linux/fs/xfs/xfs_buf_item.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_trans.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_error.h"
  30#include "xfs_trace.h"
  31
  32
  33kmem_zone_t     *xfs_buf_item_zone;
  34
  35static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  36{
  37        return container_of(lip, struct xfs_buf_log_item, bli_item);
  38}
  39
  40STATIC void     xfs_buf_do_callbacks(struct xfs_buf *bp);
  41
  42/*
  43 * This returns the number of log iovecs needed to log the
  44 * given buf log item.
  45 *
  46 * It calculates this as 1 iovec for the buf log format structure
  47 * and 1 for each stretch of non-contiguous chunks to be logged.
  48 * Contiguous chunks are logged in a single iovec.
  49 *
  50 * If the XFS_BLI_STALE flag has been set, then log nothing.
  51 */
  52STATIC uint
  53xfs_buf_item_size_segment(
  54        struct xfs_buf_log_item *bip,
  55        struct xfs_buf_log_format *blfp)
  56{
  57        struct xfs_buf          *bp = bip->bli_buf;
  58        uint                    nvecs;
  59        int                     next_bit;
  60        int                     last_bit;
  61
  62        last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  63        if (last_bit == -1)
  64                return 0;
  65
  66        /*
  67         * initial count for a dirty buffer is 2 vectors - the format structure
  68         * and the first dirty region.
  69         */
  70        nvecs = 2;
  71
  72        while (last_bit != -1) {
  73                /*
  74                 * This takes the bit number to start looking from and
  75                 * returns the next set bit from there.  It returns -1
  76                 * if there are no more bits set or the start bit is
  77                 * beyond the end of the bitmap.
  78                 */
  79                next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  80                                        last_bit + 1);
  81                /*
  82                 * If we run out of bits, leave the loop,
  83                 * else if we find a new set of bits bump the number of vecs,
  84                 * else keep scanning the current set of bits.
  85                 */
  86                if (next_bit == -1) {
  87                        break;
  88                } else if (next_bit != last_bit + 1) {
  89                        last_bit = next_bit;
  90                        nvecs++;
  91                } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  92                           (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  93                            XFS_BLF_CHUNK)) {
  94                        last_bit = next_bit;
  95                        nvecs++;
  96                } else {
  97                        last_bit++;
  98                }
  99        }
 100
 101        return nvecs;
 102}
 103
 104/*
 105 * This returns the number of log iovecs needed to log the given buf log item.
 106 *
 107 * It calculates this as 1 iovec for the buf log format structure and 1 for each
 108 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
 109 * in a single iovec.
 110 *
 111 * Discontiguous buffers need a format structure per region that that is being
 112 * logged. This makes the changes in the buffer appear to log recovery as though
 113 * they came from separate buffers, just like would occur if multiple buffers
 114 * were used instead of a single discontiguous buffer. This enables
 115 * discontiguous buffers to be in-memory constructs, completely transparent to
 116 * what ends up on disk.
 117 *
 118 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
 119 * format structures.
 120 */
 121STATIC uint
 122xfs_buf_item_size(
 123        struct xfs_log_item     *lip)
 124{
 125        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 126        uint                    nvecs;
 127        int                     i;
 128
 129        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 130        if (bip->bli_flags & XFS_BLI_STALE) {
 131                /*
 132                 * The buffer is stale, so all we need to log
 133                 * is the buf log format structure with the
 134                 * cancel flag in it.
 135                 */
 136                trace_xfs_buf_item_size_stale(bip);
 137                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 138                return bip->bli_format_count;
 139        }
 140
 141        ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 142
 143        /*
 144         * the vector count is based on the number of buffer vectors we have
 145         * dirty bits in. This will only be greater than one when we have a
 146         * compound buffer with more than one segment dirty. Hence for compound
 147         * buffers we need to track which segment the dirty bits correspond to,
 148         * and when we move from one segment to the next increment the vector
 149         * count for the extra buf log format structure that will need to be
 150         * written.
 151         */
 152        nvecs = 0;
 153        for (i = 0; i < bip->bli_format_count; i++) {
 154                nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
 155        }
 156
 157        trace_xfs_buf_item_size(bip);
 158        return nvecs;
 159}
 160
 161static struct xfs_log_iovec *
 162xfs_buf_item_format_segment(
 163        struct xfs_buf_log_item *bip,
 164        struct xfs_log_iovec    *vecp,
 165        uint                    offset,
 166        struct xfs_buf_log_format *blfp)
 167{
 168        struct xfs_buf  *bp = bip->bli_buf;
 169        uint            base_size;
 170        uint            nvecs;
 171        int             first_bit;
 172        int             last_bit;
 173        int             next_bit;
 174        uint            nbits;
 175        uint            buffer_offset;
 176
 177        /* copy the flags across from the base format item */
 178        blfp->blf_flags = bip->__bli_format.blf_flags;
 179
 180        /*
 181         * Base size is the actual size of the ondisk structure - it reflects
 182         * the actual size of the dirty bitmap rather than the size of the in
 183         * memory structure.
 184         */
 185        base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
 186                        (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
 187
 188        nvecs = 0;
 189        first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 190        if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
 191                /*
 192                 * If the map is not be dirty in the transaction, mark
 193                 * the size as zero and do not advance the vector pointer.
 194                 */
 195                goto out;
 196        }
 197
 198        vecp->i_addr = blfp;
 199        vecp->i_len = base_size;
 200        vecp->i_type = XLOG_REG_TYPE_BFORMAT;
 201        vecp++;
 202        nvecs = 1;
 203
 204        if (bip->bli_flags & XFS_BLI_STALE) {
 205                /*
 206                 * The buffer is stale, so all we need to log
 207                 * is the buf log format structure with the
 208                 * cancel flag in it.
 209                 */
 210                trace_xfs_buf_item_format_stale(bip);
 211                ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
 212                goto out;
 213        }
 214
 215        /*
 216         * Fill in an iovec for each set of contiguous chunks.
 217         */
 218
 219        last_bit = first_bit;
 220        nbits = 1;
 221        for (;;) {
 222                /*
 223                 * This takes the bit number to start looking from and
 224                 * returns the next set bit from there.  It returns -1
 225                 * if there are no more bits set or the start bit is
 226                 * beyond the end of the bitmap.
 227                 */
 228                next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 229                                        (uint)last_bit + 1);
 230                /*
 231                 * If we run out of bits fill in the last iovec and get
 232                 * out of the loop.
 233                 * Else if we start a new set of bits then fill in the
 234                 * iovec for the series we were looking at and start
 235                 * counting the bits in the new one.
 236                 * Else we're still in the same set of bits so just
 237                 * keep counting and scanning.
 238                 */
 239                if (next_bit == -1) {
 240                        buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
 241                        vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
 242                        vecp->i_len = nbits * XFS_BLF_CHUNK;
 243                        vecp->i_type = XLOG_REG_TYPE_BCHUNK;
 244                        nvecs++;
 245                        break;
 246                } else if (next_bit != last_bit + 1) {
 247                        buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
 248                        vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
 249                        vecp->i_len = nbits * XFS_BLF_CHUNK;
 250                        vecp->i_type = XLOG_REG_TYPE_BCHUNK;
 251                        nvecs++;
 252                        vecp++;
 253                        first_bit = next_bit;
 254                        last_bit = next_bit;
 255                        nbits = 1;
 256                } else if (xfs_buf_offset(bp, offset +
 257                                              (next_bit << XFS_BLF_SHIFT)) !=
 258                           (xfs_buf_offset(bp, offset +
 259                                               (last_bit << XFS_BLF_SHIFT)) +
 260                            XFS_BLF_CHUNK)) {
 261                        buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
 262                        vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
 263                        vecp->i_len = nbits * XFS_BLF_CHUNK;
 264                        vecp->i_type = XLOG_REG_TYPE_BCHUNK;
 265                        nvecs++;
 266                        vecp++;
 267                        first_bit = next_bit;
 268                        last_bit = next_bit;
 269                        nbits = 1;
 270                } else {
 271                        last_bit++;
 272                        nbits++;
 273                }
 274        }
 275out:
 276        blfp->blf_size = nvecs;
 277        return vecp;
 278}
 279
 280/*
 281 * This is called to fill in the vector of log iovecs for the
 282 * given log buf item.  It fills the first entry with a buf log
 283 * format structure, and the rest point to contiguous chunks
 284 * within the buffer.
 285 */
 286STATIC void
 287xfs_buf_item_format(
 288        struct xfs_log_item     *lip,
 289        struct xfs_log_iovec    *vecp)
 290{
 291        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 292        struct xfs_buf          *bp = bip->bli_buf;
 293        uint                    offset = 0;
 294        int                     i;
 295
 296        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 297        ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 298               (bip->bli_flags & XFS_BLI_STALE));
 299
 300        /*
 301         * If it is an inode buffer, transfer the in-memory state to the
 302         * format flags and clear the in-memory state. We do not transfer
 303         * this state if the inode buffer allocation has not yet been committed
 304         * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 305         * correct replay of the inode allocation.
 306         */
 307        if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 308                if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 309                      xfs_log_item_in_current_chkpt(lip)))
 310                        bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 311                bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 312        }
 313
 314        for (i = 0; i < bip->bli_format_count; i++) {
 315                vecp = xfs_buf_item_format_segment(bip, vecp, offset,
 316                                                &bip->bli_formats[i]);
 317                offset += bp->b_maps[i].bm_len;
 318        }
 319
 320        /*
 321         * Check to make sure everything is consistent.
 322         */
 323        trace_xfs_buf_item_format(bip);
 324}
 325
 326/*
 327 * This is called to pin the buffer associated with the buf log item in memory
 328 * so it cannot be written out.
 329 *
 330 * We also always take a reference to the buffer log item here so that the bli
 331 * is held while the item is pinned in memory. This means that we can
 332 * unconditionally drop the reference count a transaction holds when the
 333 * transaction is completed.
 334 */
 335STATIC void
 336xfs_buf_item_pin(
 337        struct xfs_log_item     *lip)
 338{
 339        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 340
 341        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 342        ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 343               (bip->bli_flags & XFS_BLI_STALE));
 344
 345        trace_xfs_buf_item_pin(bip);
 346
 347        atomic_inc(&bip->bli_refcount);
 348        atomic_inc(&bip->bli_buf->b_pin_count);
 349}
 350
 351/*
 352 * This is called to unpin the buffer associated with the buf log
 353 * item which was previously pinned with a call to xfs_buf_item_pin().
 354 *
 355 * Also drop the reference to the buf item for the current transaction.
 356 * If the XFS_BLI_STALE flag is set and we are the last reference,
 357 * then free up the buf log item and unlock the buffer.
 358 *
 359 * If the remove flag is set we are called from uncommit in the
 360 * forced-shutdown path.  If that is true and the reference count on
 361 * the log item is going to drop to zero we need to free the item's
 362 * descriptor in the transaction.
 363 */
 364STATIC void
 365xfs_buf_item_unpin(
 366        struct xfs_log_item     *lip,
 367        int                     remove)
 368{
 369        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 370        xfs_buf_t       *bp = bip->bli_buf;
 371        struct xfs_ail  *ailp = lip->li_ailp;
 372        int             stale = bip->bli_flags & XFS_BLI_STALE;
 373        int             freed;
 374
 375        ASSERT(bp->b_fspriv == bip);
 376        ASSERT(atomic_read(&bip->bli_refcount) > 0);
 377
 378        trace_xfs_buf_item_unpin(bip);
 379
 380        freed = atomic_dec_and_test(&bip->bli_refcount);
 381
 382        if (atomic_dec_and_test(&bp->b_pin_count))
 383                wake_up_all(&bp->b_waiters);
 384
 385        if (freed && stale) {
 386                ASSERT(bip->bli_flags & XFS_BLI_STALE);
 387                ASSERT(xfs_buf_islocked(bp));
 388                ASSERT(XFS_BUF_ISSTALE(bp));
 389                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 390
 391                trace_xfs_buf_item_unpin_stale(bip);
 392
 393                if (remove) {
 394                        /*
 395                         * If we are in a transaction context, we have to
 396                         * remove the log item from the transaction as we are
 397                         * about to release our reference to the buffer.  If we
 398                         * don't, the unlock that occurs later in
 399                         * xfs_trans_uncommit() will try to reference the
 400                         * buffer which we no longer have a hold on.
 401                         */
 402                        if (lip->li_desc)
 403                                xfs_trans_del_item(lip);
 404
 405                        /*
 406                         * Since the transaction no longer refers to the buffer,
 407                         * the buffer should no longer refer to the transaction.
 408                         */
 409                        bp->b_transp = NULL;
 410                }
 411
 412                /*
 413                 * If we get called here because of an IO error, we may
 414                 * or may not have the item on the AIL. xfs_trans_ail_delete()
 415                 * will take care of that situation.
 416                 * xfs_trans_ail_delete() drops the AIL lock.
 417                 */
 418                if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 419                        xfs_buf_do_callbacks(bp);
 420                        bp->b_fspriv = NULL;
 421                        bp->b_iodone = NULL;
 422                } else {
 423                        spin_lock(&ailp->xa_lock);
 424                        xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
 425                        xfs_buf_item_relse(bp);
 426                        ASSERT(bp->b_fspriv == NULL);
 427                }
 428                xfs_buf_relse(bp);
 429        } else if (freed && remove) {
 430                /*
 431                 * There are currently two references to the buffer - the active
 432                 * LRU reference and the buf log item. What we are about to do
 433                 * here - simulate a failed IO completion - requires 3
 434                 * references.
 435                 *
 436                 * The LRU reference is removed by the xfs_buf_stale() call. The
 437                 * buf item reference is removed by the xfs_buf_iodone()
 438                 * callback that is run by xfs_buf_do_callbacks() during ioend
 439                 * processing (via the bp->b_iodone callback), and then finally
 440                 * the ioend processing will drop the IO reference if the buffer
 441                 * is marked XBF_ASYNC.
 442                 *
 443                 * Hence we need to take an additional reference here so that IO
 444                 * completion processing doesn't free the buffer prematurely.
 445                 */
 446                xfs_buf_lock(bp);
 447                xfs_buf_hold(bp);
 448                bp->b_flags |= XBF_ASYNC;
 449                xfs_buf_ioerror(bp, EIO);
 450                XFS_BUF_UNDONE(bp);
 451                xfs_buf_stale(bp);
 452                xfs_buf_ioend(bp, 0);
 453        }
 454}
 455
 456STATIC uint
 457xfs_buf_item_push(
 458        struct xfs_log_item     *lip,
 459        struct list_head        *buffer_list)
 460{
 461        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 462        struct xfs_buf          *bp = bip->bli_buf;
 463        uint                    rval = XFS_ITEM_SUCCESS;
 464
 465        if (xfs_buf_ispinned(bp))
 466                return XFS_ITEM_PINNED;
 467        if (!xfs_buf_trylock(bp)) {
 468                /*
 469                 * If we have just raced with a buffer being pinned and it has
 470                 * been marked stale, we could end up stalling until someone else
 471                 * issues a log force to unpin the stale buffer. Check for the
 472                 * race condition here so xfsaild recognizes the buffer is pinned
 473                 * and queues a log force to move it along.
 474                 */
 475                if (xfs_buf_ispinned(bp))
 476                        return XFS_ITEM_PINNED;
 477                return XFS_ITEM_LOCKED;
 478        }
 479
 480        ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 481
 482        trace_xfs_buf_item_push(bip);
 483
 484        if (!xfs_buf_delwri_queue(bp, buffer_list))
 485                rval = XFS_ITEM_FLUSHING;
 486        xfs_buf_unlock(bp);
 487        return rval;
 488}
 489
 490/*
 491 * Release the buffer associated with the buf log item.  If there is no dirty
 492 * logged data associated with the buffer recorded in the buf log item, then
 493 * free the buf log item and remove the reference to it in the buffer.
 494 *
 495 * This call ignores the recursion count.  It is only called when the buffer
 496 * should REALLY be unlocked, regardless of the recursion count.
 497 *
 498 * We unconditionally drop the transaction's reference to the log item. If the
 499 * item was logged, then another reference was taken when it was pinned, so we
 500 * can safely drop the transaction reference now.  This also allows us to avoid
 501 * potential races with the unpin code freeing the bli by not referencing the
 502 * bli after we've dropped the reference count.
 503 *
 504 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 505 * if necessary but do not unlock the buffer.  This is for support of
 506 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 507 * free the item.
 508 */
 509STATIC void
 510xfs_buf_item_unlock(
 511        struct xfs_log_item     *lip)
 512{
 513        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 514        struct xfs_buf          *bp = bip->bli_buf;
 515        int                     aborted, clean, i;
 516        uint                    hold;
 517
 518        /* Clear the buffer's association with this transaction. */
 519        bp->b_transp = NULL;
 520
 521        /*
 522         * If this is a transaction abort, don't return early.  Instead, allow
 523         * the brelse to happen.  Normally it would be done for stale
 524         * (cancelled) buffers at unpin time, but we'll never go through the
 525         * pin/unpin cycle if we abort inside commit.
 526         */
 527        aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
 528
 529        /*
 530         * Before possibly freeing the buf item, determine if we should
 531         * release the buffer at the end of this routine.
 532         */
 533        hold = bip->bli_flags & XFS_BLI_HOLD;
 534
 535        /* Clear the per transaction state. */
 536        bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
 537
 538        /*
 539         * If the buf item is marked stale, then don't do anything.  We'll
 540         * unlock the buffer and free the buf item when the buffer is unpinned
 541         * for the last time.
 542         */
 543        if (bip->bli_flags & XFS_BLI_STALE) {
 544                trace_xfs_buf_item_unlock_stale(bip);
 545                ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 546                if (!aborted) {
 547                        atomic_dec(&bip->bli_refcount);
 548                        return;
 549                }
 550        }
 551
 552        trace_xfs_buf_item_unlock(bip);
 553
 554        /*
 555         * If the buf item isn't tracking any data, free it, otherwise drop the
 556         * reference we hold to it. If we are aborting the transaction, this may
 557         * be the only reference to the buf item, so we free it anyway
 558         * regardless of whether it is dirty or not. A dirty abort implies a
 559         * shutdown, anyway.
 560         */
 561        clean = 1;
 562        for (i = 0; i < bip->bli_format_count; i++) {
 563                if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
 564                             bip->bli_formats[i].blf_map_size)) {
 565                        clean = 0;
 566                        break;
 567                }
 568        }
 569        if (clean)
 570                xfs_buf_item_relse(bp);
 571        else if (aborted) {
 572                if (atomic_dec_and_test(&bip->bli_refcount)) {
 573                        ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
 574                        xfs_buf_item_relse(bp);
 575                }
 576        } else
 577                atomic_dec(&bip->bli_refcount);
 578
 579        if (!hold)
 580                xfs_buf_relse(bp);
 581}
 582
 583/*
 584 * This is called to find out where the oldest active copy of the
 585 * buf log item in the on disk log resides now that the last log
 586 * write of it completed at the given lsn.
 587 * We always re-log all the dirty data in a buffer, so usually the
 588 * latest copy in the on disk log is the only one that matters.  For
 589 * those cases we simply return the given lsn.
 590 *
 591 * The one exception to this is for buffers full of newly allocated
 592 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 593 * flag set, indicating that only the di_next_unlinked fields from the
 594 * inodes in the buffers will be replayed during recovery.  If the
 595 * original newly allocated inode images have not yet been flushed
 596 * when the buffer is so relogged, then we need to make sure that we
 597 * keep the old images in the 'active' portion of the log.  We do this
 598 * by returning the original lsn of that transaction here rather than
 599 * the current one.
 600 */
 601STATIC xfs_lsn_t
 602xfs_buf_item_committed(
 603        struct xfs_log_item     *lip,
 604        xfs_lsn_t               lsn)
 605{
 606        struct xfs_buf_log_item *bip = BUF_ITEM(lip);
 607
 608        trace_xfs_buf_item_committed(bip);
 609
 610        if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 611                return lip->li_lsn;
 612        return lsn;
 613}
 614
 615STATIC void
 616xfs_buf_item_committing(
 617        struct xfs_log_item     *lip,
 618        xfs_lsn_t               commit_lsn)
 619{
 620}
 621
 622/*
 623 * This is the ops vector shared by all buf log items.
 624 */
 625static const struct xfs_item_ops xfs_buf_item_ops = {
 626        .iop_size       = xfs_buf_item_size,
 627        .iop_format     = xfs_buf_item_format,
 628        .iop_pin        = xfs_buf_item_pin,
 629        .iop_unpin      = xfs_buf_item_unpin,
 630        .iop_unlock     = xfs_buf_item_unlock,
 631        .iop_committed  = xfs_buf_item_committed,
 632        .iop_push       = xfs_buf_item_push,
 633        .iop_committing = xfs_buf_item_committing
 634};
 635
 636STATIC int
 637xfs_buf_item_get_format(
 638        struct xfs_buf_log_item *bip,
 639        int                     count)
 640{
 641        ASSERT(bip->bli_formats == NULL);
 642        bip->bli_format_count = count;
 643
 644        if (count == 1) {
 645                bip->bli_formats = &bip->__bli_format;
 646                return 0;
 647        }
 648
 649        bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
 650                                KM_SLEEP);
 651        if (!bip->bli_formats)
 652                return ENOMEM;
 653        return 0;
 654}
 655
 656STATIC void
 657xfs_buf_item_free_format(
 658        struct xfs_buf_log_item *bip)
 659{
 660        if (bip->bli_formats != &bip->__bli_format) {
 661                kmem_free(bip->bli_formats);
 662                bip->bli_formats = NULL;
 663        }
 664}
 665
 666/*
 667 * Allocate a new buf log item to go with the given buffer.
 668 * Set the buffer's b_fsprivate field to point to the new
 669 * buf log item.  If there are other item's attached to the
 670 * buffer (see xfs_buf_attach_iodone() below), then put the
 671 * buf log item at the front.
 672 */
 673void
 674xfs_buf_item_init(
 675        xfs_buf_t       *bp,
 676        xfs_mount_t     *mp)
 677{
 678        xfs_log_item_t          *lip = bp->b_fspriv;
 679        xfs_buf_log_item_t      *bip;
 680        int                     chunks;
 681        int                     map_size;
 682        int                     error;
 683        int                     i;
 684
 685        /*
 686         * Check to see if there is already a buf log item for
 687         * this buffer.  If there is, it is guaranteed to be
 688         * the first.  If we do already have one, there is
 689         * nothing to do here so return.
 690         */
 691        ASSERT(bp->b_target->bt_mount == mp);
 692        if (lip != NULL && lip->li_type == XFS_LI_BUF)
 693                return;
 694
 695        bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
 696        xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 697        bip->bli_buf = bp;
 698        xfs_buf_hold(bp);
 699
 700        /*
 701         * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
 702         * can be divided into. Make sure not to truncate any pieces.
 703         * map_size is the size of the bitmap needed to describe the
 704         * chunks of the buffer.
 705         *
 706         * Discontiguous buffer support follows the layout of the underlying
 707         * buffer. This makes the implementation as simple as possible.
 708         */
 709        error = xfs_buf_item_get_format(bip, bp->b_map_count);
 710        ASSERT(error == 0);
 711
 712        for (i = 0; i < bip->bli_format_count; i++) {
 713                chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
 714                                      XFS_BLF_CHUNK);
 715                map_size = DIV_ROUND_UP(chunks, NBWORD);
 716
 717                bip->bli_formats[i].blf_type = XFS_LI_BUF;
 718                bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
 719                bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
 720                bip->bli_formats[i].blf_map_size = map_size;
 721        }
 722
 723#ifdef XFS_TRANS_DEBUG
 724        /*
 725         * Allocate the arrays for tracking what needs to be logged
 726         * and what our callers request to be logged.  bli_orig
 727         * holds a copy of the original, clean buffer for comparison
 728         * against, and bli_logged keeps a 1 bit flag per byte in
 729         * the buffer to indicate which bytes the callers have asked
 730         * to have logged.
 731         */
 732        bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
 733        memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
 734        bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
 735#endif
 736
 737        /*
 738         * Put the buf item into the list of items attached to the
 739         * buffer at the front.
 740         */
 741        if (bp->b_fspriv)
 742                bip->bli_item.li_bio_list = bp->b_fspriv;
 743        bp->b_fspriv = bip;
 744}
 745
 746
 747/*
 748 * Mark bytes first through last inclusive as dirty in the buf
 749 * item's bitmap.
 750 */
 751void
 752xfs_buf_item_log_segment(
 753        struct xfs_buf_log_item *bip,
 754        uint                    first,
 755        uint                    last,
 756        uint                    *map)
 757{
 758        uint            first_bit;
 759        uint            last_bit;
 760        uint            bits_to_set;
 761        uint            bits_set;
 762        uint            word_num;
 763        uint            *wordp;
 764        uint            bit;
 765        uint            end_bit;
 766        uint            mask;
 767
 768        /*
 769         * Convert byte offsets to bit numbers.
 770         */
 771        first_bit = first >> XFS_BLF_SHIFT;
 772        last_bit = last >> XFS_BLF_SHIFT;
 773
 774        /*
 775         * Calculate the total number of bits to be set.
 776         */
 777        bits_to_set = last_bit - first_bit + 1;
 778
 779        /*
 780         * Get a pointer to the first word in the bitmap
 781         * to set a bit in.
 782         */
 783        word_num = first_bit >> BIT_TO_WORD_SHIFT;
 784        wordp = &map[word_num];
 785
 786        /*
 787         * Calculate the starting bit in the first word.
 788         */
 789        bit = first_bit & (uint)(NBWORD - 1);
 790
 791        /*
 792         * First set any bits in the first word of our range.
 793         * If it starts at bit 0 of the word, it will be
 794         * set below rather than here.  That is what the variable
 795         * bit tells us. The variable bits_set tracks the number
 796         * of bits that have been set so far.  End_bit is the number
 797         * of the last bit to be set in this word plus one.
 798         */
 799        if (bit) {
 800                end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
 801                mask = ((1 << (end_bit - bit)) - 1) << bit;
 802                *wordp |= mask;
 803                wordp++;
 804                bits_set = end_bit - bit;
 805        } else {
 806                bits_set = 0;
 807        }
 808
 809        /*
 810         * Now set bits a whole word at a time that are between
 811         * first_bit and last_bit.
 812         */
 813        while ((bits_to_set - bits_set) >= NBWORD) {
 814                *wordp |= 0xffffffff;
 815                bits_set += NBWORD;
 816                wordp++;
 817        }
 818
 819        /*
 820         * Finally, set any bits left to be set in one last partial word.
 821         */
 822        end_bit = bits_to_set - bits_set;
 823        if (end_bit) {
 824                mask = (1 << end_bit) - 1;
 825                *wordp |= mask;
 826        }
 827}
 828
 829/*
 830 * Mark bytes first through last inclusive as dirty in the buf
 831 * item's bitmap.
 832 */
 833void
 834xfs_buf_item_log(
 835        xfs_buf_log_item_t      *bip,
 836        uint                    first,
 837        uint                    last)
 838{
 839        int                     i;
 840        uint                    start;
 841        uint                    end;
 842        struct xfs_buf          *bp = bip->bli_buf;
 843
 844        /*
 845         * Mark the item as having some dirty data for
 846         * quick reference in xfs_buf_item_dirty.
 847         */
 848        bip->bli_flags |= XFS_BLI_DIRTY;
 849
 850        /*
 851         * walk each buffer segment and mark them dirty appropriately.
 852         */
 853        start = 0;
 854        for (i = 0; i < bip->bli_format_count; i++) {
 855                if (start > last)
 856                        break;
 857                end = start + BBTOB(bp->b_maps[i].bm_len);
 858                if (first > end) {
 859                        start += BBTOB(bp->b_maps[i].bm_len);
 860                        continue;
 861                }
 862                if (first < start)
 863                        first = start;
 864                if (end > last)
 865                        end = last;
 866
 867                xfs_buf_item_log_segment(bip, first, end,
 868                                         &bip->bli_formats[i].blf_data_map[0]);
 869
 870                start += bp->b_maps[i].bm_len;
 871        }
 872}
 873
 874
 875/*
 876 * Return 1 if the buffer has some data that has been logged (at any
 877 * point, not just the current transaction) and 0 if not.
 878 */
 879uint
 880xfs_buf_item_dirty(
 881        xfs_buf_log_item_t      *bip)
 882{
 883        return (bip->bli_flags & XFS_BLI_DIRTY);
 884}
 885
 886STATIC void
 887xfs_buf_item_free(
 888        xfs_buf_log_item_t      *bip)
 889{
 890#ifdef XFS_TRANS_DEBUG
 891        kmem_free(bip->bli_orig);
 892        kmem_free(bip->bli_logged);
 893#endif /* XFS_TRANS_DEBUG */
 894
 895        xfs_buf_item_free_format(bip);
 896        kmem_zone_free(xfs_buf_item_zone, bip);
 897}
 898
 899/*
 900 * This is called when the buf log item is no longer needed.  It should
 901 * free the buf log item associated with the given buffer and clear
 902 * the buffer's pointer to the buf log item.  If there are no more
 903 * items in the list, clear the b_iodone field of the buffer (see
 904 * xfs_buf_attach_iodone() below).
 905 */
 906void
 907xfs_buf_item_relse(
 908        xfs_buf_t       *bp)
 909{
 910        xfs_buf_log_item_t      *bip;
 911
 912        trace_xfs_buf_item_relse(bp, _RET_IP_);
 913
 914        bip = bp->b_fspriv;
 915        bp->b_fspriv = bip->bli_item.li_bio_list;
 916        if (bp->b_fspriv == NULL)
 917                bp->b_iodone = NULL;
 918
 919        xfs_buf_rele(bp);
 920        xfs_buf_item_free(bip);
 921}
 922
 923
 924/*
 925 * Add the given log item with its callback to the list of callbacks
 926 * to be called when the buffer's I/O completes.  If it is not set
 927 * already, set the buffer's b_iodone() routine to be
 928 * xfs_buf_iodone_callbacks() and link the log item into the list of
 929 * items rooted at b_fsprivate.  Items are always added as the second
 930 * entry in the list if there is a first, because the buf item code
 931 * assumes that the buf log item is first.
 932 */
 933void
 934xfs_buf_attach_iodone(
 935        xfs_buf_t       *bp,
 936        void            (*cb)(xfs_buf_t *, xfs_log_item_t *),
 937        xfs_log_item_t  *lip)
 938{
 939        xfs_log_item_t  *head_lip;
 940
 941        ASSERT(xfs_buf_islocked(bp));
 942
 943        lip->li_cb = cb;
 944        head_lip = bp->b_fspriv;
 945        if (head_lip) {
 946                lip->li_bio_list = head_lip->li_bio_list;
 947                head_lip->li_bio_list = lip;
 948        } else {
 949                bp->b_fspriv = lip;
 950        }
 951
 952        ASSERT(bp->b_iodone == NULL ||
 953               bp->b_iodone == xfs_buf_iodone_callbacks);
 954        bp->b_iodone = xfs_buf_iodone_callbacks;
 955}
 956
 957/*
 958 * We can have many callbacks on a buffer. Running the callbacks individually
 959 * can cause a lot of contention on the AIL lock, so we allow for a single
 960 * callback to be able to scan the remaining lip->li_bio_list for other items
 961 * of the same type and callback to be processed in the first call.
 962 *
 963 * As a result, the loop walking the callback list below will also modify the
 964 * list. it removes the first item from the list and then runs the callback.
 965 * The loop then restarts from the new head of the list. This allows the
 966 * callback to scan and modify the list attached to the buffer and we don't
 967 * have to care about maintaining a next item pointer.
 968 */
 969STATIC void
 970xfs_buf_do_callbacks(
 971        struct xfs_buf          *bp)
 972{
 973        struct xfs_log_item     *lip;
 974
 975        while ((lip = bp->b_fspriv) != NULL) {
 976                bp->b_fspriv = lip->li_bio_list;
 977                ASSERT(lip->li_cb != NULL);
 978                /*
 979                 * Clear the next pointer so we don't have any
 980                 * confusion if the item is added to another buf.
 981                 * Don't touch the log item after calling its
 982                 * callback, because it could have freed itself.
 983                 */
 984                lip->li_bio_list = NULL;
 985                lip->li_cb(bp, lip);
 986        }
 987}
 988
 989/*
 990 * This is the iodone() function for buffers which have had callbacks
 991 * attached to them by xfs_buf_attach_iodone().  It should remove each
 992 * log item from the buffer's list and call the callback of each in turn.
 993 * When done, the buffer's fsprivate field is set to NULL and the buffer
 994 * is unlocked with a call to iodone().
 995 */
 996void
 997xfs_buf_iodone_callbacks(
 998        struct xfs_buf          *bp)
 999{
1000        struct xfs_log_item     *lip = bp->b_fspriv;
1001        struct xfs_mount        *mp = lip->li_mountp;
1002        static ulong            lasttime;
1003        static xfs_buftarg_t    *lasttarg;
1004
1005        if (likely(!xfs_buf_geterror(bp)))
1006                goto do_callbacks;
1007
1008        /*
1009         * If we've already decided to shutdown the filesystem because of
1010         * I/O errors, there's no point in giving this a retry.
1011         */
1012        if (XFS_FORCED_SHUTDOWN(mp)) {
1013                xfs_buf_stale(bp);
1014                XFS_BUF_DONE(bp);
1015                trace_xfs_buf_item_iodone(bp, _RET_IP_);
1016                goto do_callbacks;
1017        }
1018
1019        if (bp->b_target != lasttarg ||
1020            time_after(jiffies, (lasttime + 5*HZ))) {
1021                lasttime = jiffies;
1022                xfs_buf_ioerror_alert(bp, __func__);
1023        }
1024        lasttarg = bp->b_target;
1025
1026        /*
1027         * If the write was asynchronous then no one will be looking for the
1028         * error.  Clear the error state and write the buffer out again.
1029         *
1030         * XXX: This helps against transient write errors, but we need to find
1031         * a way to shut the filesystem down if the writes keep failing.
1032         *
1033         * In practice we'll shut the filesystem down soon as non-transient
1034         * erorrs tend to affect the whole device and a failing log write
1035         * will make us give up.  But we really ought to do better here.
1036         */
1037        if (XFS_BUF_ISASYNC(bp)) {
1038                ASSERT(bp->b_iodone != NULL);
1039
1040                trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1041
1042                xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1043
1044                if (!XFS_BUF_ISSTALE(bp)) {
1045                        bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1046                        xfs_buf_iorequest(bp);
1047                } else {
1048                        xfs_buf_relse(bp);
1049                }
1050
1051                return;
1052        }
1053
1054        /*
1055         * If the write of the buffer was synchronous, we want to make
1056         * sure to return the error to the caller of xfs_bwrite().
1057         */
1058        xfs_buf_stale(bp);
1059        XFS_BUF_DONE(bp);
1060
1061        trace_xfs_buf_error_relse(bp, _RET_IP_);
1062
1063do_callbacks:
1064        xfs_buf_do_callbacks(bp);
1065        bp->b_fspriv = NULL;
1066        bp->b_iodone = NULL;
1067        xfs_buf_ioend(bp, 0);
1068}
1069
1070/*
1071 * This is the iodone() function for buffers which have been
1072 * logged.  It is called when they are eventually flushed out.
1073 * It should remove the buf item from the AIL, and free the buf item.
1074 * It is called by xfs_buf_iodone_callbacks() above which will take
1075 * care of cleaning up the buffer itself.
1076 */
1077void
1078xfs_buf_iodone(
1079        struct xfs_buf          *bp,
1080        struct xfs_log_item     *lip)
1081{
1082        struct xfs_ail          *ailp = lip->li_ailp;
1083
1084        ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1085
1086        xfs_buf_rele(bp);
1087
1088        /*
1089         * If we are forcibly shutting down, this may well be
1090         * off the AIL already. That's because we simulate the
1091         * log-committed callbacks to unpin these buffers. Or we may never
1092         * have put this item on AIL because of the transaction was
1093         * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1094         *
1095         * Either way, AIL is useless if we're forcing a shutdown.
1096         */
1097        spin_lock(&ailp->xa_lock);
1098        xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1099        xfs_buf_item_free(BUF_ITEM(lip));
1100}
1101