linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats. 
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/stat.h>
  30#include <linux/fcntl.h>
  31#include <linux/swap.h>
  32#include <linux/string.h>
  33#include <linux/init.h>
  34#include <linux/pagemap.h>
  35#include <linux/perf_event.h>
  36#include <linux/highmem.h>
  37#include <linux/spinlock.h>
  38#include <linux/key.h>
  39#include <linux/personality.h>
  40#include <linux/binfmts.h>
  41#include <linux/utsname.h>
  42#include <linux/pid_namespace.h>
  43#include <linux/module.h>
  44#include <linux/namei.h>
  45#include <linux/mount.h>
  46#include <linux/security.h>
  47#include <linux/syscalls.h>
  48#include <linux/tsacct_kern.h>
  49#include <linux/cn_proc.h>
  50#include <linux/audit.h>
  51#include <linux/tracehook.h>
  52#include <linux/kmod.h>
  53#include <linux/fsnotify.h>
  54#include <linux/fs_struct.h>
  55#include <linux/pipe_fs_i.h>
  56#include <linux/oom.h>
  57#include <linux/compat.h>
  58
  59#include <asm/uaccess.h>
  60#include <asm/mmu_context.h>
  61#include <asm/tlb.h>
  62
  63#include <trace/events/task.h>
  64#include "internal.h"
  65#include "coredump.h"
  66
  67#include <trace/events/sched.h>
  68
  69int suid_dumpable = 0;
  70
  71static LIST_HEAD(formats);
  72static DEFINE_RWLOCK(binfmt_lock);
  73
  74void __register_binfmt(struct linux_binfmt * fmt, int insert)
  75{
  76        BUG_ON(!fmt);
  77        write_lock(&binfmt_lock);
  78        insert ? list_add(&fmt->lh, &formats) :
  79                 list_add_tail(&fmt->lh, &formats);
  80        write_unlock(&binfmt_lock);
  81}
  82
  83EXPORT_SYMBOL(__register_binfmt);
  84
  85void unregister_binfmt(struct linux_binfmt * fmt)
  86{
  87        write_lock(&binfmt_lock);
  88        list_del(&fmt->lh);
  89        write_unlock(&binfmt_lock);
  90}
  91
  92EXPORT_SYMBOL(unregister_binfmt);
  93
  94static inline void put_binfmt(struct linux_binfmt * fmt)
  95{
  96        module_put(fmt->module);
  97}
  98
  99/*
 100 * Note that a shared library must be both readable and executable due to
 101 * security reasons.
 102 *
 103 * Also note that we take the address to load from from the file itself.
 104 */
 105SYSCALL_DEFINE1(uselib, const char __user *, library)
 106{
 107        struct file *file;
 108        struct filename *tmp = getname(library);
 109        int error = PTR_ERR(tmp);
 110        static const struct open_flags uselib_flags = {
 111                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 112                .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
 113                .intent = LOOKUP_OPEN
 114        };
 115
 116        if (IS_ERR(tmp))
 117                goto out;
 118
 119        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
 120        putname(tmp);
 121        error = PTR_ERR(file);
 122        if (IS_ERR(file))
 123                goto out;
 124
 125        error = -EINVAL;
 126        if (!S_ISREG(file_inode(file)->i_mode))
 127                goto exit;
 128
 129        error = -EACCES;
 130        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 131                goto exit;
 132
 133        fsnotify_open(file);
 134
 135        error = -ENOEXEC;
 136        if(file->f_op) {
 137                struct linux_binfmt * fmt;
 138
 139                read_lock(&binfmt_lock);
 140                list_for_each_entry(fmt, &formats, lh) {
 141                        if (!fmt->load_shlib)
 142                                continue;
 143                        if (!try_module_get(fmt->module))
 144                                continue;
 145                        read_unlock(&binfmt_lock);
 146                        error = fmt->load_shlib(file);
 147                        read_lock(&binfmt_lock);
 148                        put_binfmt(fmt);
 149                        if (error != -ENOEXEC)
 150                                break;
 151                }
 152                read_unlock(&binfmt_lock);
 153        }
 154exit:
 155        fput(file);
 156out:
 157        return error;
 158}
 159
 160#ifdef CONFIG_MMU
 161/*
 162 * The nascent bprm->mm is not visible until exec_mmap() but it can
 163 * use a lot of memory, account these pages in current->mm temporary
 164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 165 * change the counter back via acct_arg_size(0).
 166 */
 167static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 168{
 169        struct mm_struct *mm = current->mm;
 170        long diff = (long)(pages - bprm->vma_pages);
 171
 172        if (!mm || !diff)
 173                return;
 174
 175        bprm->vma_pages = pages;
 176        add_mm_counter(mm, MM_ANONPAGES, diff);
 177}
 178
 179static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 180                int write)
 181{
 182        struct page *page;
 183        int ret;
 184
 185#ifdef CONFIG_STACK_GROWSUP
 186        if (write) {
 187                ret = expand_downwards(bprm->vma, pos);
 188                if (ret < 0)
 189                        return NULL;
 190        }
 191#endif
 192        ret = get_user_pages(current, bprm->mm, pos,
 193                        1, write, 1, &page, NULL);
 194        if (ret <= 0)
 195                return NULL;
 196
 197        if (write) {
 198                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 199                struct rlimit *rlim;
 200
 201                acct_arg_size(bprm, size / PAGE_SIZE);
 202
 203                /*
 204                 * We've historically supported up to 32 pages (ARG_MAX)
 205                 * of argument strings even with small stacks
 206                 */
 207                if (size <= ARG_MAX)
 208                        return page;
 209
 210                /*
 211                 * Limit to 1/4-th the stack size for the argv+env strings.
 212                 * This ensures that:
 213                 *  - the remaining binfmt code will not run out of stack space,
 214                 *  - the program will have a reasonable amount of stack left
 215                 *    to work from.
 216                 */
 217                rlim = current->signal->rlim;
 218                if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
 219                        put_page(page);
 220                        return NULL;
 221                }
 222        }
 223
 224        return page;
 225}
 226
 227static void put_arg_page(struct page *page)
 228{
 229        put_page(page);
 230}
 231
 232static void free_arg_page(struct linux_binprm *bprm, int i)
 233{
 234}
 235
 236static void free_arg_pages(struct linux_binprm *bprm)
 237{
 238}
 239
 240static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 241                struct page *page)
 242{
 243        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 244}
 245
 246static int __bprm_mm_init(struct linux_binprm *bprm)
 247{
 248        int err;
 249        struct vm_area_struct *vma = NULL;
 250        struct mm_struct *mm = bprm->mm;
 251
 252        bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 253        if (!vma)
 254                return -ENOMEM;
 255
 256        down_write(&mm->mmap_sem);
 257        vma->vm_mm = mm;
 258
 259        /*
 260         * Place the stack at the largest stack address the architecture
 261         * supports. Later, we'll move this to an appropriate place. We don't
 262         * use STACK_TOP because that can depend on attributes which aren't
 263         * configured yet.
 264         */
 265        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 266        vma->vm_end = STACK_TOP_MAX;
 267        vma->vm_start = vma->vm_end - PAGE_SIZE;
 268        vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 269        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 270        INIT_LIST_HEAD(&vma->anon_vma_chain);
 271
 272        err = insert_vm_struct(mm, vma);
 273        if (err)
 274                goto err;
 275
 276        mm->stack_vm = mm->total_vm = 1;
 277        up_write(&mm->mmap_sem);
 278        bprm->p = vma->vm_end - sizeof(void *);
 279        return 0;
 280err:
 281        up_write(&mm->mmap_sem);
 282        bprm->vma = NULL;
 283        kmem_cache_free(vm_area_cachep, vma);
 284        return err;
 285}
 286
 287static bool valid_arg_len(struct linux_binprm *bprm, long len)
 288{
 289        return len <= MAX_ARG_STRLEN;
 290}
 291
 292#else
 293
 294static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 295{
 296}
 297
 298static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 299                int write)
 300{
 301        struct page *page;
 302
 303        page = bprm->page[pos / PAGE_SIZE];
 304        if (!page && write) {
 305                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 306                if (!page)
 307                        return NULL;
 308                bprm->page[pos / PAGE_SIZE] = page;
 309        }
 310
 311        return page;
 312}
 313
 314static void put_arg_page(struct page *page)
 315{
 316}
 317
 318static void free_arg_page(struct linux_binprm *bprm, int i)
 319{
 320        if (bprm->page[i]) {
 321                __free_page(bprm->page[i]);
 322                bprm->page[i] = NULL;
 323        }
 324}
 325
 326static void free_arg_pages(struct linux_binprm *bprm)
 327{
 328        int i;
 329
 330        for (i = 0; i < MAX_ARG_PAGES; i++)
 331                free_arg_page(bprm, i);
 332}
 333
 334static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 335                struct page *page)
 336{
 337}
 338
 339static int __bprm_mm_init(struct linux_binprm *bprm)
 340{
 341        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 342        return 0;
 343}
 344
 345static bool valid_arg_len(struct linux_binprm *bprm, long len)
 346{
 347        return len <= bprm->p;
 348}
 349
 350#endif /* CONFIG_MMU */
 351
 352/*
 353 * Create a new mm_struct and populate it with a temporary stack
 354 * vm_area_struct.  We don't have enough context at this point to set the stack
 355 * flags, permissions, and offset, so we use temporary values.  We'll update
 356 * them later in setup_arg_pages().
 357 */
 358static int bprm_mm_init(struct linux_binprm *bprm)
 359{
 360        int err;
 361        struct mm_struct *mm = NULL;
 362
 363        bprm->mm = mm = mm_alloc();
 364        err = -ENOMEM;
 365        if (!mm)
 366                goto err;
 367
 368        err = init_new_context(current, mm);
 369        if (err)
 370                goto err;
 371
 372        err = __bprm_mm_init(bprm);
 373        if (err)
 374                goto err;
 375
 376        return 0;
 377
 378err:
 379        if (mm) {
 380                bprm->mm = NULL;
 381                mmdrop(mm);
 382        }
 383
 384        return err;
 385}
 386
 387struct user_arg_ptr {
 388#ifdef CONFIG_COMPAT
 389        bool is_compat;
 390#endif
 391        union {
 392                const char __user *const __user *native;
 393#ifdef CONFIG_COMPAT
 394                const compat_uptr_t __user *compat;
 395#endif
 396        } ptr;
 397};
 398
 399static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 400{
 401        const char __user *native;
 402
 403#ifdef CONFIG_COMPAT
 404        if (unlikely(argv.is_compat)) {
 405                compat_uptr_t compat;
 406
 407                if (get_user(compat, argv.ptr.compat + nr))
 408                        return ERR_PTR(-EFAULT);
 409
 410                return compat_ptr(compat);
 411        }
 412#endif
 413
 414        if (get_user(native, argv.ptr.native + nr))
 415                return ERR_PTR(-EFAULT);
 416
 417        return native;
 418}
 419
 420/*
 421 * count() counts the number of strings in array ARGV.
 422 */
 423static int count(struct user_arg_ptr argv, int max)
 424{
 425        int i = 0;
 426
 427        if (argv.ptr.native != NULL) {
 428                for (;;) {
 429                        const char __user *p = get_user_arg_ptr(argv, i);
 430
 431                        if (!p)
 432                                break;
 433
 434                        if (IS_ERR(p))
 435                                return -EFAULT;
 436
 437                        if (i >= max)
 438                                return -E2BIG;
 439                        ++i;
 440
 441                        if (fatal_signal_pending(current))
 442                                return -ERESTARTNOHAND;
 443                        cond_resched();
 444                }
 445        }
 446        return i;
 447}
 448
 449/*
 450 * 'copy_strings()' copies argument/environment strings from the old
 451 * processes's memory to the new process's stack.  The call to get_user_pages()
 452 * ensures the destination page is created and not swapped out.
 453 */
 454static int copy_strings(int argc, struct user_arg_ptr argv,
 455                        struct linux_binprm *bprm)
 456{
 457        struct page *kmapped_page = NULL;
 458        char *kaddr = NULL;
 459        unsigned long kpos = 0;
 460        int ret;
 461
 462        while (argc-- > 0) {
 463                const char __user *str;
 464                int len;
 465                unsigned long pos;
 466
 467                ret = -EFAULT;
 468                str = get_user_arg_ptr(argv, argc);
 469                if (IS_ERR(str))
 470                        goto out;
 471
 472                len = strnlen_user(str, MAX_ARG_STRLEN);
 473                if (!len)
 474                        goto out;
 475
 476                ret = -E2BIG;
 477                if (!valid_arg_len(bprm, len))
 478                        goto out;
 479
 480                /* We're going to work our way backwords. */
 481                pos = bprm->p;
 482                str += len;
 483                bprm->p -= len;
 484
 485                while (len > 0) {
 486                        int offset, bytes_to_copy;
 487
 488                        if (fatal_signal_pending(current)) {
 489                                ret = -ERESTARTNOHAND;
 490                                goto out;
 491                        }
 492                        cond_resched();
 493
 494                        offset = pos % PAGE_SIZE;
 495                        if (offset == 0)
 496                                offset = PAGE_SIZE;
 497
 498                        bytes_to_copy = offset;
 499                        if (bytes_to_copy > len)
 500                                bytes_to_copy = len;
 501
 502                        offset -= bytes_to_copy;
 503                        pos -= bytes_to_copy;
 504                        str -= bytes_to_copy;
 505                        len -= bytes_to_copy;
 506
 507                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 508                                struct page *page;
 509
 510                                page = get_arg_page(bprm, pos, 1);
 511                                if (!page) {
 512                                        ret = -E2BIG;
 513                                        goto out;
 514                                }
 515
 516                                if (kmapped_page) {
 517                                        flush_kernel_dcache_page(kmapped_page);
 518                                        kunmap(kmapped_page);
 519                                        put_arg_page(kmapped_page);
 520                                }
 521                                kmapped_page = page;
 522                                kaddr = kmap(kmapped_page);
 523                                kpos = pos & PAGE_MASK;
 524                                flush_arg_page(bprm, kpos, kmapped_page);
 525                        }
 526                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 527                                ret = -EFAULT;
 528                                goto out;
 529                        }
 530                }
 531        }
 532        ret = 0;
 533out:
 534        if (kmapped_page) {
 535                flush_kernel_dcache_page(kmapped_page);
 536                kunmap(kmapped_page);
 537                put_arg_page(kmapped_page);
 538        }
 539        return ret;
 540}
 541
 542/*
 543 * Like copy_strings, but get argv and its values from kernel memory.
 544 */
 545int copy_strings_kernel(int argc, const char *const *__argv,
 546                        struct linux_binprm *bprm)
 547{
 548        int r;
 549        mm_segment_t oldfs = get_fs();
 550        struct user_arg_ptr argv = {
 551                .ptr.native = (const char __user *const  __user *)__argv,
 552        };
 553
 554        set_fs(KERNEL_DS);
 555        r = copy_strings(argc, argv, bprm);
 556        set_fs(oldfs);
 557
 558        return r;
 559}
 560EXPORT_SYMBOL(copy_strings_kernel);
 561
 562#ifdef CONFIG_MMU
 563
 564/*
 565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 566 * the binfmt code determines where the new stack should reside, we shift it to
 567 * its final location.  The process proceeds as follows:
 568 *
 569 * 1) Use shift to calculate the new vma endpoints.
 570 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 571 *    arguments passed to subsequent functions are consistent.
 572 * 3) Move vma's page tables to the new range.
 573 * 4) Free up any cleared pgd range.
 574 * 5) Shrink the vma to cover only the new range.
 575 */
 576static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 577{
 578        struct mm_struct *mm = vma->vm_mm;
 579        unsigned long old_start = vma->vm_start;
 580        unsigned long old_end = vma->vm_end;
 581        unsigned long length = old_end - old_start;
 582        unsigned long new_start = old_start - shift;
 583        unsigned long new_end = old_end - shift;
 584        struct mmu_gather tlb;
 585
 586        BUG_ON(new_start > new_end);
 587
 588        /*
 589         * ensure there are no vmas between where we want to go
 590         * and where we are
 591         */
 592        if (vma != find_vma(mm, new_start))
 593                return -EFAULT;
 594
 595        /*
 596         * cover the whole range: [new_start, old_end)
 597         */
 598        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 599                return -ENOMEM;
 600
 601        /*
 602         * move the page tables downwards, on failure we rely on
 603         * process cleanup to remove whatever mess we made.
 604         */
 605        if (length != move_page_tables(vma, old_start,
 606                                       vma, new_start, length, false))
 607                return -ENOMEM;
 608
 609        lru_add_drain();
 610        tlb_gather_mmu(&tlb, mm, 0);
 611        if (new_end > old_start) {
 612                /*
 613                 * when the old and new regions overlap clear from new_end.
 614                 */
 615                free_pgd_range(&tlb, new_end, old_end, new_end,
 616                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 617        } else {
 618                /*
 619                 * otherwise, clean from old_start; this is done to not touch
 620                 * the address space in [new_end, old_start) some architectures
 621                 * have constraints on va-space that make this illegal (IA64) -
 622                 * for the others its just a little faster.
 623                 */
 624                free_pgd_range(&tlb, old_start, old_end, new_end,
 625                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 626        }
 627        tlb_finish_mmu(&tlb, new_end, old_end);
 628
 629        /*
 630         * Shrink the vma to just the new range.  Always succeeds.
 631         */
 632        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 633
 634        return 0;
 635}
 636
 637/*
 638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 639 * the stack is optionally relocated, and some extra space is added.
 640 */
 641int setup_arg_pages(struct linux_binprm *bprm,
 642                    unsigned long stack_top,
 643                    int executable_stack)
 644{
 645        unsigned long ret;
 646        unsigned long stack_shift;
 647        struct mm_struct *mm = current->mm;
 648        struct vm_area_struct *vma = bprm->vma;
 649        struct vm_area_struct *prev = NULL;
 650        unsigned long vm_flags;
 651        unsigned long stack_base;
 652        unsigned long stack_size;
 653        unsigned long stack_expand;
 654        unsigned long rlim_stack;
 655
 656#ifdef CONFIG_STACK_GROWSUP
 657        /* Limit stack size to 1GB */
 658        stack_base = rlimit_max(RLIMIT_STACK);
 659        if (stack_base > (1 << 30))
 660                stack_base = 1 << 30;
 661
 662        /* Make sure we didn't let the argument array grow too large. */
 663        if (vma->vm_end - vma->vm_start > stack_base)
 664                return -ENOMEM;
 665
 666        stack_base = PAGE_ALIGN(stack_top - stack_base);
 667
 668        stack_shift = vma->vm_start - stack_base;
 669        mm->arg_start = bprm->p - stack_shift;
 670        bprm->p = vma->vm_end - stack_shift;
 671#else
 672        stack_top = arch_align_stack(stack_top);
 673        stack_top = PAGE_ALIGN(stack_top);
 674
 675        if (unlikely(stack_top < mmap_min_addr) ||
 676            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 677                return -ENOMEM;
 678
 679        stack_shift = vma->vm_end - stack_top;
 680
 681        bprm->p -= stack_shift;
 682        mm->arg_start = bprm->p;
 683#endif
 684
 685        if (bprm->loader)
 686                bprm->loader -= stack_shift;
 687        bprm->exec -= stack_shift;
 688
 689        down_write(&mm->mmap_sem);
 690        vm_flags = VM_STACK_FLAGS;
 691
 692        /*
 693         * Adjust stack execute permissions; explicitly enable for
 694         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 695         * (arch default) otherwise.
 696         */
 697        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 698                vm_flags |= VM_EXEC;
 699        else if (executable_stack == EXSTACK_DISABLE_X)
 700                vm_flags &= ~VM_EXEC;
 701        vm_flags |= mm->def_flags;
 702        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 703
 704        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 705                        vm_flags);
 706        if (ret)
 707                goto out_unlock;
 708        BUG_ON(prev != vma);
 709
 710        /* Move stack pages down in memory. */
 711        if (stack_shift) {
 712                ret = shift_arg_pages(vma, stack_shift);
 713                if (ret)
 714                        goto out_unlock;
 715        }
 716
 717        /* mprotect_fixup is overkill to remove the temporary stack flags */
 718        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 719
 720        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 721        stack_size = vma->vm_end - vma->vm_start;
 722        /*
 723         * Align this down to a page boundary as expand_stack
 724         * will align it up.
 725         */
 726        rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 727#ifdef CONFIG_STACK_GROWSUP
 728        if (stack_size + stack_expand > rlim_stack)
 729                stack_base = vma->vm_start + rlim_stack;
 730        else
 731                stack_base = vma->vm_end + stack_expand;
 732#else
 733        if (stack_size + stack_expand > rlim_stack)
 734                stack_base = vma->vm_end - rlim_stack;
 735        else
 736                stack_base = vma->vm_start - stack_expand;
 737#endif
 738        current->mm->start_stack = bprm->p;
 739        ret = expand_stack(vma, stack_base);
 740        if (ret)
 741                ret = -EFAULT;
 742
 743out_unlock:
 744        up_write(&mm->mmap_sem);
 745        return ret;
 746}
 747EXPORT_SYMBOL(setup_arg_pages);
 748
 749#endif /* CONFIG_MMU */
 750
 751struct file *open_exec(const char *name)
 752{
 753        struct file *file;
 754        int err;
 755        struct filename tmp = { .name = name };
 756        static const struct open_flags open_exec_flags = {
 757                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 758                .acc_mode = MAY_EXEC | MAY_OPEN,
 759                .intent = LOOKUP_OPEN
 760        };
 761
 762        file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags, LOOKUP_FOLLOW);
 763        if (IS_ERR(file))
 764                goto out;
 765
 766        err = -EACCES;
 767        if (!S_ISREG(file_inode(file)->i_mode))
 768                goto exit;
 769
 770        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
 771                goto exit;
 772
 773        fsnotify_open(file);
 774
 775        err = deny_write_access(file);
 776        if (err)
 777                goto exit;
 778
 779out:
 780        return file;
 781
 782exit:
 783        fput(file);
 784        return ERR_PTR(err);
 785}
 786EXPORT_SYMBOL(open_exec);
 787
 788int kernel_read(struct file *file, loff_t offset,
 789                char *addr, unsigned long count)
 790{
 791        mm_segment_t old_fs;
 792        loff_t pos = offset;
 793        int result;
 794
 795        old_fs = get_fs();
 796        set_fs(get_ds());
 797        /* The cast to a user pointer is valid due to the set_fs() */
 798        result = vfs_read(file, (void __user *)addr, count, &pos);
 799        set_fs(old_fs);
 800        return result;
 801}
 802
 803EXPORT_SYMBOL(kernel_read);
 804
 805ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
 806{
 807        ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
 808        if (res > 0)
 809                flush_icache_range(addr, addr + len);
 810        return res;
 811}
 812EXPORT_SYMBOL(read_code);
 813
 814static int exec_mmap(struct mm_struct *mm)
 815{
 816        struct task_struct *tsk;
 817        struct mm_struct * old_mm, *active_mm;
 818
 819        /* Notify parent that we're no longer interested in the old VM */
 820        tsk = current;
 821        old_mm = current->mm;
 822        mm_release(tsk, old_mm);
 823
 824        if (old_mm) {
 825                sync_mm_rss(old_mm);
 826                /*
 827                 * Make sure that if there is a core dump in progress
 828                 * for the old mm, we get out and die instead of going
 829                 * through with the exec.  We must hold mmap_sem around
 830                 * checking core_state and changing tsk->mm.
 831                 */
 832                down_read(&old_mm->mmap_sem);
 833                if (unlikely(old_mm->core_state)) {
 834                        up_read(&old_mm->mmap_sem);
 835                        return -EINTR;
 836                }
 837        }
 838        task_lock(tsk);
 839        active_mm = tsk->active_mm;
 840        tsk->mm = mm;
 841        tsk->active_mm = mm;
 842        activate_mm(active_mm, mm);
 843        task_unlock(tsk);
 844        arch_pick_mmap_layout(mm);
 845        if (old_mm) {
 846                up_read(&old_mm->mmap_sem);
 847                BUG_ON(active_mm != old_mm);
 848                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
 849                mm_update_next_owner(old_mm);
 850                mmput(old_mm);
 851                return 0;
 852        }
 853        mmdrop(active_mm);
 854        return 0;
 855}
 856
 857/*
 858 * This function makes sure the current process has its own signal table,
 859 * so that flush_signal_handlers can later reset the handlers without
 860 * disturbing other processes.  (Other processes might share the signal
 861 * table via the CLONE_SIGHAND option to clone().)
 862 */
 863static int de_thread(struct task_struct *tsk)
 864{
 865        struct signal_struct *sig = tsk->signal;
 866        struct sighand_struct *oldsighand = tsk->sighand;
 867        spinlock_t *lock = &oldsighand->siglock;
 868
 869        if (thread_group_empty(tsk))
 870                goto no_thread_group;
 871
 872        /*
 873         * Kill all other threads in the thread group.
 874         */
 875        spin_lock_irq(lock);
 876        if (signal_group_exit(sig)) {
 877                /*
 878                 * Another group action in progress, just
 879                 * return so that the signal is processed.
 880                 */
 881                spin_unlock_irq(lock);
 882                return -EAGAIN;
 883        }
 884
 885        sig->group_exit_task = tsk;
 886        sig->notify_count = zap_other_threads(tsk);
 887        if (!thread_group_leader(tsk))
 888                sig->notify_count--;
 889
 890        while (sig->notify_count) {
 891                __set_current_state(TASK_KILLABLE);
 892                spin_unlock_irq(lock);
 893                schedule();
 894                if (unlikely(__fatal_signal_pending(tsk)))
 895                        goto killed;
 896                spin_lock_irq(lock);
 897        }
 898        spin_unlock_irq(lock);
 899
 900        /*
 901         * At this point all other threads have exited, all we have to
 902         * do is to wait for the thread group leader to become inactive,
 903         * and to assume its PID:
 904         */
 905        if (!thread_group_leader(tsk)) {
 906                struct task_struct *leader = tsk->group_leader;
 907
 908                sig->notify_count = -1; /* for exit_notify() */
 909                for (;;) {
 910                        threadgroup_change_begin(tsk);
 911                        write_lock_irq(&tasklist_lock);
 912                        if (likely(leader->exit_state))
 913                                break;
 914                        __set_current_state(TASK_KILLABLE);
 915                        write_unlock_irq(&tasklist_lock);
 916                        threadgroup_change_end(tsk);
 917                        schedule();
 918                        if (unlikely(__fatal_signal_pending(tsk)))
 919                                goto killed;
 920                }
 921
 922                /*
 923                 * The only record we have of the real-time age of a
 924                 * process, regardless of execs it's done, is start_time.
 925                 * All the past CPU time is accumulated in signal_struct
 926                 * from sister threads now dead.  But in this non-leader
 927                 * exec, nothing survives from the original leader thread,
 928                 * whose birth marks the true age of this process now.
 929                 * When we take on its identity by switching to its PID, we
 930                 * also take its birthdate (always earlier than our own).
 931                 */
 932                tsk->start_time = leader->start_time;
 933
 934                BUG_ON(!same_thread_group(leader, tsk));
 935                BUG_ON(has_group_leader_pid(tsk));
 936                /*
 937                 * An exec() starts a new thread group with the
 938                 * TGID of the previous thread group. Rehash the
 939                 * two threads with a switched PID, and release
 940                 * the former thread group leader:
 941                 */
 942
 943                /* Become a process group leader with the old leader's pid.
 944                 * The old leader becomes a thread of the this thread group.
 945                 * Note: The old leader also uses this pid until release_task
 946                 *       is called.  Odd but simple and correct.
 947                 */
 948                detach_pid(tsk, PIDTYPE_PID);
 949                tsk->pid = leader->pid;
 950                attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
 951                transfer_pid(leader, tsk, PIDTYPE_PGID);
 952                transfer_pid(leader, tsk, PIDTYPE_SID);
 953
 954                list_replace_rcu(&leader->tasks, &tsk->tasks);
 955                list_replace_init(&leader->sibling, &tsk->sibling);
 956
 957                tsk->group_leader = tsk;
 958                leader->group_leader = tsk;
 959
 960                tsk->exit_signal = SIGCHLD;
 961                leader->exit_signal = -1;
 962
 963                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
 964                leader->exit_state = EXIT_DEAD;
 965
 966                /*
 967                 * We are going to release_task()->ptrace_unlink() silently,
 968                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
 969                 * the tracer wont't block again waiting for this thread.
 970                 */
 971                if (unlikely(leader->ptrace))
 972                        __wake_up_parent(leader, leader->parent);
 973                write_unlock_irq(&tasklist_lock);
 974                threadgroup_change_end(tsk);
 975
 976                release_task(leader);
 977        }
 978
 979        sig->group_exit_task = NULL;
 980        sig->notify_count = 0;
 981
 982no_thread_group:
 983        /* we have changed execution domain */
 984        tsk->exit_signal = SIGCHLD;
 985
 986        exit_itimers(sig);
 987        flush_itimer_signals();
 988
 989        if (atomic_read(&oldsighand->count) != 1) {
 990                struct sighand_struct *newsighand;
 991                /*
 992                 * This ->sighand is shared with the CLONE_SIGHAND
 993                 * but not CLONE_THREAD task, switch to the new one.
 994                 */
 995                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 996                if (!newsighand)
 997                        return -ENOMEM;
 998
 999                atomic_set(&newsighand->count, 1);
1000                memcpy(newsighand->action, oldsighand->action,
1001                       sizeof(newsighand->action));
1002
1003                write_lock_irq(&tasklist_lock);
1004                spin_lock(&oldsighand->siglock);
1005                rcu_assign_pointer(tsk->sighand, newsighand);
1006                spin_unlock(&oldsighand->siglock);
1007                write_unlock_irq(&tasklist_lock);
1008
1009                __cleanup_sighand(oldsighand);
1010        }
1011
1012        BUG_ON(!thread_group_leader(tsk));
1013        return 0;
1014
1015killed:
1016        /* protects against exit_notify() and __exit_signal() */
1017        read_lock(&tasklist_lock);
1018        sig->group_exit_task = NULL;
1019        sig->notify_count = 0;
1020        read_unlock(&tasklist_lock);
1021        return -EAGAIN;
1022}
1023
1024char *get_task_comm(char *buf, struct task_struct *tsk)
1025{
1026        /* buf must be at least sizeof(tsk->comm) in size */
1027        task_lock(tsk);
1028        strncpy(buf, tsk->comm, sizeof(tsk->comm));
1029        task_unlock(tsk);
1030        return buf;
1031}
1032EXPORT_SYMBOL_GPL(get_task_comm);
1033
1034/*
1035 * These functions flushes out all traces of the currently running executable
1036 * so that a new one can be started
1037 */
1038
1039void set_task_comm(struct task_struct *tsk, char *buf)
1040{
1041        task_lock(tsk);
1042        trace_task_rename(tsk, buf);
1043        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1044        task_unlock(tsk);
1045        perf_event_comm(tsk);
1046}
1047
1048static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1049{
1050        int i, ch;
1051
1052        /* Copies the binary name from after last slash */
1053        for (i = 0; (ch = *(fn++)) != '\0';) {
1054                if (ch == '/')
1055                        i = 0; /* overwrite what we wrote */
1056                else
1057                        if (i < len - 1)
1058                                tcomm[i++] = ch;
1059        }
1060        tcomm[i] = '\0';
1061}
1062
1063int flush_old_exec(struct linux_binprm * bprm)
1064{
1065        int retval;
1066
1067        /*
1068         * Make sure we have a private signal table and that
1069         * we are unassociated from the previous thread group.
1070         */
1071        retval = de_thread(current);
1072        if (retval)
1073                goto out;
1074
1075        set_mm_exe_file(bprm->mm, bprm->file);
1076
1077        filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1078        /*
1079         * Release all of the old mmap stuff
1080         */
1081        acct_arg_size(bprm, 0);
1082        retval = exec_mmap(bprm->mm);
1083        if (retval)
1084                goto out;
1085
1086        bprm->mm = NULL;                /* We're using it now */
1087
1088        set_fs(USER_DS);
1089        current->flags &=
1090                ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1091        flush_thread();
1092        current->personality &= ~bprm->per_clear;
1093
1094        return 0;
1095
1096out:
1097        return retval;
1098}
1099EXPORT_SYMBOL(flush_old_exec);
1100
1101void would_dump(struct linux_binprm *bprm, struct file *file)
1102{
1103        if (inode_permission(file_inode(file), MAY_READ) < 0)
1104                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1105}
1106EXPORT_SYMBOL(would_dump);
1107
1108void setup_new_exec(struct linux_binprm * bprm)
1109{
1110        arch_pick_mmap_layout(current->mm);
1111
1112        /* This is the point of no return */
1113        current->sas_ss_sp = current->sas_ss_size = 0;
1114
1115        if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1116                set_dumpable(current->mm, SUID_DUMP_USER);
1117        else
1118                set_dumpable(current->mm, suid_dumpable);
1119
1120        set_task_comm(current, bprm->tcomm);
1121
1122        /* Set the new mm task size. We have to do that late because it may
1123         * depend on TIF_32BIT which is only updated in flush_thread() on
1124         * some architectures like powerpc
1125         */
1126        current->mm->task_size = TASK_SIZE;
1127
1128        /* install the new credentials */
1129        if (!uid_eq(bprm->cred->uid, current_euid()) ||
1130            !gid_eq(bprm->cred->gid, current_egid())) {
1131                current->pdeath_signal = 0;
1132        } else {
1133                would_dump(bprm, bprm->file);
1134                if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1135                        set_dumpable(current->mm, suid_dumpable);
1136        }
1137
1138        /* An exec changes our domain. We are no longer part of the thread
1139           group */
1140
1141        current->self_exec_id++;
1142                        
1143        flush_signal_handlers(current, 0);
1144        do_close_on_exec(current->files);
1145}
1146EXPORT_SYMBOL(setup_new_exec);
1147
1148/*
1149 * Prepare credentials and lock ->cred_guard_mutex.
1150 * install_exec_creds() commits the new creds and drops the lock.
1151 * Or, if exec fails before, free_bprm() should release ->cred and
1152 * and unlock.
1153 */
1154int prepare_bprm_creds(struct linux_binprm *bprm)
1155{
1156        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1157                return -ERESTARTNOINTR;
1158
1159        bprm->cred = prepare_exec_creds();
1160        if (likely(bprm->cred))
1161                return 0;
1162
1163        mutex_unlock(&current->signal->cred_guard_mutex);
1164        return -ENOMEM;
1165}
1166
1167void free_bprm(struct linux_binprm *bprm)
1168{
1169        free_arg_pages(bprm);
1170        if (bprm->cred) {
1171                mutex_unlock(&current->signal->cred_guard_mutex);
1172                abort_creds(bprm->cred);
1173        }
1174        /* If a binfmt changed the interp, free it. */
1175        if (bprm->interp != bprm->filename)
1176                kfree(bprm->interp);
1177        kfree(bprm);
1178}
1179
1180int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1181{
1182        /* If a binfmt changed the interp, free it first. */
1183        if (bprm->interp != bprm->filename)
1184                kfree(bprm->interp);
1185        bprm->interp = kstrdup(interp, GFP_KERNEL);
1186        if (!bprm->interp)
1187                return -ENOMEM;
1188        return 0;
1189}
1190EXPORT_SYMBOL(bprm_change_interp);
1191
1192/*
1193 * install the new credentials for this executable
1194 */
1195void install_exec_creds(struct linux_binprm *bprm)
1196{
1197        security_bprm_committing_creds(bprm);
1198
1199        commit_creds(bprm->cred);
1200        bprm->cred = NULL;
1201
1202        /*
1203         * Disable monitoring for regular users
1204         * when executing setuid binaries. Must
1205         * wait until new credentials are committed
1206         * by commit_creds() above
1207         */
1208        if (get_dumpable(current->mm) != SUID_DUMP_USER)
1209                perf_event_exit_task(current);
1210        /*
1211         * cred_guard_mutex must be held at least to this point to prevent
1212         * ptrace_attach() from altering our determination of the task's
1213         * credentials; any time after this it may be unlocked.
1214         */
1215        security_bprm_committed_creds(bprm);
1216        mutex_unlock(&current->signal->cred_guard_mutex);
1217}
1218EXPORT_SYMBOL(install_exec_creds);
1219
1220/*
1221 * determine how safe it is to execute the proposed program
1222 * - the caller must hold ->cred_guard_mutex to protect against
1223 *   PTRACE_ATTACH
1224 */
1225static int check_unsafe_exec(struct linux_binprm *bprm)
1226{
1227        struct task_struct *p = current, *t;
1228        unsigned n_fs;
1229        int res = 0;
1230
1231        if (p->ptrace) {
1232                if (p->ptrace & PT_PTRACE_CAP)
1233                        bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1234                else
1235                        bprm->unsafe |= LSM_UNSAFE_PTRACE;
1236        }
1237
1238        /*
1239         * This isn't strictly necessary, but it makes it harder for LSMs to
1240         * mess up.
1241         */
1242        if (current->no_new_privs)
1243                bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1244
1245        n_fs = 1;
1246        spin_lock(&p->fs->lock);
1247        rcu_read_lock();
1248        for (t = next_thread(p); t != p; t = next_thread(t)) {
1249                if (t->fs == p->fs)
1250                        n_fs++;
1251        }
1252        rcu_read_unlock();
1253
1254        if (p->fs->users > n_fs) {
1255                bprm->unsafe |= LSM_UNSAFE_SHARE;
1256        } else {
1257                res = -EAGAIN;
1258                if (!p->fs->in_exec) {
1259                        p->fs->in_exec = 1;
1260                        res = 1;
1261                }
1262        }
1263        spin_unlock(&p->fs->lock);
1264
1265        return res;
1266}
1267
1268/* 
1269 * Fill the binprm structure from the inode. 
1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271 *
1272 * This may be called multiple times for binary chains (scripts for example).
1273 */
1274int prepare_binprm(struct linux_binprm *bprm)
1275{
1276        umode_t mode;
1277        struct inode * inode = file_inode(bprm->file);
1278        int retval;
1279
1280        mode = inode->i_mode;
1281        if (bprm->file->f_op == NULL)
1282                return -EACCES;
1283
1284        /* clear any previous set[ug]id data from a previous binary */
1285        bprm->cred->euid = current_euid();
1286        bprm->cred->egid = current_egid();
1287
1288        if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1289            !current->no_new_privs &&
1290            kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1291            kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1292                /* Set-uid? */
1293                if (mode & S_ISUID) {
1294                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1295                        bprm->cred->euid = inode->i_uid;
1296                }
1297
1298                /* Set-gid? */
1299                /*
1300                 * If setgid is set but no group execute bit then this
1301                 * is a candidate for mandatory locking, not a setgid
1302                 * executable.
1303                 */
1304                if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1305                        bprm->per_clear |= PER_CLEAR_ON_SETID;
1306                        bprm->cred->egid = inode->i_gid;
1307                }
1308        }
1309
1310        /* fill in binprm security blob */
1311        retval = security_bprm_set_creds(bprm);
1312        if (retval)
1313                return retval;
1314        bprm->cred_prepared = 1;
1315
1316        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1317        return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1318}
1319
1320EXPORT_SYMBOL(prepare_binprm);
1321
1322/*
1323 * Arguments are '\0' separated strings found at the location bprm->p
1324 * points to; chop off the first by relocating brpm->p to right after
1325 * the first '\0' encountered.
1326 */
1327int remove_arg_zero(struct linux_binprm *bprm)
1328{
1329        int ret = 0;
1330        unsigned long offset;
1331        char *kaddr;
1332        struct page *page;
1333
1334        if (!bprm->argc)
1335                return 0;
1336
1337        do {
1338                offset = bprm->p & ~PAGE_MASK;
1339                page = get_arg_page(bprm, bprm->p, 0);
1340                if (!page) {
1341                        ret = -EFAULT;
1342                        goto out;
1343                }
1344                kaddr = kmap_atomic(page);
1345
1346                for (; offset < PAGE_SIZE && kaddr[offset];
1347                                offset++, bprm->p++)
1348                        ;
1349
1350                kunmap_atomic(kaddr);
1351                put_arg_page(page);
1352
1353                if (offset == PAGE_SIZE)
1354                        free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1355        } while (offset == PAGE_SIZE);
1356
1357        bprm->p++;
1358        bprm->argc--;
1359        ret = 0;
1360
1361out:
1362        return ret;
1363}
1364EXPORT_SYMBOL(remove_arg_zero);
1365
1366/*
1367 * cycle the list of binary formats handler, until one recognizes the image
1368 */
1369int search_binary_handler(struct linux_binprm *bprm)
1370{
1371        unsigned int depth = bprm->recursion_depth;
1372        int try,retval;
1373        struct linux_binfmt *fmt;
1374        pid_t old_pid, old_vpid;
1375
1376        /* This allows 4 levels of binfmt rewrites before failing hard. */
1377        if (depth > 5)
1378                return -ELOOP;
1379
1380        retval = security_bprm_check(bprm);
1381        if (retval)
1382                return retval;
1383
1384        retval = audit_bprm(bprm);
1385        if (retval)
1386                return retval;
1387
1388        /* Need to fetch pid before load_binary changes it */
1389        old_pid = current->pid;
1390        rcu_read_lock();
1391        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1392        rcu_read_unlock();
1393
1394        retval = -ENOENT;
1395        for (try=0; try<2; try++) {
1396                read_lock(&binfmt_lock);
1397                list_for_each_entry(fmt, &formats, lh) {
1398                        int (*fn)(struct linux_binprm *) = fmt->load_binary;
1399                        if (!fn)
1400                                continue;
1401                        if (!try_module_get(fmt->module))
1402                                continue;
1403                        read_unlock(&binfmt_lock);
1404                        bprm->recursion_depth = depth + 1;
1405                        retval = fn(bprm);
1406                        bprm->recursion_depth = depth;
1407                        if (retval >= 0) {
1408                                if (depth == 0) {
1409                                        trace_sched_process_exec(current, old_pid, bprm);
1410                                        ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1411                                }
1412                                put_binfmt(fmt);
1413                                allow_write_access(bprm->file);
1414                                if (bprm->file)
1415                                        fput(bprm->file);
1416                                bprm->file = NULL;
1417                                current->did_exec = 1;
1418                                proc_exec_connector(current);
1419                                return retval;
1420                        }
1421                        read_lock(&binfmt_lock);
1422                        put_binfmt(fmt);
1423                        if (retval != -ENOEXEC || bprm->mm == NULL)
1424                                break;
1425                        if (!bprm->file) {
1426                                read_unlock(&binfmt_lock);
1427                                return retval;
1428                        }
1429                }
1430                read_unlock(&binfmt_lock);
1431#ifdef CONFIG_MODULES
1432                if (retval != -ENOEXEC || bprm->mm == NULL) {
1433                        break;
1434                } else {
1435#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1436                        if (printable(bprm->buf[0]) &&
1437                            printable(bprm->buf[1]) &&
1438                            printable(bprm->buf[2]) &&
1439                            printable(bprm->buf[3]))
1440                                break; /* -ENOEXEC */
1441                        if (try)
1442                                break; /* -ENOEXEC */
1443                        request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1444                }
1445#else
1446                break;
1447#endif
1448        }
1449        return retval;
1450}
1451
1452EXPORT_SYMBOL(search_binary_handler);
1453
1454/*
1455 * sys_execve() executes a new program.
1456 */
1457static int do_execve_common(const char *filename,
1458                                struct user_arg_ptr argv,
1459                                struct user_arg_ptr envp)
1460{
1461        struct linux_binprm *bprm;
1462        struct file *file;
1463        struct files_struct *displaced;
1464        bool clear_in_exec;
1465        int retval;
1466        const struct cred *cred = current_cred();
1467
1468        /*
1469         * We move the actual failure in case of RLIMIT_NPROC excess from
1470         * set*uid() to execve() because too many poorly written programs
1471         * don't check setuid() return code.  Here we additionally recheck
1472         * whether NPROC limit is still exceeded.
1473         */
1474        if ((current->flags & PF_NPROC_EXCEEDED) &&
1475            atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1476                retval = -EAGAIN;
1477                goto out_ret;
1478        }
1479
1480        /* We're below the limit (still or again), so we don't want to make
1481         * further execve() calls fail. */
1482        current->flags &= ~PF_NPROC_EXCEEDED;
1483
1484        retval = unshare_files(&displaced);
1485        if (retval)
1486                goto out_ret;
1487
1488        retval = -ENOMEM;
1489        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1490        if (!bprm)
1491                goto out_files;
1492
1493        retval = prepare_bprm_creds(bprm);
1494        if (retval)
1495                goto out_free;
1496
1497        retval = check_unsafe_exec(bprm);
1498        if (retval < 0)
1499                goto out_free;
1500        clear_in_exec = retval;
1501        current->in_execve = 1;
1502
1503        file = open_exec(filename);
1504        retval = PTR_ERR(file);
1505        if (IS_ERR(file))
1506                goto out_unmark;
1507
1508        sched_exec();
1509
1510        bprm->file = file;
1511        bprm->filename = filename;
1512        bprm->interp = filename;
1513
1514        retval = bprm_mm_init(bprm);
1515        if (retval)
1516                goto out_file;
1517
1518        bprm->argc = count(argv, MAX_ARG_STRINGS);
1519        if ((retval = bprm->argc) < 0)
1520                goto out;
1521
1522        bprm->envc = count(envp, MAX_ARG_STRINGS);
1523        if ((retval = bprm->envc) < 0)
1524                goto out;
1525
1526        retval = prepare_binprm(bprm);
1527        if (retval < 0)
1528                goto out;
1529
1530        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1531        if (retval < 0)
1532                goto out;
1533
1534        bprm->exec = bprm->p;
1535        retval = copy_strings(bprm->envc, envp, bprm);
1536        if (retval < 0)
1537                goto out;
1538
1539        retval = copy_strings(bprm->argc, argv, bprm);
1540        if (retval < 0)
1541                goto out;
1542
1543        retval = search_binary_handler(bprm);
1544        if (retval < 0)
1545                goto out;
1546
1547        /* execve succeeded */
1548        current->fs->in_exec = 0;
1549        current->in_execve = 0;
1550        acct_update_integrals(current);
1551        free_bprm(bprm);
1552        if (displaced)
1553                put_files_struct(displaced);
1554        return retval;
1555
1556out:
1557        if (bprm->mm) {
1558                acct_arg_size(bprm, 0);
1559                mmput(bprm->mm);
1560        }
1561
1562out_file:
1563        if (bprm->file) {
1564                allow_write_access(bprm->file);
1565                fput(bprm->file);
1566        }
1567
1568out_unmark:
1569        if (clear_in_exec)
1570                current->fs->in_exec = 0;
1571        current->in_execve = 0;
1572
1573out_free:
1574        free_bprm(bprm);
1575
1576out_files:
1577        if (displaced)
1578                reset_files_struct(displaced);
1579out_ret:
1580        return retval;
1581}
1582
1583int do_execve(const char *filename,
1584        const char __user *const __user *__argv,
1585        const char __user *const __user *__envp)
1586{
1587        struct user_arg_ptr argv = { .ptr.native = __argv };
1588        struct user_arg_ptr envp = { .ptr.native = __envp };
1589        return do_execve_common(filename, argv, envp);
1590}
1591
1592#ifdef CONFIG_COMPAT
1593static int compat_do_execve(const char *filename,
1594        const compat_uptr_t __user *__argv,
1595        const compat_uptr_t __user *__envp)
1596{
1597        struct user_arg_ptr argv = {
1598                .is_compat = true,
1599                .ptr.compat = __argv,
1600        };
1601        struct user_arg_ptr envp = {
1602                .is_compat = true,
1603                .ptr.compat = __envp,
1604        };
1605        return do_execve_common(filename, argv, envp);
1606}
1607#endif
1608
1609void set_binfmt(struct linux_binfmt *new)
1610{
1611        struct mm_struct *mm = current->mm;
1612
1613        if (mm->binfmt)
1614                module_put(mm->binfmt->module);
1615
1616        mm->binfmt = new;
1617        if (new)
1618                __module_get(new->module);
1619}
1620
1621EXPORT_SYMBOL(set_binfmt);
1622
1623/*
1624 * set_dumpable converts traditional three-value dumpable to two flags and
1625 * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1626 * these bits are not changed atomically.  So get_dumpable can observe the
1627 * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1628 * return either old dumpable or new one by paying attention to the order of
1629 * modifying the bits.
1630 *
1631 * dumpable |   mm->flags (binary)
1632 * old  new | initial interim  final
1633 * ---------+-----------------------
1634 *  0    1  |   00      01      01
1635 *  0    2  |   00      10(*)   11
1636 *  1    0  |   01      00      00
1637 *  1    2  |   01      11      11
1638 *  2    0  |   11      10(*)   00
1639 *  2    1  |   11      11      01
1640 *
1641 * (*) get_dumpable regards interim value of 10 as 11.
1642 */
1643void set_dumpable(struct mm_struct *mm, int value)
1644{
1645        switch (value) {
1646        case SUID_DUMP_DISABLE:
1647                clear_bit(MMF_DUMPABLE, &mm->flags);
1648                smp_wmb();
1649                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1650                break;
1651        case SUID_DUMP_USER:
1652                set_bit(MMF_DUMPABLE, &mm->flags);
1653                smp_wmb();
1654                clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1655                break;
1656        case SUID_DUMP_ROOT:
1657                set_bit(MMF_DUMP_SECURELY, &mm->flags);
1658                smp_wmb();
1659                set_bit(MMF_DUMPABLE, &mm->flags);
1660                break;
1661        }
1662}
1663
1664int __get_dumpable(unsigned long mm_flags)
1665{
1666        int ret;
1667
1668        ret = mm_flags & MMF_DUMPABLE_MASK;
1669        return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret;
1670}
1671
1672int get_dumpable(struct mm_struct *mm)
1673{
1674        return __get_dumpable(mm->flags);
1675}
1676
1677SYSCALL_DEFINE3(execve,
1678                const char __user *, filename,
1679                const char __user *const __user *, argv,
1680                const char __user *const __user *, envp)
1681{
1682        struct filename *path = getname(filename);
1683        int error = PTR_ERR(path);
1684        if (!IS_ERR(path)) {
1685                error = do_execve(path->name, argv, envp);
1686                putname(path);
1687        }
1688        return error;
1689}
1690#ifdef CONFIG_COMPAT
1691asmlinkage long compat_sys_execve(const char __user * filename,
1692        const compat_uptr_t __user * argv,
1693        const compat_uptr_t __user * envp)
1694{
1695        struct filename *path = getname(filename);
1696        int error = PTR_ERR(path);
1697        if (!IS_ERR(path)) {
1698                error = compat_do_execve(path->name, argv, envp);
1699                putname(path);
1700        }
1701        return error;
1702}
1703#endif
1704