linux/fs/xfs/xfs_trans.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it would be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write the Free Software Foundation,
  17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  18 */
  19#include "xfs.h"
  20#include "xfs_fs.h"
  21#include "xfs_types.h"
  22#include "xfs_log.h"
  23#include "xfs_trans.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_error.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_btree.h"
  35#include "xfs_ialloc.h"
  36#include "xfs_alloc.h"
  37#include "xfs_extent_busy.h"
  38#include "xfs_bmap.h"
  39#include "xfs_quota.h"
  40#include "xfs_qm.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_trans_space.h"
  43#include "xfs_inode_item.h"
  44#include "xfs_log_priv.h"
  45#include "xfs_buf_item.h"
  46#include "xfs_trace.h"
  47
  48kmem_zone_t     *xfs_trans_zone;
  49kmem_zone_t     *xfs_log_item_desc_zone;
  50
  51/*
  52 * A buffer has a format structure overhead in the log in addition
  53 * to the data, so we need to take this into account when reserving
  54 * space in a transaction for a buffer.  Round the space required up
  55 * to a multiple of 128 bytes so that we don't change the historical
  56 * reservation that has been used for this overhead.
  57 */
  58STATIC uint
  59xfs_buf_log_overhead(void)
  60{
  61        return round_up(sizeof(struct xlog_op_header) +
  62                        sizeof(struct xfs_buf_log_format), 128);
  63}
  64
  65/*
  66 * Calculate out transaction log reservation per item in bytes.
  67 *
  68 * The nbufs argument is used to indicate the number of items that
  69 * will be changed in a transaction.  size is used to tell how many
  70 * bytes should be reserved per item.
  71 */
  72STATIC uint
  73xfs_calc_buf_res(
  74        uint            nbufs,
  75        uint            size)
  76{
  77        return nbufs * (size + xfs_buf_log_overhead());
  78}
  79
  80/*
  81 * Various log reservation values.
  82 *
  83 * These are based on the size of the file system block because that is what
  84 * most transactions manipulate.  Each adds in an additional 128 bytes per
  85 * item logged to try to account for the overhead of the transaction mechanism.
  86 *
  87 * Note:  Most of the reservations underestimate the number of allocation
  88 * groups into which they could free extents in the xfs_bmap_finish() call.
  89 * This is because the number in the worst case is quite high and quite
  90 * unusual.  In order to fix this we need to change xfs_bmap_finish() to free
  91 * extents in only a single AG at a time.  This will require changes to the
  92 * EFI code as well, however, so that the EFI for the extents not freed is
  93 * logged again in each transaction.  See SGI PV #261917.
  94 *
  95 * Reservation functions here avoid a huge stack in xfs_trans_init due to
  96 * register overflow from temporaries in the calculations.
  97 */
  98
  99
 100/*
 101 * In a write transaction we can allocate a maximum of 2
 102 * extents.  This gives:
 103 *    the inode getting the new extents: inode size
 104 *    the inode's bmap btree: max depth * block size
 105 *    the agfs of the ags from which the extents are allocated: 2 * sector
 106 *    the superblock free block counter: sector size
 107 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 108 * And the bmap_finish transaction can free bmap blocks in a join:
 109 *    the agfs of the ags containing the blocks: 2 * sector size
 110 *    the agfls of the ags containing the blocks: 2 * sector size
 111 *    the super block free block counter: sector size
 112 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 113 */
 114STATIC uint
 115xfs_calc_write_reservation(
 116        struct xfs_mount        *mp)
 117{
 118        return XFS_DQUOT_LOGRES(mp) +
 119                MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 120                     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
 121                                      XFS_FSB_TO_B(mp, 1)) +
 122                     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 123                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
 124                                      XFS_FSB_TO_B(mp, 1))),
 125                    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 126                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
 127                                      XFS_FSB_TO_B(mp, 1))));
 128}
 129
 130/*
 131 * In truncating a file we free up to two extents at once.  We can modify:
 132 *    the inode being truncated: inode size
 133 *    the inode's bmap btree: (max depth + 1) * block size
 134 * And the bmap_finish transaction can free the blocks and bmap blocks:
 135 *    the agf for each of the ags: 4 * sector size
 136 *    the agfl for each of the ags: 4 * sector size
 137 *    the super block to reflect the freed blocks: sector size
 138 *    worst case split in allocation btrees per extent assuming 4 extents:
 139 *              4 exts * 2 trees * (2 * max depth - 1) * block size
 140 *    the inode btree: max depth * blocksize
 141 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 142 */
 143STATIC uint
 144xfs_calc_itruncate_reservation(
 145        struct xfs_mount        *mp)
 146{
 147        return XFS_DQUOT_LOGRES(mp) +
 148                MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 149                     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1,
 150                                      XFS_FSB_TO_B(mp, 1))),
 151                    (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
 152                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
 153                                      XFS_FSB_TO_B(mp, 1)) +
 154                    xfs_calc_buf_res(5, 0) +
 155                    xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 156                                     XFS_FSB_TO_B(mp, 1)) +
 157                    xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
 158                                     mp->m_in_maxlevels, 0)));
 159}
 160
 161/*
 162 * In renaming a files we can modify:
 163 *    the four inodes involved: 4 * inode size
 164 *    the two directory btrees: 2 * (max depth + v2) * dir block size
 165 *    the two directory bmap btrees: 2 * max depth * block size
 166 * And the bmap_finish transaction can free dir and bmap blocks (two sets
 167 *      of bmap blocks) giving:
 168 *    the agf for the ags in which the blocks live: 3 * sector size
 169 *    the agfl for the ags in which the blocks live: 3 * sector size
 170 *    the superblock for the free block count: sector size
 171 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
 172 */
 173STATIC uint
 174xfs_calc_rename_reservation(
 175        struct xfs_mount        *mp)
 176{
 177        return XFS_DQUOT_LOGRES(mp) +
 178                MAX((xfs_calc_buf_res(4, mp->m_sb.sb_inodesize) +
 179                     xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
 180                                      XFS_FSB_TO_B(mp, 1))),
 181                    (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
 182                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 3),
 183                                      XFS_FSB_TO_B(mp, 1))));
 184}
 185
 186/*
 187 * For creating a link to an inode:
 188 *    the parent directory inode: inode size
 189 *    the linked inode: inode size
 190 *    the directory btree could split: (max depth + v2) * dir block size
 191 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 192 * And the bmap_finish transaction can free some bmap blocks giving:
 193 *    the agf for the ag in which the blocks live: sector size
 194 *    the agfl for the ag in which the blocks live: sector size
 195 *    the superblock for the free block count: sector size
 196 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 197 */
 198STATIC uint
 199xfs_calc_link_reservation(
 200        struct xfs_mount        *mp)
 201{
 202        return XFS_DQUOT_LOGRES(mp) +
 203                MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
 204                     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 205                                      XFS_FSB_TO_B(mp, 1))),
 206                    (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 207                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 208                                      XFS_FSB_TO_B(mp, 1))));
 209}
 210
 211/*
 212 * For removing a directory entry we can modify:
 213 *    the parent directory inode: inode size
 214 *    the removed inode: inode size
 215 *    the directory btree could join: (max depth + v2) * dir block size
 216 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 217 * And the bmap_finish transaction can free the dir and bmap blocks giving:
 218 *    the agf for the ag in which the blocks live: 2 * sector size
 219 *    the agfl for the ag in which the blocks live: 2 * sector size
 220 *    the superblock for the free block count: sector size
 221 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 222 */
 223STATIC uint
 224xfs_calc_remove_reservation(
 225        struct xfs_mount        *mp)
 226{
 227        return XFS_DQUOT_LOGRES(mp) +
 228                MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
 229                     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 230                                      XFS_FSB_TO_B(mp, 1))),
 231                    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 232                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
 233                                      XFS_FSB_TO_B(mp, 1))));
 234}
 235
 236/*
 237 * For symlink we can modify:
 238 *    the parent directory inode: inode size
 239 *    the new inode: inode size
 240 *    the inode btree entry: 1 block
 241 *    the directory btree: (max depth + v2) * dir block size
 242 *    the directory inode's bmap btree: (max depth + v2) * block size
 243 *    the blocks for the symlink: 1 kB
 244 * Or in the first xact we allocate some inodes giving:
 245 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 246 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 247 *    the inode btree: max depth * blocksize
 248 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 249 */
 250STATIC uint
 251xfs_calc_symlink_reservation(
 252        struct xfs_mount        *mp)
 253{
 254        return XFS_DQUOT_LOGRES(mp) +
 255                MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
 256                     xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
 257                     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 258                                      XFS_FSB_TO_B(mp, 1)) +
 259                     xfs_calc_buf_res(1, 1024)),
 260                    (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 261                     xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp),
 262                                      XFS_FSB_TO_B(mp, 1)) +
 263                     xfs_calc_buf_res(mp->m_in_maxlevels,
 264                                      XFS_FSB_TO_B(mp, 1)) +
 265                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 266                                      XFS_FSB_TO_B(mp, 1))));
 267}
 268
 269/*
 270 * For create we can modify:
 271 *    the parent directory inode: inode size
 272 *    the new inode: inode size
 273 *    the inode btree entry: block size
 274 *    the superblock for the nlink flag: sector size
 275 *    the directory btree: (max depth + v2) * dir block size
 276 *    the directory inode's bmap btree: (max depth + v2) * block size
 277 * Or in the first xact we allocate some inodes giving:
 278 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 279 *    the superblock for the nlink flag: sector size
 280 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 281 *    the inode btree: max depth * blocksize
 282 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 283 */
 284STATIC uint
 285xfs_calc_create_reservation(
 286        struct xfs_mount        *mp)
 287{
 288        return XFS_DQUOT_LOGRES(mp) +
 289                MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
 290                     xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 291                     (uint)XFS_FSB_TO_B(mp, 1) +
 292                     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 293                                      XFS_FSB_TO_B(mp, 1))),
 294                    (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 295                     mp->m_sb.sb_sectsize +
 296                     xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp),
 297                                      XFS_FSB_TO_B(mp, 1)) +
 298                     xfs_calc_buf_res(mp->m_in_maxlevels,
 299                                      XFS_FSB_TO_B(mp, 1)) +
 300                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 301                                      XFS_FSB_TO_B(mp, 1))));
 302}
 303
 304/*
 305 * Making a new directory is the same as creating a new file.
 306 */
 307STATIC uint
 308xfs_calc_mkdir_reservation(
 309        struct xfs_mount        *mp)
 310{
 311        return xfs_calc_create_reservation(mp);
 312}
 313
 314/*
 315 * In freeing an inode we can modify:
 316 *    the inode being freed: inode size
 317 *    the super block free inode counter: sector size
 318 *    the agi hash list and counters: sector size
 319 *    the inode btree entry: block size
 320 *    the on disk inode before ours in the agi hash list: inode cluster size
 321 *    the inode btree: max depth * blocksize
 322 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 323 */
 324STATIC uint
 325xfs_calc_ifree_reservation(
 326        struct xfs_mount        *mp)
 327{
 328        return XFS_DQUOT_LOGRES(mp) +
 329                xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 330                xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 331                xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
 332                MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
 333                    XFS_INODE_CLUSTER_SIZE(mp)) +
 334                xfs_calc_buf_res(1, 0) +
 335                xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
 336                                 mp->m_in_maxlevels, 0) +
 337                xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 338                                 XFS_FSB_TO_B(mp, 1));
 339}
 340
 341/*
 342 * When only changing the inode we log the inode and possibly the superblock
 343 * We also add a bit of slop for the transaction stuff.
 344 */
 345STATIC uint
 346xfs_calc_ichange_reservation(
 347        struct xfs_mount        *mp)
 348{
 349        return XFS_DQUOT_LOGRES(mp) +
 350                mp->m_sb.sb_inodesize +
 351                mp->m_sb.sb_sectsize +
 352                512;
 353
 354}
 355
 356/*
 357 * Growing the data section of the filesystem.
 358 *      superblock
 359 *      agi and agf
 360 *      allocation btrees
 361 */
 362STATIC uint
 363xfs_calc_growdata_reservation(
 364        struct xfs_mount        *mp)
 365{
 366        return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 367                xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 368                                 XFS_FSB_TO_B(mp, 1));
 369}
 370
 371/*
 372 * Growing the rt section of the filesystem.
 373 * In the first set of transactions (ALLOC) we allocate space to the
 374 * bitmap or summary files.
 375 *      superblock: sector size
 376 *      agf of the ag from which the extent is allocated: sector size
 377 *      bmap btree for bitmap/summary inode: max depth * blocksize
 378 *      bitmap/summary inode: inode size
 379 *      allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
 380 */
 381STATIC uint
 382xfs_calc_growrtalloc_reservation(
 383        struct xfs_mount        *mp)
 384{
 385        return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 386                xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
 387                                 XFS_FSB_TO_B(mp, 1)) +
 388                xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 389                xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 390                                 XFS_FSB_TO_B(mp, 1));
 391}
 392
 393/*
 394 * Growing the rt section of the filesystem.
 395 * In the second set of transactions (ZERO) we zero the new metadata blocks.
 396 *      one bitmap/summary block: blocksize
 397 */
 398STATIC uint
 399xfs_calc_growrtzero_reservation(
 400        struct xfs_mount        *mp)
 401{
 402        return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
 403}
 404
 405/*
 406 * Growing the rt section of the filesystem.
 407 * In the third set of transactions (FREE) we update metadata without
 408 * allocating any new blocks.
 409 *      superblock: sector size
 410 *      bitmap inode: inode size
 411 *      summary inode: inode size
 412 *      one bitmap block: blocksize
 413 *      summary blocks: new summary size
 414 */
 415STATIC uint
 416xfs_calc_growrtfree_reservation(
 417        struct xfs_mount        *mp)
 418{
 419        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 420                xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
 421                xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
 422                xfs_calc_buf_res(1, mp->m_rsumsize);
 423}
 424
 425/*
 426 * Logging the inode modification timestamp on a synchronous write.
 427 *      inode
 428 */
 429STATIC uint
 430xfs_calc_swrite_reservation(
 431        struct xfs_mount        *mp)
 432{
 433        return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
 434}
 435
 436/*
 437 * Logging the inode mode bits when writing a setuid/setgid file
 438 *      inode
 439 */
 440STATIC uint
 441xfs_calc_writeid_reservation(xfs_mount_t *mp)
 442{
 443        return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
 444}
 445
 446/*
 447 * Converting the inode from non-attributed to attributed.
 448 *      the inode being converted: inode size
 449 *      agf block and superblock (for block allocation)
 450 *      the new block (directory sized)
 451 *      bmap blocks for the new directory block
 452 *      allocation btrees
 453 */
 454STATIC uint
 455xfs_calc_addafork_reservation(
 456        struct xfs_mount        *mp)
 457{
 458        return XFS_DQUOT_LOGRES(mp) +
 459                xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 460                xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 461                xfs_calc_buf_res(1, mp->m_dirblksize) +
 462                xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
 463                                 XFS_FSB_TO_B(mp, 1)) +
 464                xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
 465                                 XFS_FSB_TO_B(mp, 1));
 466}
 467
 468/*
 469 * Removing the attribute fork of a file
 470 *    the inode being truncated: inode size
 471 *    the inode's bmap btree: max depth * block size
 472 * And the bmap_finish transaction can free the blocks and bmap blocks:
 473 *    the agf for each of the ags: 4 * sector size
 474 *    the agfl for each of the ags: 4 * sector size
 475 *    the super block to reflect the freed blocks: sector size
 476 *    worst case split in allocation btrees per extent assuming 4 extents:
 477 *              4 exts * 2 trees * (2 * max depth - 1) * block size
 478 */
 479STATIC uint
 480xfs_calc_attrinval_reservation(
 481        struct xfs_mount        *mp)
 482{
 483        return MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 484                    xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
 485                                     XFS_FSB_TO_B(mp, 1))),
 486                   (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
 487                    xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
 488                                     XFS_FSB_TO_B(mp, 1))));
 489}
 490
 491/*
 492 * Setting an attribute at mount time.
 493 *      the inode getting the attribute
 494 *      the superblock for allocations
 495 *      the agfs extents are allocated from
 496 *      the attribute btree * max depth
 497 *      the inode allocation btree
 498 * Since attribute transaction space is dependent on the size of the attribute,
 499 * the calculation is done partially at mount time and partially at runtime(see
 500 * below).
 501 */
 502STATIC uint
 503xfs_calc_attrsetm_reservation(
 504        struct xfs_mount        *mp)
 505{
 506        return XFS_DQUOT_LOGRES(mp) +
 507                xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 508                xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 509                xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
 510}
 511
 512/*
 513 * Setting an attribute at runtime, transaction space unit per block.
 514 *      the superblock for allocations: sector size
 515 *      the inode bmap btree could join or split: max depth * block size
 516 * Since the runtime attribute transaction space is dependent on the total
 517 * blocks needed for the 1st bmap, here we calculate out the space unit for
 518 * one block so that the caller could figure out the total space according
 519 * to the attibute extent length in blocks by: ext * XFS_ATTRSETRT_LOG_RES(mp).
 520 */
 521STATIC uint
 522xfs_calc_attrsetrt_reservation(
 523        struct xfs_mount        *mp)
 524{
 525        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 526                xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
 527                                 XFS_FSB_TO_B(mp, 1));
 528}
 529
 530/*
 531 * Removing an attribute.
 532 *    the inode: inode size
 533 *    the attribute btree could join: max depth * block size
 534 *    the inode bmap btree could join or split: max depth * block size
 535 * And the bmap_finish transaction can free the attr blocks freed giving:
 536 *    the agf for the ag in which the blocks live: 2 * sector size
 537 *    the agfl for the ag in which the blocks live: 2 * sector size
 538 *    the superblock for the free block count: sector size
 539 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 540 */
 541STATIC uint
 542xfs_calc_attrrm_reservation(
 543        struct xfs_mount        *mp)
 544{
 545        return XFS_DQUOT_LOGRES(mp) +
 546                MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
 547                     xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
 548                                      XFS_FSB_TO_B(mp, 1)) +
 549                     (uint)XFS_FSB_TO_B(mp,
 550                                        XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 551                     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
 552                    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 553                     xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
 554                                      XFS_FSB_TO_B(mp, 1))));
 555}
 556
 557/*
 558 * Clearing a bad agino number in an agi hash bucket.
 559 */
 560STATIC uint
 561xfs_calc_clear_agi_bucket_reservation(
 562        struct xfs_mount        *mp)
 563{
 564        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 565}
 566
 567/*
 568 * Clearing the quotaflags in the superblock.
 569 *      the super block for changing quota flags: sector size
 570 */
 571STATIC uint
 572xfs_calc_qm_sbchange_reservation(
 573        struct xfs_mount        *mp)
 574{
 575        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 576}
 577
 578/*
 579 * Adjusting quota limits.
 580 *    the xfs_disk_dquot_t: sizeof(struct xfs_disk_dquot)
 581 */
 582STATIC uint
 583xfs_calc_qm_setqlim_reservation(
 584        struct xfs_mount        *mp)
 585{
 586        return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
 587}
 588
 589/*
 590 * Allocating quota on disk if needed.
 591 *      the write transaction log space: XFS_WRITE_LOG_RES(mp)
 592 *      the unit of quota allocation: one system block size
 593 */
 594STATIC uint
 595xfs_calc_qm_dqalloc_reservation(
 596        struct xfs_mount        *mp)
 597{
 598        return XFS_WRITE_LOG_RES(mp) +
 599                xfs_calc_buf_res(1,
 600                        XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
 601}
 602
 603/*
 604 * Turning off quotas.
 605 *    the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
 606 *    the superblock for the quota flags: sector size
 607 */
 608STATIC uint
 609xfs_calc_qm_quotaoff_reservation(
 610        struct xfs_mount        *mp)
 611{
 612        return sizeof(struct xfs_qoff_logitem) * 2 +
 613                xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 614}
 615
 616/*
 617 * End of turning off quotas.
 618 *    the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
 619 */
 620STATIC uint
 621xfs_calc_qm_quotaoff_end_reservation(
 622        struct xfs_mount        *mp)
 623{
 624        return sizeof(struct xfs_qoff_logitem) * 2;
 625}
 626
 627/*
 628 * Syncing the incore super block changes to disk.
 629 *     the super block to reflect the changes: sector size
 630 */
 631STATIC uint
 632xfs_calc_sb_reservation(
 633        struct xfs_mount        *mp)
 634{
 635        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 636}
 637
 638/*
 639 * Initialize the precomputed transaction reservation values
 640 * in the mount structure.
 641 */
 642void
 643xfs_trans_init(
 644        struct xfs_mount        *mp)
 645{
 646        struct xfs_trans_reservations *resp = &mp->m_reservations;
 647
 648        resp->tr_write = xfs_calc_write_reservation(mp);
 649        resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
 650        resp->tr_rename = xfs_calc_rename_reservation(mp);
 651        resp->tr_link = xfs_calc_link_reservation(mp);
 652        resp->tr_remove = xfs_calc_remove_reservation(mp);
 653        resp->tr_symlink = xfs_calc_symlink_reservation(mp);
 654        resp->tr_create = xfs_calc_create_reservation(mp);
 655        resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
 656        resp->tr_ifree = xfs_calc_ifree_reservation(mp);
 657        resp->tr_ichange = xfs_calc_ichange_reservation(mp);
 658        resp->tr_growdata = xfs_calc_growdata_reservation(mp);
 659        resp->tr_swrite = xfs_calc_swrite_reservation(mp);
 660        resp->tr_writeid = xfs_calc_writeid_reservation(mp);
 661        resp->tr_addafork = xfs_calc_addafork_reservation(mp);
 662        resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
 663        resp->tr_attrsetm = xfs_calc_attrsetm_reservation(mp);
 664        resp->tr_attrsetrt = xfs_calc_attrsetrt_reservation(mp);
 665        resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
 666        resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
 667        resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
 668        resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
 669        resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
 670        resp->tr_qm_sbchange = xfs_calc_qm_sbchange_reservation(mp);
 671        resp->tr_qm_setqlim = xfs_calc_qm_setqlim_reservation(mp);
 672        resp->tr_qm_dqalloc = xfs_calc_qm_dqalloc_reservation(mp);
 673        resp->tr_qm_quotaoff = xfs_calc_qm_quotaoff_reservation(mp);
 674        resp->tr_qm_equotaoff = xfs_calc_qm_quotaoff_end_reservation(mp);
 675        resp->tr_sb = xfs_calc_sb_reservation(mp);
 676}
 677
 678/*
 679 * This routine is called to allocate a transaction structure.
 680 * The type parameter indicates the type of the transaction.  These
 681 * are enumerated in xfs_trans.h.
 682 *
 683 * Dynamically allocate the transaction structure from the transaction
 684 * zone, initialize it, and return it to the caller.
 685 */
 686xfs_trans_t *
 687xfs_trans_alloc(
 688        xfs_mount_t     *mp,
 689        uint            type)
 690{
 691        xfs_trans_t     *tp;
 692
 693        sb_start_intwrite(mp->m_super);
 694        tp = _xfs_trans_alloc(mp, type, KM_SLEEP);
 695        tp->t_flags |= XFS_TRANS_FREEZE_PROT;
 696        return tp;
 697}
 698
 699xfs_trans_t *
 700_xfs_trans_alloc(
 701        xfs_mount_t     *mp,
 702        uint            type,
 703        xfs_km_flags_t  memflags)
 704{
 705        xfs_trans_t     *tp;
 706
 707        WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
 708        atomic_inc(&mp->m_active_trans);
 709
 710        tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
 711        tp->t_magic = XFS_TRANS_MAGIC;
 712        tp->t_type = type;
 713        tp->t_mountp = mp;
 714        INIT_LIST_HEAD(&tp->t_items);
 715        INIT_LIST_HEAD(&tp->t_busy);
 716        return tp;
 717}
 718
 719/*
 720 * Free the transaction structure.  If there is more clean up
 721 * to do when the structure is freed, add it here.
 722 */
 723STATIC void
 724xfs_trans_free(
 725        struct xfs_trans        *tp)
 726{
 727        xfs_extent_busy_sort(&tp->t_busy);
 728        xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
 729
 730        atomic_dec(&tp->t_mountp->m_active_trans);
 731        if (tp->t_flags & XFS_TRANS_FREEZE_PROT)
 732                sb_end_intwrite(tp->t_mountp->m_super);
 733        xfs_trans_free_dqinfo(tp);
 734        kmem_zone_free(xfs_trans_zone, tp);
 735}
 736
 737/*
 738 * This is called to create a new transaction which will share the
 739 * permanent log reservation of the given transaction.  The remaining
 740 * unused block and rt extent reservations are also inherited.  This
 741 * implies that the original transaction is no longer allowed to allocate
 742 * blocks.  Locks and log items, however, are no inherited.  They must
 743 * be added to the new transaction explicitly.
 744 */
 745xfs_trans_t *
 746xfs_trans_dup(
 747        xfs_trans_t     *tp)
 748{
 749        xfs_trans_t     *ntp;
 750
 751        ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
 752
 753        /*
 754         * Initialize the new transaction structure.
 755         */
 756        ntp->t_magic = XFS_TRANS_MAGIC;
 757        ntp->t_type = tp->t_type;
 758        ntp->t_mountp = tp->t_mountp;
 759        INIT_LIST_HEAD(&ntp->t_items);
 760        INIT_LIST_HEAD(&ntp->t_busy);
 761
 762        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 763        ASSERT(tp->t_ticket != NULL);
 764
 765        ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
 766                       (tp->t_flags & XFS_TRANS_RESERVE) |
 767                       (tp->t_flags & XFS_TRANS_FREEZE_PROT);
 768        /* We gave our writer reference to the new transaction */
 769        tp->t_flags &= ~XFS_TRANS_FREEZE_PROT;
 770        ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 771        ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 772        tp->t_blk_res = tp->t_blk_res_used;
 773        ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 774        tp->t_rtx_res = tp->t_rtx_res_used;
 775        ntp->t_pflags = tp->t_pflags;
 776
 777        xfs_trans_dup_dqinfo(tp, ntp);
 778
 779        atomic_inc(&tp->t_mountp->m_active_trans);
 780        return ntp;
 781}
 782
 783/*
 784 * This is called to reserve free disk blocks and log space for the
 785 * given transaction.  This must be done before allocating any resources
 786 * within the transaction.
 787 *
 788 * This will return ENOSPC if there are not enough blocks available.
 789 * It will sleep waiting for available log space.
 790 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 791 * is used by long running transactions.  If any one of the reservations
 792 * fails then they will all be backed out.
 793 *
 794 * This does not do quota reservations. That typically is done by the
 795 * caller afterwards.
 796 */
 797int
 798xfs_trans_reserve(
 799        xfs_trans_t     *tp,
 800        uint            blocks,
 801        uint            logspace,
 802        uint            rtextents,
 803        uint            flags,
 804        uint            logcount)
 805{
 806        int             error = 0;
 807        int             rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 808
 809        /* Mark this thread as being in a transaction */
 810        current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 811
 812        /*
 813         * Attempt to reserve the needed disk blocks by decrementing
 814         * the number needed from the number available.  This will
 815         * fail if the count would go below zero.
 816         */
 817        if (blocks > 0) {
 818                error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 819                                          -((int64_t)blocks), rsvd);
 820                if (error != 0) {
 821                        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 822                        return (XFS_ERROR(ENOSPC));
 823                }
 824                tp->t_blk_res += blocks;
 825        }
 826
 827        /*
 828         * Reserve the log space needed for this transaction.
 829         */
 830        if (logspace > 0) {
 831                bool    permanent = false;
 832
 833                ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
 834                ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
 835
 836                if (flags & XFS_TRANS_PERM_LOG_RES) {
 837                        tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 838                        permanent = true;
 839                } else {
 840                        ASSERT(tp->t_ticket == NULL);
 841                        ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 842                }
 843
 844                if (tp->t_ticket != NULL) {
 845                        ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
 846                        error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
 847                } else {
 848                        error = xfs_log_reserve(tp->t_mountp, logspace,
 849                                                logcount, &tp->t_ticket,
 850                                                XFS_TRANSACTION, permanent,
 851                                                tp->t_type);
 852                }
 853
 854                if (error)
 855                        goto undo_blocks;
 856
 857                tp->t_log_res = logspace;
 858                tp->t_log_count = logcount;
 859        }
 860
 861        /*
 862         * Attempt to reserve the needed realtime extents by decrementing
 863         * the number needed from the number available.  This will
 864         * fail if the count would go below zero.
 865         */
 866        if (rtextents > 0) {
 867                error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
 868                                          -((int64_t)rtextents), rsvd);
 869                if (error) {
 870                        error = XFS_ERROR(ENOSPC);
 871                        goto undo_log;
 872                }
 873                tp->t_rtx_res += rtextents;
 874        }
 875
 876        return 0;
 877
 878        /*
 879         * Error cases jump to one of these labels to undo any
 880         * reservations which have already been performed.
 881         */
 882undo_log:
 883        if (logspace > 0) {
 884                int             log_flags;
 885
 886                if (flags & XFS_TRANS_PERM_LOG_RES) {
 887                        log_flags = XFS_LOG_REL_PERM_RESERV;
 888                } else {
 889                        log_flags = 0;
 890                }
 891                xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
 892                tp->t_ticket = NULL;
 893                tp->t_log_res = 0;
 894                tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 895        }
 896
 897undo_blocks:
 898        if (blocks > 0) {
 899                xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 900                                         (int64_t)blocks, rsvd);
 901                tp->t_blk_res = 0;
 902        }
 903
 904        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 905
 906        return error;
 907}
 908
 909/*
 910 * Record the indicated change to the given field for application
 911 * to the file system's superblock when the transaction commits.
 912 * For now, just store the change in the transaction structure.
 913 *
 914 * Mark the transaction structure to indicate that the superblock
 915 * needs to be updated before committing.
 916 *
 917 * Because we may not be keeping track of allocated/free inodes and
 918 * used filesystem blocks in the superblock, we do not mark the
 919 * superblock dirty in this transaction if we modify these fields.
 920 * We still need to update the transaction deltas so that they get
 921 * applied to the incore superblock, but we don't want them to
 922 * cause the superblock to get locked and logged if these are the
 923 * only fields in the superblock that the transaction modifies.
 924 */
 925void
 926xfs_trans_mod_sb(
 927        xfs_trans_t     *tp,
 928        uint            field,
 929        int64_t         delta)
 930{
 931        uint32_t        flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 932        xfs_mount_t     *mp = tp->t_mountp;
 933
 934        switch (field) {
 935        case XFS_TRANS_SB_ICOUNT:
 936                tp->t_icount_delta += delta;
 937                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 938                        flags &= ~XFS_TRANS_SB_DIRTY;
 939                break;
 940        case XFS_TRANS_SB_IFREE:
 941                tp->t_ifree_delta += delta;
 942                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 943                        flags &= ~XFS_TRANS_SB_DIRTY;
 944                break;
 945        case XFS_TRANS_SB_FDBLOCKS:
 946                /*
 947                 * Track the number of blocks allocated in the
 948                 * transaction.  Make sure it does not exceed the
 949                 * number reserved.
 950                 */
 951                if (delta < 0) {
 952                        tp->t_blk_res_used += (uint)-delta;
 953                        ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
 954                }
 955                tp->t_fdblocks_delta += delta;
 956                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 957                        flags &= ~XFS_TRANS_SB_DIRTY;
 958                break;
 959        case XFS_TRANS_SB_RES_FDBLOCKS:
 960                /*
 961                 * The allocation has already been applied to the
 962                 * in-core superblock's counter.  This should only
 963                 * be applied to the on-disk superblock.
 964                 */
 965                ASSERT(delta < 0);
 966                tp->t_res_fdblocks_delta += delta;
 967                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 968                        flags &= ~XFS_TRANS_SB_DIRTY;
 969                break;
 970        case XFS_TRANS_SB_FREXTENTS:
 971                /*
 972                 * Track the number of blocks allocated in the
 973                 * transaction.  Make sure it does not exceed the
 974                 * number reserved.
 975                 */
 976                if (delta < 0) {
 977                        tp->t_rtx_res_used += (uint)-delta;
 978                        ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 979                }
 980                tp->t_frextents_delta += delta;
 981                break;
 982        case XFS_TRANS_SB_RES_FREXTENTS:
 983                /*
 984                 * The allocation has already been applied to the
 985                 * in-core superblock's counter.  This should only
 986                 * be applied to the on-disk superblock.
 987                 */
 988                ASSERT(delta < 0);
 989                tp->t_res_frextents_delta += delta;
 990                break;
 991        case XFS_TRANS_SB_DBLOCKS:
 992                ASSERT(delta > 0);
 993                tp->t_dblocks_delta += delta;
 994                break;
 995        case XFS_TRANS_SB_AGCOUNT:
 996                ASSERT(delta > 0);
 997                tp->t_agcount_delta += delta;
 998                break;
 999        case XFS_TRANS_SB_IMAXPCT:
1000                tp->t_imaxpct_delta += delta;
1001                break;
1002        case XFS_TRANS_SB_REXTSIZE:
1003                tp->t_rextsize_delta += delta;
1004                break;
1005        case XFS_TRANS_SB_RBMBLOCKS:
1006                tp->t_rbmblocks_delta += delta;
1007                break;
1008        case XFS_TRANS_SB_RBLOCKS:
1009                tp->t_rblocks_delta += delta;
1010                break;
1011        case XFS_TRANS_SB_REXTENTS:
1012                tp->t_rextents_delta += delta;
1013                break;
1014        case XFS_TRANS_SB_REXTSLOG:
1015                tp->t_rextslog_delta += delta;
1016                break;
1017        default:
1018                ASSERT(0);
1019                return;
1020        }
1021
1022        tp->t_flags |= flags;
1023}
1024
1025/*
1026 * xfs_trans_apply_sb_deltas() is called from the commit code
1027 * to bring the superblock buffer into the current transaction
1028 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
1029 *
1030 * For now we just look at each field allowed to change and change
1031 * it if necessary.
1032 */
1033STATIC void
1034xfs_trans_apply_sb_deltas(
1035        xfs_trans_t     *tp)
1036{
1037        xfs_dsb_t       *sbp;
1038        xfs_buf_t       *bp;
1039        int             whole = 0;
1040
1041        bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
1042        sbp = XFS_BUF_TO_SBP(bp);
1043
1044        /*
1045         * Check that superblock mods match the mods made to AGF counters.
1046         */
1047        ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
1048               (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
1049                tp->t_ag_btree_delta));
1050
1051        /*
1052         * Only update the superblock counters if we are logging them
1053         */
1054        if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
1055                if (tp->t_icount_delta)
1056                        be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
1057                if (tp->t_ifree_delta)
1058                        be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
1059                if (tp->t_fdblocks_delta)
1060                        be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
1061                if (tp->t_res_fdblocks_delta)
1062                        be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
1063        }
1064
1065        if (tp->t_frextents_delta)
1066                be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
1067        if (tp->t_res_frextents_delta)
1068                be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
1069
1070        if (tp->t_dblocks_delta) {
1071                be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
1072                whole = 1;
1073        }
1074        if (tp->t_agcount_delta) {
1075                be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
1076                whole = 1;
1077        }
1078        if (tp->t_imaxpct_delta) {
1079                sbp->sb_imax_pct += tp->t_imaxpct_delta;
1080                whole = 1;
1081        }
1082        if (tp->t_rextsize_delta) {
1083                be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
1084                whole = 1;
1085        }
1086        if (tp->t_rbmblocks_delta) {
1087                be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
1088                whole = 1;
1089        }
1090        if (tp->t_rblocks_delta) {
1091                be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
1092                whole = 1;
1093        }
1094        if (tp->t_rextents_delta) {
1095                be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
1096                whole = 1;
1097        }
1098        if (tp->t_rextslog_delta) {
1099                sbp->sb_rextslog += tp->t_rextslog_delta;
1100                whole = 1;
1101        }
1102
1103        if (whole)
1104                /*
1105                 * Log the whole thing, the fields are noncontiguous.
1106                 */
1107                xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
1108        else
1109                /*
1110                 * Since all the modifiable fields are contiguous, we
1111                 * can get away with this.
1112                 */
1113                xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
1114                                  offsetof(xfs_dsb_t, sb_frextents) +
1115                                  sizeof(sbp->sb_frextents) - 1);
1116}
1117
1118/*
1119 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
1120 * and apply superblock counter changes to the in-core superblock.  The
1121 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
1122 * applied to the in-core superblock.  The idea is that that has already been
1123 * done.
1124 *
1125 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1126 * However, we have to ensure that we only modify each superblock field only
1127 * once because the application of the delta values may not be atomic. That can
1128 * lead to ENOSPC races occurring if we have two separate modifcations of the
1129 * free space counter to put back the entire reservation and then take away
1130 * what we used.
1131 *
1132 * If we are not logging superblock counters, then the inode allocated/free and
1133 * used block counts are not updated in the on disk superblock. In this case,
1134 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1135 * still need to update the incore superblock with the changes.
1136 */
1137void
1138xfs_trans_unreserve_and_mod_sb(
1139        xfs_trans_t     *tp)
1140{
1141        xfs_mod_sb_t    msb[9]; /* If you add cases, add entries */
1142        xfs_mod_sb_t    *msbp;
1143        xfs_mount_t     *mp = tp->t_mountp;
1144        /* REFERENCED */
1145        int             error;
1146        int             rsvd;
1147        int64_t         blkdelta = 0;
1148        int64_t         rtxdelta = 0;
1149        int64_t         idelta = 0;
1150        int64_t         ifreedelta = 0;
1151
1152        msbp = msb;
1153        rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1154
1155        /* calculate deltas */
1156        if (tp->t_blk_res > 0)
1157                blkdelta = tp->t_blk_res;
1158        if ((tp->t_fdblocks_delta != 0) &&
1159            (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1160             (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1161                blkdelta += tp->t_fdblocks_delta;
1162
1163        if (tp->t_rtx_res > 0)
1164                rtxdelta = tp->t_rtx_res;
1165        if ((tp->t_frextents_delta != 0) &&
1166            (tp->t_flags & XFS_TRANS_SB_DIRTY))
1167                rtxdelta += tp->t_frextents_delta;
1168
1169        if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1170             (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1171                idelta = tp->t_icount_delta;
1172                ifreedelta = tp->t_ifree_delta;
1173        }
1174
1175        /* apply the per-cpu counters */
1176        if (blkdelta) {
1177                error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1178                                                 blkdelta, rsvd);
1179                if (error)
1180                        goto out;
1181        }
1182
1183        if (idelta) {
1184                error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1185                                                 idelta, rsvd);
1186                if (error)
1187                        goto out_undo_fdblocks;
1188        }
1189
1190        if (ifreedelta) {
1191                error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1192                                                 ifreedelta, rsvd);
1193                if (error)
1194                        goto out_undo_icount;
1195        }
1196
1197        /* apply remaining deltas */
1198        if (rtxdelta != 0) {
1199                msbp->msb_field = XFS_SBS_FREXTENTS;
1200                msbp->msb_delta = rtxdelta;
1201                msbp++;
1202        }
1203
1204        if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1205                if (tp->t_dblocks_delta != 0) {
1206                        msbp->msb_field = XFS_SBS_DBLOCKS;
1207                        msbp->msb_delta = tp->t_dblocks_delta;
1208                        msbp++;
1209                }
1210                if (tp->t_agcount_delta != 0) {
1211                        msbp->msb_field = XFS_SBS_AGCOUNT;
1212                        msbp->msb_delta = tp->t_agcount_delta;
1213                        msbp++;
1214                }
1215                if (tp->t_imaxpct_delta != 0) {
1216                        msbp->msb_field = XFS_SBS_IMAX_PCT;
1217                        msbp->msb_delta = tp->t_imaxpct_delta;
1218                        msbp++;
1219                }
1220                if (tp->t_rextsize_delta != 0) {
1221                        msbp->msb_field = XFS_SBS_REXTSIZE;
1222                        msbp->msb_delta = tp->t_rextsize_delta;
1223                        msbp++;
1224                }
1225                if (tp->t_rbmblocks_delta != 0) {
1226                        msbp->msb_field = XFS_SBS_RBMBLOCKS;
1227                        msbp->msb_delta = tp->t_rbmblocks_delta;
1228                        msbp++;
1229                }
1230                if (tp->t_rblocks_delta != 0) {
1231                        msbp->msb_field = XFS_SBS_RBLOCKS;
1232                        msbp->msb_delta = tp->t_rblocks_delta;
1233                        msbp++;
1234                }
1235                if (tp->t_rextents_delta != 0) {
1236                        msbp->msb_field = XFS_SBS_REXTENTS;
1237                        msbp->msb_delta = tp->t_rextents_delta;
1238                        msbp++;
1239                }
1240                if (tp->t_rextslog_delta != 0) {
1241                        msbp->msb_field = XFS_SBS_REXTSLOG;
1242                        msbp->msb_delta = tp->t_rextslog_delta;
1243                        msbp++;
1244                }
1245        }
1246
1247        /*
1248         * If we need to change anything, do it.
1249         */
1250        if (msbp > msb) {
1251                error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1252                        (uint)(msbp - msb), rsvd);
1253                if (error)
1254                        goto out_undo_ifreecount;
1255        }
1256
1257        return;
1258
1259out_undo_ifreecount:
1260        if (ifreedelta)
1261                xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1262out_undo_icount:
1263        if (idelta)
1264                xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1265out_undo_fdblocks:
1266        if (blkdelta)
1267                xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1268out:
1269        ASSERT(error == 0);
1270        return;
1271}
1272
1273/*
1274 * Add the given log item to the transaction's list of log items.
1275 *
1276 * The log item will now point to its new descriptor with its li_desc field.
1277 */
1278void
1279xfs_trans_add_item(
1280        struct xfs_trans        *tp,
1281        struct xfs_log_item     *lip)
1282{
1283        struct xfs_log_item_desc *lidp;
1284
1285        ASSERT(lip->li_mountp == tp->t_mountp);
1286        ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
1287
1288        lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1289
1290        lidp->lid_item = lip;
1291        lidp->lid_flags = 0;
1292        list_add_tail(&lidp->lid_trans, &tp->t_items);
1293
1294        lip->li_desc = lidp;
1295}
1296
1297STATIC void
1298xfs_trans_free_item_desc(
1299        struct xfs_log_item_desc *lidp)
1300{
1301        list_del_init(&lidp->lid_trans);
1302        kmem_zone_free(xfs_log_item_desc_zone, lidp);
1303}
1304
1305/*
1306 * Unlink and free the given descriptor.
1307 */
1308void
1309xfs_trans_del_item(
1310        struct xfs_log_item     *lip)
1311{
1312        xfs_trans_free_item_desc(lip->li_desc);
1313        lip->li_desc = NULL;
1314}
1315
1316/*
1317 * Unlock all of the items of a transaction and free all the descriptors
1318 * of that transaction.
1319 */
1320void
1321xfs_trans_free_items(
1322        struct xfs_trans        *tp,
1323        xfs_lsn_t               commit_lsn,
1324        int                     flags)
1325{
1326        struct xfs_log_item_desc *lidp, *next;
1327
1328        list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1329                struct xfs_log_item     *lip = lidp->lid_item;
1330
1331                lip->li_desc = NULL;
1332
1333                if (commit_lsn != NULLCOMMITLSN)
1334                        IOP_COMMITTING(lip, commit_lsn);
1335                if (flags & XFS_TRANS_ABORT)
1336                        lip->li_flags |= XFS_LI_ABORTED;
1337                IOP_UNLOCK(lip);
1338
1339                xfs_trans_free_item_desc(lidp);
1340        }
1341}
1342
1343static inline void
1344xfs_log_item_batch_insert(
1345        struct xfs_ail          *ailp,
1346        struct xfs_ail_cursor   *cur,
1347        struct xfs_log_item     **log_items,
1348        int                     nr_items,
1349        xfs_lsn_t               commit_lsn)
1350{
1351        int     i;
1352
1353        spin_lock(&ailp->xa_lock);
1354        /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1355        xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1356
1357        for (i = 0; i < nr_items; i++)
1358                IOP_UNPIN(log_items[i], 0);
1359}
1360
1361/*
1362 * Bulk operation version of xfs_trans_committed that takes a log vector of
1363 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1364 * minimise lock traffic.
1365 *
1366 * If we are called with the aborted flag set, it is because a log write during
1367 * a CIL checkpoint commit has failed. In this case, all the items in the
1368 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1369 * means that checkpoint commit abort handling is treated exactly the same
1370 * as an iclog write error even though we haven't started any IO yet. Hence in
1371 * this case all we need to do is IOP_COMMITTED processing, followed by an
1372 * IOP_UNPIN(aborted) call.
1373 *
1374 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1375 * at the end of the AIL, the insert cursor avoids the need to walk
1376 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1377 * call. This saves a lot of needless list walking and is a net win, even
1378 * though it slightly increases that amount of AIL lock traffic to set it up
1379 * and tear it down.
1380 */
1381void
1382xfs_trans_committed_bulk(
1383        struct xfs_ail          *ailp,
1384        struct xfs_log_vec      *log_vector,
1385        xfs_lsn_t               commit_lsn,
1386        int                     aborted)
1387{
1388#define LOG_ITEM_BATCH_SIZE     32
1389        struct xfs_log_item     *log_items[LOG_ITEM_BATCH_SIZE];
1390        struct xfs_log_vec      *lv;
1391        struct xfs_ail_cursor   cur;
1392        int                     i = 0;
1393
1394        spin_lock(&ailp->xa_lock);
1395        xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1396        spin_unlock(&ailp->xa_lock);
1397
1398        /* unpin all the log items */
1399        for (lv = log_vector; lv; lv = lv->lv_next ) {
1400                struct xfs_log_item     *lip = lv->lv_item;
1401                xfs_lsn_t               item_lsn;
1402
1403                if (aborted)
1404                        lip->li_flags |= XFS_LI_ABORTED;
1405                item_lsn = IOP_COMMITTED(lip, commit_lsn);
1406
1407                /* item_lsn of -1 means the item needs no further processing */
1408                if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1409                        continue;
1410
1411                /*
1412                 * if we are aborting the operation, no point in inserting the
1413                 * object into the AIL as we are in a shutdown situation.
1414                 */
1415                if (aborted) {
1416                        ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1417                        IOP_UNPIN(lip, 1);
1418                        continue;
1419                }
1420
1421                if (item_lsn != commit_lsn) {
1422
1423                        /*
1424                         * Not a bulk update option due to unusual item_lsn.
1425                         * Push into AIL immediately, rechecking the lsn once
1426                         * we have the ail lock. Then unpin the item. This does
1427                         * not affect the AIL cursor the bulk insert path is
1428                         * using.
1429                         */
1430                        spin_lock(&ailp->xa_lock);
1431                        if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1432                                xfs_trans_ail_update(ailp, lip, item_lsn);
1433                        else
1434                                spin_unlock(&ailp->xa_lock);
1435                        IOP_UNPIN(lip, 0);
1436                        continue;
1437                }
1438
1439                /* Item is a candidate for bulk AIL insert.  */
1440                log_items[i++] = lv->lv_item;
1441                if (i >= LOG_ITEM_BATCH_SIZE) {
1442                        xfs_log_item_batch_insert(ailp, &cur, log_items,
1443                                        LOG_ITEM_BATCH_SIZE, commit_lsn);
1444                        i = 0;
1445                }
1446        }
1447
1448        /* make sure we insert the remainder! */
1449        if (i)
1450                xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1451
1452        spin_lock(&ailp->xa_lock);
1453        xfs_trans_ail_cursor_done(ailp, &cur);
1454        spin_unlock(&ailp->xa_lock);
1455}
1456
1457/*
1458 * Commit the given transaction to the log.
1459 *
1460 * XFS disk error handling mechanism is not based on a typical
1461 * transaction abort mechanism. Logically after the filesystem
1462 * gets marked 'SHUTDOWN', we can't let any new transactions
1463 * be durable - ie. committed to disk - because some metadata might
1464 * be inconsistent. In such cases, this returns an error, and the
1465 * caller may assume that all locked objects joined to the transaction
1466 * have already been unlocked as if the commit had succeeded.
1467 * Do not reference the transaction structure after this call.
1468 */
1469int
1470xfs_trans_commit(
1471        struct xfs_trans        *tp,
1472        uint                    flags)
1473{
1474        struct xfs_mount        *mp = tp->t_mountp;
1475        xfs_lsn_t               commit_lsn = -1;
1476        int                     error = 0;
1477        int                     log_flags = 0;
1478        int                     sync = tp->t_flags & XFS_TRANS_SYNC;
1479
1480        /*
1481         * Determine whether this commit is releasing a permanent
1482         * log reservation or not.
1483         */
1484        if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1485                ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1486                log_flags = XFS_LOG_REL_PERM_RESERV;
1487        }
1488
1489        /*
1490         * If there is nothing to be logged by the transaction,
1491         * then unlock all of the items associated with the
1492         * transaction and free the transaction structure.
1493         * Also make sure to return any reserved blocks to
1494         * the free pool.
1495         */
1496        if (!(tp->t_flags & XFS_TRANS_DIRTY))
1497                goto out_unreserve;
1498
1499        if (XFS_FORCED_SHUTDOWN(mp)) {
1500                error = XFS_ERROR(EIO);
1501                goto out_unreserve;
1502        }
1503
1504        ASSERT(tp->t_ticket != NULL);
1505
1506        /*
1507         * If we need to update the superblock, then do it now.
1508         */
1509        if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1510                xfs_trans_apply_sb_deltas(tp);
1511        xfs_trans_apply_dquot_deltas(tp);
1512
1513        error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1514        if (error == ENOMEM) {
1515                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1516                error = XFS_ERROR(EIO);
1517                goto out_unreserve;
1518        }
1519
1520        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1521        xfs_trans_free(tp);
1522
1523        /*
1524         * If the transaction needs to be synchronous, then force the
1525         * log out now and wait for it.
1526         */
1527        if (sync) {
1528                if (!error) {
1529                        error = _xfs_log_force_lsn(mp, commit_lsn,
1530                                      XFS_LOG_SYNC, NULL);
1531                }
1532                XFS_STATS_INC(xs_trans_sync);
1533        } else {
1534                XFS_STATS_INC(xs_trans_async);
1535        }
1536
1537        return error;
1538
1539out_unreserve:
1540        xfs_trans_unreserve_and_mod_sb(tp);
1541
1542        /*
1543         * It is indeed possible for the transaction to be not dirty but
1544         * the dqinfo portion to be.  All that means is that we have some
1545         * (non-persistent) quota reservations that need to be unreserved.
1546         */
1547        xfs_trans_unreserve_and_mod_dquots(tp);
1548        if (tp->t_ticket) {
1549                commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1550                if (commit_lsn == -1 && !error)
1551                        error = XFS_ERROR(EIO);
1552        }
1553        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1554        xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1555        xfs_trans_free(tp);
1556
1557        XFS_STATS_INC(xs_trans_empty);
1558        return error;
1559}
1560
1561/*
1562 * Unlock all of the transaction's items and free the transaction.
1563 * The transaction must not have modified any of its items, because
1564 * there is no way to restore them to their previous state.
1565 *
1566 * If the transaction has made a log reservation, make sure to release
1567 * it as well.
1568 */
1569void
1570xfs_trans_cancel(
1571        xfs_trans_t             *tp,
1572        int                     flags)
1573{
1574        int                     log_flags;
1575        xfs_mount_t             *mp = tp->t_mountp;
1576
1577        /*
1578         * See if the caller is being too lazy to figure out if
1579         * the transaction really needs an abort.
1580         */
1581        if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1582                flags &= ~XFS_TRANS_ABORT;
1583        /*
1584         * See if the caller is relying on us to shut down the
1585         * filesystem.  This happens in paths where we detect
1586         * corruption and decide to give up.
1587         */
1588        if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1589                XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1590                xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1591        }
1592#ifdef DEBUG
1593        if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1594                struct xfs_log_item_desc *lidp;
1595
1596                list_for_each_entry(lidp, &tp->t_items, lid_trans)
1597                        ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1598        }
1599#endif
1600        xfs_trans_unreserve_and_mod_sb(tp);
1601        xfs_trans_unreserve_and_mod_dquots(tp);
1602
1603        if (tp->t_ticket) {
1604                if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1605                        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1606                        log_flags = XFS_LOG_REL_PERM_RESERV;
1607                } else {
1608                        log_flags = 0;
1609                }
1610                xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1611        }
1612
1613        /* mark this thread as no longer being in a transaction */
1614        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1615
1616        xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1617        xfs_trans_free(tp);
1618}
1619
1620/*
1621 * Roll from one trans in the sequence of PERMANENT transactions to
1622 * the next: permanent transactions are only flushed out when
1623 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1624 * as possible to let chunks of it go to the log. So we commit the
1625 * chunk we've been working on and get a new transaction to continue.
1626 */
1627int
1628xfs_trans_roll(
1629        struct xfs_trans        **tpp,
1630        struct xfs_inode        *dp)
1631{
1632        struct xfs_trans        *trans;
1633        unsigned int            logres, count;
1634        int                     error;
1635
1636        /*
1637         * Ensure that the inode is always logged.
1638         */
1639        trans = *tpp;
1640        xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1641
1642        /*
1643         * Copy the critical parameters from one trans to the next.
1644         */
1645        logres = trans->t_log_res;
1646        count = trans->t_log_count;
1647        *tpp = xfs_trans_dup(trans);
1648
1649        /*
1650         * Commit the current transaction.
1651         * If this commit failed, then it'd just unlock those items that
1652         * are not marked ihold. That also means that a filesystem shutdown
1653         * is in progress. The caller takes the responsibility to cancel
1654         * the duplicate transaction that gets returned.
1655         */
1656        error = xfs_trans_commit(trans, 0);
1657        if (error)
1658                return (error);
1659
1660        trans = *tpp;
1661
1662        /*
1663         * transaction commit worked ok so we can drop the extra ticket
1664         * reference that we gained in xfs_trans_dup()
1665         */
1666        xfs_log_ticket_put(trans->t_ticket);
1667
1668
1669        /*
1670         * Reserve space in the log for th next transaction.
1671         * This also pushes items in the "AIL", the list of logged items,
1672         * out to disk if they are taking up space at the tail of the log
1673         * that we want to use.  This requires that either nothing be locked
1674         * across this call, or that anything that is locked be logged in
1675         * the prior and the next transactions.
1676         */
1677        error = xfs_trans_reserve(trans, 0, logres, 0,
1678                                  XFS_TRANS_PERM_LOG_RES, count);
1679        /*
1680         *  Ensure that the inode is in the new transaction and locked.
1681         */
1682        if (error)
1683                return error;
1684
1685        xfs_trans_ijoin(trans, dp, 0);
1686        return 0;
1687}
1688