linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_trans_priv.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_dir2.h"
  29#include "xfs_mount.h"
  30#include "xfs_bmap_btree.h"
  31#include "xfs_alloc_btree.h"
  32#include "xfs_ialloc_btree.h"
  33#include "xfs_dinode.h"
  34#include "xfs_inode.h"
  35#include "xfs_btree.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_alloc.h"
  38#include "xfs_rtalloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_error.h"
  41#include "xfs_quota.h"
  42#include "xfs_fsops.h"
  43#include "xfs_utils.h"
  44#include "xfs_trace.h"
  45#include "xfs_icache.h"
  46#include "xfs_cksum.h"
  47#include "xfs_buf_item.h"
  48
  49
  50#ifdef HAVE_PERCPU_SB
  51STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
  52                                                int);
  53STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
  54                                                int);
  55STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
  56#else
  57
  58#define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
  59#define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
  60#endif
  61
  62static const struct {
  63        short offset;
  64        short type;     /* 0 = integer
  65                         * 1 = binary / string (no translation)
  66                         */
  67} xfs_sb_info[] = {
  68    { offsetof(xfs_sb_t, sb_magicnum),   0 },
  69    { offsetof(xfs_sb_t, sb_blocksize),  0 },
  70    { offsetof(xfs_sb_t, sb_dblocks),    0 },
  71    { offsetof(xfs_sb_t, sb_rblocks),    0 },
  72    { offsetof(xfs_sb_t, sb_rextents),   0 },
  73    { offsetof(xfs_sb_t, sb_uuid),       1 },
  74    { offsetof(xfs_sb_t, sb_logstart),   0 },
  75    { offsetof(xfs_sb_t, sb_rootino),    0 },
  76    { offsetof(xfs_sb_t, sb_rbmino),     0 },
  77    { offsetof(xfs_sb_t, sb_rsumino),    0 },
  78    { offsetof(xfs_sb_t, sb_rextsize),   0 },
  79    { offsetof(xfs_sb_t, sb_agblocks),   0 },
  80    { offsetof(xfs_sb_t, sb_agcount),    0 },
  81    { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
  82    { offsetof(xfs_sb_t, sb_logblocks),  0 },
  83    { offsetof(xfs_sb_t, sb_versionnum), 0 },
  84    { offsetof(xfs_sb_t, sb_sectsize),   0 },
  85    { offsetof(xfs_sb_t, sb_inodesize),  0 },
  86    { offsetof(xfs_sb_t, sb_inopblock),  0 },
  87    { offsetof(xfs_sb_t, sb_fname[0]),   1 },
  88    { offsetof(xfs_sb_t, sb_blocklog),   0 },
  89    { offsetof(xfs_sb_t, sb_sectlog),    0 },
  90    { offsetof(xfs_sb_t, sb_inodelog),   0 },
  91    { offsetof(xfs_sb_t, sb_inopblog),   0 },
  92    { offsetof(xfs_sb_t, sb_agblklog),   0 },
  93    { offsetof(xfs_sb_t, sb_rextslog),   0 },
  94    { offsetof(xfs_sb_t, sb_inprogress), 0 },
  95    { offsetof(xfs_sb_t, sb_imax_pct),   0 },
  96    { offsetof(xfs_sb_t, sb_icount),     0 },
  97    { offsetof(xfs_sb_t, sb_ifree),      0 },
  98    { offsetof(xfs_sb_t, sb_fdblocks),   0 },
  99    { offsetof(xfs_sb_t, sb_frextents),  0 },
 100    { offsetof(xfs_sb_t, sb_uquotino),   0 },
 101    { offsetof(xfs_sb_t, sb_gquotino),   0 },
 102    { offsetof(xfs_sb_t, sb_qflags),     0 },
 103    { offsetof(xfs_sb_t, sb_flags),      0 },
 104    { offsetof(xfs_sb_t, sb_shared_vn),  0 },
 105    { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
 106    { offsetof(xfs_sb_t, sb_unit),       0 },
 107    { offsetof(xfs_sb_t, sb_width),      0 },
 108    { offsetof(xfs_sb_t, sb_dirblklog),  0 },
 109    { offsetof(xfs_sb_t, sb_logsectlog), 0 },
 110    { offsetof(xfs_sb_t, sb_logsectsize),0 },
 111    { offsetof(xfs_sb_t, sb_logsunit),   0 },
 112    { offsetof(xfs_sb_t, sb_features2),  0 },
 113    { offsetof(xfs_sb_t, sb_bad_features2), 0 },
 114    { offsetof(xfs_sb_t, sb_features_compat), 0 },
 115    { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
 116    { offsetof(xfs_sb_t, sb_features_incompat), 0 },
 117    { offsetof(xfs_sb_t, sb_features_log_incompat), 0 },
 118    { offsetof(xfs_sb_t, sb_crc),        0 },
 119    { offsetof(xfs_sb_t, sb_pad),        0 },
 120    { offsetof(xfs_sb_t, sb_pquotino),   0 },
 121    { offsetof(xfs_sb_t, sb_lsn),        0 },
 122    { sizeof(xfs_sb_t),                  0 }
 123};
 124
 125static DEFINE_MUTEX(xfs_uuid_table_mutex);
 126static int xfs_uuid_table_size;
 127static uuid_t *xfs_uuid_table;
 128
 129/*
 130 * See if the UUID is unique among mounted XFS filesystems.
 131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
 132 */
 133STATIC int
 134xfs_uuid_mount(
 135        struct xfs_mount        *mp)
 136{
 137        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 138        int                     hole, i;
 139
 140        if (mp->m_flags & XFS_MOUNT_NOUUID)
 141                return 0;
 142
 143        if (uuid_is_nil(uuid)) {
 144                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
 145                return XFS_ERROR(EINVAL);
 146        }
 147
 148        mutex_lock(&xfs_uuid_table_mutex);
 149        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
 150                if (uuid_is_nil(&xfs_uuid_table[i])) {
 151                        hole = i;
 152                        continue;
 153                }
 154                if (uuid_equal(uuid, &xfs_uuid_table[i]))
 155                        goto out_duplicate;
 156        }
 157
 158        if (hole < 0) {
 159                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
 160                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 161                        xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
 162                        KM_SLEEP);
 163                hole = xfs_uuid_table_size++;
 164        }
 165        xfs_uuid_table[hole] = *uuid;
 166        mutex_unlock(&xfs_uuid_table_mutex);
 167
 168        return 0;
 169
 170 out_duplicate:
 171        mutex_unlock(&xfs_uuid_table_mutex);
 172        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 173        return XFS_ERROR(EINVAL);
 174}
 175
 176STATIC void
 177xfs_uuid_unmount(
 178        struct xfs_mount        *mp)
 179{
 180        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 181        int                     i;
 182
 183        if (mp->m_flags & XFS_MOUNT_NOUUID)
 184                return;
 185
 186        mutex_lock(&xfs_uuid_table_mutex);
 187        for (i = 0; i < xfs_uuid_table_size; i++) {
 188                if (uuid_is_nil(&xfs_uuid_table[i]))
 189                        continue;
 190                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 191                        continue;
 192                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 193                break;
 194        }
 195        ASSERT(i < xfs_uuid_table_size);
 196        mutex_unlock(&xfs_uuid_table_mutex);
 197}
 198
 199
 200/*
 201 * Reference counting access wrappers to the perag structures.
 202 * Because we never free per-ag structures, the only thing we
 203 * have to protect against changes is the tree structure itself.
 204 */
 205struct xfs_perag *
 206xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
 207{
 208        struct xfs_perag        *pag;
 209        int                     ref = 0;
 210
 211        rcu_read_lock();
 212        pag = radix_tree_lookup(&mp->m_perag_tree, agno);
 213        if (pag) {
 214                ASSERT(atomic_read(&pag->pag_ref) >= 0);
 215                ref = atomic_inc_return(&pag->pag_ref);
 216        }
 217        rcu_read_unlock();
 218        trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
 219        return pag;
 220}
 221
 222/*
 223 * search from @first to find the next perag with the given tag set.
 224 */
 225struct xfs_perag *
 226xfs_perag_get_tag(
 227        struct xfs_mount        *mp,
 228        xfs_agnumber_t          first,
 229        int                     tag)
 230{
 231        struct xfs_perag        *pag;
 232        int                     found;
 233        int                     ref;
 234
 235        rcu_read_lock();
 236        found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
 237                                        (void **)&pag, first, 1, tag);
 238        if (found <= 0) {
 239                rcu_read_unlock();
 240                return NULL;
 241        }
 242        ref = atomic_inc_return(&pag->pag_ref);
 243        rcu_read_unlock();
 244        trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
 245        return pag;
 246}
 247
 248void
 249xfs_perag_put(struct xfs_perag *pag)
 250{
 251        int     ref;
 252
 253        ASSERT(atomic_read(&pag->pag_ref) > 0);
 254        ref = atomic_dec_return(&pag->pag_ref);
 255        trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
 256}
 257
 258STATIC void
 259__xfs_free_perag(
 260        struct rcu_head *head)
 261{
 262        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 263
 264        ASSERT(atomic_read(&pag->pag_ref) == 0);
 265        kmem_free(pag);
 266}
 267
 268/*
 269 * Free up the per-ag resources associated with the mount structure.
 270 */
 271STATIC void
 272xfs_free_perag(
 273        xfs_mount_t     *mp)
 274{
 275        xfs_agnumber_t  agno;
 276        struct xfs_perag *pag;
 277
 278        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 279                spin_lock(&mp->m_perag_lock);
 280                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 281                spin_unlock(&mp->m_perag_lock);
 282                ASSERT(pag);
 283                ASSERT(atomic_read(&pag->pag_ref) == 0);
 284                call_rcu(&pag->rcu_head, __xfs_free_perag);
 285        }
 286}
 287
 288/*
 289 * Check size of device based on the (data/realtime) block count.
 290 * Note: this check is used by the growfs code as well as mount.
 291 */
 292int
 293xfs_sb_validate_fsb_count(
 294        xfs_sb_t        *sbp,
 295        __uint64_t      nblocks)
 296{
 297        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 298        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 299
 300#if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
 301        if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 302                return EFBIG;
 303#else                  /* Limited by UINT_MAX of sectors */
 304        if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
 305                return EFBIG;
 306#endif
 307        return 0;
 308}
 309
 310/*
 311 * Check the validity of the SB found.
 312 */
 313STATIC int
 314xfs_mount_validate_sb(
 315        xfs_mount_t     *mp,
 316        xfs_sb_t        *sbp,
 317        bool            check_inprogress,
 318        bool            check_version)
 319{
 320
 321        /*
 322         * If the log device and data device have the
 323         * same device number, the log is internal.
 324         * Consequently, the sb_logstart should be non-zero.  If
 325         * we have a zero sb_logstart in this case, we may be trying to mount
 326         * a volume filesystem in a non-volume manner.
 327         */
 328        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 329                xfs_warn(mp, "bad magic number");
 330                return XFS_ERROR(EWRONGFS);
 331        }
 332
 333
 334        if (!xfs_sb_good_version(sbp)) {
 335                xfs_warn(mp, "bad version");
 336                return XFS_ERROR(EWRONGFS);
 337        }
 338
 339        /*
 340         * Version 5 superblock feature mask validation. Reject combinations the
 341         * kernel cannot support up front before checking anything else. For
 342         * write validation, we don't need to check feature masks.
 343         */
 344        if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
 345                xfs_alert(mp,
 346"Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
 347"Use of these features in this kernel is at your own risk!");
 348
 349                if (xfs_sb_has_compat_feature(sbp,
 350                                        XFS_SB_FEAT_COMPAT_UNKNOWN)) {
 351                        xfs_warn(mp,
 352"Superblock has unknown compatible features (0x%x) enabled.\n"
 353"Using a more recent kernel is recommended.",
 354                                (sbp->sb_features_compat &
 355                                                XFS_SB_FEAT_COMPAT_UNKNOWN));
 356                }
 357
 358                if (xfs_sb_has_ro_compat_feature(sbp,
 359                                        XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
 360                        xfs_alert(mp,
 361"Superblock has unknown read-only compatible features (0x%x) enabled.",
 362                                (sbp->sb_features_ro_compat &
 363                                                XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
 364                        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 365                                xfs_warn(mp,
 366"Attempted to mount read-only compatible filesystem read-write.\n"
 367"Filesystem can only be safely mounted read only.");
 368                                return XFS_ERROR(EINVAL);
 369                        }
 370                }
 371                if (xfs_sb_has_incompat_feature(sbp,
 372                                        XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
 373                        xfs_warn(mp,
 374"Superblock has unknown incompatible features (0x%x) enabled.\n"
 375"Filesystem can not be safely mounted by this kernel.",
 376                                (sbp->sb_features_incompat &
 377                                                XFS_SB_FEAT_INCOMPAT_UNKNOWN));
 378                        return XFS_ERROR(EINVAL);
 379                }
 380        }
 381
 382        if (unlikely(
 383            sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
 384                xfs_warn(mp,
 385                "filesystem is marked as having an external log; "
 386                "specify logdev on the mount command line.");
 387                return XFS_ERROR(EINVAL);
 388        }
 389
 390        if (unlikely(
 391            sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
 392                xfs_warn(mp,
 393                "filesystem is marked as having an internal log; "
 394                "do not specify logdev on the mount command line.");
 395                return XFS_ERROR(EINVAL);
 396        }
 397
 398        /*
 399         * More sanity checking.  Most of these were stolen directly from
 400         * xfs_repair.
 401         */
 402        if (unlikely(
 403            sbp->sb_agcount <= 0                                        ||
 404            sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
 405            sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
 406            sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
 407            sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
 408            sbp->sb_sectsize != (1 << sbp->sb_sectlog)                  ||
 409            sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
 410            sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
 411            sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
 412            sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
 413            sbp->sb_blocksize != (1 << sbp->sb_blocklog)                ||
 414            sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
 415            sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
 416            sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
 417            sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
 418            sbp->sb_inodesize != (1 << sbp->sb_inodelog)                ||
 419            (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
 420            (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
 421            (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
 422            (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)    ||
 423            sbp->sb_dblocks == 0                                        ||
 424            sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)                      ||
 425            sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
 426                XFS_CORRUPTION_ERROR("SB sanity check failed",
 427                                XFS_ERRLEVEL_LOW, mp, sbp);
 428                return XFS_ERROR(EFSCORRUPTED);
 429        }
 430
 431        /*
 432         * Until this is fixed only page-sized or smaller data blocks work.
 433         */
 434        if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
 435                xfs_warn(mp,
 436                "File system with blocksize %d bytes. "
 437                "Only pagesize (%ld) or less will currently work.",
 438                                sbp->sb_blocksize, PAGE_SIZE);
 439                return XFS_ERROR(ENOSYS);
 440        }
 441
 442        /*
 443         * Currently only very few inode sizes are supported.
 444         */
 445        switch (sbp->sb_inodesize) {
 446        case 256:
 447        case 512:
 448        case 1024:
 449        case 2048:
 450                break;
 451        default:
 452                xfs_warn(mp, "inode size of %d bytes not supported",
 453                                sbp->sb_inodesize);
 454                return XFS_ERROR(ENOSYS);
 455        }
 456
 457        if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
 458            xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
 459                xfs_warn(mp,
 460                "file system too large to be mounted on this system.");
 461                return XFS_ERROR(EFBIG);
 462        }
 463
 464        if (check_inprogress && sbp->sb_inprogress) {
 465                xfs_warn(mp, "Offline file system operation in progress!");
 466                return XFS_ERROR(EFSCORRUPTED);
 467        }
 468
 469        /*
 470         * Version 1 directory format has never worked on Linux.
 471         */
 472        if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
 473                xfs_warn(mp, "file system using version 1 directory format");
 474                return XFS_ERROR(ENOSYS);
 475        }
 476
 477        return 0;
 478}
 479
 480int
 481xfs_initialize_perag(
 482        xfs_mount_t     *mp,
 483        xfs_agnumber_t  agcount,
 484        xfs_agnumber_t  *maxagi)
 485{
 486        xfs_agnumber_t  index;
 487        xfs_agnumber_t  first_initialised = 0;
 488        xfs_perag_t     *pag;
 489        xfs_agino_t     agino;
 490        xfs_ino_t       ino;
 491        xfs_sb_t        *sbp = &mp->m_sb;
 492        int             error = -ENOMEM;
 493
 494        /*
 495         * Walk the current per-ag tree so we don't try to initialise AGs
 496         * that already exist (growfs case). Allocate and insert all the
 497         * AGs we don't find ready for initialisation.
 498         */
 499        for (index = 0; index < agcount; index++) {
 500                pag = xfs_perag_get(mp, index);
 501                if (pag) {
 502                        xfs_perag_put(pag);
 503                        continue;
 504                }
 505                if (!first_initialised)
 506                        first_initialised = index;
 507
 508                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 509                if (!pag)
 510                        goto out_unwind;
 511                pag->pag_agno = index;
 512                pag->pag_mount = mp;
 513                spin_lock_init(&pag->pag_ici_lock);
 514                mutex_init(&pag->pag_ici_reclaim_lock);
 515                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 516                spin_lock_init(&pag->pag_buf_lock);
 517                pag->pag_buf_tree = RB_ROOT;
 518
 519                if (radix_tree_preload(GFP_NOFS))
 520                        goto out_unwind;
 521
 522                spin_lock(&mp->m_perag_lock);
 523                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 524                        BUG();
 525                        spin_unlock(&mp->m_perag_lock);
 526                        radix_tree_preload_end();
 527                        error = -EEXIST;
 528                        goto out_unwind;
 529                }
 530                spin_unlock(&mp->m_perag_lock);
 531                radix_tree_preload_end();
 532        }
 533
 534        /*
 535         * If we mount with the inode64 option, or no inode overflows
 536         * the legacy 32-bit address space clear the inode32 option.
 537         */
 538        agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 539        ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 540
 541        if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 542                mp->m_flags |= XFS_MOUNT_32BITINODES;
 543        else
 544                mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 545
 546        if (mp->m_flags & XFS_MOUNT_32BITINODES)
 547                index = xfs_set_inode32(mp);
 548        else
 549                index = xfs_set_inode64(mp);
 550
 551        if (maxagi)
 552                *maxagi = index;
 553        return 0;
 554
 555out_unwind:
 556        kmem_free(pag);
 557        for (; index > first_initialised; index--) {
 558                pag = radix_tree_delete(&mp->m_perag_tree, index);
 559                kmem_free(pag);
 560        }
 561        return error;
 562}
 563
 564void
 565xfs_sb_from_disk(
 566        struct xfs_sb   *to,
 567        xfs_dsb_t       *from)
 568{
 569        to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
 570        to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
 571        to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
 572        to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
 573        to->sb_rextents = be64_to_cpu(from->sb_rextents);
 574        memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
 575        to->sb_logstart = be64_to_cpu(from->sb_logstart);
 576        to->sb_rootino = be64_to_cpu(from->sb_rootino);
 577        to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
 578        to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
 579        to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
 580        to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
 581        to->sb_agcount = be32_to_cpu(from->sb_agcount);
 582        to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
 583        to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
 584        to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
 585        to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
 586        to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
 587        to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
 588        memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
 589        to->sb_blocklog = from->sb_blocklog;
 590        to->sb_sectlog = from->sb_sectlog;
 591        to->sb_inodelog = from->sb_inodelog;
 592        to->sb_inopblog = from->sb_inopblog;
 593        to->sb_agblklog = from->sb_agblklog;
 594        to->sb_rextslog = from->sb_rextslog;
 595        to->sb_inprogress = from->sb_inprogress;
 596        to->sb_imax_pct = from->sb_imax_pct;
 597        to->sb_icount = be64_to_cpu(from->sb_icount);
 598        to->sb_ifree = be64_to_cpu(from->sb_ifree);
 599        to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
 600        to->sb_frextents = be64_to_cpu(from->sb_frextents);
 601        to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
 602        to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
 603        to->sb_qflags = be16_to_cpu(from->sb_qflags);
 604        to->sb_flags = from->sb_flags;
 605        to->sb_shared_vn = from->sb_shared_vn;
 606        to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
 607        to->sb_unit = be32_to_cpu(from->sb_unit);
 608        to->sb_width = be32_to_cpu(from->sb_width);
 609        to->sb_dirblklog = from->sb_dirblklog;
 610        to->sb_logsectlog = from->sb_logsectlog;
 611        to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
 612        to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
 613        to->sb_features2 = be32_to_cpu(from->sb_features2);
 614        to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
 615        to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
 616        to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
 617        to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
 618        to->sb_features_log_incompat =
 619                                be32_to_cpu(from->sb_features_log_incompat);
 620        to->sb_pad = 0;
 621        to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
 622        to->sb_lsn = be64_to_cpu(from->sb_lsn);
 623}
 624
 625/*
 626 * Copy in core superblock to ondisk one.
 627 *
 628 * The fields argument is mask of superblock fields to copy.
 629 */
 630void
 631xfs_sb_to_disk(
 632        xfs_dsb_t       *to,
 633        xfs_sb_t        *from,
 634        __int64_t       fields)
 635{
 636        xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
 637        xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
 638        xfs_sb_field_t  f;
 639        int             first;
 640        int             size;
 641
 642        ASSERT(fields);
 643        if (!fields)
 644                return;
 645
 646        while (fields) {
 647                f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
 648                first = xfs_sb_info[f].offset;
 649                size = xfs_sb_info[f + 1].offset - first;
 650
 651                ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
 652
 653                if (size == 1 || xfs_sb_info[f].type == 1) {
 654                        memcpy(to_ptr + first, from_ptr + first, size);
 655                } else {
 656                        switch (size) {
 657                        case 2:
 658                                *(__be16 *)(to_ptr + first) =
 659                                        cpu_to_be16(*(__u16 *)(from_ptr + first));
 660                                break;
 661                        case 4:
 662                                *(__be32 *)(to_ptr + first) =
 663                                        cpu_to_be32(*(__u32 *)(from_ptr + first));
 664                                break;
 665                        case 8:
 666                                *(__be64 *)(to_ptr + first) =
 667                                        cpu_to_be64(*(__u64 *)(from_ptr + first));
 668                                break;
 669                        default:
 670                                ASSERT(0);
 671                        }
 672                }
 673
 674                fields &= ~(1LL << f);
 675        }
 676}
 677
 678static int
 679xfs_sb_verify(
 680        struct xfs_buf  *bp,
 681        bool            check_version)
 682{
 683        struct xfs_mount *mp = bp->b_target->bt_mount;
 684        struct xfs_sb   sb;
 685
 686        xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
 687
 688        /*
 689         * Only check the in progress field for the primary superblock as
 690         * mkfs.xfs doesn't clear it from secondary superblocks.
 691         */
 692        return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR,
 693                                     check_version);
 694}
 695
 696/*
 697 * If the superblock has the CRC feature bit set or the CRC field is non-null,
 698 * check that the CRC is valid.  We check the CRC field is non-null because a
 699 * single bit error could clear the feature bit and unused parts of the
 700 * superblock are supposed to be zero. Hence a non-null crc field indicates that
 701 * we've potentially lost a feature bit and we should check it anyway.
 702 */
 703static void
 704xfs_sb_read_verify(
 705        struct xfs_buf  *bp)
 706{
 707        struct xfs_mount *mp = bp->b_target->bt_mount;
 708        struct xfs_dsb  *dsb = XFS_BUF_TO_SBP(bp);
 709        int             error;
 710
 711        /*
 712         * open code the version check to avoid needing to convert the entire
 713         * superblock from disk order just to check the version number
 714         */
 715        if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
 716            (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
 717                                                XFS_SB_VERSION_5) ||
 718             dsb->sb_crc != 0)) {
 719
 720                if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
 721                                      offsetof(struct xfs_sb, sb_crc))) {
 722                        error = EFSCORRUPTED;
 723                        goto out_error;
 724                }
 725        }
 726        error = xfs_sb_verify(bp, true);
 727
 728out_error:
 729        if (error) {
 730                XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
 731                xfs_buf_ioerror(bp, error);
 732        }
 733}
 734
 735/*
 736 * We may be probed for a filesystem match, so we may not want to emit
 737 * messages when the superblock buffer is not actually an XFS superblock.
 738 * If we find an XFS superblock, the run a normal, noisy mount because we are
 739 * really going to mount it and want to know about errors.
 740 */
 741static void
 742xfs_sb_quiet_read_verify(
 743        struct xfs_buf  *bp)
 744{
 745        struct xfs_dsb  *dsb = XFS_BUF_TO_SBP(bp);
 746
 747
 748        if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
 749                /* XFS filesystem, verify noisily! */
 750                xfs_sb_read_verify(bp);
 751                return;
 752        }
 753        /* quietly fail */
 754        xfs_buf_ioerror(bp, EWRONGFS);
 755}
 756
 757static void
 758xfs_sb_write_verify(
 759        struct xfs_buf          *bp)
 760{
 761        struct xfs_mount        *mp = bp->b_target->bt_mount;
 762        struct xfs_buf_log_item *bip = bp->b_fspriv;
 763        int                     error;
 764
 765        error = xfs_sb_verify(bp, false);
 766        if (error) {
 767                XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
 768                xfs_buf_ioerror(bp, error);
 769                return;
 770        }
 771
 772        if (!xfs_sb_version_hascrc(&mp->m_sb))
 773                return;
 774
 775        if (bip)
 776                XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 777
 778        xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
 779                         offsetof(struct xfs_sb, sb_crc));
 780}
 781
 782const struct xfs_buf_ops xfs_sb_buf_ops = {
 783        .verify_read = xfs_sb_read_verify,
 784        .verify_write = xfs_sb_write_verify,
 785};
 786
 787static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
 788        .verify_read = xfs_sb_quiet_read_verify,
 789        .verify_write = xfs_sb_write_verify,
 790};
 791
 792/*
 793 * xfs_readsb
 794 *
 795 * Does the initial read of the superblock.
 796 */
 797int
 798xfs_readsb(xfs_mount_t *mp, int flags)
 799{
 800        unsigned int    sector_size;
 801        struct xfs_buf  *bp;
 802        struct xfs_sb   *sbp = &mp->m_sb;
 803        int             error;
 804        int             loud = !(flags & XFS_MFSI_QUIET);
 805
 806        ASSERT(mp->m_sb_bp == NULL);
 807        ASSERT(mp->m_ddev_targp != NULL);
 808
 809        /*
 810         * Allocate a (locked) buffer to hold the superblock.
 811         * This will be kept around at all times to optimize
 812         * access to the superblock.
 813         */
 814        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 815
 816reread:
 817        bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 818                                   BTOBB(sector_size), 0,
 819                                   loud ? &xfs_sb_buf_ops
 820                                        : &xfs_sb_quiet_buf_ops);
 821        if (!bp) {
 822                if (loud)
 823                        xfs_warn(mp, "SB buffer read failed");
 824                return EIO;
 825        }
 826        if (bp->b_error) {
 827                error = bp->b_error;
 828                if (loud)
 829                        xfs_warn(mp, "SB validate failed with error %d.", error);
 830                goto release_buf;
 831        }
 832
 833        /*
 834         * Initialize the mount structure from the superblock.
 835         */
 836        xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
 837
 838        /*
 839         * We must be able to do sector-sized and sector-aligned IO.
 840         */
 841        if (sector_size > sbp->sb_sectsize) {
 842                if (loud)
 843                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 844                                sector_size, sbp->sb_sectsize);
 845                error = ENOSYS;
 846                goto release_buf;
 847        }
 848
 849        /*
 850         * If device sector size is smaller than the superblock size,
 851         * re-read the superblock so the buffer is correctly sized.
 852         */
 853        if (sector_size < sbp->sb_sectsize) {
 854                xfs_buf_relse(bp);
 855                sector_size = sbp->sb_sectsize;
 856                goto reread;
 857        }
 858
 859        /* Initialize per-cpu counters */
 860        xfs_icsb_reinit_counters(mp);
 861
 862        /* no need to be quiet anymore, so reset the buf ops */
 863        bp->b_ops = &xfs_sb_buf_ops;
 864
 865        mp->m_sb_bp = bp;
 866        xfs_buf_unlock(bp);
 867        return 0;
 868
 869release_buf:
 870        xfs_buf_relse(bp);
 871        return error;
 872}
 873
 874
 875/*
 876 * xfs_mount_common
 877 *
 878 * Mount initialization code establishing various mount
 879 * fields from the superblock associated with the given
 880 * mount structure
 881 */
 882STATIC void
 883xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
 884{
 885        mp->m_agfrotor = mp->m_agirotor = 0;
 886        spin_lock_init(&mp->m_agirotor_lock);
 887        mp->m_maxagi = mp->m_sb.sb_agcount;
 888        mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
 889        mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
 890        mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
 891        mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
 892        mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
 893        mp->m_blockmask = sbp->sb_blocksize - 1;
 894        mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
 895        mp->m_blockwmask = mp->m_blockwsize - 1;
 896
 897        mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
 898        mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
 899        mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
 900        mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
 901
 902        mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
 903        mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
 904        mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
 905        mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
 906
 907        mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
 908        mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
 909        mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
 910        mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
 911
 912        mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
 913        mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
 914                                        sbp->sb_inopblock);
 915        mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
 916}
 917
 918/*
 919 * xfs_initialize_perag_data
 920 *
 921 * Read in each per-ag structure so we can count up the number of
 922 * allocated inodes, free inodes and used filesystem blocks as this
 923 * information is no longer persistent in the superblock. Once we have
 924 * this information, write it into the in-core superblock structure.
 925 */
 926STATIC int
 927xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
 928{
 929        xfs_agnumber_t  index;
 930        xfs_perag_t     *pag;
 931        xfs_sb_t        *sbp = &mp->m_sb;
 932        uint64_t        ifree = 0;
 933        uint64_t        ialloc = 0;
 934        uint64_t        bfree = 0;
 935        uint64_t        bfreelst = 0;
 936        uint64_t        btree = 0;
 937        int             error;
 938
 939        for (index = 0; index < agcount; index++) {
 940                /*
 941                 * read the agf, then the agi. This gets us
 942                 * all the information we need and populates the
 943                 * per-ag structures for us.
 944                 */
 945                error = xfs_alloc_pagf_init(mp, NULL, index, 0);
 946                if (error)
 947                        return error;
 948
 949                error = xfs_ialloc_pagi_init(mp, NULL, index);
 950                if (error)
 951                        return error;
 952                pag = xfs_perag_get(mp, index);
 953                ifree += pag->pagi_freecount;
 954                ialloc += pag->pagi_count;
 955                bfree += pag->pagf_freeblks;
 956                bfreelst += pag->pagf_flcount;
 957                btree += pag->pagf_btreeblks;
 958                xfs_perag_put(pag);
 959        }
 960        /*
 961         * Overwrite incore superblock counters with just-read data
 962         */
 963        spin_lock(&mp->m_sb_lock);
 964        sbp->sb_ifree = ifree;
 965        sbp->sb_icount = ialloc;
 966        sbp->sb_fdblocks = bfree + bfreelst + btree;
 967        spin_unlock(&mp->m_sb_lock);
 968
 969        /* Fixup the per-cpu counters as well. */
 970        xfs_icsb_reinit_counters(mp);
 971
 972        return 0;
 973}
 974
 975/*
 976 * Update alignment values based on mount options and sb values
 977 */
 978STATIC int
 979xfs_update_alignment(xfs_mount_t *mp)
 980{
 981        xfs_sb_t        *sbp = &(mp->m_sb);
 982
 983        if (mp->m_dalign) {
 984                /*
 985                 * If stripe unit and stripe width are not multiples
 986                 * of the fs blocksize turn off alignment.
 987                 */
 988                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 989                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 990                        if (mp->m_flags & XFS_MOUNT_RETERR) {
 991                                xfs_warn(mp, "alignment check failed: "
 992                                         "(sunit/swidth vs. blocksize)");
 993                                return XFS_ERROR(EINVAL);
 994                        }
 995                        mp->m_dalign = mp->m_swidth = 0;
 996                } else {
 997                        /*
 998                         * Convert the stripe unit and width to FSBs.
 999                         */
1000                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
1001                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
1002                                if (mp->m_flags & XFS_MOUNT_RETERR) {
1003                                        xfs_warn(mp, "alignment check failed: "
1004                                                 "(sunit/swidth vs. ag size)");
1005                                        return XFS_ERROR(EINVAL);
1006                                }
1007                                xfs_warn(mp,
1008                "stripe alignment turned off: sunit(%d)/swidth(%d) "
1009                "incompatible with agsize(%d)",
1010                                        mp->m_dalign, mp->m_swidth,
1011                                        sbp->sb_agblocks);
1012
1013                                mp->m_dalign = 0;
1014                                mp->m_swidth = 0;
1015                        } else if (mp->m_dalign) {
1016                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
1017                        } else {
1018                                if (mp->m_flags & XFS_MOUNT_RETERR) {
1019                                        xfs_warn(mp, "alignment check failed: "
1020                                                "sunit(%d) less than bsize(%d)",
1021                                                mp->m_dalign,
1022                                                mp->m_blockmask +1);
1023                                        return XFS_ERROR(EINVAL);
1024                                }
1025                                mp->m_swidth = 0;
1026                        }
1027                }
1028
1029                /*
1030                 * Update superblock with new values
1031                 * and log changes
1032                 */
1033                if (xfs_sb_version_hasdalign(sbp)) {
1034                        if (sbp->sb_unit != mp->m_dalign) {
1035                                sbp->sb_unit = mp->m_dalign;
1036                                mp->m_update_flags |= XFS_SB_UNIT;
1037                        }
1038                        if (sbp->sb_width != mp->m_swidth) {
1039                                sbp->sb_width = mp->m_swidth;
1040                                mp->m_update_flags |= XFS_SB_WIDTH;
1041                        }
1042                }
1043        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
1044                    xfs_sb_version_hasdalign(&mp->m_sb)) {
1045                        mp->m_dalign = sbp->sb_unit;
1046                        mp->m_swidth = sbp->sb_width;
1047        }
1048
1049        return 0;
1050}
1051
1052/*
1053 * Set the maximum inode count for this filesystem
1054 */
1055STATIC void
1056xfs_set_maxicount(xfs_mount_t *mp)
1057{
1058        xfs_sb_t        *sbp = &(mp->m_sb);
1059        __uint64_t      icount;
1060
1061        if (sbp->sb_imax_pct) {
1062                /*
1063                 * Make sure the maximum inode count is a multiple
1064                 * of the units we allocate inodes in.
1065                 */
1066                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1067                do_div(icount, 100);
1068                do_div(icount, mp->m_ialloc_blks);
1069                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
1070                                   sbp->sb_inopblog;
1071        } else {
1072                mp->m_maxicount = 0;
1073        }
1074}
1075
1076/*
1077 * Set the default minimum read and write sizes unless
1078 * already specified in a mount option.
1079 * We use smaller I/O sizes when the file system
1080 * is being used for NFS service (wsync mount option).
1081 */
1082STATIC void
1083xfs_set_rw_sizes(xfs_mount_t *mp)
1084{
1085        xfs_sb_t        *sbp = &(mp->m_sb);
1086        int             readio_log, writeio_log;
1087
1088        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1089                if (mp->m_flags & XFS_MOUNT_WSYNC) {
1090                        readio_log = XFS_WSYNC_READIO_LOG;
1091                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
1092                } else {
1093                        readio_log = XFS_READIO_LOG_LARGE;
1094                        writeio_log = XFS_WRITEIO_LOG_LARGE;
1095                }
1096        } else {
1097                readio_log = mp->m_readio_log;
1098                writeio_log = mp->m_writeio_log;
1099        }
1100
1101        if (sbp->sb_blocklog > readio_log) {
1102                mp->m_readio_log = sbp->sb_blocklog;
1103        } else {
1104                mp->m_readio_log = readio_log;
1105        }
1106        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1107        if (sbp->sb_blocklog > writeio_log) {
1108                mp->m_writeio_log = sbp->sb_blocklog;
1109        } else {
1110                mp->m_writeio_log = writeio_log;
1111        }
1112        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
1113}
1114
1115/*
1116 * precalculate the low space thresholds for dynamic speculative preallocation.
1117 */
1118void
1119xfs_set_low_space_thresholds(
1120        struct xfs_mount        *mp)
1121{
1122        int i;
1123
1124        for (i = 0; i < XFS_LOWSP_MAX; i++) {
1125                __uint64_t space = mp->m_sb.sb_dblocks;
1126
1127                do_div(space, 100);
1128                mp->m_low_space[i] = space * (i + 1);
1129        }
1130}
1131
1132
1133/*
1134 * Set whether we're using inode alignment.
1135 */
1136STATIC void
1137xfs_set_inoalignment(xfs_mount_t *mp)
1138{
1139        if (xfs_sb_version_hasalign(&mp->m_sb) &&
1140            mp->m_sb.sb_inoalignmt >=
1141            XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1142                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1143        else
1144                mp->m_inoalign_mask = 0;
1145        /*
1146         * If we are using stripe alignment, check whether
1147         * the stripe unit is a multiple of the inode alignment
1148         */
1149        if (mp->m_dalign && mp->m_inoalign_mask &&
1150            !(mp->m_dalign & mp->m_inoalign_mask))
1151                mp->m_sinoalign = mp->m_dalign;
1152        else
1153                mp->m_sinoalign = 0;
1154}
1155
1156/*
1157 * Check that the data (and log if separate) are an ok size.
1158 */
1159STATIC int
1160xfs_check_sizes(xfs_mount_t *mp)
1161{
1162        xfs_buf_t       *bp;
1163        xfs_daddr_t     d;
1164
1165        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1166        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1167                xfs_warn(mp, "filesystem size mismatch detected");
1168                return XFS_ERROR(EFBIG);
1169        }
1170        bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1171                                        d - XFS_FSS_TO_BB(mp, 1),
1172                                        XFS_FSS_TO_BB(mp, 1), 0, NULL);
1173        if (!bp) {
1174                xfs_warn(mp, "last sector read failed");
1175                return EIO;
1176        }
1177        xfs_buf_relse(bp);
1178
1179        if (mp->m_logdev_targp != mp->m_ddev_targp) {
1180                d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1181                if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1182                        xfs_warn(mp, "log size mismatch detected");
1183                        return XFS_ERROR(EFBIG);
1184                }
1185                bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1186                                        d - XFS_FSB_TO_BB(mp, 1),
1187                                        XFS_FSB_TO_BB(mp, 1), 0, NULL);
1188                if (!bp) {
1189                        xfs_warn(mp, "log device read failed");
1190                        return EIO;
1191                }
1192                xfs_buf_relse(bp);
1193        }
1194        return 0;
1195}
1196
1197/*
1198 * Clear the quotaflags in memory and in the superblock.
1199 */
1200int
1201xfs_mount_reset_sbqflags(
1202        struct xfs_mount        *mp)
1203{
1204        int                     error;
1205        struct xfs_trans        *tp;
1206
1207        mp->m_qflags = 0;
1208
1209        /*
1210         * It is OK to look at sb_qflags here in mount path,
1211         * without m_sb_lock.
1212         */
1213        if (mp->m_sb.sb_qflags == 0)
1214                return 0;
1215        spin_lock(&mp->m_sb_lock);
1216        mp->m_sb.sb_qflags = 0;
1217        spin_unlock(&mp->m_sb_lock);
1218
1219        /*
1220         * If the fs is readonly, let the incore superblock run
1221         * with quotas off but don't flush the update out to disk
1222         */
1223        if (mp->m_flags & XFS_MOUNT_RDONLY)
1224                return 0;
1225
1226        tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1227        error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1228                                  0, 0, XFS_DEFAULT_LOG_COUNT);
1229        if (error) {
1230                xfs_trans_cancel(tp, 0);
1231                xfs_alert(mp, "%s: Superblock update failed!", __func__);
1232                return error;
1233        }
1234
1235        xfs_mod_sb(tp, XFS_SB_QFLAGS);
1236        return xfs_trans_commit(tp, 0);
1237}
1238
1239__uint64_t
1240xfs_default_resblks(xfs_mount_t *mp)
1241{
1242        __uint64_t resblks;
1243
1244        /*
1245         * We default to 5% or 8192 fsbs of space reserved, whichever is
1246         * smaller.  This is intended to cover concurrent allocation
1247         * transactions when we initially hit enospc. These each require a 4
1248         * block reservation. Hence by default we cover roughly 2000 concurrent
1249         * allocation reservations.
1250         */
1251        resblks = mp->m_sb.sb_dblocks;
1252        do_div(resblks, 20);
1253        resblks = min_t(__uint64_t, resblks, 8192);
1254        return resblks;
1255}
1256
1257/*
1258 * This function does the following on an initial mount of a file system:
1259 *      - reads the superblock from disk and init the mount struct
1260 *      - if we're a 32-bit kernel, do a size check on the superblock
1261 *              so we don't mount terabyte filesystems
1262 *      - init mount struct realtime fields
1263 *      - allocate inode hash table for fs
1264 *      - init directory manager
1265 *      - perform recovery and init the log manager
1266 */
1267int
1268xfs_mountfs(
1269        xfs_mount_t     *mp)
1270{
1271        xfs_sb_t        *sbp = &(mp->m_sb);
1272        xfs_inode_t     *rip;
1273        __uint64_t      resblks;
1274        uint            quotamount = 0;
1275        uint            quotaflags = 0;
1276        int             error = 0;
1277
1278        xfs_mount_common(mp, sbp);
1279
1280        /*
1281         * Check for a mismatched features2 values.  Older kernels
1282         * read & wrote into the wrong sb offset for sb_features2
1283         * on some platforms due to xfs_sb_t not being 64bit size aligned
1284         * when sb_features2 was added, which made older superblock
1285         * reading/writing routines swap it as a 64-bit value.
1286         *
1287         * For backwards compatibility, we make both slots equal.
1288         *
1289         * If we detect a mismatched field, we OR the set bits into the
1290         * existing features2 field in case it has already been modified; we
1291         * don't want to lose any features.  We then update the bad location
1292         * with the ORed value so that older kernels will see any features2
1293         * flags, and mark the two fields as needing updates once the
1294         * transaction subsystem is online.
1295         */
1296        if (xfs_sb_has_mismatched_features2(sbp)) {
1297                xfs_warn(mp, "correcting sb_features alignment problem");
1298                sbp->sb_features2 |= sbp->sb_bad_features2;
1299                sbp->sb_bad_features2 = sbp->sb_features2;
1300                mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1301
1302                /*
1303                 * Re-check for ATTR2 in case it was found in bad_features2
1304                 * slot.
1305                 */
1306                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1307                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1308                        mp->m_flags |= XFS_MOUNT_ATTR2;
1309        }
1310
1311        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1312           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1313                xfs_sb_version_removeattr2(&mp->m_sb);
1314                mp->m_update_flags |= XFS_SB_FEATURES2;
1315
1316                /* update sb_versionnum for the clearing of the morebits */
1317                if (!sbp->sb_features2)
1318                        mp->m_update_flags |= XFS_SB_VERSIONNUM;
1319        }
1320
1321        /*
1322         * Check if sb_agblocks is aligned at stripe boundary
1323         * If sb_agblocks is NOT aligned turn off m_dalign since
1324         * allocator alignment is within an ag, therefore ag has
1325         * to be aligned at stripe boundary.
1326         */
1327        error = xfs_update_alignment(mp);
1328        if (error)
1329                goto out;
1330
1331        xfs_alloc_compute_maxlevels(mp);
1332        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1333        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1334        xfs_ialloc_compute_maxlevels(mp);
1335
1336        xfs_set_maxicount(mp);
1337
1338        error = xfs_uuid_mount(mp);
1339        if (error)
1340                goto out;
1341
1342        /*
1343         * Set the minimum read and write sizes
1344         */
1345        xfs_set_rw_sizes(mp);
1346
1347        /* set the low space thresholds for dynamic preallocation */
1348        xfs_set_low_space_thresholds(mp);
1349
1350        /*
1351         * Set the inode cluster size.
1352         * This may still be overridden by the file system
1353         * block size if it is larger than the chosen cluster size.
1354         */
1355        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1356
1357        /*
1358         * Set inode alignment fields
1359         */
1360        xfs_set_inoalignment(mp);
1361
1362        /*
1363         * Check that the data (and log if separate) are an ok size.
1364         */
1365        error = xfs_check_sizes(mp);
1366        if (error)
1367                goto out_remove_uuid;
1368
1369        /*
1370         * Initialize realtime fields in the mount structure
1371         */
1372        error = xfs_rtmount_init(mp);
1373        if (error) {
1374                xfs_warn(mp, "RT mount failed");
1375                goto out_remove_uuid;
1376        }
1377
1378        /*
1379         *  Copies the low order bits of the timestamp and the randomly
1380         *  set "sequence" number out of a UUID.
1381         */
1382        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1383
1384        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1385
1386        xfs_dir_mount(mp);
1387
1388        /*
1389         * Initialize the attribute manager's entries.
1390         */
1391        mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1392
1393        /*
1394         * Initialize the precomputed transaction reservations values.
1395         */
1396        xfs_trans_init(mp);
1397
1398        /*
1399         * Allocate and initialize the per-ag data.
1400         */
1401        spin_lock_init(&mp->m_perag_lock);
1402        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1403        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1404        if (error) {
1405                xfs_warn(mp, "Failed per-ag init: %d", error);
1406                goto out_remove_uuid;
1407        }
1408
1409        if (!sbp->sb_logblocks) {
1410                xfs_warn(mp, "no log defined");
1411                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1412                error = XFS_ERROR(EFSCORRUPTED);
1413                goto out_free_perag;
1414        }
1415
1416        /*
1417         * log's mount-time initialization. Perform 1st part recovery if needed
1418         */
1419        error = xfs_log_mount(mp, mp->m_logdev_targp,
1420                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1421                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1422        if (error) {
1423                xfs_warn(mp, "log mount failed");
1424                goto out_fail_wait;
1425        }
1426
1427        /*
1428         * Now the log is mounted, we know if it was an unclean shutdown or
1429         * not. If it was, with the first phase of recovery has completed, we
1430         * have consistent AG blocks on disk. We have not recovered EFIs yet,
1431         * but they are recovered transactionally in the second recovery phase
1432         * later.
1433         *
1434         * Hence we can safely re-initialise incore superblock counters from
1435         * the per-ag data. These may not be correct if the filesystem was not
1436         * cleanly unmounted, so we need to wait for recovery to finish before
1437         * doing this.
1438         *
1439         * If the filesystem was cleanly unmounted, then we can trust the
1440         * values in the superblock to be correct and we don't need to do
1441         * anything here.
1442         *
1443         * If we are currently making the filesystem, the initialisation will
1444         * fail as the perag data is in an undefined state.
1445         */
1446        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1447            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1448             !mp->m_sb.sb_inprogress) {
1449                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1450                if (error)
1451                        goto out_fail_wait;
1452        }
1453
1454        /*
1455         * Get and sanity-check the root inode.
1456         * Save the pointer to it in the mount structure.
1457         */
1458        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1459        if (error) {
1460                xfs_warn(mp, "failed to read root inode");
1461                goto out_log_dealloc;
1462        }
1463
1464        ASSERT(rip != NULL);
1465
1466        if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1467                xfs_warn(mp, "corrupted root inode %llu: not a directory",
1468                        (unsigned long long)rip->i_ino);
1469                xfs_iunlock(rip, XFS_ILOCK_EXCL);
1470                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1471                                 mp);
1472                error = XFS_ERROR(EFSCORRUPTED);
1473                goto out_rele_rip;
1474        }
1475        mp->m_rootip = rip;     /* save it */
1476
1477        xfs_iunlock(rip, XFS_ILOCK_EXCL);
1478
1479        /*
1480         * Initialize realtime inode pointers in the mount structure
1481         */
1482        error = xfs_rtmount_inodes(mp);
1483        if (error) {
1484                /*
1485                 * Free up the root inode.
1486                 */
1487                xfs_warn(mp, "failed to read RT inodes");
1488                goto out_rele_rip;
1489        }
1490
1491        /*
1492         * If this is a read-only mount defer the superblock updates until
1493         * the next remount into writeable mode.  Otherwise we would never
1494         * perform the update e.g. for the root filesystem.
1495         */
1496        if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1497                error = xfs_mount_log_sb(mp, mp->m_update_flags);
1498                if (error) {
1499                        xfs_warn(mp, "failed to write sb changes");
1500                        goto out_rtunmount;
1501                }
1502        }
1503
1504        /*
1505         * Initialise the XFS quota management subsystem for this mount
1506         */
1507        if (XFS_IS_QUOTA_RUNNING(mp)) {
1508                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1509                if (error)
1510                        goto out_rtunmount;
1511        } else {
1512                ASSERT(!XFS_IS_QUOTA_ON(mp));
1513
1514                /*
1515                 * If a file system had quotas running earlier, but decided to
1516                 * mount without -o uquota/pquota/gquota options, revoke the
1517                 * quotachecked license.
1518                 */
1519                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1520                        xfs_notice(mp, "resetting quota flags");
1521                        error = xfs_mount_reset_sbqflags(mp);
1522                        if (error)
1523                                return error;
1524                }
1525        }
1526
1527        /*
1528         * Finish recovering the file system.  This part needed to be
1529         * delayed until after the root and real-time bitmap inodes
1530         * were consistently read in.
1531         */
1532        error = xfs_log_mount_finish(mp);
1533        if (error) {
1534                xfs_warn(mp, "log mount finish failed");
1535                goto out_rtunmount;
1536        }
1537
1538        /*
1539         * Complete the quota initialisation, post-log-replay component.
1540         */
1541        if (quotamount) {
1542                ASSERT(mp->m_qflags == 0);
1543                mp->m_qflags = quotaflags;
1544
1545                xfs_qm_mount_quotas(mp);
1546        }
1547
1548        /*
1549         * Now we are mounted, reserve a small amount of unused space for
1550         * privileged transactions. This is needed so that transaction
1551         * space required for critical operations can dip into this pool
1552         * when at ENOSPC. This is needed for operations like create with
1553         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1554         * are not allowed to use this reserved space.
1555         *
1556         * This may drive us straight to ENOSPC on mount, but that implies
1557         * we were already there on the last unmount. Warn if this occurs.
1558         */
1559        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1560                resblks = xfs_default_resblks(mp);
1561                error = xfs_reserve_blocks(mp, &resblks, NULL);
1562                if (error)
1563                        xfs_warn(mp,
1564        "Unable to allocate reserve blocks. Continuing without reserve pool.");
1565        }
1566
1567        return 0;
1568
1569 out_rtunmount:
1570        xfs_rtunmount_inodes(mp);
1571 out_rele_rip:
1572        IRELE(rip);
1573 out_log_dealloc:
1574        xfs_log_unmount(mp);
1575 out_fail_wait:
1576        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1577                xfs_wait_buftarg(mp->m_logdev_targp);
1578        xfs_wait_buftarg(mp->m_ddev_targp);
1579 out_free_perag:
1580        xfs_free_perag(mp);
1581 out_remove_uuid:
1582        xfs_uuid_unmount(mp);
1583 out:
1584        return error;
1585}
1586
1587/*
1588 * This flushes out the inodes,dquots and the superblock, unmounts the
1589 * log and makes sure that incore structures are freed.
1590 */
1591void
1592xfs_unmountfs(
1593        struct xfs_mount        *mp)
1594{
1595        __uint64_t              resblks;
1596        int                     error;
1597
1598        cancel_delayed_work_sync(&mp->m_eofblocks_work);
1599
1600        xfs_qm_unmount_quotas(mp);
1601        xfs_rtunmount_inodes(mp);
1602        IRELE(mp->m_rootip);
1603
1604        /*
1605         * We can potentially deadlock here if we have an inode cluster
1606         * that has been freed has its buffer still pinned in memory because
1607         * the transaction is still sitting in a iclog. The stale inodes
1608         * on that buffer will have their flush locks held until the
1609         * transaction hits the disk and the callbacks run. the inode
1610         * flush takes the flush lock unconditionally and with nothing to
1611         * push out the iclog we will never get that unlocked. hence we
1612         * need to force the log first.
1613         */
1614        xfs_log_force(mp, XFS_LOG_SYNC);
1615
1616        /*
1617         * Flush all pending changes from the AIL.
1618         */
1619        xfs_ail_push_all_sync(mp->m_ail);
1620
1621        /*
1622         * And reclaim all inodes.  At this point there should be no dirty
1623         * inodes and none should be pinned or locked, but use synchronous
1624         * reclaim just to be sure. We can stop background inode reclaim
1625         * here as well if it is still running.
1626         */
1627        cancel_delayed_work_sync(&mp->m_reclaim_work);
1628        xfs_reclaim_inodes(mp, SYNC_WAIT);
1629
1630        xfs_qm_unmount(mp);
1631
1632        /*
1633         * Unreserve any blocks we have so that when we unmount we don't account
1634         * the reserved free space as used. This is really only necessary for
1635         * lazy superblock counting because it trusts the incore superblock
1636         * counters to be absolutely correct on clean unmount.
1637         *
1638         * We don't bother correcting this elsewhere for lazy superblock
1639         * counting because on mount of an unclean filesystem we reconstruct the
1640         * correct counter value and this is irrelevant.
1641         *
1642         * For non-lazy counter filesystems, this doesn't matter at all because
1643         * we only every apply deltas to the superblock and hence the incore
1644         * value does not matter....
1645         */
1646        resblks = 0;
1647        error = xfs_reserve_blocks(mp, &resblks, NULL);
1648        if (error)
1649                xfs_warn(mp, "Unable to free reserved block pool. "
1650                                "Freespace may not be correct on next mount.");
1651
1652        error = xfs_log_sbcount(mp);
1653        if (error)
1654                xfs_warn(mp, "Unable to update superblock counters. "
1655                                "Freespace may not be correct on next mount.");
1656
1657        xfs_log_unmount(mp);
1658        xfs_uuid_unmount(mp);
1659
1660#if defined(DEBUG)
1661        xfs_errortag_clearall(mp, 0);
1662#endif
1663        xfs_free_perag(mp);
1664}
1665
1666int
1667xfs_fs_writable(xfs_mount_t *mp)
1668{
1669        return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1670                (mp->m_flags & XFS_MOUNT_RDONLY));
1671}
1672
1673/*
1674 * xfs_log_sbcount
1675 *
1676 * Sync the superblock counters to disk.
1677 *
1678 * Note this code can be called during the process of freezing, so
1679 * we may need to use the transaction allocator which does not
1680 * block when the transaction subsystem is in its frozen state.
1681 */
1682int
1683xfs_log_sbcount(xfs_mount_t *mp)
1684{
1685        xfs_trans_t     *tp;
1686        int             error;
1687
1688        if (!xfs_fs_writable(mp))
1689                return 0;
1690
1691        xfs_icsb_sync_counters(mp, 0);
1692
1693        /*
1694         * we don't need to do this if we are updating the superblock
1695         * counters on every modification.
1696         */
1697        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1698                return 0;
1699
1700        tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1701        error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1702                                  XFS_DEFAULT_LOG_COUNT);
1703        if (error) {
1704                xfs_trans_cancel(tp, 0);
1705                return error;
1706        }
1707
1708        xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1709        xfs_trans_set_sync(tp);
1710        error = xfs_trans_commit(tp, 0);
1711        return error;
1712}
1713
1714/*
1715 * xfs_mod_sb() can be used to copy arbitrary changes to the
1716 * in-core superblock into the superblock buffer to be logged.
1717 * It does not provide the higher level of locking that is
1718 * needed to protect the in-core superblock from concurrent
1719 * access.
1720 */
1721void
1722xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1723{
1724        xfs_buf_t       *bp;
1725        int             first;
1726        int             last;
1727        xfs_mount_t     *mp;
1728        xfs_sb_field_t  f;
1729
1730        ASSERT(fields);
1731        if (!fields)
1732                return;
1733        mp = tp->t_mountp;
1734        bp = xfs_trans_getsb(tp, mp, 0);
1735        first = sizeof(xfs_sb_t);
1736        last = 0;
1737
1738        /* translate/copy */
1739
1740        xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1741
1742        /* find modified range */
1743        f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1744        ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1745        last = xfs_sb_info[f + 1].offset - 1;
1746
1747        f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1748        ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1749        first = xfs_sb_info[f].offset;
1750
1751        xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1752        xfs_trans_log_buf(tp, bp, first, last);
1753}
1754
1755
1756/*
1757 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1758 * a delta to a specified field in the in-core superblock.  Simply
1759 * switch on the field indicated and apply the delta to that field.
1760 * Fields are not allowed to dip below zero, so if the delta would
1761 * do this do not apply it and return EINVAL.
1762 *
1763 * The m_sb_lock must be held when this routine is called.
1764 */
1765STATIC int
1766xfs_mod_incore_sb_unlocked(
1767        xfs_mount_t     *mp,
1768        xfs_sb_field_t  field,
1769        int64_t         delta,
1770        int             rsvd)
1771{
1772        int             scounter;       /* short counter for 32 bit fields */
1773        long long       lcounter;       /* long counter for 64 bit fields */
1774        long long       res_used, rem;
1775
1776        /*
1777         * With the in-core superblock spin lock held, switch
1778         * on the indicated field.  Apply the delta to the
1779         * proper field.  If the fields value would dip below
1780         * 0, then do not apply the delta and return EINVAL.
1781         */
1782        switch (field) {
1783        case XFS_SBS_ICOUNT:
1784                lcounter = (long long)mp->m_sb.sb_icount;
1785                lcounter += delta;
1786                if (lcounter < 0) {
1787                        ASSERT(0);
1788                        return XFS_ERROR(EINVAL);
1789                }
1790                mp->m_sb.sb_icount = lcounter;
1791                return 0;
1792        case XFS_SBS_IFREE:
1793                lcounter = (long long)mp->m_sb.sb_ifree;
1794                lcounter += delta;
1795                if (lcounter < 0) {
1796                        ASSERT(0);
1797                        return XFS_ERROR(EINVAL);
1798                }
1799                mp->m_sb.sb_ifree = lcounter;
1800                return 0;
1801        case XFS_SBS_FDBLOCKS:
1802                lcounter = (long long)
1803                        mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1804                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1805
1806                if (delta > 0) {                /* Putting blocks back */
1807                        if (res_used > delta) {
1808                                mp->m_resblks_avail += delta;
1809                        } else {
1810                                rem = delta - res_used;
1811                                mp->m_resblks_avail = mp->m_resblks;
1812                                lcounter += rem;
1813                        }
1814                } else {                                /* Taking blocks away */
1815                        lcounter += delta;
1816                        if (lcounter >= 0) {
1817                                mp->m_sb.sb_fdblocks = lcounter +
1818                                                        XFS_ALLOC_SET_ASIDE(mp);
1819                                return 0;
1820                        }
1821
1822                        /*
1823                         * We are out of blocks, use any available reserved
1824                         * blocks if were allowed to.
1825                         */
1826                        if (!rsvd)
1827                                return XFS_ERROR(ENOSPC);
1828
1829                        lcounter = (long long)mp->m_resblks_avail + delta;
1830                        if (lcounter >= 0) {
1831                                mp->m_resblks_avail = lcounter;
1832                                return 0;
1833                        }
1834                        printk_once(KERN_WARNING
1835                                "Filesystem \"%s\": reserve blocks depleted! "
1836                                "Consider increasing reserve pool size.",
1837                                mp->m_fsname);
1838                        return XFS_ERROR(ENOSPC);
1839                }
1840
1841                mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1842                return 0;
1843        case XFS_SBS_FREXTENTS:
1844                lcounter = (long long)mp->m_sb.sb_frextents;
1845                lcounter += delta;
1846                if (lcounter < 0) {
1847                        return XFS_ERROR(ENOSPC);
1848                }
1849                mp->m_sb.sb_frextents = lcounter;
1850                return 0;
1851        case XFS_SBS_DBLOCKS:
1852                lcounter = (long long)mp->m_sb.sb_dblocks;
1853                lcounter += delta;
1854                if (lcounter < 0) {
1855                        ASSERT(0);
1856                        return XFS_ERROR(EINVAL);
1857                }
1858                mp->m_sb.sb_dblocks = lcounter;
1859                return 0;
1860        case XFS_SBS_AGCOUNT:
1861                scounter = mp->m_sb.sb_agcount;
1862                scounter += delta;
1863                if (scounter < 0) {
1864                        ASSERT(0);
1865                        return XFS_ERROR(EINVAL);
1866                }
1867                mp->m_sb.sb_agcount = scounter;
1868                return 0;
1869        case XFS_SBS_IMAX_PCT:
1870                scounter = mp->m_sb.sb_imax_pct;
1871                scounter += delta;
1872                if (scounter < 0) {
1873                        ASSERT(0);
1874                        return XFS_ERROR(EINVAL);
1875                }
1876                mp->m_sb.sb_imax_pct = scounter;
1877                return 0;
1878        case XFS_SBS_REXTSIZE:
1879                scounter = mp->m_sb.sb_rextsize;
1880                scounter += delta;
1881                if (scounter < 0) {
1882                        ASSERT(0);
1883                        return XFS_ERROR(EINVAL);
1884                }
1885                mp->m_sb.sb_rextsize = scounter;
1886                return 0;
1887        case XFS_SBS_RBMBLOCKS:
1888                scounter = mp->m_sb.sb_rbmblocks;
1889                scounter += delta;
1890                if (scounter < 0) {
1891                        ASSERT(0);
1892                        return XFS_ERROR(EINVAL);
1893                }
1894                mp->m_sb.sb_rbmblocks = scounter;
1895                return 0;
1896        case XFS_SBS_RBLOCKS:
1897                lcounter = (long long)mp->m_sb.sb_rblocks;
1898                lcounter += delta;
1899                if (lcounter < 0) {
1900                        ASSERT(0);
1901                        return XFS_ERROR(EINVAL);
1902                }
1903                mp->m_sb.sb_rblocks = lcounter;
1904                return 0;
1905        case XFS_SBS_REXTENTS:
1906                lcounter = (long long)mp->m_sb.sb_rextents;
1907                lcounter += delta;
1908                if (lcounter < 0) {
1909                        ASSERT(0);
1910                        return XFS_ERROR(EINVAL);
1911                }
1912                mp->m_sb.sb_rextents = lcounter;
1913                return 0;
1914        case XFS_SBS_REXTSLOG:
1915                scounter = mp->m_sb.sb_rextslog;
1916                scounter += delta;
1917                if (scounter < 0) {
1918                        ASSERT(0);
1919                        return XFS_ERROR(EINVAL);
1920                }
1921                mp->m_sb.sb_rextslog = scounter;
1922                return 0;
1923        default:
1924                ASSERT(0);
1925                return XFS_ERROR(EINVAL);
1926        }
1927}
1928
1929/*
1930 * xfs_mod_incore_sb() is used to change a field in the in-core
1931 * superblock structure by the specified delta.  This modification
1932 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1933 * routine to do the work.
1934 */
1935int
1936xfs_mod_incore_sb(
1937        struct xfs_mount        *mp,
1938        xfs_sb_field_t          field,
1939        int64_t                 delta,
1940        int                     rsvd)
1941{
1942        int                     status;
1943
1944#ifdef HAVE_PERCPU_SB
1945        ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1946#endif
1947        spin_lock(&mp->m_sb_lock);
1948        status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1949        spin_unlock(&mp->m_sb_lock);
1950
1951        return status;
1952}
1953
1954/*
1955 * Change more than one field in the in-core superblock structure at a time.
1956 *
1957 * The fields and changes to those fields are specified in the array of
1958 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1959 * will be applied or none of them will.  If any modified field dips below 0,
1960 * then all modifications will be backed out and EINVAL will be returned.
1961 *
1962 * Note that this function may not be used for the superblock values that
1963 * are tracked with the in-memory per-cpu counters - a direct call to
1964 * xfs_icsb_modify_counters is required for these.
1965 */
1966int
1967xfs_mod_incore_sb_batch(
1968        struct xfs_mount        *mp,
1969        xfs_mod_sb_t            *msb,
1970        uint                    nmsb,
1971        int                     rsvd)
1972{
1973        xfs_mod_sb_t            *msbp;
1974        int                     error = 0;
1975
1976        /*
1977         * Loop through the array of mod structures and apply each individually.
1978         * If any fail, then back out all those which have already been applied.
1979         * Do all of this within the scope of the m_sb_lock so that all of the
1980         * changes will be atomic.
1981         */
1982        spin_lock(&mp->m_sb_lock);
1983        for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1984                ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1985                       msbp->msb_field > XFS_SBS_FDBLOCKS);
1986
1987                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1988                                                   msbp->msb_delta, rsvd);
1989                if (error)
1990                        goto unwind;
1991        }
1992        spin_unlock(&mp->m_sb_lock);
1993        return 0;
1994
1995unwind:
1996        while (--msbp >= msb) {
1997                error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1998                                                   -msbp->msb_delta, rsvd);
1999                ASSERT(error == 0);
2000        }
2001        spin_unlock(&mp->m_sb_lock);
2002        return error;
2003}
2004
2005/*
2006 * xfs_getsb() is called to obtain the buffer for the superblock.
2007 * The buffer is returned locked and read in from disk.
2008 * The buffer should be released with a call to xfs_brelse().
2009 *
2010 * If the flags parameter is BUF_TRYLOCK, then we'll only return
2011 * the superblock buffer if it can be locked without sleeping.
2012 * If it can't then we'll return NULL.
2013 */
2014struct xfs_buf *
2015xfs_getsb(
2016        struct xfs_mount        *mp,
2017        int                     flags)
2018{
2019        struct xfs_buf          *bp = mp->m_sb_bp;
2020
2021        if (!xfs_buf_trylock(bp)) {
2022                if (flags & XBF_TRYLOCK)
2023                        return NULL;
2024                xfs_buf_lock(bp);
2025        }
2026
2027        xfs_buf_hold(bp);
2028        ASSERT(XFS_BUF_ISDONE(bp));
2029        return bp;
2030}
2031
2032/*
2033 * Used to free the superblock along various error paths.
2034 */
2035void
2036xfs_freesb(
2037        struct xfs_mount        *mp)
2038{
2039        struct xfs_buf          *bp = mp->m_sb_bp;
2040
2041        xfs_buf_lock(bp);
2042        mp->m_sb_bp = NULL;
2043        xfs_buf_relse(bp);
2044}
2045
2046/*
2047 * Used to log changes to the superblock unit and width fields which could
2048 * be altered by the mount options, as well as any potential sb_features2
2049 * fixup. Only the first superblock is updated.
2050 */
2051int
2052xfs_mount_log_sb(
2053        xfs_mount_t     *mp,
2054        __int64_t       fields)
2055{
2056        xfs_trans_t     *tp;
2057        int             error;
2058
2059        ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2060                         XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2061                         XFS_SB_VERSIONNUM));
2062
2063        tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2064        error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2065                                  XFS_DEFAULT_LOG_COUNT);
2066        if (error) {
2067                xfs_trans_cancel(tp, 0);
2068                return error;
2069        }
2070        xfs_mod_sb(tp, fields);
2071        error = xfs_trans_commit(tp, 0);
2072        return error;
2073}
2074
2075/*
2076 * If the underlying (data/log/rt) device is readonly, there are some
2077 * operations that cannot proceed.
2078 */
2079int
2080xfs_dev_is_read_only(
2081        struct xfs_mount        *mp,
2082        char                    *message)
2083{
2084        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2085            xfs_readonly_buftarg(mp->m_logdev_targp) ||
2086            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2087                xfs_notice(mp, "%s required on read-only device.", message);
2088                xfs_notice(mp, "write access unavailable, cannot proceed.");
2089                return EROFS;
2090        }
2091        return 0;
2092}
2093
2094#ifdef HAVE_PERCPU_SB
2095/*
2096 * Per-cpu incore superblock counters
2097 *
2098 * Simple concept, difficult implementation
2099 *
2100 * Basically, replace the incore superblock counters with a distributed per cpu
2101 * counter for contended fields (e.g.  free block count).
2102 *
2103 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2104 * hence needs to be accurately read when we are running low on space. Hence
2105 * there is a method to enable and disable the per-cpu counters based on how
2106 * much "stuff" is available in them.
2107 *
2108 * Basically, a counter is enabled if there is enough free resource to justify
2109 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2110 * ENOSPC), then we disable the counters to synchronise all callers and
2111 * re-distribute the available resources.
2112 *
2113 * If, once we redistributed the available resources, we still get a failure,
2114 * we disable the per-cpu counter and go through the slow path.
2115 *
2116 * The slow path is the current xfs_mod_incore_sb() function.  This means that
2117 * when we disable a per-cpu counter, we need to drain its resources back to
2118 * the global superblock. We do this after disabling the counter to prevent
2119 * more threads from queueing up on the counter.
2120 *
2121 * Essentially, this means that we still need a lock in the fast path to enable
2122 * synchronisation between the global counters and the per-cpu counters. This
2123 * is not a problem because the lock will be local to a CPU almost all the time
2124 * and have little contention except when we get to ENOSPC conditions.
2125 *
2126 * Basically, this lock becomes a barrier that enables us to lock out the fast
2127 * path while we do things like enabling and disabling counters and
2128 * synchronising the counters.
2129 *
2130 * Locking rules:
2131 *
2132 *      1. m_sb_lock before picking up per-cpu locks
2133 *      2. per-cpu locks always picked up via for_each_online_cpu() order
2134 *      3. accurate counter sync requires m_sb_lock + per cpu locks
2135 *      4. modifying per-cpu counters requires holding per-cpu lock
2136 *      5. modifying global counters requires holding m_sb_lock
2137 *      6. enabling or disabling a counter requires holding the m_sb_lock 
2138 *         and _none_ of the per-cpu locks.
2139 *
2140 * Disabled counters are only ever re-enabled by a balance operation
2141 * that results in more free resources per CPU than a given threshold.
2142 * To ensure counters don't remain disabled, they are rebalanced when
2143 * the global resource goes above a higher threshold (i.e. some hysteresis
2144 * is present to prevent thrashing).
2145 */
2146
2147#ifdef CONFIG_HOTPLUG_CPU
2148/*
2149 * hot-plug CPU notifier support.
2150 *
2151 * We need a notifier per filesystem as we need to be able to identify
2152 * the filesystem to balance the counters out. This is achieved by
2153 * having a notifier block embedded in the xfs_mount_t and doing pointer
2154 * magic to get the mount pointer from the notifier block address.
2155 */
2156STATIC int
2157xfs_icsb_cpu_notify(
2158        struct notifier_block *nfb,
2159        unsigned long action,
2160        void *hcpu)
2161{
2162        xfs_icsb_cnts_t *cntp;
2163        xfs_mount_t     *mp;
2164
2165        mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2166        cntp = (xfs_icsb_cnts_t *)
2167                        per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2168        switch (action) {
2169        case CPU_UP_PREPARE:
2170        case CPU_UP_PREPARE_FROZEN:
2171                /* Easy Case - initialize the area and locks, and
2172                 * then rebalance when online does everything else for us. */
2173                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2174                break;
2175        case CPU_ONLINE:
2176        case CPU_ONLINE_FROZEN:
2177                xfs_icsb_lock(mp);
2178                xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2179                xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2180                xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2181                xfs_icsb_unlock(mp);
2182                break;
2183        case CPU_DEAD:
2184        case CPU_DEAD_FROZEN:
2185                /* Disable all the counters, then fold the dead cpu's
2186                 * count into the total on the global superblock and
2187                 * re-enable the counters. */
2188                xfs_icsb_lock(mp);
2189                spin_lock(&mp->m_sb_lock);
2190                xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2191                xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2192                xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2193
2194                mp->m_sb.sb_icount += cntp->icsb_icount;
2195                mp->m_sb.sb_ifree += cntp->icsb_ifree;
2196                mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2197
2198                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2199
2200                xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2201                xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2202                xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2203                spin_unlock(&mp->m_sb_lock);
2204                xfs_icsb_unlock(mp);
2205                break;
2206        }
2207
2208        return NOTIFY_OK;
2209}
2210#endif /* CONFIG_HOTPLUG_CPU */
2211
2212int
2213xfs_icsb_init_counters(
2214        xfs_mount_t     *mp)
2215{
2216        xfs_icsb_cnts_t *cntp;
2217        int             i;
2218
2219        mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2220        if (mp->m_sb_cnts == NULL)
2221                return -ENOMEM;
2222
2223#ifdef CONFIG_HOTPLUG_CPU
2224        mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2225        mp->m_icsb_notifier.priority = 0;
2226        register_hotcpu_notifier(&mp->m_icsb_notifier);
2227#endif /* CONFIG_HOTPLUG_CPU */
2228
2229        for_each_online_cpu(i) {
2230                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2231                memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2232        }
2233
2234        mutex_init(&mp->m_icsb_mutex);
2235
2236        /*
2237         * start with all counters disabled so that the
2238         * initial balance kicks us off correctly
2239         */
2240        mp->m_icsb_counters = -1;
2241        return 0;
2242}
2243
2244void
2245xfs_icsb_reinit_counters(
2246        xfs_mount_t     *mp)
2247{
2248        xfs_icsb_lock(mp);
2249        /*
2250         * start with all counters disabled so that the
2251         * initial balance kicks us off correctly
2252         */
2253        mp->m_icsb_counters = -1;
2254        xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2255        xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2256        xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2257        xfs_icsb_unlock(mp);
2258}
2259
2260void
2261xfs_icsb_destroy_counters(
2262        xfs_mount_t     *mp)
2263{
2264        if (mp->m_sb_cnts) {
2265                unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2266                free_percpu(mp->m_sb_cnts);
2267        }
2268        mutex_destroy(&mp->m_icsb_mutex);
2269}
2270
2271STATIC void
2272xfs_icsb_lock_cntr(
2273        xfs_icsb_cnts_t *icsbp)
2274{
2275        while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2276                ndelay(1000);
2277        }
2278}
2279
2280STATIC void
2281xfs_icsb_unlock_cntr(
2282        xfs_icsb_cnts_t *icsbp)
2283{
2284        clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2285}
2286
2287
2288STATIC void
2289xfs_icsb_lock_all_counters(
2290        xfs_mount_t     *mp)
2291{
2292        xfs_icsb_cnts_t *cntp;
2293        int             i;
2294
2295        for_each_online_cpu(i) {
2296                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2297                xfs_icsb_lock_cntr(cntp);
2298        }
2299}
2300
2301STATIC void
2302xfs_icsb_unlock_all_counters(
2303        xfs_mount_t     *mp)
2304{
2305        xfs_icsb_cnts_t *cntp;
2306        int             i;
2307
2308        for_each_online_cpu(i) {
2309                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2310                xfs_icsb_unlock_cntr(cntp);
2311        }
2312}
2313
2314STATIC void
2315xfs_icsb_count(
2316        xfs_mount_t     *mp,
2317        xfs_icsb_cnts_t *cnt,
2318        int             flags)
2319{
2320        xfs_icsb_cnts_t *cntp;
2321        int             i;
2322
2323        memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2324
2325        if (!(flags & XFS_ICSB_LAZY_COUNT))
2326                xfs_icsb_lock_all_counters(mp);
2327
2328        for_each_online_cpu(i) {
2329                cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2330                cnt->icsb_icount += cntp->icsb_icount;
2331                cnt->icsb_ifree += cntp->icsb_ifree;
2332                cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2333        }
2334
2335        if (!(flags & XFS_ICSB_LAZY_COUNT))
2336                xfs_icsb_unlock_all_counters(mp);
2337}
2338
2339STATIC int
2340xfs_icsb_counter_disabled(
2341        xfs_mount_t     *mp,
2342        xfs_sb_field_t  field)
2343{
2344        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2345        return test_bit(field, &mp->m_icsb_counters);
2346}
2347
2348STATIC void
2349xfs_icsb_disable_counter(
2350        xfs_mount_t     *mp,
2351        xfs_sb_field_t  field)
2352{
2353        xfs_icsb_cnts_t cnt;
2354
2355        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2356
2357        /*
2358         * If we are already disabled, then there is nothing to do
2359         * here. We check before locking all the counters to avoid
2360         * the expensive lock operation when being called in the
2361         * slow path and the counter is already disabled. This is
2362         * safe because the only time we set or clear this state is under
2363         * the m_icsb_mutex.
2364         */
2365        if (xfs_icsb_counter_disabled(mp, field))
2366                return;
2367
2368        xfs_icsb_lock_all_counters(mp);
2369        if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2370                /* drain back to superblock */
2371
2372                xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2373                switch(field) {
2374                case XFS_SBS_ICOUNT:
2375                        mp->m_sb.sb_icount = cnt.icsb_icount;
2376                        break;
2377                case XFS_SBS_IFREE:
2378                        mp->m_sb.sb_ifree = cnt.icsb_ifree;
2379                        break;
2380                case XFS_SBS_FDBLOCKS:
2381                        mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2382                        break;
2383                default:
2384                        BUG();
2385                }
2386        }
2387
2388        xfs_icsb_unlock_all_counters(mp);
2389}
2390
2391STATIC void
2392xfs_icsb_enable_counter(
2393        xfs_mount_t     *mp,
2394        xfs_sb_field_t  field,
2395        uint64_t        count,
2396        uint64_t        resid)
2397{
2398        xfs_icsb_cnts_t *cntp;
2399        int             i;
2400
2401        ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2402
2403        xfs_icsb_lock_all_counters(mp);
2404        for_each_online_cpu(i) {
2405                cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2406                switch (field) {
2407                case XFS_SBS_ICOUNT:
2408                        cntp->icsb_icount = count + resid;
2409                        break;
2410                case XFS_SBS_IFREE:
2411                        cntp->icsb_ifree = count + resid;
2412                        break;
2413                case XFS_SBS_FDBLOCKS:
2414                        cntp->icsb_fdblocks = count + resid;
2415                        break;
2416                default:
2417                        BUG();
2418                        break;
2419                }
2420                resid = 0;
2421        }
2422        clear_bit(field, &mp->m_icsb_counters);
2423        xfs_icsb_unlock_all_counters(mp);
2424}
2425
2426void
2427xfs_icsb_sync_counters_locked(
2428        xfs_mount_t     *mp,
2429        int             flags)
2430{
2431        xfs_icsb_cnts_t cnt;
2432
2433        xfs_icsb_count(mp, &cnt, flags);
2434
2435        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2436                mp->m_sb.sb_icount = cnt.icsb_icount;
2437        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2438                mp->m_sb.sb_ifree = cnt.icsb_ifree;
2439        if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2440                mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2441}
2442
2443/*
2444 * Accurate update of per-cpu counters to incore superblock
2445 */
2446void
2447xfs_icsb_sync_counters(
2448        xfs_mount_t     *mp,
2449        int             flags)
2450{
2451        spin_lock(&mp->m_sb_lock);
2452        xfs_icsb_sync_counters_locked(mp, flags);
2453        spin_unlock(&mp->m_sb_lock);
2454}
2455
2456/*
2457 * Balance and enable/disable counters as necessary.
2458 *
2459 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2460 * chosen to be the same number as single on disk allocation chunk per CPU, and
2461 * free blocks is something far enough zero that we aren't going thrash when we
2462 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2463 * prevent looping endlessly when xfs_alloc_space asks for more than will
2464 * be distributed to a single CPU but each CPU has enough blocks to be
2465 * reenabled.
2466 *
2467 * Note that we can be called when counters are already disabled.
2468 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2469 * prevent locking every per-cpu counter needlessly.
2470 */
2471
2472#define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2473#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2474                (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2475STATIC void
2476xfs_icsb_balance_counter_locked(
2477        xfs_mount_t     *mp,
2478        xfs_sb_field_t  field,
2479        int             min_per_cpu)
2480{
2481        uint64_t        count, resid;
2482        int             weight = num_online_cpus();
2483        uint64_t        min = (uint64_t)min_per_cpu;
2484
2485        /* disable counter and sync counter */
2486        xfs_icsb_disable_counter(mp, field);
2487
2488        /* update counters  - first CPU gets residual*/
2489        switch (field) {
2490        case XFS_SBS_ICOUNT:
2491                count = mp->m_sb.sb_icount;
2492                resid = do_div(count, weight);
2493                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2494                        return;
2495                break;
2496        case XFS_SBS_IFREE:
2497                count = mp->m_sb.sb_ifree;
2498                resid = do_div(count, weight);
2499                if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2500                        return;
2501                break;
2502        case XFS_SBS_FDBLOCKS:
2503                count = mp->m_sb.sb_fdblocks;
2504                resid = do_div(count, weight);
2505                if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2506                        return;
2507                break;
2508        default:
2509                BUG();
2510                count = resid = 0;      /* quiet, gcc */
2511                break;
2512        }
2513
2514        xfs_icsb_enable_counter(mp, field, count, resid);
2515}
2516
2517STATIC void
2518xfs_icsb_balance_counter(
2519        xfs_mount_t     *mp,
2520        xfs_sb_field_t  fields,
2521        int             min_per_cpu)
2522{
2523        spin_lock(&mp->m_sb_lock);
2524        xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2525        spin_unlock(&mp->m_sb_lock);
2526}
2527
2528int
2529xfs_icsb_modify_counters(
2530        xfs_mount_t     *mp,
2531        xfs_sb_field_t  field,
2532        int64_t         delta,
2533        int             rsvd)
2534{
2535        xfs_icsb_cnts_t *icsbp;
2536        long long       lcounter;       /* long counter for 64 bit fields */
2537        int             ret = 0;
2538
2539        might_sleep();
2540again:
2541        preempt_disable();
2542        icsbp = this_cpu_ptr(mp->m_sb_cnts);
2543
2544        /*
2545         * if the counter is disabled, go to slow path
2546         */
2547        if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2548                goto slow_path;
2549        xfs_icsb_lock_cntr(icsbp);
2550        if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2551                xfs_icsb_unlock_cntr(icsbp);
2552                goto slow_path;
2553        }
2554
2555        switch (field) {
2556        case XFS_SBS_ICOUNT:
2557                lcounter = icsbp->icsb_icount;
2558                lcounter += delta;
2559                if (unlikely(lcounter < 0))
2560                        goto balance_counter;
2561                icsbp->icsb_icount = lcounter;
2562                break;
2563
2564        case XFS_SBS_IFREE:
2565                lcounter = icsbp->icsb_ifree;
2566                lcounter += delta;
2567                if (unlikely(lcounter < 0))
2568                        goto balance_counter;
2569                icsbp->icsb_ifree = lcounter;
2570                break;
2571
2572        case XFS_SBS_FDBLOCKS:
2573                BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2574
2575                lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2576                lcounter += delta;
2577                if (unlikely(lcounter < 0))
2578                        goto balance_counter;
2579                icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2580                break;
2581        default:
2582                BUG();
2583                break;
2584        }
2585        xfs_icsb_unlock_cntr(icsbp);
2586        preempt_enable();
2587        return 0;
2588
2589slow_path:
2590        preempt_enable();
2591
2592        /*
2593         * serialise with a mutex so we don't burn lots of cpu on
2594         * the superblock lock. We still need to hold the superblock
2595         * lock, however, when we modify the global structures.
2596         */
2597        xfs_icsb_lock(mp);
2598
2599        /*
2600         * Now running atomically.
2601         *
2602         * If the counter is enabled, someone has beaten us to rebalancing.
2603         * Drop the lock and try again in the fast path....
2604         */
2605        if (!(xfs_icsb_counter_disabled(mp, field))) {
2606                xfs_icsb_unlock(mp);
2607                goto again;
2608        }
2609
2610        /*
2611         * The counter is currently disabled. Because we are
2612         * running atomically here, we know a rebalance cannot
2613         * be in progress. Hence we can go straight to operating
2614         * on the global superblock. We do not call xfs_mod_incore_sb()
2615         * here even though we need to get the m_sb_lock. Doing so
2616         * will cause us to re-enter this function and deadlock.
2617         * Hence we get the m_sb_lock ourselves and then call
2618         * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2619         * directly on the global counters.
2620         */
2621        spin_lock(&mp->m_sb_lock);
2622        ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2623        spin_unlock(&mp->m_sb_lock);
2624
2625        /*
2626         * Now that we've modified the global superblock, we
2627         * may be able to re-enable the distributed counters
2628         * (e.g. lots of space just got freed). After that
2629         * we are done.
2630         */
2631        if (ret != ENOSPC)
2632                xfs_icsb_balance_counter(mp, field, 0);
2633        xfs_icsb_unlock(mp);
2634        return ret;
2635
2636balance_counter:
2637        xfs_icsb_unlock_cntr(icsbp);
2638        preempt_enable();
2639
2640        /*
2641         * We may have multiple threads here if multiple per-cpu
2642         * counters run dry at the same time. This will mean we can
2643         * do more balances than strictly necessary but it is not
2644         * the common slowpath case.
2645         */
2646        xfs_icsb_lock(mp);
2647
2648        /*
2649         * running atomically.
2650         *
2651         * This will leave the counter in the correct state for future
2652         * accesses. After the rebalance, we simply try again and our retry
2653         * will either succeed through the fast path or slow path without
2654         * another balance operation being required.
2655         */
2656        xfs_icsb_balance_counter(mp, field, delta);
2657        xfs_icsb_unlock(mp);
2658        goto again;
2659}
2660
2661#endif
2662