linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/gfp.h>
   9#include <linux/bug.h>
  10#include <linux/list.h>
  11#include <linux/mmzone.h>
  12#include <linux/rbtree.h>
  13#include <linux/atomic.h>
  14#include <linux/debug_locks.h>
  15#include <linux/mm_types.h>
  16#include <linux/range.h>
  17#include <linux/pfn.h>
  18#include <linux/bit_spinlock.h>
  19#include <linux/shrinker.h>
  20
  21struct mempolicy;
  22struct anon_vma;
  23struct anon_vma_chain;
  24struct file_ra_state;
  25struct user_struct;
  26struct writeback_control;
  27
  28#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
  29extern unsigned long max_mapnr;
  30#endif
  31
  32extern unsigned long num_physpages;
  33extern unsigned long totalram_pages;
  34extern void * high_memory;
  35extern int page_cluster;
  36
  37#ifdef CONFIG_SYSCTL
  38extern int sysctl_legacy_va_layout;
  39#else
  40#define sysctl_legacy_va_layout 0
  41#endif
  42
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/processor.h>
  46
  47extern unsigned long sysctl_user_reserve_kbytes;
  48extern unsigned long sysctl_admin_reserve_kbytes;
  49
  50#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  51
  52/* to align the pointer to the (next) page boundary */
  53#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  54
  55/*
  56 * Linux kernel virtual memory manager primitives.
  57 * The idea being to have a "virtual" mm in the same way
  58 * we have a virtual fs - giving a cleaner interface to the
  59 * mm details, and allowing different kinds of memory mappings
  60 * (from shared memory to executable loading to arbitrary
  61 * mmap() functions).
  62 */
  63
  64extern struct kmem_cache *vm_area_cachep;
  65
  66#ifndef CONFIG_MMU
  67extern struct rb_root nommu_region_tree;
  68extern struct rw_semaphore nommu_region_sem;
  69
  70extern unsigned int kobjsize(const void *objp);
  71#endif
  72
  73/*
  74 * vm_flags in vm_area_struct, see mm_types.h.
  75 */
  76#define VM_NONE         0x00000000
  77
  78#define VM_READ         0x00000001      /* currently active flags */
  79#define VM_WRITE        0x00000002
  80#define VM_EXEC         0x00000004
  81#define VM_SHARED       0x00000008
  82
  83/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  84#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
  85#define VM_MAYWRITE     0x00000020
  86#define VM_MAYEXEC      0x00000040
  87#define VM_MAYSHARE     0x00000080
  88
  89#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
  90#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
  91#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
  92
  93#define VM_LOCKED       0x00002000
  94#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
  95
  96                                        /* Used by sys_madvise() */
  97#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
  98#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
  99
 100#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 101#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 102#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 103#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 104#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 105#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
 106#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 107#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 108
 109#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 110#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 111#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 112#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 113
 114#if defined(CONFIG_X86)
 115# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 116#elif defined(CONFIG_PPC)
 117# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 118#elif defined(CONFIG_PARISC)
 119# define VM_GROWSUP     VM_ARCH_1
 120#elif defined(CONFIG_METAG)
 121# define VM_GROWSUP     VM_ARCH_1
 122#elif defined(CONFIG_IA64)
 123# define VM_GROWSUP     VM_ARCH_1
 124#elif !defined(CONFIG_MMU)
 125# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 126#endif
 127
 128#ifndef VM_GROWSUP
 129# define VM_GROWSUP     VM_NONE
 130#endif
 131
 132/* Bits set in the VMA until the stack is in its final location */
 133#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 134
 135#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 136#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 137#endif
 138
 139#ifdef CONFIG_STACK_GROWSUP
 140#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 141#else
 142#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 143#endif
 144
 145#define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
 146#define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
 147#define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
 148#define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
 149#define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
 150
 151/*
 152 * Special vmas that are non-mergable, non-mlock()able.
 153 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 154 */
 155#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
 156
 157/*
 158 * mapping from the currently active vm_flags protection bits (the
 159 * low four bits) to a page protection mask..
 160 */
 161extern pgprot_t protection_map[16];
 162
 163#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 164#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
 165#define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
 166#define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
 167#define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
 168#define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
 169#define FAULT_FLAG_TRIED        0x40    /* second try */
 170
 171/*
 172 * vm_fault is filled by the the pagefault handler and passed to the vma's
 173 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 174 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 175 *
 176 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 177 * is used, one may implement ->remap_pages to get nonlinear mapping support.
 178 */
 179struct vm_fault {
 180        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 181        pgoff_t pgoff;                  /* Logical page offset based on vma */
 182        void __user *virtual_address;   /* Faulting virtual address */
 183
 184        struct page *page;              /* ->fault handlers should return a
 185                                         * page here, unless VM_FAULT_NOPAGE
 186                                         * is set (which is also implied by
 187                                         * VM_FAULT_ERROR).
 188                                         */
 189};
 190
 191/*
 192 * These are the virtual MM functions - opening of an area, closing and
 193 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 194 * to the functions called when a no-page or a wp-page exception occurs. 
 195 */
 196struct vm_operations_struct {
 197        void (*open)(struct vm_area_struct * area);
 198        void (*close)(struct vm_area_struct * area);
 199        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 200
 201        /* notification that a previously read-only page is about to become
 202         * writable, if an error is returned it will cause a SIGBUS */
 203        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 204
 205        /* called by access_process_vm when get_user_pages() fails, typically
 206         * for use by special VMAs that can switch between memory and hardware
 207         */
 208        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 209                      void *buf, int len, int write);
 210#ifdef CONFIG_NUMA
 211        /*
 212         * set_policy() op must add a reference to any non-NULL @new mempolicy
 213         * to hold the policy upon return.  Caller should pass NULL @new to
 214         * remove a policy and fall back to surrounding context--i.e. do not
 215         * install a MPOL_DEFAULT policy, nor the task or system default
 216         * mempolicy.
 217         */
 218        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 219
 220        /*
 221         * get_policy() op must add reference [mpol_get()] to any policy at
 222         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 223         * in mm/mempolicy.c will do this automatically.
 224         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 225         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 226         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 227         * must return NULL--i.e., do not "fallback" to task or system default
 228         * policy.
 229         */
 230        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 231                                        unsigned long addr);
 232        int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
 233                const nodemask_t *to, unsigned long flags);
 234#endif
 235        /* called by sys_remap_file_pages() to populate non-linear mapping */
 236        int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
 237                           unsigned long size, pgoff_t pgoff);
 238};
 239
 240struct mmu_gather;
 241struct inode;
 242
 243#define page_private(page)              ((page)->private)
 244#define set_page_private(page, v)       ((page)->private = (v))
 245
 246/* It's valid only if the page is free path or free_list */
 247static inline void set_freepage_migratetype(struct page *page, int migratetype)
 248{
 249        page->index = migratetype;
 250}
 251
 252/* It's valid only if the page is free path or free_list */
 253static inline int get_freepage_migratetype(struct page *page)
 254{
 255        return page->index;
 256}
 257
 258/*
 259 * FIXME: take this include out, include page-flags.h in
 260 * files which need it (119 of them)
 261 */
 262#include <linux/page-flags.h>
 263#include <linux/huge_mm.h>
 264
 265/*
 266 * Methods to modify the page usage count.
 267 *
 268 * What counts for a page usage:
 269 * - cache mapping   (page->mapping)
 270 * - private data    (page->private)
 271 * - page mapped in a task's page tables, each mapping
 272 *   is counted separately
 273 *
 274 * Also, many kernel routines increase the page count before a critical
 275 * routine so they can be sure the page doesn't go away from under them.
 276 */
 277
 278/*
 279 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 280 */
 281static inline int put_page_testzero(struct page *page)
 282{
 283        VM_BUG_ON(atomic_read(&page->_count) == 0);
 284        return atomic_dec_and_test(&page->_count);
 285}
 286
 287/*
 288 * Try to grab a ref unless the page has a refcount of zero, return false if
 289 * that is the case.
 290 */
 291static inline int get_page_unless_zero(struct page *page)
 292{
 293        return atomic_inc_not_zero(&page->_count);
 294}
 295
 296extern int page_is_ram(unsigned long pfn);
 297
 298/* Support for virtually mapped pages */
 299struct page *vmalloc_to_page(const void *addr);
 300unsigned long vmalloc_to_pfn(const void *addr);
 301
 302/*
 303 * Determine if an address is within the vmalloc range
 304 *
 305 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 306 * is no special casing required.
 307 */
 308static inline int is_vmalloc_addr(const void *x)
 309{
 310#ifdef CONFIG_MMU
 311        unsigned long addr = (unsigned long)x;
 312
 313        return addr >= VMALLOC_START && addr < VMALLOC_END;
 314#else
 315        return 0;
 316#endif
 317}
 318#ifdef CONFIG_MMU
 319extern int is_vmalloc_or_module_addr(const void *x);
 320#else
 321static inline int is_vmalloc_or_module_addr(const void *x)
 322{
 323        return 0;
 324}
 325#endif
 326
 327static inline void compound_lock(struct page *page)
 328{
 329#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 330        VM_BUG_ON(PageSlab(page));
 331        bit_spin_lock(PG_compound_lock, &page->flags);
 332#endif
 333}
 334
 335static inline void compound_unlock(struct page *page)
 336{
 337#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 338        VM_BUG_ON(PageSlab(page));
 339        bit_spin_unlock(PG_compound_lock, &page->flags);
 340#endif
 341}
 342
 343static inline unsigned long compound_lock_irqsave(struct page *page)
 344{
 345        unsigned long uninitialized_var(flags);
 346#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 347        local_irq_save(flags);
 348        compound_lock(page);
 349#endif
 350        return flags;
 351}
 352
 353static inline void compound_unlock_irqrestore(struct page *page,
 354                                              unsigned long flags)
 355{
 356#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 357        compound_unlock(page);
 358        local_irq_restore(flags);
 359#endif
 360}
 361
 362static inline struct page *compound_head(struct page *page)
 363{
 364        if (unlikely(PageTail(page)))
 365                return page->first_page;
 366        return page;
 367}
 368
 369/*
 370 * The atomic page->_mapcount, starts from -1: so that transitions
 371 * both from it and to it can be tracked, using atomic_inc_and_test
 372 * and atomic_add_negative(-1).
 373 */
 374static inline void page_mapcount_reset(struct page *page)
 375{
 376        atomic_set(&(page)->_mapcount, -1);
 377}
 378
 379static inline int page_mapcount(struct page *page)
 380{
 381        return atomic_read(&(page)->_mapcount) + 1;
 382}
 383
 384static inline int page_count(struct page *page)
 385{
 386        return atomic_read(&compound_head(page)->_count);
 387}
 388
 389static inline void get_huge_page_tail(struct page *page)
 390{
 391        /*
 392         * __split_huge_page_refcount() cannot run
 393         * from under us.
 394         */
 395        VM_BUG_ON(page_mapcount(page) < 0);
 396        VM_BUG_ON(atomic_read(&page->_count) != 0);
 397        atomic_inc(&page->_mapcount);
 398}
 399
 400extern bool __get_page_tail(struct page *page);
 401
 402static inline void get_page(struct page *page)
 403{
 404        if (unlikely(PageTail(page)))
 405                if (likely(__get_page_tail(page)))
 406                        return;
 407        /*
 408         * Getting a normal page or the head of a compound page
 409         * requires to already have an elevated page->_count.
 410         */
 411        VM_BUG_ON(atomic_read(&page->_count) <= 0);
 412        atomic_inc(&page->_count);
 413}
 414
 415static inline struct page *virt_to_head_page(const void *x)
 416{
 417        struct page *page = virt_to_page(x);
 418        return compound_head(page);
 419}
 420
 421/*
 422 * Setup the page count before being freed into the page allocator for
 423 * the first time (boot or memory hotplug)
 424 */
 425static inline void init_page_count(struct page *page)
 426{
 427        atomic_set(&page->_count, 1);
 428}
 429
 430/*
 431 * PageBuddy() indicate that the page is free and in the buddy system
 432 * (see mm/page_alloc.c).
 433 *
 434 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 435 * -2 so that an underflow of the page_mapcount() won't be mistaken
 436 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 437 * efficiently by most CPU architectures.
 438 */
 439#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
 440
 441static inline int PageBuddy(struct page *page)
 442{
 443        return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
 444}
 445
 446static inline void __SetPageBuddy(struct page *page)
 447{
 448        VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
 449        atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
 450}
 451
 452static inline void __ClearPageBuddy(struct page *page)
 453{
 454        VM_BUG_ON(!PageBuddy(page));
 455        atomic_set(&page->_mapcount, -1);
 456}
 457
 458void put_page(struct page *page);
 459void put_pages_list(struct list_head *pages);
 460
 461void split_page(struct page *page, unsigned int order);
 462int split_free_page(struct page *page);
 463
 464/*
 465 * Compound pages have a destructor function.  Provide a
 466 * prototype for that function and accessor functions.
 467 * These are _only_ valid on the head of a PG_compound page.
 468 */
 469typedef void compound_page_dtor(struct page *);
 470
 471static inline void set_compound_page_dtor(struct page *page,
 472                                                compound_page_dtor *dtor)
 473{
 474        page[1].lru.next = (void *)dtor;
 475}
 476
 477static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 478{
 479        return (compound_page_dtor *)page[1].lru.next;
 480}
 481
 482static inline int compound_order(struct page *page)
 483{
 484        if (!PageHead(page))
 485                return 0;
 486        return (unsigned long)page[1].lru.prev;
 487}
 488
 489static inline int compound_trans_order(struct page *page)
 490{
 491        int order;
 492        unsigned long flags;
 493
 494        if (!PageHead(page))
 495                return 0;
 496
 497        flags = compound_lock_irqsave(page);
 498        order = compound_order(page);
 499        compound_unlock_irqrestore(page, flags);
 500        return order;
 501}
 502
 503static inline void set_compound_order(struct page *page, unsigned long order)
 504{
 505        page[1].lru.prev = (void *)order;
 506}
 507
 508#ifdef CONFIG_MMU
 509/*
 510 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 511 * servicing faults for write access.  In the normal case, do always want
 512 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 513 * that do not have writing enabled, when used by access_process_vm.
 514 */
 515static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 516{
 517        if (likely(vma->vm_flags & VM_WRITE))
 518                pte = pte_mkwrite(pte);
 519        return pte;
 520}
 521#endif
 522
 523/*
 524 * Multiple processes may "see" the same page. E.g. for untouched
 525 * mappings of /dev/null, all processes see the same page full of
 526 * zeroes, and text pages of executables and shared libraries have
 527 * only one copy in memory, at most, normally.
 528 *
 529 * For the non-reserved pages, page_count(page) denotes a reference count.
 530 *   page_count() == 0 means the page is free. page->lru is then used for
 531 *   freelist management in the buddy allocator.
 532 *   page_count() > 0  means the page has been allocated.
 533 *
 534 * Pages are allocated by the slab allocator in order to provide memory
 535 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 536 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 537 * unless a particular usage is carefully commented. (the responsibility of
 538 * freeing the kmalloc memory is the caller's, of course).
 539 *
 540 * A page may be used by anyone else who does a __get_free_page().
 541 * In this case, page_count still tracks the references, and should only
 542 * be used through the normal accessor functions. The top bits of page->flags
 543 * and page->virtual store page management information, but all other fields
 544 * are unused and could be used privately, carefully. The management of this
 545 * page is the responsibility of the one who allocated it, and those who have
 546 * subsequently been given references to it.
 547 *
 548 * The other pages (we may call them "pagecache pages") are completely
 549 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 550 * The following discussion applies only to them.
 551 *
 552 * A pagecache page contains an opaque `private' member, which belongs to the
 553 * page's address_space. Usually, this is the address of a circular list of
 554 * the page's disk buffers. PG_private must be set to tell the VM to call
 555 * into the filesystem to release these pages.
 556 *
 557 * A page may belong to an inode's memory mapping. In this case, page->mapping
 558 * is the pointer to the inode, and page->index is the file offset of the page,
 559 * in units of PAGE_CACHE_SIZE.
 560 *
 561 * If pagecache pages are not associated with an inode, they are said to be
 562 * anonymous pages. These may become associated with the swapcache, and in that
 563 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 564 *
 565 * In either case (swapcache or inode backed), the pagecache itself holds one
 566 * reference to the page. Setting PG_private should also increment the
 567 * refcount. The each user mapping also has a reference to the page.
 568 *
 569 * The pagecache pages are stored in a per-mapping radix tree, which is
 570 * rooted at mapping->page_tree, and indexed by offset.
 571 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 572 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 573 *
 574 * All pagecache pages may be subject to I/O:
 575 * - inode pages may need to be read from disk,
 576 * - inode pages which have been modified and are MAP_SHARED may need
 577 *   to be written back to the inode on disk,
 578 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 579 *   modified may need to be swapped out to swap space and (later) to be read
 580 *   back into memory.
 581 */
 582
 583/*
 584 * The zone field is never updated after free_area_init_core()
 585 * sets it, so none of the operations on it need to be atomic.
 586 */
 587
 588/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
 589#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 590#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 591#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 592#define LAST_NID_PGOFF          (ZONES_PGOFF - LAST_NID_WIDTH)
 593
 594/*
 595 * Define the bit shifts to access each section.  For non-existent
 596 * sections we define the shift as 0; that plus a 0 mask ensures
 597 * the compiler will optimise away reference to them.
 598 */
 599#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 600#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 601#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 602#define LAST_NID_PGSHIFT        (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
 603
 604/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 605#ifdef NODE_NOT_IN_PAGE_FLAGS
 606#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 607#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 608                                                SECTIONS_PGOFF : ZONES_PGOFF)
 609#else
 610#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 611#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 612                                                NODES_PGOFF : ZONES_PGOFF)
 613#endif
 614
 615#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 616
 617#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 618#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 619#endif
 620
 621#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 622#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 623#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 624#define LAST_NID_MASK           ((1UL << LAST_NID_WIDTH) - 1)
 625#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 626
 627static inline enum zone_type page_zonenum(const struct page *page)
 628{
 629        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 630}
 631
 632#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 633#define SECTION_IN_PAGE_FLAGS
 634#endif
 635
 636/*
 637 * The identification function is only used by the buddy allocator for
 638 * determining if two pages could be buddies. We are not really
 639 * identifying a zone since we could be using a the section number
 640 * id if we have not node id available in page flags.
 641 * We guarantee only that it will return the same value for two
 642 * combinable pages in a zone.
 643 */
 644static inline int page_zone_id(struct page *page)
 645{
 646        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 647}
 648
 649static inline int zone_to_nid(struct zone *zone)
 650{
 651#ifdef CONFIG_NUMA
 652        return zone->node;
 653#else
 654        return 0;
 655#endif
 656}
 657
 658#ifdef NODE_NOT_IN_PAGE_FLAGS
 659extern int page_to_nid(const struct page *page);
 660#else
 661static inline int page_to_nid(const struct page *page)
 662{
 663        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 664}
 665#endif
 666
 667#ifdef CONFIG_NUMA_BALANCING
 668#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
 669static inline int page_nid_xchg_last(struct page *page, int nid)
 670{
 671        return xchg(&page->_last_nid, nid);
 672}
 673
 674static inline int page_nid_last(struct page *page)
 675{
 676        return page->_last_nid;
 677}
 678static inline void page_nid_reset_last(struct page *page)
 679{
 680        page->_last_nid = -1;
 681}
 682#else
 683static inline int page_nid_last(struct page *page)
 684{
 685        return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
 686}
 687
 688extern int page_nid_xchg_last(struct page *page, int nid);
 689
 690static inline void page_nid_reset_last(struct page *page)
 691{
 692        int nid = (1 << LAST_NID_SHIFT) - 1;
 693
 694        page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
 695        page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
 696}
 697#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
 698#else
 699static inline int page_nid_xchg_last(struct page *page, int nid)
 700{
 701        return page_to_nid(page);
 702}
 703
 704static inline int page_nid_last(struct page *page)
 705{
 706        return page_to_nid(page);
 707}
 708
 709static inline void page_nid_reset_last(struct page *page)
 710{
 711}
 712#endif
 713
 714static inline struct zone *page_zone(const struct page *page)
 715{
 716        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 717}
 718
 719#ifdef SECTION_IN_PAGE_FLAGS
 720static inline void set_page_section(struct page *page, unsigned long section)
 721{
 722        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 723        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 724}
 725
 726static inline unsigned long page_to_section(const struct page *page)
 727{
 728        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 729}
 730#endif
 731
 732static inline void set_page_zone(struct page *page, enum zone_type zone)
 733{
 734        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 735        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 736}
 737
 738static inline void set_page_node(struct page *page, unsigned long node)
 739{
 740        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 741        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 742}
 743
 744static inline void set_page_links(struct page *page, enum zone_type zone,
 745        unsigned long node, unsigned long pfn)
 746{
 747        set_page_zone(page, zone);
 748        set_page_node(page, node);
 749#ifdef SECTION_IN_PAGE_FLAGS
 750        set_page_section(page, pfn_to_section_nr(pfn));
 751#endif
 752}
 753
 754/*
 755 * Some inline functions in vmstat.h depend on page_zone()
 756 */
 757#include <linux/vmstat.h>
 758
 759static __always_inline void *lowmem_page_address(const struct page *page)
 760{
 761        return __va(PFN_PHYS(page_to_pfn(page)));
 762}
 763
 764#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 765#define HASHED_PAGE_VIRTUAL
 766#endif
 767
 768#if defined(WANT_PAGE_VIRTUAL)
 769#define page_address(page) ((page)->virtual)
 770#define set_page_address(page, address)                 \
 771        do {                                            \
 772                (page)->virtual = (address);            \
 773        } while(0)
 774#define page_address_init()  do { } while(0)
 775#endif
 776
 777#if defined(HASHED_PAGE_VIRTUAL)
 778void *page_address(const struct page *page);
 779void set_page_address(struct page *page, void *virtual);
 780void page_address_init(void);
 781#endif
 782
 783#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 784#define page_address(page) lowmem_page_address(page)
 785#define set_page_address(page, address)  do { } while(0)
 786#define page_address_init()  do { } while(0)
 787#endif
 788
 789/*
 790 * On an anonymous page mapped into a user virtual memory area,
 791 * page->mapping points to its anon_vma, not to a struct address_space;
 792 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 793 *
 794 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 795 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 796 * and then page->mapping points, not to an anon_vma, but to a private
 797 * structure which KSM associates with that merged page.  See ksm.h.
 798 *
 799 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 800 *
 801 * Please note that, confusingly, "page_mapping" refers to the inode
 802 * address_space which maps the page from disk; whereas "page_mapped"
 803 * refers to user virtual address space into which the page is mapped.
 804 */
 805#define PAGE_MAPPING_ANON       1
 806#define PAGE_MAPPING_KSM        2
 807#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
 808
 809extern struct address_space *page_mapping(struct page *page);
 810
 811/* Neutral page->mapping pointer to address_space or anon_vma or other */
 812static inline void *page_rmapping(struct page *page)
 813{
 814        return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
 815}
 816
 817extern struct address_space *__page_file_mapping(struct page *);
 818
 819static inline
 820struct address_space *page_file_mapping(struct page *page)
 821{
 822        if (unlikely(PageSwapCache(page)))
 823                return __page_file_mapping(page);
 824
 825        return page->mapping;
 826}
 827
 828static inline int PageAnon(struct page *page)
 829{
 830        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 831}
 832
 833/*
 834 * Return the pagecache index of the passed page.  Regular pagecache pages
 835 * use ->index whereas swapcache pages use ->private
 836 */
 837static inline pgoff_t page_index(struct page *page)
 838{
 839        if (unlikely(PageSwapCache(page)))
 840                return page_private(page);
 841        return page->index;
 842}
 843
 844extern pgoff_t __page_file_index(struct page *page);
 845
 846/*
 847 * Return the file index of the page. Regular pagecache pages use ->index
 848 * whereas swapcache pages use swp_offset(->private)
 849 */
 850static inline pgoff_t page_file_index(struct page *page)
 851{
 852        if (unlikely(PageSwapCache(page)))
 853                return __page_file_index(page);
 854
 855        return page->index;
 856}
 857
 858/*
 859 * Return true if this page is mapped into pagetables.
 860 */
 861static inline int page_mapped(struct page *page)
 862{
 863        return atomic_read(&(page)->_mapcount) >= 0;
 864}
 865
 866/*
 867 * Different kinds of faults, as returned by handle_mm_fault().
 868 * Used to decide whether a process gets delivered SIGBUS or
 869 * just gets major/minor fault counters bumped up.
 870 */
 871
 872#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
 873
 874#define VM_FAULT_OOM    0x0001
 875#define VM_FAULT_SIGBUS 0x0002
 876#define VM_FAULT_MAJOR  0x0004
 877#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
 878#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
 879#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
 880
 881#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
 882#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
 883#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
 884
 885#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
 886
 887#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
 888                         VM_FAULT_HWPOISON_LARGE)
 889
 890/* Encode hstate index for a hwpoisoned large page */
 891#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
 892#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
 893
 894/*
 895 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 896 */
 897extern void pagefault_out_of_memory(void);
 898
 899#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
 900
 901/*
 902 * Flags passed to show_mem() and show_free_areas() to suppress output in
 903 * various contexts.
 904 */
 905#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
 906#define SHOW_MEM_FILTER_PAGE_COUNT      (0x0002u)       /* page type count */
 907
 908extern void show_free_areas(unsigned int flags);
 909extern bool skip_free_areas_node(unsigned int flags, int nid);
 910
 911int shmem_zero_setup(struct vm_area_struct *);
 912
 913extern int can_do_mlock(void);
 914extern int user_shm_lock(size_t, struct user_struct *);
 915extern void user_shm_unlock(size_t, struct user_struct *);
 916
 917/*
 918 * Parameter block passed down to zap_pte_range in exceptional cases.
 919 */
 920struct zap_details {
 921        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
 922        struct address_space *check_mapping;    /* Check page->mapping if set */
 923        pgoff_t first_index;                    /* Lowest page->index to unmap */
 924        pgoff_t last_index;                     /* Highest page->index to unmap */
 925};
 926
 927struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 928                pte_t pte);
 929
 930int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 931                unsigned long size);
 932void zap_page_range(struct vm_area_struct *vma, unsigned long address,
 933                unsigned long size, struct zap_details *);
 934void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 935                unsigned long start, unsigned long end);
 936
 937/**
 938 * mm_walk - callbacks for walk_page_range
 939 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 940 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 941 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 942 *             this handler is required to be able to handle
 943 *             pmd_trans_huge() pmds.  They may simply choose to
 944 *             split_huge_page() instead of handling it explicitly.
 945 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 946 * @pte_hole: if set, called for each hole at all levels
 947 * @hugetlb_entry: if set, called for each hugetlb entry
 948 *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
 949 *                            is used.
 950 *
 951 * (see walk_page_range for more details)
 952 */
 953struct mm_walk {
 954        int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
 955                         unsigned long next, struct mm_walk *walk);
 956        int (*pud_entry)(pud_t *pud, unsigned long addr,
 957                         unsigned long next, struct mm_walk *walk);
 958        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
 959                         unsigned long next, struct mm_walk *walk);
 960        int (*pte_entry)(pte_t *pte, unsigned long addr,
 961                         unsigned long next, struct mm_walk *walk);
 962        int (*pte_hole)(unsigned long addr, unsigned long next,
 963                        struct mm_walk *walk);
 964        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
 965                             unsigned long addr, unsigned long next,
 966                             struct mm_walk *walk);
 967        struct mm_struct *mm;
 968        void *private;
 969};
 970
 971int walk_page_range(unsigned long addr, unsigned long end,
 972                struct mm_walk *walk);
 973void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 974                unsigned long end, unsigned long floor, unsigned long ceiling);
 975int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
 976                        struct vm_area_struct *vma);
 977void unmap_mapping_range(struct address_space *mapping,
 978                loff_t const holebegin, loff_t const holelen, int even_cows);
 979int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 980        unsigned long *pfn);
 981int follow_phys(struct vm_area_struct *vma, unsigned long address,
 982                unsigned int flags, unsigned long *prot, resource_size_t *phys);
 983int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 984                        void *buf, int len, int write);
 985
 986static inline void unmap_shared_mapping_range(struct address_space *mapping,
 987                loff_t const holebegin, loff_t const holelen)
 988{
 989        unmap_mapping_range(mapping, holebegin, holelen, 0);
 990}
 991
 992extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
 993extern void truncate_setsize(struct inode *inode, loff_t newsize);
 994void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
 995int truncate_inode_page(struct address_space *mapping, struct page *page);
 996int generic_error_remove_page(struct address_space *mapping, struct page *page);
 997int invalidate_inode_page(struct page *page);
 998
 999#ifdef CONFIG_MMU
1000extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1001                        unsigned long address, unsigned int flags);
1002extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1003                            unsigned long address, unsigned int fault_flags);
1004#else
1005static inline int handle_mm_fault(struct mm_struct *mm,
1006                        struct vm_area_struct *vma, unsigned long address,
1007                        unsigned int flags)
1008{
1009        /* should never happen if there's no MMU */
1010        BUG();
1011        return VM_FAULT_SIGBUS;
1012}
1013static inline int fixup_user_fault(struct task_struct *tsk,
1014                struct mm_struct *mm, unsigned long address,
1015                unsigned int fault_flags)
1016{
1017        /* should never happen if there's no MMU */
1018        BUG();
1019        return -EFAULT;
1020}
1021#endif
1022
1023extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1024extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1025                void *buf, int len, int write);
1026
1027long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1028                      unsigned long start, unsigned long nr_pages,
1029                      unsigned int foll_flags, struct page **pages,
1030                      struct vm_area_struct **vmas, int *nonblocking);
1031long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1032                    unsigned long start, unsigned long nr_pages,
1033                    int write, int force, struct page **pages,
1034                    struct vm_area_struct **vmas);
1035int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1036                        struct page **pages);
1037struct kvec;
1038int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1039                        struct page **pages);
1040int get_kernel_page(unsigned long start, int write, struct page **pages);
1041struct page *get_dump_page(unsigned long addr);
1042
1043extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1044extern void do_invalidatepage(struct page *page, unsigned long offset);
1045
1046int __set_page_dirty_nobuffers(struct page *page);
1047int __set_page_dirty_no_writeback(struct page *page);
1048int redirty_page_for_writepage(struct writeback_control *wbc,
1049                                struct page *page);
1050void account_page_dirtied(struct page *page, struct address_space *mapping);
1051void account_page_writeback(struct page *page);
1052int set_page_dirty(struct page *page);
1053int set_page_dirty_lock(struct page *page);
1054int clear_page_dirty_for_io(struct page *page);
1055
1056/* Is the vma a continuation of the stack vma above it? */
1057static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1058{
1059        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1060}
1061
1062static inline int stack_guard_page_start(struct vm_area_struct *vma,
1063                                             unsigned long addr)
1064{
1065        return (vma->vm_flags & VM_GROWSDOWN) &&
1066                (vma->vm_start == addr) &&
1067                !vma_growsdown(vma->vm_prev, addr);
1068}
1069
1070/* Is the vma a continuation of the stack vma below it? */
1071static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1072{
1073        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1074}
1075
1076static inline int stack_guard_page_end(struct vm_area_struct *vma,
1077                                           unsigned long addr)
1078{
1079        return (vma->vm_flags & VM_GROWSUP) &&
1080                (vma->vm_end == addr) &&
1081                !vma_growsup(vma->vm_next, addr);
1082}
1083
1084extern pid_t
1085vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1086
1087extern unsigned long move_page_tables(struct vm_area_struct *vma,
1088                unsigned long old_addr, struct vm_area_struct *new_vma,
1089                unsigned long new_addr, unsigned long len,
1090                bool need_rmap_locks);
1091extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1092                              unsigned long end, pgprot_t newprot,
1093                              int dirty_accountable, int prot_numa);
1094extern int mprotect_fixup(struct vm_area_struct *vma,
1095                          struct vm_area_struct **pprev, unsigned long start,
1096                          unsigned long end, unsigned long newflags);
1097
1098/*
1099 * doesn't attempt to fault and will return short.
1100 */
1101int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1102                          struct page **pages);
1103/*
1104 * per-process(per-mm_struct) statistics.
1105 */
1106static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1107{
1108        long val = atomic_long_read(&mm->rss_stat.count[member]);
1109
1110#ifdef SPLIT_RSS_COUNTING
1111        /*
1112         * counter is updated in asynchronous manner and may go to minus.
1113         * But it's never be expected number for users.
1114         */
1115        if (val < 0)
1116                val = 0;
1117#endif
1118        return (unsigned long)val;
1119}
1120
1121static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1122{
1123        atomic_long_add(value, &mm->rss_stat.count[member]);
1124}
1125
1126static inline void inc_mm_counter(struct mm_struct *mm, int member)
1127{
1128        atomic_long_inc(&mm->rss_stat.count[member]);
1129}
1130
1131static inline void dec_mm_counter(struct mm_struct *mm, int member)
1132{
1133        atomic_long_dec(&mm->rss_stat.count[member]);
1134}
1135
1136static inline unsigned long get_mm_rss(struct mm_struct *mm)
1137{
1138        return get_mm_counter(mm, MM_FILEPAGES) +
1139                get_mm_counter(mm, MM_ANONPAGES);
1140}
1141
1142static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1143{
1144        return max(mm->hiwater_rss, get_mm_rss(mm));
1145}
1146
1147static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1148{
1149        return max(mm->hiwater_vm, mm->total_vm);
1150}
1151
1152static inline void update_hiwater_rss(struct mm_struct *mm)
1153{
1154        unsigned long _rss = get_mm_rss(mm);
1155
1156        if ((mm)->hiwater_rss < _rss)
1157                (mm)->hiwater_rss = _rss;
1158}
1159
1160static inline void update_hiwater_vm(struct mm_struct *mm)
1161{
1162        if (mm->hiwater_vm < mm->total_vm)
1163                mm->hiwater_vm = mm->total_vm;
1164}
1165
1166static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1167                                         struct mm_struct *mm)
1168{
1169        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1170
1171        if (*maxrss < hiwater_rss)
1172                *maxrss = hiwater_rss;
1173}
1174
1175#if defined(SPLIT_RSS_COUNTING)
1176void sync_mm_rss(struct mm_struct *mm);
1177#else
1178static inline void sync_mm_rss(struct mm_struct *mm)
1179{
1180}
1181#endif
1182
1183int vma_wants_writenotify(struct vm_area_struct *vma);
1184
1185extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1186                               spinlock_t **ptl);
1187static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1188                                    spinlock_t **ptl)
1189{
1190        pte_t *ptep;
1191        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1192        return ptep;
1193}
1194
1195#ifdef __PAGETABLE_PUD_FOLDED
1196static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1197                                                unsigned long address)
1198{
1199        return 0;
1200}
1201#else
1202int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1203#endif
1204
1205#ifdef __PAGETABLE_PMD_FOLDED
1206static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1207                                                unsigned long address)
1208{
1209        return 0;
1210}
1211#else
1212int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1213#endif
1214
1215int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1216                pmd_t *pmd, unsigned long address);
1217int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1218
1219/*
1220 * The following ifdef needed to get the 4level-fixup.h header to work.
1221 * Remove it when 4level-fixup.h has been removed.
1222 */
1223#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1224static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1225{
1226        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1227                NULL: pud_offset(pgd, address);
1228}
1229
1230static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1231{
1232        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1233                NULL: pmd_offset(pud, address);
1234}
1235#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1236
1237#if USE_SPLIT_PTLOCKS
1238/*
1239 * We tuck a spinlock to guard each pagetable page into its struct page,
1240 * at page->private, with BUILD_BUG_ON to make sure that this will not
1241 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1242 * When freeing, reset page->mapping so free_pages_check won't complain.
1243 */
1244#define __pte_lockptr(page)     &((page)->ptl)
1245#define pte_lock_init(_page)    do {                                    \
1246        spin_lock_init(__pte_lockptr(_page));                           \
1247} while (0)
1248#define pte_lock_deinit(page)   ((page)->mapping = NULL)
1249#define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1250#else   /* !USE_SPLIT_PTLOCKS */
1251/*
1252 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1253 */
1254#define pte_lock_init(page)     do {} while (0)
1255#define pte_lock_deinit(page)   do {} while (0)
1256#define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1257#endif /* USE_SPLIT_PTLOCKS */
1258
1259static inline void pgtable_page_ctor(struct page *page)
1260{
1261        pte_lock_init(page);
1262        inc_zone_page_state(page, NR_PAGETABLE);
1263}
1264
1265static inline void pgtable_page_dtor(struct page *page)
1266{
1267        pte_lock_deinit(page);
1268        dec_zone_page_state(page, NR_PAGETABLE);
1269}
1270
1271#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1272({                                                      \
1273        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1274        pte_t *__pte = pte_offset_map(pmd, address);    \
1275        *(ptlp) = __ptl;                                \
1276        spin_lock(__ptl);                               \
1277        __pte;                                          \
1278})
1279
1280#define pte_unmap_unlock(pte, ptl)      do {            \
1281        spin_unlock(ptl);                               \
1282        pte_unmap(pte);                                 \
1283} while (0)
1284
1285#define pte_alloc_map(mm, vma, pmd, address)                            \
1286        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1287                                                        pmd, address))? \
1288         NULL: pte_offset_map(pmd, address))
1289
1290#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1291        ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1292                                                        pmd, address))? \
1293                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1294
1295#define pte_alloc_kernel(pmd, address)                  \
1296        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1297                NULL: pte_offset_kernel(pmd, address))
1298
1299extern void free_area_init(unsigned long * zones_size);
1300extern void free_area_init_node(int nid, unsigned long * zones_size,
1301                unsigned long zone_start_pfn, unsigned long *zholes_size);
1302extern void free_initmem(void);
1303
1304/*
1305 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1306 * into the buddy system. The freed pages will be poisoned with pattern
1307 * "poison" if it's non-zero.
1308 * Return pages freed into the buddy system.
1309 */
1310extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1311                                        int poison, char *s);
1312#ifdef  CONFIG_HIGHMEM
1313/*
1314 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1315 * and totalram_pages.
1316 */
1317extern void free_highmem_page(struct page *page);
1318#endif
1319
1320static inline void adjust_managed_page_count(struct page *page, long count)
1321{
1322        totalram_pages += count;
1323}
1324
1325/* Free the reserved page into the buddy system, so it gets managed. */
1326static inline void __free_reserved_page(struct page *page)
1327{
1328        ClearPageReserved(page);
1329        init_page_count(page);
1330        __free_page(page);
1331}
1332
1333static inline void free_reserved_page(struct page *page)
1334{
1335        __free_reserved_page(page);
1336        adjust_managed_page_count(page, 1);
1337}
1338
1339static inline void mark_page_reserved(struct page *page)
1340{
1341        SetPageReserved(page);
1342        adjust_managed_page_count(page, -1);
1343}
1344
1345/*
1346 * Default method to free all the __init memory into the buddy system.
1347 * The freed pages will be poisoned with pattern "poison" if it is
1348 * non-zero. Return pages freed into the buddy system.
1349 */
1350static inline unsigned long free_initmem_default(int poison)
1351{
1352        extern char __init_begin[], __init_end[];
1353
1354        return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1355                                  ((unsigned long)&__init_end) & PAGE_MASK,
1356                                  poison, "unused kernel");
1357}
1358
1359#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1360/*
1361 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1362 * zones, allocate the backing mem_map and account for memory holes in a more
1363 * architecture independent manner. This is a substitute for creating the
1364 * zone_sizes[] and zholes_size[] arrays and passing them to
1365 * free_area_init_node()
1366 *
1367 * An architecture is expected to register range of page frames backed by
1368 * physical memory with memblock_add[_node]() before calling
1369 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1370 * usage, an architecture is expected to do something like
1371 *
1372 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1373 *                                                       max_highmem_pfn};
1374 * for_each_valid_physical_page_range()
1375 *      memblock_add_node(base, size, nid)
1376 * free_area_init_nodes(max_zone_pfns);
1377 *
1378 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1379 * registered physical page range.  Similarly
1380 * sparse_memory_present_with_active_regions() calls memory_present() for
1381 * each range when SPARSEMEM is enabled.
1382 *
1383 * See mm/page_alloc.c for more information on each function exposed by
1384 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1385 */
1386extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1387unsigned long node_map_pfn_alignment(void);
1388unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1389                                                unsigned long end_pfn);
1390extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1391                                                unsigned long end_pfn);
1392extern void get_pfn_range_for_nid(unsigned int nid,
1393                        unsigned long *start_pfn, unsigned long *end_pfn);
1394extern unsigned long find_min_pfn_with_active_regions(void);
1395extern void free_bootmem_with_active_regions(int nid,
1396                                                unsigned long max_low_pfn);
1397extern void sparse_memory_present_with_active_regions(int nid);
1398
1399#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1400
1401#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1402    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1403static inline int __early_pfn_to_nid(unsigned long pfn)
1404{
1405        return 0;
1406}
1407#else
1408/* please see mm/page_alloc.c */
1409extern int __meminit early_pfn_to_nid(unsigned long pfn);
1410#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1411/* there is a per-arch backend function. */
1412extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1413#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1414#endif
1415
1416extern void set_dma_reserve(unsigned long new_dma_reserve);
1417extern void memmap_init_zone(unsigned long, int, unsigned long,
1418                                unsigned long, enum memmap_context);
1419extern void setup_per_zone_wmarks(void);
1420extern int __meminit init_per_zone_wmark_min(void);
1421extern void mem_init(void);
1422extern void __init mmap_init(void);
1423extern void show_mem(unsigned int flags);
1424extern void si_meminfo(struct sysinfo * val);
1425extern void si_meminfo_node(struct sysinfo *val, int nid);
1426
1427extern __printf(3, 4)
1428void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1429
1430extern void setup_per_cpu_pageset(void);
1431
1432extern void zone_pcp_update(struct zone *zone);
1433extern void zone_pcp_reset(struct zone *zone);
1434
1435/* page_alloc.c */
1436extern int min_free_kbytes;
1437
1438/* nommu.c */
1439extern atomic_long_t mmap_pages_allocated;
1440extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1441
1442/* interval_tree.c */
1443void vma_interval_tree_insert(struct vm_area_struct *node,
1444                              struct rb_root *root);
1445void vma_interval_tree_insert_after(struct vm_area_struct *node,
1446                                    struct vm_area_struct *prev,
1447                                    struct rb_root *root);
1448void vma_interval_tree_remove(struct vm_area_struct *node,
1449                              struct rb_root *root);
1450struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1451                                unsigned long start, unsigned long last);
1452struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1453                                unsigned long start, unsigned long last);
1454
1455#define vma_interval_tree_foreach(vma, root, start, last)               \
1456        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1457             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1458
1459static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1460                                        struct list_head *list)
1461{
1462        list_add_tail(&vma->shared.nonlinear, list);
1463}
1464
1465void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1466                                   struct rb_root *root);
1467void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1468                                   struct rb_root *root);
1469struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1470        struct rb_root *root, unsigned long start, unsigned long last);
1471struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1472        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1473#ifdef CONFIG_DEBUG_VM_RB
1474void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1475#endif
1476
1477#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1478        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1479             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1480
1481/* mmap.c */
1482extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1483extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1484        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1485extern struct vm_area_struct *vma_merge(struct mm_struct *,
1486        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1487        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1488        struct mempolicy *);
1489extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1490extern int split_vma(struct mm_struct *,
1491        struct vm_area_struct *, unsigned long addr, int new_below);
1492extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1493extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1494        struct rb_node **, struct rb_node *);
1495extern void unlink_file_vma(struct vm_area_struct *);
1496extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1497        unsigned long addr, unsigned long len, pgoff_t pgoff,
1498        bool *need_rmap_locks);
1499extern void exit_mmap(struct mm_struct *);
1500
1501extern int mm_take_all_locks(struct mm_struct *mm);
1502extern void mm_drop_all_locks(struct mm_struct *mm);
1503
1504extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1505extern struct file *get_mm_exe_file(struct mm_struct *mm);
1506
1507extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1508extern int install_special_mapping(struct mm_struct *mm,
1509                                   unsigned long addr, unsigned long len,
1510                                   unsigned long flags, struct page **pages);
1511
1512extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1513
1514extern unsigned long mmap_region(struct file *file, unsigned long addr,
1515        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1516extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1517        unsigned long len, unsigned long prot, unsigned long flags,
1518        unsigned long pgoff, unsigned long *populate);
1519extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1520
1521#ifdef CONFIG_MMU
1522extern int __mm_populate(unsigned long addr, unsigned long len,
1523                         int ignore_errors);
1524static inline void mm_populate(unsigned long addr, unsigned long len)
1525{
1526        /* Ignore errors */
1527        (void) __mm_populate(addr, len, 1);
1528}
1529#else
1530static inline void mm_populate(unsigned long addr, unsigned long len) {}
1531#endif
1532
1533/* These take the mm semaphore themselves */
1534extern unsigned long vm_brk(unsigned long, unsigned long);
1535extern int vm_munmap(unsigned long, size_t);
1536extern unsigned long vm_mmap(struct file *, unsigned long,
1537        unsigned long, unsigned long,
1538        unsigned long, unsigned long);
1539
1540struct vm_unmapped_area_info {
1541#define VM_UNMAPPED_AREA_TOPDOWN 1
1542        unsigned long flags;
1543        unsigned long length;
1544        unsigned long low_limit;
1545        unsigned long high_limit;
1546        unsigned long align_mask;
1547        unsigned long align_offset;
1548};
1549
1550extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1551extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1552
1553/*
1554 * Search for an unmapped address range.
1555 *
1556 * We are looking for a range that:
1557 * - does not intersect with any VMA;
1558 * - is contained within the [low_limit, high_limit) interval;
1559 * - is at least the desired size.
1560 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1561 */
1562static inline unsigned long
1563vm_unmapped_area(struct vm_unmapped_area_info *info)
1564{
1565        if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1566                return unmapped_area(info);
1567        else
1568                return unmapped_area_topdown(info);
1569}
1570
1571/* truncate.c */
1572extern void truncate_inode_pages(struct address_space *, loff_t);
1573extern void truncate_inode_pages_range(struct address_space *,
1574                                       loff_t lstart, loff_t lend);
1575
1576/* generic vm_area_ops exported for stackable file systems */
1577extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1578extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1579
1580/* mm/page-writeback.c */
1581int write_one_page(struct page *page, int wait);
1582void task_dirty_inc(struct task_struct *tsk);
1583
1584/* readahead.c */
1585#define VM_MAX_READAHEAD        128     /* kbytes */
1586#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1587
1588int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1589                        pgoff_t offset, unsigned long nr_to_read);
1590
1591void page_cache_sync_readahead(struct address_space *mapping,
1592                               struct file_ra_state *ra,
1593                               struct file *filp,
1594                               pgoff_t offset,
1595                               unsigned long size);
1596
1597void page_cache_async_readahead(struct address_space *mapping,
1598                                struct file_ra_state *ra,
1599                                struct file *filp,
1600                                struct page *pg,
1601                                pgoff_t offset,
1602                                unsigned long size);
1603
1604unsigned long max_sane_readahead(unsigned long nr);
1605unsigned long ra_submit(struct file_ra_state *ra,
1606                        struct address_space *mapping,
1607                        struct file *filp);
1608
1609/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1610extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1611
1612/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1613extern int expand_downwards(struct vm_area_struct *vma,
1614                unsigned long address);
1615#if VM_GROWSUP
1616extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1617#else
1618  #define expand_upwards(vma, address) do { } while (0)
1619#endif
1620
1621/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1622extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1623extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1624                                             struct vm_area_struct **pprev);
1625
1626/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1627   NULL if none.  Assume start_addr < end_addr. */
1628static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1629{
1630        struct vm_area_struct * vma = find_vma(mm,start_addr);
1631
1632        if (vma && end_addr <= vma->vm_start)
1633                vma = NULL;
1634        return vma;
1635}
1636
1637static inline unsigned long vma_pages(struct vm_area_struct *vma)
1638{
1639        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1640}
1641
1642/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1643static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1644                                unsigned long vm_start, unsigned long vm_end)
1645{
1646        struct vm_area_struct *vma = find_vma(mm, vm_start);
1647
1648        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1649                vma = NULL;
1650
1651        return vma;
1652}
1653
1654#ifdef CONFIG_MMU
1655pgprot_t vm_get_page_prot(unsigned long vm_flags);
1656#else
1657static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1658{
1659        return __pgprot(0);
1660}
1661#endif
1662
1663#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1664unsigned long change_prot_numa(struct vm_area_struct *vma,
1665                        unsigned long start, unsigned long end);
1666#endif
1667
1668struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1669int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1670                        unsigned long pfn, unsigned long size, pgprot_t);
1671int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1672int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1673                        unsigned long pfn);
1674int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1675                        unsigned long pfn);
1676int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1677
1678
1679struct page *follow_page_mask(struct vm_area_struct *vma,
1680                              unsigned long address, unsigned int foll_flags,
1681                              unsigned int *page_mask);
1682
1683static inline struct page *follow_page(struct vm_area_struct *vma,
1684                unsigned long address, unsigned int foll_flags)
1685{
1686        unsigned int unused_page_mask;
1687        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1688}
1689
1690#define FOLL_WRITE      0x01    /* check pte is writable */
1691#define FOLL_TOUCH      0x02    /* mark page accessed */
1692#define FOLL_GET        0x04    /* do get_page on page */
1693#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1694#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1695#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1696                                 * and return without waiting upon it */
1697#define FOLL_MLOCK      0x40    /* mark page as mlocked */
1698#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1699#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1700#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
1701#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
1702
1703typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1704                        void *data);
1705extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1706                               unsigned long size, pte_fn_t fn, void *data);
1707
1708#ifdef CONFIG_PROC_FS
1709void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1710#else
1711static inline void vm_stat_account(struct mm_struct *mm,
1712                        unsigned long flags, struct file *file, long pages)
1713{
1714        mm->total_vm += pages;
1715}
1716#endif /* CONFIG_PROC_FS */
1717
1718#ifdef CONFIG_DEBUG_PAGEALLOC
1719extern void kernel_map_pages(struct page *page, int numpages, int enable);
1720#ifdef CONFIG_HIBERNATION
1721extern bool kernel_page_present(struct page *page);
1722#endif /* CONFIG_HIBERNATION */
1723#else
1724static inline void
1725kernel_map_pages(struct page *page, int numpages, int enable) {}
1726#ifdef CONFIG_HIBERNATION
1727static inline bool kernel_page_present(struct page *page) { return true; }
1728#endif /* CONFIG_HIBERNATION */
1729#endif
1730
1731extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1732#ifdef  __HAVE_ARCH_GATE_AREA
1733int in_gate_area_no_mm(unsigned long addr);
1734int in_gate_area(struct mm_struct *mm, unsigned long addr);
1735#else
1736int in_gate_area_no_mm(unsigned long addr);
1737#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1738#endif  /* __HAVE_ARCH_GATE_AREA */
1739
1740#ifdef CONFIG_SYSCTL
1741extern int sysctl_drop_caches;
1742int drop_caches_sysctl_handler(struct ctl_table *, int,
1743                                        void __user *, size_t *, loff_t *);
1744#endif
1745
1746unsigned long shrink_slab(struct shrink_control *shrink,
1747                          unsigned long nr_pages_scanned,
1748                          unsigned long lru_pages);
1749
1750#ifndef CONFIG_MMU
1751#define randomize_va_space 0
1752#else
1753extern int randomize_va_space;
1754#endif
1755
1756const char * arch_vma_name(struct vm_area_struct *vma);
1757void print_vma_addr(char *prefix, unsigned long rip);
1758
1759void sparse_mem_maps_populate_node(struct page **map_map,
1760                                   unsigned long pnum_begin,
1761                                   unsigned long pnum_end,
1762                                   unsigned long map_count,
1763                                   int nodeid);
1764
1765struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1766pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1767pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1768pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1769pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1770void *vmemmap_alloc_block(unsigned long size, int node);
1771void *vmemmap_alloc_block_buf(unsigned long size, int node);
1772void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1773int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1774                               int node);
1775int vmemmap_populate(unsigned long start, unsigned long end, int node);
1776void vmemmap_populate_print_last(void);
1777#ifdef CONFIG_MEMORY_HOTPLUG
1778void vmemmap_free(unsigned long start, unsigned long end);
1779#endif
1780void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1781                                  unsigned long size);
1782
1783enum mf_flags {
1784        MF_COUNT_INCREASED = 1 << 0,
1785        MF_ACTION_REQUIRED = 1 << 1,
1786        MF_MUST_KILL = 1 << 2,
1787};
1788extern int memory_failure(unsigned long pfn, int trapno, int flags);
1789extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1790extern int unpoison_memory(unsigned long pfn);
1791extern int sysctl_memory_failure_early_kill;
1792extern int sysctl_memory_failure_recovery;
1793extern void shake_page(struct page *p, int access);
1794extern atomic_long_t num_poisoned_pages;
1795extern int soft_offline_page(struct page *page, int flags);
1796
1797extern void dump_page(struct page *page);
1798
1799#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1800extern void clear_huge_page(struct page *page,
1801                            unsigned long addr,
1802                            unsigned int pages_per_huge_page);
1803extern void copy_user_huge_page(struct page *dst, struct page *src,
1804                                unsigned long addr, struct vm_area_struct *vma,
1805                                unsigned int pages_per_huge_page);
1806#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1807
1808#ifdef CONFIG_DEBUG_PAGEALLOC
1809extern unsigned int _debug_guardpage_minorder;
1810
1811static inline unsigned int debug_guardpage_minorder(void)
1812{
1813        return _debug_guardpage_minorder;
1814}
1815
1816static inline bool page_is_guard(struct page *page)
1817{
1818        return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1819}
1820#else
1821static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1822static inline bool page_is_guard(struct page *page) { return false; }
1823#endif /* CONFIG_DEBUG_PAGEALLOC */
1824
1825#if MAX_NUMNODES > 1
1826void __init setup_nr_node_ids(void);
1827#else
1828static inline void setup_nr_node_ids(void) {}
1829#endif
1830
1831#endif /* __KERNEL__ */
1832#endif /* _LINUX_MM_H */
1833