);
 773
 774        return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 775}
 776
 777#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 778
 779/**
 780 * ecryptfs_init_crypt_ctx
 781 * @crypt_stat: Uninitialized crypt stats structure
 782 *
 783 * Initialize the crypto context.
 784 *
 785 * TODO: Performance: Keep a cache of initialized cipher contexts;
 786 * only init if needed
 787 */
 788int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 789{
 790        char *full_alg_name;
 791        int rc = -EINVAL;
 792
 793        if (!crypt_stat->cipher) {
 794                ecryptfs_printk(KERN_ERR, "No cipher specified\n");
 795                goto out;
 796        }
 797        ecryptfs_printk(KERN_DEBUG,
 798                        "Initializing cipher [%s]; strlen = [%d]; "
 799                        "key_size_bits = [%zd]\n",
 800                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 801                        crypt_stat->key_size << 3);
 802        if (crypt_stat->tfm) {
 803                rc = 0;
 804                goto out;
 805        }
 806        mutex_lock(&crypt_stat->cs_tfm_mutex);
 807        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 808                                                    crypt_stat->cipher, "cbc");
 809        if (rc)
 810                goto out_unlock;
 811        crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
 812        kfree(full_alg_name);
 813        if (IS_ERR(crypt_stat->tfm)) {
 814                rc = PTR_ERR(crypt_stat->tfm);
 815                crypt_stat->tfm = NULL;
 816                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 817                                "Error initializing cipher [%s]\n",
 818                                crypt_stat->cipher);
 819                goto out_unlock;
 820        }
 821        crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 822        rc = 0;
 823out_unlock:
 824        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 825out:
 826        return rc;
 827}
 828
 829static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 830{
 831        int extent_size_tmp;
 832
 833        crypt_stat->extent_mask = 0xFFFFFFFF;
 834        crypt_stat->extent_shift = 0;
 835        if (crypt_stat->extent_size == 0)
 836                return;
 837        extent_size_tmp = crypt_stat->extent_size;
 838        while ((extent_size_tmp & 0x01) == 0) {
 839                extent_size_tmp >>= 1;
 840                crypt_stat->extent_mask <<= 1;
 841                crypt_stat->extent_shift++;
 842        }
 843}
 844
 845void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 846{
 847        /* Default values; may be overwritten as we are parsing the
 848         * packets. */
 849        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 850        set_extent_mask_and_shift(crypt_stat);
 851        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 852        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 853                crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 854        else {
 855                if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 856                        crypt_stat->metadata_size =
 857                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 858                else
 859                        crypt_stat->metadata_size = PAGE_CACHE_SIZE;
 860        }
 861}
 862
 863/**
 864 * ecryptfs_compute_root_iv
 865 * @crypt_stats
 866 *
 867 * On error, sets the root IV to all 0's.
 868 */
 869int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 870{
 871        int rc = 0;
 872        char dst[MD5_DIGEST_SIZE];
 873
 874        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 875        BUG_ON(crypt_stat->iv_bytes <= 0);
 876        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 877                rc = -EINVAL;
 878                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 879                                "cannot generate root IV\n");
 880                goto out;
 881        }
 882        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 883                                    crypt_stat->key_size);
 884        if (rc) {
 885                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 886                                "MD5 while generating root IV\n");
 887                goto out;
 888        }
 889        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 890out:
 891        if (rc) {
 892                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 893                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 894        }
 895        return rc;
 896}
 897
 898static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 899{
 900        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 901        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 902        ecryptfs_compute_root_iv(crypt_stat);
 903        if (unlikely(ecryptfs_verbosity > 0)) {
 904                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 905                ecryptfs_dump_hex(crypt_stat->key,
 906                                  crypt_stat->key_size);
 907        }
 908}
 909
 910/**
 911 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 912 * @crypt_stat: The inode's cryptographic context
 913 * @mount_crypt_stat: The mount point's cryptographic context
 914 *
 915 * This function propagates the mount-wide flags to individual inode
 916 * flags.
 917 */
 918static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 919        struct ecryptfs_crypt_stat *crypt_stat,
 920        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 921{
 922        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 923                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 924        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 925                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 926        if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 927                crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 928                if (mount_crypt_stat->flags
 929                    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 930                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 931                else if (mount_crypt_stat->flags
 932                         & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 933                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 934        }
 935}
 936
 937static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 938        struct ecryptfs_crypt_stat *crypt_stat,
 939        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 940{
 941        struct ecryptfs_global_auth_tok *global_auth_tok;
 942        int rc = 0;
 943
 944        mutex_lock(&crypt_stat->keysig_list_mutex);
 945        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 946
 947        list_for_each_entry(global_auth_tok,
 948                            &mount_crypt_stat->global_auth_tok_list,
 949                            mount_crypt_stat_list) {
 950                if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 951                        continue;
 952                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 953                if (rc) {
 954                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 955                        goto out;
 956                }
 957        }
 958
 959out:
 960        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 961        mutex_unlock(&crypt_stat->keysig_list_mutex);
 962        return rc;
 963}
 964
 965/**
 966 * ecryptfs_set_default_crypt_stat_vals
 967 * @crypt_stat: The inode's cryptographic context
 968 * @mount_crypt_stat: The mount point's cryptographic context
 969 *
 970 * Default values in the event that policy does not override them.
 971 */
 972static void ecryptfs_set_default_crypt_stat_vals(
 973        struct ecryptfs_crypt_stat *crypt_stat,
 974        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 975{
 976        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 977                                                      mount_crypt_stat);
 978        ecryptfs_set_default_sizes(crypt_stat);
 979        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 980        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 981        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 982        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 983        crypt_stat->mount_crypt_stat = mount_crypt_stat;
 984}
 985
 986/**
 987 * ecryptfs_new_file_context
 988 * @ecryptfs_inode: The eCryptfs inode
 989 *
 990 * If the crypto context for the file has not yet been established,
 991 * this is where we do that.  Establishing a new crypto context
 992 * involves the following decisions:
 993 *  - What cipher to use?
 994 *  - What set of authentication tokens to use?
 995 * Here we just worry about getting enough information into the
 996 * authentication tokens so that we know that they are available.
 997 * We associate the available authentication tokens with the new file
 998 * via the set of signatures in the crypt_stat struct.  Later, when
 999 * the headers are actually written out, we may again defer to
1000 * userspace to perform the encryption of the session key; for the
1001 * foreseeable future, this will be the case with public key packets.
1002 *
1003 * Returns zero on success; non-zero otherwise
1004 */
1005int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
1006{
1007        struct ecryptfs_crypt_stat *crypt_stat =
1008            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1009        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1010            &ecryptfs_superblock_to_private(
1011                    ecryptfs_inode->i_sb)->mount_crypt_stat;
1012        int cipher_name_len;
1013        int rc = 0;
1014
1015        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1016        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1017        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1018                                                      mount_crypt_stat);
1019        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1020                                                         mount_crypt_stat);
1021        if (rc) {
1022                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1023                       "to the inode key sigs; rc = [%d]\n", rc);
1024                goto out;
1025        }
1026        cipher_name_len =
1027                strlen(mount_crypt_stat->global_default_cipher_name);
1028        memcpy(crypt_stat->cipher,
1029               mount_crypt_stat->global_default_cipher_name,
1030               cipher_name_len);
1031        crypt_stat->cipher[cipher_name_len] = '\0';
1032        crypt_stat->key_size =
1033                mount_crypt_stat->global_default_cipher_key_size;
1034        ecryptfs_generate_new_key(crypt_stat);
1035        rc = ecryptfs_init_crypt_ctx(crypt_stat);
1036        if (rc)
1037                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1038                                "context for cipher [%s]: rc = [%d]\n",
1039                                crypt_stat->cipher, rc);
1040out:
1041        return rc;
1042}
1043
1044/**
1045 * ecryptfs_validate_marker - check for the ecryptfs marker
1046 * @data: The data block in which to check
1047 *
1048 * Returns zero if marker found; -EINVAL if not found
1049 */
1050static int ecryptfs_validate_marker(char *data)
1051{
1052        u32 m_1, m_2;
1053
1054        m_1 = get_unaligned_be32(data);
1055        m_2 = get_unaligned_be32(data + 4);
1056        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1057                return 0;
1058        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1059                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1060                        MAGIC_ECRYPTFS_MARKER);
1061        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1062                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1063        return -EINVAL;
1064}
1065
1066struct ecryptfs_flag_map_elem {
1067        u32 file_flag;
1068        u32 local_flag;
1069};
1070
1071/* Add support for additional flags by adding elements here. */
1072static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1073        {0x00000001, ECRYPTFS_ENABLE_HMAC},
1074        {0x00000002, ECRYPTFS_ENCRYPTED},
1075        {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1076        {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1077};
1078
1079/**
1080 * ecryptfs_process_flags
1081 * @crypt_stat: The cryptographic context
1082 * @page_virt: Source data to be parsed
1083 * @bytes_read: Updated with the number of bytes read
1084 *
1085 * Returns zero on success; non-zero if the flag set is invalid
1086 */
1087static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1088                                  char *page_virt, int *bytes_read)
1089{
1090        int rc = 0;
1091        int i;
1092        u32 flags;
1093
1094        flags = get_unaligned_be32(page_virt);
1095        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1096                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
1097                if (flags & ecryptfs_flag_map[i].file_flag) {
1098                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1099                } else
1100                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1101        /* Version is in top 8 bits of the 32-bit flag vector */
1102        crypt_stat->file_version = ((flags >> 24) & 0xFF);
1103        (*bytes_read) = 4;
1104        return rc;
1105}
1106
1107/**
1108 * write_ecryptfs_marker
1109 * @page_virt: The pointer to in a page to begin writing the marker
1110 * @written: Number of bytes written
1111 *
1112 * Marker = 0x3c81b7f5
1113 */
1114static void write_ecryptfs_marker(char *page_virt, size_t *written)
1115{
1116        u32 m_1, m_2;
1117
1118        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1119        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1120        put_unaligned_be32(m_1, page_virt);
1121        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1122        put_unaligned_be32(m_2, page_virt);
1123        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1124}
1125
1126void ecryptfs_write_crypt_stat_flags(char *page_virt,
1127                                     struct ecryptfs_crypt_stat *crypt_stat,
1128                                     size_t *written)
1129{
1130        u32 flags = 0;
1131        int i;
1132
1133        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1134                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
1135                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1136                        flags |= ecryptfs_flag_map[i].file_flag;
1137        /* Version is in top 8 bits of the 32-bit flag vector */
1138        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1139        put_unaligned_be32(flags, page_virt);
1140        (*written) = 4;
1141}
1142
1143struct ecryptfs_cipher_code_str_map_elem {
1144        char cipher_str[16];
1145        u8 cipher_code;
1146};
1147
1148/* Add support for additional ciphers by adding elements here. The
1149 * cipher_code is whatever OpenPGP applicatoins use to identify the
1150 * ciphers. List in order of probability. */
1151static struct ecryptfs_cipher_code_str_map_elem
1152ecryptfs_cipher_code_str_map[] = {
1153        {"aes",RFC2440_CIPHER_AES_128 },
1154        {"blowfish", RFC2440_CIPHER_BLOWFISH},
1155        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1156        {"cast5", RFC2440_CIPHER_CAST_5},
1157        {"twofish", RFC2440_CIPHER_TWOFISH},
1158        {"cast6", RFC2440_CIPHER_CAST_6},
1159        {"aes", RFC2440_CIPHER_AES_192},
1160        {"aes", RFC2440_CIPHER_AES_256}
1161};
1162
1163/**
1164 * ecryptfs_code_for_cipher_string
1165 * @cipher_name: The string alias for the cipher
1166 * @key_bytes: Length of key in bytes; used for AES code selection
1167 *
1168 * Returns zero on no match, or the cipher code on match
1169 */
1170u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1171{
1172        int i;
1173        u8 code = 0;
1174        struct ecryptfs_cipher_code_str_map_elem *map =
1175                ecryptfs_cipher_code_str_map;
1176
1177        if (strcmp(cipher_name, "aes") == 0) {
1178                switch (key_bytes) {
1179                case 16:
1180                        code = RFC2440_CIPHER_AES_128;
1181                        break;
1182                case 24:
1183                        code = RFC2440_CIPHER_AES_192;
1184                        break;
1185                case 32:
1186                        code = RFC2440_CIPHER_AES_256;
1187                }
1188        } else {
1189                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1190                        if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1191                                code = map[i].cipher_code;
1192                                break;
1193                        }
1194        }
1195        return code;
1196}
1197
1198/**
1199 * ecryptfs_cipher_code_to_string
1200 * @str: Destination to write out the cipher name
1201 * @cipher_code: The code to convert to cipher name string
1202 *
1203 * Returns zero on success
1204 */
1205int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1206{
1207        int rc = 0;
1208        int i;
1209
1210        str[0] = '\0';
1211        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1212                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1213                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1214        if (str[0] == '\0') {
1215                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1216                                "[%d]\n", cipher_code);
1217                rc = -EINVAL;
1218        }
1219        return rc;
1220}
1221
1222int ecryptfs_read_and_validate_header_region(struct inode *inode)
1223{
1224        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1225        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1226        int rc;
1227
1228        rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1229                                 inode);
1230        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1231                return rc >= 0 ? -EINVAL : rc;
1232        rc = ecryptfs_validate_marker(marker);
1233        if (!rc)
1234                ecryptfs_i_size_init(file_size, inode);
1235        return rc;
1236}
1237
1238void
1239ecryptfs_write_header_metadata(char *virt,
1240                               struct ecryptfs_crypt_stat *crypt_stat,
1241                               size_t *written)
1242{
1243        u32 header_extent_size;
1244        u16 num_header_extents_at_front;
1245
1246        header_extent_size = (u32)crypt_stat->extent_size;
1247        num_header_extents_at_front =
1248                (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1249        put_unaligned_be32(header_extent_size, virt);
1250        virt += 4;
1251        put_unaligned_be16(num_header_extents_at_front, virt);
1252        (*written) = 6;
1253}
1254
1255struct kmem_cache *ecryptfs_header_cache;
1256
1257/**
1258 * ecryptfs_write_headers_virt
1259 * @page_virt: The virtual address to write the headers to
1260 * @max: The size of memory allocated at page_virt
1261 * @size: Set to the number of bytes written by this function
1262 * @crypt_stat: The cryptographic context
1263 * @ecryptfs_dentry: The eCryptfs dentry
1264 *
1265 * Format version: 1
1266 *
1267 *   Header Extent:
1268 *     Octets 0-7:        Unencrypted file size (big-endian)
1269 *     Octets 8-15:       eCryptfs special marker
1270 *     Octets 16-19:      Flags
1271 *      Octet 16:         File format version number (between 0 and 255)
1272 *      Octets 17-18:     Reserved
1273 *      Octet 19:         Bit 1 (lsb): Reserved
1274 *                        Bit 2: Encrypted?
1275 *                        Bits 3-8: Reserved
1276 *     Octets 20-23:      Header extent size (big-endian)
1277 *     Octets 24-25:      Number of header extents at front of file
1278 *                        (big-endian)
1279 *     Octet  26:         Begin RFC 2440 authentication token packet set
1280 *   Data Extent 0:
1281 *     Lower data (CBC encrypted)
1282 *   Data Extent 1:
1283 *     Lower data (CBC encrypted)
1284 *   ...
1285 *
1286 * Returns zero on success
1287 */
1288static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1289                                       size_t *size,
1290                                       struct ecryptfs_crypt_stat *crypt_stat,
1291                                       struct dentry *ecryptfs_dentry)
1292{
1293        int rc;
1294        size_t written;
1295        size_t offset;
1296
1297        offset = ECRYPTFS_FILE_SIZE_BYTES;
1298        write_ecryptfs_marker((page_virt + offset), &written);
1299        offset += written;
1300        ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1301                                        &written);
1302        offset += written;
1303        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1304                                       &written);
1305        offset += written;
1306        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1307                                              ecryptfs_dentry, &written,
1308                                              max - offset);
1309        if (rc)
1310                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1311                                "set; rc = [%d]\n", rc);
1312        if (size) {
1313                offset += written;
1314                *size = offset;
1315        }
1316        return rc;
1317}
1318
1319static int
1320ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1321                                    char *virt, size_t virt_len)
1322{
1323        int rc;
1324
1325        rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1326                                  0, virt_len);
1327        if (rc < 0)
1328                printk(KERN_ERR "%s: Error attempting to write header "
1329                       "information to lower file; rc = [%d]\n", __func__, rc);
1330        else
1331                rc = 0;
1332        return rc;
1333}
1334
1335static int
1336ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1337                                 char *page_virt, size_t size)
1338{
1339        int rc;
1340
1341        rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1342                               size, 0);
1343        return rc;
1344}
1345
1346static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1347                                               unsigned int order)
1348{
1349        struct page *page;
1350
1351        page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1352        if (page)
1353                return (unsigned long) page_address(page);
1354        return 0;
1355}
1356
1357/**
1358 * ecryptfs_write_metadata
1359 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1360 * @ecryptfs_inode: The newly created eCryptfs inode
1361 *
1362 * Write the file headers out.  This will likely involve a userspace
1363 * callout, in which the session key is encrypted with one or more
1364 * public keys and/or the passphrase necessary to do the encryption is
1365 * retrieved via a prompt.  Exactly what happens at this point should
1366 * be policy-dependent.
1367 *
1368 * Returns zero on success; non-zero on error
1369 */
1370int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1371                            struct inode *ecryptfs_inode)
1372{
1373        struct ecryptfs_crypt_stat *crypt_stat =
1374                &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1375        unsigned int order;
1376        char *virt;
1377        size_t virt_len;
1378        size_t size = 0;
1379        int rc = 0;
1380
1381        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1382                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1383                        printk(KERN_ERR "Key is invalid; bailing out\n");
1384                        rc = -EINVAL;
1385                        goto out;
1386                }
1387        } else {
1388                printk(KERN_WARNING "%s: Encrypted flag not set\n",
1389                       __func__);
1390                rc = -EINVAL;
1391                goto out;
1392        }
1393        virt_len = crypt_stat->metadata_size;
1394        order = get_order(virt_len);
1395        /* Released in this function */
1396        virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1397        if (!virt) {
1398                printk(KERN_ERR "%s: Out of memory\n", __func__);
1399                rc = -ENOMEM;
1400                goto out;
1401        }
1402        /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1403        rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1404                                         ecryptfs_dentry);
1405        if (unlikely(rc)) {
1406                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1407                       __func__, rc);
1408                goto out_free;
1409        }
1410        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1411                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1412                                                      size);
1413        else
1414                rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1415                                                         virt_len);
1416        if (rc) {
1417                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1418                       "rc = [%d]\n", __func__, rc);
1419                goto out_free;
1420        }
1421out_free:
1422        free_pages((unsigned long)virt, order);
1423out:
1424        return rc;
1425}
1426
1427#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1428#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1429static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1430                                 char *virt, int *bytes_read,
1431                                 int validate_header_size)
1432{
1433        int rc = 0;
1434        u32 header_extent_size;
1435        u16 num_header_extents_at_front;
1436
1437        header_extent_size = get_unaligned_be32(virt);
1438        virt += sizeof(__be32);
1439        num_header_extents_at_front = get_unaligned_be16(virt);
1440        crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1441                                     * (size_t)header_extent_size));
1442        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1443        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1444            && (crypt_stat->metadata_size
1445                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1446                rc = -EINVAL;
1447                printk(KERN_WARNING "Invalid header size: [%zd]\n",
1448                       crypt_stat->metadata_size);
1449        }
1450        return rc;
1451}
1452
1453/**
1454 * set_default_header_data
1455 * @crypt_stat: The cryptographic context
1456 *
1457 * For version 0 file format; this function is only for backwards
1458 * compatibility for files created with the prior versions of
1459 * eCryptfs.
1460 */
1461static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1462{
1463        crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1464}
1465
1466void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1467{
1468        struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1469        struct ecryptfs_crypt_stat *crypt_stat;
1470        u64 file_size;
1471
1472        crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1473        mount_crypt_stat =
1474                &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1475        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1476                file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1477                if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1478                        file_size += crypt_stat->metadata_size;
1479        } else
1480                file_size = get_unaligned_be64(page_virt);
1481        i_size_write(inode, (loff_t)file_size);
1482        crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1483}
1484
1485/**
1486 * ecryptfs_read_headers_virt
1487 * @page_virt: The virtual address into which to read the headers
1488 * @crypt_stat: The cryptographic context
1489 * @ecryptfs_dentry: The eCryptfs dentry
1490 * @validate_header_size: Whether to validate the header size while reading
1491 *
1492 * Read/parse the header data. The header format is detailed in the
1493 * comment block for the ecryptfs_write_headers_virt() function.
1494 *
1495 * Returns zero on success
1496 */
1497static int ecryptfs_read_headers_virt(char *page_virt,
1498                                      struct ecryptfs_crypt_stat *crypt_stat,
1499                                      struct dentry *ecryptfs_dentry,
1500                                      int validate_header_size)
1501{
1502        int rc = 0;
1503        int offset;
1504        int bytes_read;
1505
1506        ecryptfs_set_default_sizes(crypt_stat);
1507        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1508                ecryptfs_dentry->d_sb)->mount_crypt_stat;
1509        offset = ECRYPTFS_FILE_SIZE_BYTES;
1510        rc = ecryptfs_validate_marker(page_virt + offset);
1511        if (rc)
1512                goto out;
1513        if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1514                ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1515        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1516        rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1517                                    &bytes_read);
1518        if (rc) {
1519                ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1520                goto out;
1521        }
1522        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1523                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1524                                "file version [%d] is supported by this "
1525                                "version of eCryptfs\n",
1526                                crypt_stat->file_version,
1527                                ECRYPTFS_SUPPORTED_FILE_VERSION);
1528                rc = -EINVAL;
1529                goto out;
1530        }
1531        offset += bytes_read;
1532        if (crypt_stat->file_version >= 1) {
1533                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1534                                           &bytes_read, validate_header_size);
1535                if (rc) {
1536                        ecryptfs_printk(KERN_WARNING, "Error reading header "
1537                                        "metadata; rc = [%d]\n", rc);
1538                }
1539                offset += bytes_read;
1540        } else
1541                set_default_header_data(crypt_stat);
1542        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1543                                       ecryptfs_dentry);
1544out:
1545        return rc;
1546}
1547
1548/**
1549 * ecryptfs_read_xattr_region
1550 * @page_virt: The vitual address into which to read the xattr data
1551 * @ecryptfs_inode: The eCryptfs inode
1552 *
1553 * Attempts to read the crypto metadata from the extended attribute
1554 * region of the lower file.
1555 *
1556 * Returns zero on success; non-zero on error
1557 */
1558int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1559{
1560        struct dentry *lower_dentry =
1561                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1562        ssize_t size;
1563        int rc = 0;
1564
1565        size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1566                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1567        if (size < 0) {
1568                if (unlikely(ecryptfs_verbosity > 0))
1569                        printk(KERN_INFO "Error attempting to read the [%s] "
1570                               "xattr from the lower file; return value = "
1571                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1572                rc = -EINVAL;
1573                goto out;
1574        }
1575out:
1576        return rc;
1577}
1578
1579int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1580                                            struct inode *inode)
1581{
1582        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1583        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1584        int rc;
1585
1586        rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1587                                     ECRYPTFS_XATTR_NAME, file_size,
1588                                     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1589        if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1590                return rc >= 0 ? -EINVAL : rc;
1591        rc = ecryptfs_validate_marker(marker);
1592        if (!rc)
1593                ecryptfs_i_size_init(file_size, inode);
1594        return rc;
1595}
1596
1597/**
1598 * ecryptfs_read_metadata
1599 *
1600 * Common entry point for reading file metadata. From here, we could
1601 * retrieve the header information from the header region of the file,
1602 * the xattr region of the file, or some other repostory that is
1603 * stored separately from the file itself. The current implementation
1604 * supports retrieving the metadata information from the file contents
1605 * and from the xattr region.
1606 *
1607 * Returns zero if valid headers found and parsed; non-zero otherwise
1608 */
1609int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1610{
1611        int rc;
1612        char *page_virt;
1613        struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1614        struct ecryptfs_crypt_stat *crypt_stat =
1615            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1616        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1617                &ecryptfs_superblock_to_private(
1618                        ecryptfs_dentry->d_sb)->mount_crypt_stat;
1619
1620        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1621                                                      mount_crypt_stat);
1622        /* Read the first page from the underlying file */
1623        page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1624        if (!page_virt) {
1625                rc = -ENOMEM;
1626                printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1627                       __func__);
1628                goto out;
1629        }
1630        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1631                                 ecryptfs_inode);
1632        if (rc >= 0)
1633                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1634                                                ecryptfs_dentry,
1635                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
1636        if (rc) {
1637                /* metadata is not in the file header, so try xattrs */
1638                memset(page_virt, 0, PAGE_CACHE_SIZE);
1639                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1640                if (rc) {
1641                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1642                               "file header region or xattr region, inode %lu\n",
1643                                ecryptfs_inode->i_ino);
1644                        rc = -EINVAL;
1645                        goto out;
1646                }
1647                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1648                                                ecryptfs_dentry,
1649                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1650                if (rc) {
1651                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1652                               "file xattr region either, inode %lu\n",
1653                                ecryptfs_inode->i_ino);
1654                        rc = -EINVAL;
1655                }
1656                if (crypt_stat->mount_crypt_stat->flags
1657                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1658                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1659                } else {
1660                        printk(KERN_WARNING "Attempt to access file with "
1661                               "crypto metadata only in the extended attribute "
1662                               "region, but eCryptfs was mounted without "
1663                               "xattr support enabled. eCryptfs will not treat "
1664                               "this like an encrypted file, inode %lu\n",
1665                                ecryptfs_inode->i_ino);
1666                        rc = -EINVAL;
1667                }
1668        }
1669out:
1670        if (page_virt) {
1671                memset(page_virt, 0, PAGE_CACHE_SIZE);
1672                kmem_cache_free(ecryptfs_header_cache, page_virt);
1673        }
1674        return rc;
1675}
1676
1677/**
1678 * ecryptfs_encrypt_filename - encrypt filename
1679 *
1680 * CBC-encrypts the filename. We do not want to encrypt the same
1681 * filename with the same key and IV, which may happen with hard
1682 * links, so we prepend random bits to each filename.
1683 *
1684 * Returns zero on success; non-zero otherwise
1685 */
1686static int
1687ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1688                          struct ecryptfs_crypt_stat *crypt_stat,
1689                          struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1690{
1691        int rc = 0;
1692
1693        filename->encrypted_filename = NULL;
1694        filename->encrypted_filename_size = 0;
1695        if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1696            || (mount_crypt_stat && (mount_crypt_stat->flags
1697                                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1698                size_t packet_size;
1699                size_t remaining_bytes;
1700
1701                rc = ecryptfs_write_tag_70_packet(
1702                        NULL, NULL,
1703                        &filename->encrypted_filename_size,
1704                        mount_crypt_stat, NULL,
1705                        filename->filename_size);
1706                if (rc) {
1707                        printk(KERN_ERR "%s: Error attempting to get packet "
1708                               "size for tag 72; rc = [%d]\n", __func__,
1709                               rc);
1710                        filename->encrypted_filename_size = 0;
1711                        goto out;
1712                }
1713                filename->encrypted_filename =
1714                        kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1715                if (!filename->encrypted_filename) {
1716                        printk(KERN_ERR "%s: Out of memory whilst attempting "
1717                               "to kmalloc [%zd] bytes\n", __func__,
1718                               filename->encrypted_filename_size);
1719                        rc = -ENOMEM;
1720                        goto out;
1721                }
1722                remaining_bytes = filename->encrypted_filename_size;
1723                rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1724                                                  &remaining_bytes,
1725                                                  &packet_size,
1726                                                  mount_crypt_stat,
1727                                                  filename->filename,
1728                                                  filename->filename_size);
1729                if (rc) {
1730                        printk(KERN_ERR "%s: Error attempting to generate "
1731                               "tag 70 packet; rc = [%d]\n", __func__,
1732                               rc);
1733                        kfree(filename->encrypted_filename);
1734                        filename->encrypted_filename = NULL;
1735                        filename->encrypted_filename_size = 0;
1736                        goto out;
1737                }
1738                filename->encrypted_filename_size = packet_size;
1739        } else {
1740                printk(KERN_ERR "%s: No support for requested filename "
1741                       "encryption method in this release\n", __func__);
1742                rc = -EOPNOTSUPP;
1743                goto out;
1744        }
1745out:
1746        return rc;
1747}
1748
1749static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1750                                  const char *name, size_t name_size)
1751{
1752        int rc = 0;
1753
1754        (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1755        if (!(*copied_name)) {
1756                rc = -ENOMEM;
1757                goto out;
1758        }
1759        memcpy((void *)(*copied_name), (void *)name, name_size);
1760        (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1761                                                 * in printing out the
1762                                                 * string in debug
1763                                                 * messages */
1764        (*copied_name_size) = name_size;
1765out:
1766        return rc;
1767}
1768
1769/**
1770 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1771 * @key_tfm: Crypto context for key material, set by this function
1772 * @cipher_name: Name of the cipher
1773 * @key_size: Size of the key in bytes
1774 *
1775 * Returns zero on success. Any crypto_tfm structs allocated here
1776 * should be released by other functions, such as on a superblock put
1777 * event, regardless of whether this function succeeds for fails.
1778 */
1779static int
1780ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1781                            char *cipher_name, size_t *key_size)
1782{
1783        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1784        char *full_alg_name = NULL;
1785        int rc;
1786
1787        *key_tfm = NULL;
1788        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1789                rc = -EINVAL;
1790                printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1791                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1792                goto out;
1793        }
1794        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1795                                                    "ecb");
1796        if (rc)
1797                goto out;
1798        *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1799        if (IS_ERR(*key_tfm)) {
1800                rc = PTR_ERR(*key_tfm);
1801                printk(KERN_ERR "Unable to allocate crypto cipher with name "
1802                       "[%s]; rc = [%d]\n", full_alg_name, rc);
1803                goto out;
1804        }
1805        crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1806        if (*key_size == 0) {
1807                struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1808
1809                *key_size = alg->max_keysize;
1810        }
1811        get_random_bytes(dummy_key, *key_size);
1812        rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1813        if (rc) {
1814                printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1815                       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1816                       rc);
1817                rc = -EINVAL;
1818                goto out;
1819        }
1820out:
1821        kfree(full_alg_name);
1822        return rc;
1823}
1824
1825struct kmem_cache *ecryptfs_key_tfm_cache;
1826static struct list_head key_tfm_list;
1827struct mutex key_tfm_list_mutex;
1828
1829int __init ecryptfs_init_crypto(void)
1830{
1831        mutex_init(&key_tfm_list_mutex);
1832        INIT_LIST_HEAD(&key_tfm_list);
1833        return 0;
1834}
1835
1836/**
1837 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1838 *
1839 * Called only at module unload time
1840 */
1841int ecryptfs_destroy_crypto(void)
1842{
1843        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1844
1845        mutex_lock(&key_tfm_list_mutex);
1846        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1847                                 key_tfm_list) {
1848                list_del(&key_tfm->key_tfm_list);
1849                if (key_tfm->key_tfm)
1850                        crypto_free_blkcipher(key_tfm->key_tfm);
1851                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1852        }
1853        mutex_unlock(&key_tfm_list_mutex);
1854        return 0;
1855}
1856
1857int
1858ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1859                         size_t key_size)
1860{
1861        struct ecryptfs_key_tfm *tmp_tfm;
1862        int rc = 0;
1863
1864        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1865
1866        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1867        if (key_tfm != NULL)
1868                (*key_tfm) = tmp_tfm;
1869        if (!tmp_tfm) {
1870                rc = -ENOMEM;
1871                printk(KERN_ERR "Error attempting to allocate from "
1872                       "ecryptfs_key_tfm_cache\n");
1873                goto out;
1874        }
1875        mutex_init(&tmp_tfm->key_tfm_mutex);
1876        strncpy(tmp_tfm->cipher_name, cipher_name,
1877                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1878        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1879        tmp_tfm->key_size = key_size;
1880        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1881                                         tmp_tfm->cipher_name,
1882                                         &tmp_tfm->key_size);
1883        if (rc) {
1884                printk(KERN_ERR "Error attempting to initialize key TFM "
1885                       "cipher with name = [%s]; rc = [%d]\n",
1886                       tmp_tfm->cipher_name, rc);
1887                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1888                if (key_tfm != NULL)
1889                        (*key_tfm) = NULL;
1890                goto out;
1891        }
1892        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1893out:
1894        return rc;
1895}
1896
1897/**
1898 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1899 * @cipher_name: the name of the cipher to search for
1900 * @key_tfm: set to corresponding tfm if found
1901 *
1902 * Searches for cached key_tfm matching @cipher_name
1903 * Must be called with &key_tfm_list_mutex held
1904 * Returns 1 if found, with @key_tfm set
1905 * Returns 0 if not found, with @key_tfm set to NULL
1906 */
1907int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1908{
1909        struct ecryptfs_key_tfm *tmp_key_tfm;
1910
1911        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1912
1913        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1914                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1915                        if (key_tfm)
1916                                (*key_tfm) = tmp_key_tfm;
1917                        return 1;
1918                }
1919        }
1920        if (key_tfm)
1921                (*key_tfm) = NULL;
1922        return 0;
1923}
1924
1925/**
1926 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1927 *
1928 * @tfm: set to cached tfm found, or new tfm created
1929 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1930 * @cipher_name: the name of the cipher to search for and/or add
1931 *
1932 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1933 * Searches for cached item first, and creates new if not found.
1934 * Returns 0 on success, non-zero if adding new cipher failed
1935 */
1936int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1937                                               struct mutex **tfm_mutex,
1938                                               char *cipher_name)
1939{
1940        struct ecryptfs_key_tfm *key_tfm;
1941        int rc = 0;
1942
1943        (*tfm) = NULL;
1944        (*tfm_mutex) = NULL;
1945
1946        mutex_lock(&key_tfm_list_mutex);
1947        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1948                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1949                if (rc) {
1950                        printk(KERN_ERR "Error adding new key_tfm to list; "
1951                                        "rc = [%d]\n", rc);
1952                        goto out;
1953                }
1954        }
1955        (*tfm) = key_tfm->key_tfm;
1956        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1957out:
1958        mutex_unlock(&key_tfm_list_mutex);
1959        return rc;
1960}
1961
1962/* 64 characters forming a 6-bit target field */
1963static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1964                                                 "EFGHIJKLMNOPQRST"
1965                                                 "UVWXYZabcdefghij"
1966                                                 "klmnopqrstuvwxyz");
1967
1968/* We could either offset on every reverse map or just pad some 0x00's
1969 * at the front here */
1970static const unsigned char filename_rev_map[256] = {
1971        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1972        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1973        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1974        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1975        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1976        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1977        0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1978        0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1979        0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1980        0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1981        0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1982        0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1983        0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1984        0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1985        0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1986        0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1987};
1988
1989/**
1990 * ecryptfs_encode_for_filename
1991 * @dst: Destination location for encoded filename
1992 * @dst_size: Size of the encoded filename in bytes
1993 * @src: Source location for the filename to encode
1994 * @src_size: Size of the source in bytes
1995 */
1996static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1997                                  unsigned char *src, size_t src_size)
1998{
1999        size_t num_blocks;
2000        size_t block_num = 0;
2001        size_t dst_offset = 0;
2002        unsigned char last_block[3];
2003
2004        if (src_size == 0) {
2005                (*dst_size) = 0;
2006                goto out;
2007        }
2008        num_blocks = (src_size / 3);
2009        if ((src_size % 3) == 0) {
2010                memcpy(last_block, (&src[src_size - 3]), 3);
2011        } else {
2012                num_blocks++;
2013                last_block[2] = 0x00;
2014                switch (src_size % 3) {
2015                case 1:
2016                        last_block[0] = src[src_size - 1];
2017                        last_block[1] = 0x00;
2018                        break;
2019                case 2:
2020                        last_block[0] = src[src_size - 2];
2021                        last_block[1] = src[src_size - 1];
2022                }
2023        }
2024        (*dst_size) = (num_blocks * 4);
2025        if (!dst)
2026                goto out;
2027        while (block_num < num_blocks) {
2028                unsigned char *src_block;
2029                unsigned char dst_block[4];
2030
2031                if (block_num == (num_blocks - 1))
2032                        src_block = last_block;
2033                else
2034                        src_block = &src[block_num * 3];
2035                dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2036                dst_block[1] = (((src_block[0] << 4) & 0x30)
2037                                | ((src_block[1] >> 4) & 0x0F));
2038                dst_block[2] = (((src_block[1] << 2) & 0x3C)
2039                                | ((src_block[2] >> 6) & 0x03));
2040                dst_block[3] = (src_block[2] & 0x3F);
2041                dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2042                dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2043                dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2044                dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2045                block_num++;
2046        }
2047out:
2048        return;
2049}
2050
2051static size_t ecryptfs_max_decoded_size(size_t encoded_size)
2052{
2053        /* Not exact; conservatively long. Every block of 4
2054         * encoded characters decodes into a block of 3
2055         * decoded characters. This segment of code provides
2056         * the caller with the maximum amount of allocated
2057         * space that @dst will need to point to in a
2058         * subsequent call. */
2059        return ((encoded_size + 1) * 3) / 4;
2060}
2061
2062/**
2063 * ecryptfs_decode_from_filename
2064 * @dst: If NULL, this function only sets @dst_size and returns. If
2065 *       non-NULL, this function decodes the encoded octets in @src
2066 *       into the memory that @dst points to.
2067 * @dst_size: Set to the size of the decoded string.
2068 * @src: The encoded set of octets to decode.
2069 * @src_size: The size of the encoded set of octets to decode.
2070 */
2071static void
2072ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2073                              const unsigned char *src, size_t src_size)
2074{
2075        u8 current_bit_offset = 0;
2076        size_t src_byte_offset = 0;
2077        size_t dst_byte_offset = 0;
2078
2079        if (dst == NULL) {
2080                (*dst_size) = ecryptfs_max_decoded_size(src_size);
2081                goto out;
2082        }
2083        while (src_byte_offset < src_size) {
2084                unsigned char src_byte =
2085                                filename_rev_map[(int)src[src_byte_offset]];
2086
2087                switch (current_bit_offset) {
2088                case 0:
2089                        dst[dst_byte_offset] = (src_byte << 2);
2090                        current_bit_offset = 6;
2091                        break;
2092                case 6:
2093                        dst[dst_byte_offset++] |= (src_byte >> 4);
2094                        dst[dst_byte_offset] = ((src_byte & 0xF)
2095                                                 << 4);
2096                        current_bit_offset = 4;
2097                        break;
2098                case 4:
2099                        dst[dst_byte_offset++] |= (src_byte >> 2);
2100                        dst[dst_byte_offset] = (src_byte << 6);
2101                        current_bit_offset = 2;
2102                        break;
2103                case 2:
2104                        dst[dst_byte_offset++] |= (src_byte);
2105                        dst[dst_byte_offset] = 0;
2106                        current_bit_offset = 0;
2107                        break;
2108                }
2109                src_byte_offset++;
2110        }
2111        (*dst_size) = dst_byte_offset;
2112out:
2113        return;
2114}
2115
2116/**
2117 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2118 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2119 * @name: The plaintext name
2120 * @length: The length of the plaintext
2121 * @encoded_name: The encypted name
2122 *
2123 * Encrypts and encodes a filename into something that constitutes a
2124 * valid filename for a filesystem, with printable characters.
2125 *
2126 * We assume that we have a properly initialized crypto context,
2127 * pointed to by crypt_stat->tfm.
2128 *
2129 * Returns zero on success; non-zero on otherwise
2130 */
2131int ecryptfs_encrypt_and_encode_filename(
2132        char **encoded_name,
2133        size_t *encoded_name_size,
2134        struct ecryptfs_crypt_stat *crypt_stat,
2135        struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2136        const char *name, size_t name_size)
2137{
2138        size_t encoded_name_no_prefix_size;
2139        int rc = 0;
2140
2141        (*encoded_name) = NULL;
2142        (*encoded_name_size) = 0;
2143        if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2144            || (mount_crypt_stat && (mount_crypt_stat->flags
2145                                     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2146                struct ecryptfs_filename *filename;
2147
2148                filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2149                if (!filename) {
2150                        printk(KERN_ERR "%s: Out of memory whilst attempting "
2151                               "to kzalloc [%zd] bytes\n", __func__,
2152                               sizeof(*filename));
2153                        rc = -ENOMEM;
2154                        goto out;
2155                }
2156                filename->filename = (char *)name;
2157                filename->filename_size = name_size;
2158                rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2159                                               mount_crypt_stat);
2160                if (rc) {
2161                        printk(KERN_ERR "%s: Error attempting to encrypt "
2162                               "filename; rc = [%d]\n", __func__, rc);
2163                        kfree(filename);
2164                        goto out;
2165                }
2166                ecryptfs_encode_for_filename(
2167                        NULL, &encoded_name_no_prefix_size,
2168                        filename->encrypted_filename,
2169                        filename->encrypted_filename_size);
2170                if ((crypt_stat && (crypt_stat->flags
2171                                    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2172                    || (mount_crypt_stat
2173                        && (mount_crypt_stat->flags
2174                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2175                        (*encoded_name_size) =
2176                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2177                                 + encoded_name_no_prefix_size);
2178                else
2179                        (*encoded_name_size) =
2180                                (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2181                                 + encoded_name_no_prefix_size);
2182                (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2183                if (!(*encoded_name)) {
2184                        printk(KERN_ERR "%s: Out of memory whilst attempting "
2185                               "to kzalloc [%zd] bytes\n", __func__,
2186                               (*encoded_name_size));
2187                        rc = -ENOMEM;
2188                        kfree(filename->encrypted_filename);
2189                        kfree(filename);
2190                        goto out;
2191                }
2192                if ((crypt_stat && (crypt_stat->flags
2193                                    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2194                    || (mount_crypt_stat
2195                        && (mount_crypt_stat->flags
2196                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2197                        memcpy((*encoded_name),
2198                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2199                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2200                        ecryptfs_encode_for_filename(
2201                            ((*encoded_name)
2202                             + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2203                            &encoded_name_no_prefix_size,
2204                            filename->encrypted_filename,
2205                            filename->encrypted_filename_size);
2206                        (*encoded_name_size) =
2207                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2208                                 + encoded_name_no_prefix_size);
2209                        (*encoded_name)[(*encoded_name_size)] = '\0';
2210                } else {
2211                        rc = -EOPNOTSUPP;
2212                }
2213                if (rc) {
2214                        printk(KERN_ERR "%s: Error attempting to encode "
2215                               "encrypted filename; rc = [%d]\n", __func__,
2216                               rc);
2217                        kfree((*encoded_name));
2218                        (*encoded_name) = NULL;
2219                        (*encoded_name_size) = 0;
2220                }
2221                kfree(filename->encrypted_filename);
2222                kfree(filename);
2223        } else {
2224                rc = ecryptfs_copy_filename(encoded_name,
2225                                            encoded_name_size,
2226                                            name, name_size);
2227        }
2228out:
2229        return rc;
2230}
2231
2232/**
2233 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2234 * @plaintext_name: The plaintext name
2235 * @plaintext_name_size: The plaintext name size
2236 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2237 * @name: The filename in cipher text
2238 * @name_size: The cipher text name size
2239 *
2240 * Decrypts and decodes the filename.
2241 *
2242 * Returns zero on error; non-zero otherwise
2243 */
2244int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2245                                         size_t *plaintext_name_size,
2246                                         struct dentry *ecryptfs_dir_dentry,
2247                                         const char *name, size_t name_size)
2248{
2249        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2250                &ecryptfs_superblock_to_private(
2251                        ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2252        char *decoded_name;
2253        size_t decoded_name_size;
2254        size_t packet_size;
2255        int rc = 0;
2256
2257        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2258            && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2259            && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2260            && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2261                        ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2262                const char *orig_name = name;
2263                size_t orig_name_size = name_size;
2264
2265                name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2266                name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2267                ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2268                                              name, name_size);
2269                decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2270                if (!decoded_name) {
2271                        printk(KERN_ERR "%s: Out of memory whilst attempting "
2272                               "to kmalloc [%zd] bytes\n", __func__,
2273                               decoded_name_size);
2274                        rc = -ENOMEM;
2275                        goto out;
2276                }
2277                ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2278                                              name, name_size);
2279                rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2280                                                  plaintext_name_size,
2281                                                  &packet_size,
2282                                                  mount_crypt_stat,
2283                                                  decoded_name,
2284                                                  decoded_name_size);
2285                if (rc) {
2286                        printk(KERN_INFO "%s: Could not parse tag 70 packet "
2287                               "from filename; copying through filename "
2288                               "as-is\n", __func__);
2289                        rc = ecryptfs_copy_filename(plaintext_name,
2290                                                    plaintext_name_size,
2291                                                    orig_name, orig_name_size);
2292                        goto out_free;
2293                }
2294        } else {
2295                rc = ecryptfs_copy_filename(plaintext_name,
2296                                            plaintext_name_size,
2297                                            name, name_size);
2298                goto out;
2299        }
2300out_free:
2301        kfree(decoded_name);
2302out:
2303        return rc;
2304}
2305
2306#define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2307
2308int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2309                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2310{
2311        struct blkcipher_desc desc;
2312        struct mutex *tfm_mutex;
2313        size_t cipher_blocksize;
2314        int rc;
2315
2316        if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2317                (*namelen) = lower_namelen;
2318                return 0;
2319        }
2320
2321        rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2322                        mount_crypt_stat->global_default_fn_cipher_name);
2323        if (unlikely(rc)) {
2324                (*namelen) = 0;
2325                return rc;
2326        }
2327
2328        mutex_lock(tfm_mutex);
2329        cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2330        mutex_unlock(tfm_mutex);
2331
2332        /* Return an exact amount for the common cases */
2333        if (lower_namelen == NAME_MAX
2334            && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2335                (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2336                return 0;
2337        }
2338
2339        /* Return a safe estimate for the uncommon cases */
2340        (*namelen) = lower_namelen;
2341        (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2342        /* Since this is the max decoded size, subtract 1 "decoded block" len */
2343        (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2344        (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2345        (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2346        /* Worst case is that the filename is padded nearly a full block size */
2347        (*namelen) -= cipher_blocksize - 1;
2348
2349        if ((*namelen) < 0)
2350                (*namelen) = 0;
2351
2352        return 0;
2353}
2354