linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/bug.h>
  22#include <linux/cache.h>
  23
  24#include <linux/atomic.h>
  25#include <asm/types.h>
  26#include <linux/spinlock.h>
  27#include <linux/net.h>
  28#include <linux/textsearch.h>
  29#include <net/checksum.h>
  30#include <linux/rcupdate.h>
  31#include <linux/dmaengine.h>
  32#include <linux/hrtimer.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/netdev_features.h>
  35#include <net/flow_keys.h>
  36
  37/* Don't change this without changing skb_csum_unnecessary! */
  38#define CHECKSUM_NONE 0
  39#define CHECKSUM_UNNECESSARY 1
  40#define CHECKSUM_COMPLETE 2
  41#define CHECKSUM_PARTIAL 3
  42
  43#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
  44                                 ~(SMP_CACHE_BYTES - 1))
  45#define SKB_WITH_OVERHEAD(X)    \
  46        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  47#define SKB_MAX_ORDER(X, ORDER) \
  48        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  49#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
  50#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
  51
  52/* return minimum truesize of one skb containing X bytes of data */
  53#define SKB_TRUESIZE(X) ((X) +                                          \
  54                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
  55                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  56
  57/* A. Checksumming of received packets by device.
  58 *
  59 *      NONE: device failed to checksum this packet.
  60 *              skb->csum is undefined.
  61 *
  62 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
  63 *              skb->csum is undefined.
  64 *            It is bad option, but, unfortunately, many of vendors do this.
  65 *            Apparently with secret goal to sell you new device, when you
  66 *            will add new protocol to your host. F.e. IPv6. 8)
  67 *
  68 *      COMPLETE: the most generic way. Device supplied checksum of _all_
  69 *          the packet as seen by netif_rx in skb->csum.
  70 *          NOTE: Even if device supports only some protocols, but
  71 *          is able to produce some skb->csum, it MUST use COMPLETE,
  72 *          not UNNECESSARY.
  73 *
  74 *      PARTIAL: identical to the case for output below.  This may occur
  75 *          on a packet received directly from another Linux OS, e.g.,
  76 *          a virtualised Linux kernel on the same host.  The packet can
  77 *          be treated in the same way as UNNECESSARY except that on
  78 *          output (i.e., forwarding) the checksum must be filled in
  79 *          by the OS or the hardware.
  80 *
  81 * B. Checksumming on output.
  82 *
  83 *      NONE: skb is checksummed by protocol or csum is not required.
  84 *
  85 *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
  86 *      from skb->csum_start to the end and to record the checksum
  87 *      at skb->csum_start + skb->csum_offset.
  88 *
  89 *      Device must show its capabilities in dev->features, set
  90 *      at device setup time.
  91 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  92 *                        everything.
  93 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  94 *                        TCP/UDP over IPv4. Sigh. Vendors like this
  95 *                        way by an unknown reason. Though, see comment above
  96 *                        about CHECKSUM_UNNECESSARY. 8)
  97 *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  98 *
  99 *      UNNECESSARY: device will do per protocol specific csum. Protocol drivers
 100 *      that do not want net to perform the checksum calculation should use
 101 *      this flag in their outgoing skbs.
 102 *      NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
 103 *                        offload. Correspondingly, the FCoE protocol driver
 104 *                        stack should use CHECKSUM_UNNECESSARY.
 105 *
 106 *      Any questions? No questions, good.              --ANK
 107 */
 108
 109struct net_device;
 110struct scatterlist;
 111struct pipe_inode_info;
 112
 113#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 114struct nf_conntrack {
 115        atomic_t use;
 116};
 117#endif
 118
 119#ifdef CONFIG_BRIDGE_NETFILTER
 120struct nf_bridge_info {
 121        atomic_t                use;
 122        unsigned int            mask;
 123        struct net_device       *physindev;
 124        struct net_device       *physoutdev;
 125        unsigned long           data[32 / sizeof(unsigned long)];
 126};
 127#endif
 128
 129struct sk_buff_head {
 130        /* These two members must be first. */
 131        struct sk_buff  *next;
 132        struct sk_buff  *prev;
 133
 134        __u32           qlen;
 135        spinlock_t      lock;
 136};
 137
 138struct sk_buff;
 139
 140/* To allow 64K frame to be packed as single skb without frag_list we
 141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 142 * buffers which do not start on a page boundary.
 143 *
 144 * Since GRO uses frags we allocate at least 16 regardless of page
 145 * size.
 146 */
 147#if (65536/PAGE_SIZE + 1) < 16
 148#define MAX_SKB_FRAGS 16UL
 149#else
 150#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 151#endif
 152
 153typedef struct skb_frag_struct skb_frag_t;
 154
 155struct skb_frag_struct {
 156        struct {
 157                struct page *p;
 158        } page;
 159#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 160        __u32 page_offset;
 161        __u32 size;
 162#else
 163        __u16 page_offset;
 164        __u16 size;
 165#endif
 166};
 167
 168static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 169{
 170        return frag->size;
 171}
 172
 173static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 174{
 175        frag->size = size;
 176}
 177
 178static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 179{
 180        frag->size += delta;
 181}
 182
 183static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 184{
 185        frag->size -= delta;
 186}
 187
 188#define HAVE_HW_TIME_STAMP
 189
 190/**
 191 * struct skb_shared_hwtstamps - hardware time stamps
 192 * @hwtstamp:   hardware time stamp transformed into duration
 193 *              since arbitrary point in time
 194 * @syststamp:  hwtstamp transformed to system time base
 195 *
 196 * Software time stamps generated by ktime_get_real() are stored in
 197 * skb->tstamp. The relation between the different kinds of time
 198 * stamps is as follows:
 199 *
 200 * syststamp and tstamp can be compared against each other in
 201 * arbitrary combinations.  The accuracy of a
 202 * syststamp/tstamp/"syststamp from other device" comparison is
 203 * limited by the accuracy of the transformation into system time
 204 * base. This depends on the device driver and its underlying
 205 * hardware.
 206 *
 207 * hwtstamps can only be compared against other hwtstamps from
 208 * the same device.
 209 *
 210 * This structure is attached to packets as part of the
 211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 212 */
 213struct skb_shared_hwtstamps {
 214        ktime_t hwtstamp;
 215        ktime_t syststamp;
 216};
 217
 218/* Definitions for tx_flags in struct skb_shared_info */
 219enum {
 220        /* generate hardware time stamp */
 221        SKBTX_HW_TSTAMP = 1 << 0,
 222
 223        /* generate software time stamp */
 224        SKBTX_SW_TSTAMP = 1 << 1,
 225
 226        /* device driver is going to provide hardware time stamp */
 227        SKBTX_IN_PROGRESS = 1 << 2,
 228
 229        /* device driver supports TX zero-copy buffers */
 230        SKBTX_DEV_ZEROCOPY = 1 << 3,
 231
 232        /* generate wifi status information (where possible) */
 233        SKBTX_WIFI_STATUS = 1 << 4,
 234
 235        /* This indicates at least one fragment might be overwritten
 236         * (as in vmsplice(), sendfile() ...)
 237         * If we need to compute a TX checksum, we'll need to copy
 238         * all frags to avoid possible bad checksum
 239         */
 240        SKBTX_SHARED_FRAG = 1 << 5,
 241};
 242
 243/*
 244 * The callback notifies userspace to release buffers when skb DMA is done in
 245 * lower device, the skb last reference should be 0 when calling this.
 246 * The zerocopy_success argument is true if zero copy transmit occurred,
 247 * false on data copy or out of memory error caused by data copy attempt.
 248 * The ctx field is used to track device context.
 249 * The desc field is used to track userspace buffer index.
 250 */
 251struct ubuf_info {
 252        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 253        void *ctx;
 254        unsigned long desc;
 255};
 256
 257/* This data is invariant across clones and lives at
 258 * the end of the header data, ie. at skb->end.
 259 */
 260struct skb_shared_info {
 261        unsigned char   nr_frags;
 262        __u8            tx_flags;
 263        unsigned short  gso_size;
 264        /* Warning: this field is not always filled in (UFO)! */
 265        unsigned short  gso_segs;
 266        unsigned short  gso_type;
 267        struct sk_buff  *frag_list;
 268        struct skb_shared_hwtstamps hwtstamps;
 269        __be32          ip6_frag_id;
 270
 271        /*
 272         * Warning : all fields before dataref are cleared in __alloc_skb()
 273         */
 274        atomic_t        dataref;
 275
 276        /* Intermediate layers must ensure that destructor_arg
 277         * remains valid until skb destructor */
 278        void *          destructor_arg;
 279
 280        /* must be last field, see pskb_expand_head() */
 281        skb_frag_t      frags[MAX_SKB_FRAGS];
 282};
 283
 284/* We divide dataref into two halves.  The higher 16 bits hold references
 285 * to the payload part of skb->data.  The lower 16 bits hold references to
 286 * the entire skb->data.  A clone of a headerless skb holds the length of
 287 * the header in skb->hdr_len.
 288 *
 289 * All users must obey the rule that the skb->data reference count must be
 290 * greater than or equal to the payload reference count.
 291 *
 292 * Holding a reference to the payload part means that the user does not
 293 * care about modifications to the header part of skb->data.
 294 */
 295#define SKB_DATAREF_SHIFT 16
 296#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 297
 298
 299enum {
 300        SKB_FCLONE_UNAVAILABLE,
 301        SKB_FCLONE_ORIG,
 302        SKB_FCLONE_CLONE,
 303};
 304
 305enum {
 306        SKB_GSO_TCPV4 = 1 << 0,
 307        SKB_GSO_UDP = 1 << 1,
 308
 309        /* This indicates the skb is from an untrusted source. */
 310        SKB_GSO_DODGY = 1 << 2,
 311
 312        /* This indicates the tcp segment has CWR set. */
 313        SKB_GSO_TCP_ECN = 1 << 3,
 314
 315        SKB_GSO_TCPV6 = 1 << 4,
 316
 317        SKB_GSO_FCOE = 1 << 5,
 318
 319        SKB_GSO_GRE = 1 << 6,
 320
 321        SKB_GSO_UDP_TUNNEL = 1 << 7,
 322};
 323
 324#if BITS_PER_LONG > 32
 325#define NET_SKBUFF_DATA_USES_OFFSET 1
 326#endif
 327
 328#ifdef NET_SKBUFF_DATA_USES_OFFSET
 329typedef unsigned int sk_buff_data_t;
 330#else
 331typedef unsigned char *sk_buff_data_t;
 332#endif
 333
 334#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
 335    defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
 336#define NET_SKBUFF_NF_DEFRAG_NEEDED 1
 337#endif
 338
 339/** 
 340 *      struct sk_buff - socket buffer
 341 *      @next: Next buffer in list
 342 *      @prev: Previous buffer in list
 343 *      @tstamp: Time we arrived
 344 *      @sk: Socket we are owned by
 345 *      @dev: Device we arrived on/are leaving by
 346 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 347 *      @_skb_refdst: destination entry (with norefcount bit)
 348 *      @sp: the security path, used for xfrm
 349 *      @len: Length of actual data
 350 *      @data_len: Data length
 351 *      @mac_len: Length of link layer header
 352 *      @hdr_len: writable header length of cloned skb
 353 *      @csum: Checksum (must include start/offset pair)
 354 *      @csum_start: Offset from skb->head where checksumming should start
 355 *      @csum_offset: Offset from csum_start where checksum should be stored
 356 *      @priority: Packet queueing priority
 357 *      @local_df: allow local fragmentation
 358 *      @cloned: Head may be cloned (check refcnt to be sure)
 359 *      @ip_summed: Driver fed us an IP checksum
 360 *      @nohdr: Payload reference only, must not modify header
 361 *      @nfctinfo: Relationship of this skb to the connection
 362 *      @pkt_type: Packet class
 363 *      @fclone: skbuff clone status
 364 *      @ipvs_property: skbuff is owned by ipvs
 365 *      @peeked: this packet has been seen already, so stats have been
 366 *              done for it, don't do them again
 367 *      @nf_trace: netfilter packet trace flag
 368 *      @protocol: Packet protocol from driver
 369 *      @destructor: Destruct function
 370 *      @nfct: Associated connection, if any
 371 *      @nfct_reasm: netfilter conntrack re-assembly pointer
 372 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 373 *      @skb_iif: ifindex of device we arrived on
 374 *      @tc_index: Traffic control index
 375 *      @tc_verd: traffic control verdict
 376 *      @rxhash: the packet hash computed on receive
 377 *      @queue_mapping: Queue mapping for multiqueue devices
 378 *      @ndisc_nodetype: router type (from link layer)
 379 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 380 *      @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
 381 *              ports.
 382 *      @wifi_acked_valid: wifi_acked was set
 383 *      @wifi_acked: whether frame was acked on wifi or not
 384 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 385 *      @dma_cookie: a cookie to one of several possible DMA operations
 386 *              done by skb DMA functions
 387 *      @secmark: security marking
 388 *      @mark: Generic packet mark
 389 *      @dropcount: total number of sk_receive_queue overflows
 390 *      @vlan_proto: vlan encapsulation protocol
 391 *      @vlan_tci: vlan tag control information
 392 *      @inner_transport_header: Inner transport layer header (encapsulation)
 393 *      @inner_network_header: Network layer header (encapsulation)
 394 *      @inner_mac_header: Link layer header (encapsulation)
 395 *      @transport_header: Transport layer header
 396 *      @network_header: Network layer header
 397 *      @mac_header: Link layer header
 398 *      @tail: Tail pointer
 399 *      @end: End pointer
 400 *      @head: Head of buffer
 401 *      @data: Data head pointer
 402 *      @truesize: Buffer size
 403 *      @users: User count - see {datagram,tcp}.c
 404 */
 405
 406struct sk_buff {
 407        /* These two members must be first. */
 408        struct sk_buff          *next;
 409        struct sk_buff          *prev;
 410
 411        ktime_t                 tstamp;
 412
 413        struct sock             *sk;
 414        struct net_device       *dev;
 415
 416        /*
 417         * This is the control buffer. It is free to use for every
 418         * layer. Please put your private variables there. If you
 419         * want to keep them across layers you have to do a skb_clone()
 420         * first. This is owned by whoever has the skb queued ATM.
 421         */
 422        char                    cb[48] __aligned(8);
 423
 424        unsigned long           _skb_refdst;
 425#ifdef CONFIG_XFRM
 426        struct  sec_path        *sp;
 427#endif
 428        unsigned int            len,
 429                                data_len;
 430        __u16                   mac_len,
 431                                hdr_len;
 432        union {
 433                __wsum          csum;
 434                struct {
 435                        __u16   csum_start;
 436                        __u16   csum_offset;
 437                };
 438        };
 439        __u32                   priority;
 440        kmemcheck_bitfield_begin(flags1);
 441        __u8                    local_df:1,
 442                                cloned:1,
 443                                ip_summed:2,
 444                                nohdr:1,
 445                                nfctinfo:3;
 446        __u8                    pkt_type:3,
 447                                fclone:2,
 448                                ipvs_property:1,
 449                                peeked:1,
 450                                nf_trace:1;
 451        kmemcheck_bitfield_end(flags1);
 452        __be16                  protocol;
 453
 454        void                    (*destructor)(struct sk_buff *skb);
 455#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 456        struct nf_conntrack     *nfct;
 457#endif
 458#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 459        struct sk_buff          *nfct_reasm;
 460#endif
 461#ifdef CONFIG_BRIDGE_NETFILTER
 462        struct nf_bridge_info   *nf_bridge;
 463#endif
 464
 465        int                     skb_iif;
 466
 467        __u32                   rxhash;
 468
 469        __be16                  vlan_proto;
 470        __u16                   vlan_tci;
 471
 472#ifdef CONFIG_NET_SCHED
 473        __u16                   tc_index;       /* traffic control index */
 474#ifdef CONFIG_NET_CLS_ACT
 475        __u16                   tc_verd;        /* traffic control verdict */
 476#endif
 477#endif
 478
 479        __u16                   queue_mapping;
 480        kmemcheck_bitfield_begin(flags2);
 481#ifdef CONFIG_IPV6_NDISC_NODETYPE
 482        __u8                    ndisc_nodetype:2;
 483#endif
 484        __u8                    pfmemalloc:1;
 485        __u8                    ooo_okay:1;
 486        __u8                    l4_rxhash:1;
 487        __u8                    wifi_acked_valid:1;
 488        __u8                    wifi_acked:1;
 489        __u8                    no_fcs:1;
 490        __u8                    head_frag:1;
 491        /* Encapsulation protocol and NIC drivers should use
 492         * this flag to indicate to each other if the skb contains
 493         * encapsulated packet or not and maybe use the inner packet
 494         * headers if needed
 495         */
 496        __u8                    encapsulation:1;
 497        /* 7/9 bit hole (depending on ndisc_nodetype presence) */
 498        kmemcheck_bitfield_end(flags2);
 499
 500#ifdef CONFIG_NET_DMA
 501        dma_cookie_t            dma_cookie;
 502#endif
 503#ifdef CONFIG_NETWORK_SECMARK
 504        __u32                   secmark;
 505#endif
 506        union {
 507                __u32           mark;
 508                __u32           dropcount;
 509                __u32           reserved_tailroom;
 510        };
 511
 512        sk_buff_data_t          inner_transport_header;
 513        sk_buff_data_t          inner_network_header;
 514        sk_buff_data_t          inner_mac_header;
 515        sk_buff_data_t          transport_header;
 516        sk_buff_data_t          network_header;
 517        sk_buff_data_t          mac_header;
 518        /* These elements must be at the end, see alloc_skb() for details.  */
 519        sk_buff_data_t          tail;
 520        sk_buff_data_t          end;
 521        unsigned char           *head,
 522                                *data;
 523        unsigned int            truesize;
 524        atomic_t                users;
 525};
 526
 527#ifdef __KERNEL__
 528/*
 529 *      Handling routines are only of interest to the kernel
 530 */
 531#include <linux/slab.h>
 532
 533
 534#define SKB_ALLOC_FCLONE        0x01
 535#define SKB_ALLOC_RX            0x02
 536
 537/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 538static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 539{
 540        return unlikely(skb->pfmemalloc);
 541}
 542
 543/*
 544 * skb might have a dst pointer attached, refcounted or not.
 545 * _skb_refdst low order bit is set if refcount was _not_ taken
 546 */
 547#define SKB_DST_NOREF   1UL
 548#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 549
 550/**
 551 * skb_dst - returns skb dst_entry
 552 * @skb: buffer
 553 *
 554 * Returns skb dst_entry, regardless of reference taken or not.
 555 */
 556static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 557{
 558        /* If refdst was not refcounted, check we still are in a 
 559         * rcu_read_lock section
 560         */
 561        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 562                !rcu_read_lock_held() &&
 563                !rcu_read_lock_bh_held());
 564        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 565}
 566
 567/**
 568 * skb_dst_set - sets skb dst
 569 * @skb: buffer
 570 * @dst: dst entry
 571 *
 572 * Sets skb dst, assuming a reference was taken on dst and should
 573 * be released by skb_dst_drop()
 574 */
 575static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 576{
 577        skb->_skb_refdst = (unsigned long)dst;
 578}
 579
 580extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
 581                                bool force);
 582
 583/**
 584 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 585 * @skb: buffer
 586 * @dst: dst entry
 587 *
 588 * Sets skb dst, assuming a reference was not taken on dst.
 589 * If dst entry is cached, we do not take reference and dst_release
 590 * will be avoided by refdst_drop. If dst entry is not cached, we take
 591 * reference, so that last dst_release can destroy the dst immediately.
 592 */
 593static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 594{
 595        __skb_dst_set_noref(skb, dst, false);
 596}
 597
 598/**
 599 * skb_dst_set_noref_force - sets skb dst, without taking reference
 600 * @skb: buffer
 601 * @dst: dst entry
 602 *
 603 * Sets skb dst, assuming a reference was not taken on dst.
 604 * No reference is taken and no dst_release will be called. While for
 605 * cached dsts deferred reclaim is a basic feature, for entries that are
 606 * not cached it is caller's job to guarantee that last dst_release for
 607 * provided dst happens when nobody uses it, eg. after a RCU grace period.
 608 */
 609static inline void skb_dst_set_noref_force(struct sk_buff *skb,
 610                                           struct dst_entry *dst)
 611{
 612        __skb_dst_set_noref(skb, dst, true);
 613}
 614
 615/**
 616 * skb_dst_is_noref - Test if skb dst isn't refcounted
 617 * @skb: buffer
 618 */
 619static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 620{
 621        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 622}
 623
 624static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 625{
 626        return (struct rtable *)skb_dst(skb);
 627}
 628
 629extern void kfree_skb(struct sk_buff *skb);
 630extern void kfree_skb_list(struct sk_buff *segs);
 631extern void skb_tx_error(struct sk_buff *skb);
 632extern void consume_skb(struct sk_buff *skb);
 633extern void            __kfree_skb(struct sk_buff *skb);
 634extern struct kmem_cache *skbuff_head_cache;
 635
 636extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 637extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 638                             bool *fragstolen, int *delta_truesize);
 639
 640extern struct sk_buff *__alloc_skb(unsigned int size,
 641                                   gfp_t priority, int flags, int node);
 642extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
 643static inline struct sk_buff *alloc_skb(unsigned int size,
 644                                        gfp_t priority)
 645{
 646        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 647}
 648
 649static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 650                                               gfp_t priority)
 651{
 652        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
 653}
 654
 655extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
 656static inline struct sk_buff *alloc_skb_head(gfp_t priority)
 657{
 658        return __alloc_skb_head(priority, -1);
 659}
 660
 661extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 662extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 663extern struct sk_buff *skb_clone(struct sk_buff *skb,
 664                                 gfp_t priority);
 665extern struct sk_buff *skb_copy(const struct sk_buff *skb,
 666                                gfp_t priority);
 667extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
 668                                 int headroom, gfp_t gfp_mask);
 669
 670extern int             pskb_expand_head(struct sk_buff *skb,
 671                                        int nhead, int ntail,
 672                                        gfp_t gfp_mask);
 673extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 674                                            unsigned int headroom);
 675extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 676                                       int newheadroom, int newtailroom,
 677                                       gfp_t priority);
 678extern int             skb_to_sgvec(struct sk_buff *skb,
 679                                    struct scatterlist *sg, int offset,
 680                                    int len);
 681extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
 682                                    struct sk_buff **trailer);
 683extern int             skb_pad(struct sk_buff *skb, int pad);
 684#define dev_kfree_skb(a)        consume_skb(a)
 685
 686extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 687                        int getfrag(void *from, char *to, int offset,
 688                        int len,int odd, struct sk_buff *skb),
 689                        void *from, int length);
 690
 691struct skb_seq_state {
 692        __u32           lower_offset;
 693        __u32           upper_offset;
 694        __u32           frag_idx;
 695        __u32           stepped_offset;
 696        struct sk_buff  *root_skb;
 697        struct sk_buff  *cur_skb;
 698        __u8            *frag_data;
 699};
 700
 701extern void           skb_prepare_seq_read(struct sk_buff *skb,
 702                                           unsigned int from, unsigned int to,
 703                                           struct skb_seq_state *st);
 704extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
 705                                   struct skb_seq_state *st);
 706extern void           skb_abort_seq_read(struct skb_seq_state *st);
 707
 708extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
 709                                    unsigned int to, struct ts_config *config,
 710                                    struct ts_state *state);
 711
 712extern void __skb_get_rxhash(struct sk_buff *skb);
 713static inline __u32 skb_get_rxhash(struct sk_buff *skb)
 714{
 715        if (!skb->l4_rxhash)
 716                __skb_get_rxhash(skb);
 717
 718        return skb->rxhash;
 719}
 720
 721#ifdef NET_SKBUFF_DATA_USES_OFFSET
 722static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 723{
 724        return skb->head + skb->end;
 725}
 726
 727static inline unsigned int skb_end_offset(const struct sk_buff *skb)
 728{
 729        return skb->end;
 730}
 731#else
 732static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 733{
 734        return skb->end;
 735}
 736
 737static inline unsigned int skb_end_offset(const struct sk_buff *skb)
 738{
 739        return skb->end - skb->head;
 740}
 741#endif
 742
 743/* Internal */
 744#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
 745
 746static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
 747{
 748        return &skb_shinfo(skb)->hwtstamps;
 749}
 750
 751/**
 752 *      skb_queue_empty - check if a queue is empty
 753 *      @list: queue head
 754 *
 755 *      Returns true if the queue is empty, false otherwise.
 756 */
 757static inline int skb_queue_empty(const struct sk_buff_head *list)
 758{
 759        return list->next == (struct sk_buff *)list;
 760}
 761
 762/**
 763 *      skb_queue_is_last - check if skb is the last entry in the queue
 764 *      @list: queue head
 765 *      @skb: buffer
 766 *
 767 *      Returns true if @skb is the last buffer on the list.
 768 */
 769static inline bool skb_queue_is_last(const struct sk_buff_head *list,
 770                                     const struct sk_buff *skb)
 771{
 772        return skb->next == (struct sk_buff *)list;
 773}
 774
 775/**
 776 *      skb_queue_is_first - check if skb is the first entry in the queue
 777 *      @list: queue head
 778 *      @skb: buffer
 779 *
 780 *      Returns true if @skb is the first buffer on the list.
 781 */
 782static inline bool skb_queue_is_first(const struct sk_buff_head *list,
 783                                      const struct sk_buff *skb)
 784{
 785        return skb->prev == (struct sk_buff *)list;
 786}
 787
 788/**
 789 *      skb_queue_next - return the next packet in the queue
 790 *      @list: queue head
 791 *      @skb: current buffer
 792 *
 793 *      Return the next packet in @list after @skb.  It is only valid to
 794 *      call this if skb_queue_is_last() evaluates to false.
 795 */
 796static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
 797                                             const struct sk_buff *skb)
 798{
 799        /* This BUG_ON may seem severe, but if we just return then we
 800         * are going to dereference garbage.
 801         */
 802        BUG_ON(skb_queue_is_last(list, skb));
 803        return skb->next;
 804}
 805
 806/**
 807 *      skb_queue_prev - return the prev packet in the queue
 808 *      @list: queue head
 809 *      @skb: current buffer
 810 *
 811 *      Return the prev packet in @list before @skb.  It is only valid to
 812 *      call this if skb_queue_is_first() evaluates to false.
 813 */
 814static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
 815                                             const struct sk_buff *skb)
 816{
 817        /* This BUG_ON may seem severe, but if we just return then we
 818         * are going to dereference garbage.
 819         */
 820        BUG_ON(skb_queue_is_first(list, skb));
 821        return skb->prev;
 822}
 823
 824/**
 825 *      skb_get - reference buffer
 826 *      @skb: buffer to reference
 827 *
 828 *      Makes another reference to a socket buffer and returns a pointer
 829 *      to the buffer.
 830 */
 831static inline struct sk_buff *skb_get(struct sk_buff *skb)
 832{
 833        atomic_inc(&skb->users);
 834        return skb;
 835}
 836
 837/*
 838 * If users == 1, we are the only owner and are can avoid redundant
 839 * atomic change.
 840 */
 841
 842/**
 843 *      skb_cloned - is the buffer a clone
 844 *      @skb: buffer to check
 845 *
 846 *      Returns true if the buffer was generated with skb_clone() and is
 847 *      one of multiple shared copies of the buffer. Cloned buffers are
 848 *      shared data so must not be written to under normal circumstances.
 849 */
 850static inline int skb_cloned(const struct sk_buff *skb)
 851{
 852        return skb->cloned &&
 853               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
 854}
 855
 856static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
 857{
 858        might_sleep_if(pri & __GFP_WAIT);
 859
 860        if (skb_cloned(skb))
 861                return pskb_expand_head(skb, 0, 0, pri);
 862
 863        return 0;
 864}
 865
 866/**
 867 *      skb_header_cloned - is the header a clone
 868 *      @skb: buffer to check
 869 *
 870 *      Returns true if modifying the header part of the buffer requires
 871 *      the data to be copied.
 872 */
 873static inline int skb_header_cloned(const struct sk_buff *skb)
 874{
 875        int dataref;
 876
 877        if (!skb->cloned)
 878                return 0;
 879
 880        dataref = atomic_read(&skb_shinfo(skb)->dataref);
 881        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
 882        return dataref != 1;
 883}
 884
 885/**
 886 *      skb_header_release - release reference to header
 887 *      @skb: buffer to operate on
 888 *
 889 *      Drop a reference to the header part of the buffer.  This is done
 890 *      by acquiring a payload reference.  You must not read from the header
 891 *      part of skb->data after this.
 892 */
 893static inline void skb_header_release(struct sk_buff *skb)
 894{
 895        BUG_ON(skb->nohdr);
 896        skb->nohdr = 1;
 897        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
 898}
 899
 900/**
 901 *      skb_shared - is the buffer shared
 902 *      @skb: buffer to check
 903 *
 904 *      Returns true if more than one person has a reference to this
 905 *      buffer.
 906 */
 907static inline int skb_shared(const struct sk_buff *skb)
 908{
 909        return atomic_read(&skb->users) != 1;
 910}
 911
 912/**
 913 *      skb_share_check - check if buffer is shared and if so clone it
 914 *      @skb: buffer to check
 915 *      @pri: priority for memory allocation
 916 *
 917 *      If the buffer is shared the buffer is cloned and the old copy
 918 *      drops a reference. A new clone with a single reference is returned.
 919 *      If the buffer is not shared the original buffer is returned. When
 920 *      being called from interrupt status or with spinlocks held pri must
 921 *      be GFP_ATOMIC.
 922 *
 923 *      NULL is returned on a memory allocation failure.
 924 */
 925static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
 926{
 927        might_sleep_if(pri & __GFP_WAIT);
 928        if (skb_shared(skb)) {
 929                struct sk_buff *nskb = skb_clone(skb, pri);
 930
 931                if (likely(nskb))
 932                        consume_skb(skb);
 933                else
 934                        kfree_skb(skb);
 935                skb = nskb;
 936        }
 937        return skb;
 938}
 939
 940/*
 941 *      Copy shared buffers into a new sk_buff. We effectively do COW on
 942 *      packets to handle cases where we have a local reader and forward
 943 *      and a couple of other messy ones. The normal one is tcpdumping
 944 *      a packet thats being forwarded.
 945 */
 946
 947/**
 948 *      skb_unshare - make a copy of a shared buffer
 949 *      @skb: buffer to check
 950 *      @pri: priority for memory allocation
 951 *
 952 *      If the socket buffer is a clone then this function creates a new
 953 *      copy of the data, drops a reference count on the old copy and returns
 954 *      the new copy with the reference count at 1. If the buffer is not a clone
 955 *      the original buffer is returned. When called with a spinlock held or
 956 *      from interrupt state @pri must be %GFP_ATOMIC
 957 *
 958 *      %NULL is returned on a memory allocation failure.
 959 */
 960static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
 961                                          gfp_t pri)
 962{
 963        might_sleep_if(pri & __GFP_WAIT);
 964        if (skb_cloned(skb)) {
 965                struct sk_buff *nskb = skb_copy(skb, pri);
 966                kfree_skb(skb); /* Free our shared copy */
 967                skb = nskb;
 968        }
 969        return skb;
 970}
 971
 972/**
 973 *      skb_peek - peek at the head of an &sk_buff_head
 974 *      @list_: list to peek at
 975 *
 976 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 977 *      be careful with this one. A peek leaves the buffer on the
 978 *      list and someone else may run off with it. You must hold
 979 *      the appropriate locks or have a private queue to do this.
 980 *
 981 *      Returns %NULL for an empty list or a pointer to the head element.
 982 *      The reference count is not incremented and the reference is therefore
 983 *      volatile. Use with caution.
 984 */
 985static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
 986{
 987        struct sk_buff *skb = list_->next;
 988
 989        if (skb == (struct sk_buff *)list_)
 990                skb = NULL;
 991        return skb;
 992}
 993
 994/**
 995 *      skb_peek_next - peek skb following the given one from a queue
 996 *      @skb: skb to start from
 997 *      @list_: list to peek at
 998 *
 999 *      Returns %NULL when the end of the list is met or a pointer to the
1000 *      next element. The reference count is not incremented and the
1001 *      reference is therefore volatile. Use with caution.
1002 */
1003static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1004                const struct sk_buff_head *list_)
1005{
1006        struct sk_buff *next = skb->next;
1007
1008        if (next == (struct sk_buff *)list_)
1009                next = NULL;
1010        return next;
1011}
1012
1013/**
1014 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1015 *      @list_: list to peek at
1016 *
1017 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1018 *      be careful with this one. A peek leaves the buffer on the
1019 *      list and someone else may run off with it. You must hold
1020 *      the appropriate locks or have a private queue to do this.
1021 *
1022 *      Returns %NULL for an empty list or a pointer to the tail element.
1023 *      The reference count is not incremented and the reference is therefore
1024 *      volatile. Use with caution.
1025 */
1026static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1027{
1028        struct sk_buff *skb = list_->prev;
1029
1030        if (skb == (struct sk_buff *)list_)
1031                skb = NULL;
1032        return skb;
1033
1034}
1035
1036/**
1037 *      skb_queue_len   - get queue length
1038 *      @list_: list to measure
1039 *
1040 *      Return the length of an &sk_buff queue.
1041 */
1042static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1043{
1044        return list_->qlen;
1045}
1046
1047/**
1048 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1049 *      @list: queue to initialize
1050 *
1051 *      This initializes only the list and queue length aspects of
1052 *      an sk_buff_head object.  This allows to initialize the list
1053 *      aspects of an sk_buff_head without reinitializing things like
1054 *      the spinlock.  It can also be used for on-stack sk_buff_head
1055 *      objects where the spinlock is known to not be used.
1056 */
1057static inline void __skb_queue_head_init(struct sk_buff_head *list)
1058{
1059        list->prev = list->next = (struct sk_buff *)list;
1060        list->qlen = 0;
1061}
1062
1063/*
1064 * This function creates a split out lock class for each invocation;
1065 * this is needed for now since a whole lot of users of the skb-queue
1066 * infrastructure in drivers have different locking usage (in hardirq)
1067 * than the networking core (in softirq only). In the long run either the
1068 * network layer or drivers should need annotation to consolidate the
1069 * main types of usage into 3 classes.
1070 */
1071static inline void skb_queue_head_init(struct sk_buff_head *list)
1072{
1073        spin_lock_init(&list->lock);
1074        __skb_queue_head_init(list);
1075}
1076
1077static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1078                struct lock_class_key *class)
1079{
1080        skb_queue_head_init(list);
1081        lockdep_set_class(&list->lock, class);
1082}
1083
1084/*
1085 *      Insert an sk_buff on a list.
1086 *
1087 *      The "__skb_xxxx()" functions are the non-atomic ones that
1088 *      can only be called with interrupts disabled.
1089 */
1090extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1091static inline void __skb_insert(struct sk_buff *newsk,
1092                                struct sk_buff *prev, struct sk_buff *next,
1093                                struct sk_buff_head *list)
1094{
1095        newsk->next = next;
1096        newsk->prev = prev;
1097        next->prev  = prev->next = newsk;
1098        list->qlen++;
1099}
1100
1101static inline void __skb_queue_splice(const struct sk_buff_head *list,
1102                                      struct sk_buff *prev,
1103                                      struct sk_buff *next)
1104{
1105        struct sk_buff *first = list->next;
1106        struct sk_buff *last = list->prev;
1107
1108        first->prev = prev;
1109        prev->next = first;
1110
1111        last->next = next;
1112        next->prev = last;
1113}
1114
1115/**
1116 *      skb_queue_splice - join two skb lists, this is designed for stacks
1117 *      @list: the new list to add
1118 *      @head: the place to add it in the first list
1119 */
1120static inline void skb_queue_splice(const struct sk_buff_head *list,
1121                                    struct sk_buff_head *head)
1122{
1123        if (!skb_queue_empty(list)) {
1124                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1125                head->qlen += list->qlen;
1126        }
1127}
1128
1129/**
1130 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1131 *      @list: the new list to add
1132 *      @head: the place to add it in the first list
1133 *
1134 *      The list at @list is reinitialised
1135 */
1136static inline void skb_queue_splice_init(struct sk_buff_head *list,
1137                                         struct sk_buff_head *head)
1138{
1139        if (!skb_queue_empty(list)) {
1140                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1141                head->qlen += list->qlen;
1142                __skb_queue_head_init(list);
1143        }
1144}
1145
1146/**
1147 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1148 *      @list: the new list to add
1149 *      @head: the place to add it in the first list
1150 */
1151static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1152                                         struct sk_buff_head *head)
1153{
1154        if (!skb_queue_empty(list)) {
1155                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1156                head->qlen += list->qlen;
1157        }
1158}
1159
1160/**
1161 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1162 *      @list: the new list to add
1163 *      @head: the place to add it in the first list
1164 *
1165 *      Each of the lists is a queue.
1166 *      The list at @list is reinitialised
1167 */
1168static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1169                                              struct sk_buff_head *head)
1170{
1171        if (!skb_queue_empty(list)) {
1172                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1173                head->qlen += list->qlen;
1174                __skb_queue_head_init(list);
1175        }
1176}
1177
1178/**
1179 *      __skb_queue_after - queue a buffer at the list head
1180 *      @list: list to use
1181 *      @prev: place after this buffer
1182 *      @newsk: buffer to queue
1183 *
1184 *      Queue a buffer int the middle of a list. This function takes no locks
1185 *      and you must therefore hold required locks before calling it.
1186 *
1187 *      A buffer cannot be placed on two lists at the same time.
1188 */
1189static inline void __skb_queue_after(struct sk_buff_head *list,
1190                                     struct sk_buff *prev,
1191                                     struct sk_buff *newsk)
1192{
1193        __skb_insert(newsk, prev, prev->next, list);
1194}
1195
1196extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1197                       struct sk_buff_head *list);
1198
1199static inline void __skb_queue_before(struct sk_buff_head *list,
1200                                      struct sk_buff *next,
1201                                      struct sk_buff *newsk)
1202{
1203        __skb_insert(newsk, next->prev, next, list);
1204}
1205
1206/**
1207 *      __skb_queue_head - queue a buffer at the list head
1208 *      @list: list to use
1209 *      @newsk: buffer to queue
1210 *
1211 *      Queue a buffer at the start of a list. This function takes no locks
1212 *      and you must therefore hold required locks before calling it.
1213 *
1214 *      A buffer cannot be placed on two lists at the same time.
1215 */
1216extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1217static inline void __skb_queue_head(struct sk_buff_head *list,
1218                                    struct sk_buff *newsk)
1219{
1220        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1221}
1222
1223/**
1224 *      __skb_queue_tail - queue a buffer at the list tail
1225 *      @list: list to use
1226 *      @newsk: buffer to queue
1227 *
1228 *      Queue a buffer at the end of a list. This function takes no locks
1229 *      and you must therefore hold required locks before calling it.
1230 *
1231 *      A buffer cannot be placed on two lists at the same time.
1232 */
1233extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1234static inline void __skb_queue_tail(struct sk_buff_head *list,
1235                                   struct sk_buff *newsk)
1236{
1237        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1238}
1239
1240/*
1241 * remove sk_buff from list. _Must_ be called atomically, and with
1242 * the list known..
1243 */
1244extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1245static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1246{
1247        struct sk_buff *next, *prev;
1248
1249        list->qlen--;
1250        next       = skb->next;
1251        prev       = skb->prev;
1252        skb->next  = skb->prev = NULL;
1253        next->prev = prev;
1254        prev->next = next;
1255}
1256
1257/**
1258 *      __skb_dequeue - remove from the head of the queue
1259 *      @list: list to dequeue from
1260 *
1261 *      Remove the head of the list. This function does not take any locks
1262 *      so must be used with appropriate locks held only. The head item is
1263 *      returned or %NULL if the list is empty.
1264 */
1265extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1266static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1267{
1268        struct sk_buff *skb = skb_peek(list);
1269        if (skb)
1270                __skb_unlink(skb, list);
1271        return skb;
1272}
1273
1274/**
1275 *      __skb_dequeue_tail - remove from the tail of the queue
1276 *      @list: list to dequeue from
1277 *
1278 *      Remove the tail of the list. This function does not take any locks
1279 *      so must be used with appropriate locks held only. The tail item is
1280 *      returned or %NULL if the list is empty.
1281 */
1282extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1283static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1284{
1285        struct sk_buff *skb = skb_peek_tail(list);
1286        if (skb)
1287                __skb_unlink(skb, list);
1288        return skb;
1289}
1290
1291
1292static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1293{
1294        return skb->data_len;
1295}
1296
1297static inline unsigned int skb_headlen(const struct sk_buff *skb)
1298{
1299        return skb->len - skb->data_len;
1300}
1301
1302static inline int skb_pagelen(const struct sk_buff *skb)
1303{
1304        int i, len = 0;
1305
1306        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1307                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1308        return len + skb_headlen(skb);
1309}
1310
1311/**
1312 * __skb_fill_page_desc - initialise a paged fragment in an skb
1313 * @skb: buffer containing fragment to be initialised
1314 * @i: paged fragment index to initialise
1315 * @page: the page to use for this fragment
1316 * @off: the offset to the data with @page
1317 * @size: the length of the data
1318 *
1319 * Initialises the @i'th fragment of @skb to point to &size bytes at
1320 * offset @off within @page.
1321 *
1322 * Does not take any additional reference on the fragment.
1323 */
1324static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1325                                        struct page *page, int off, int size)
1326{
1327        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1328
1329        /*
1330         * Propagate page->pfmemalloc to the skb if we can. The problem is
1331         * that not all callers have unique ownership of the page. If
1332         * pfmemalloc is set, we check the mapping as a mapping implies
1333         * page->index is set (index and pfmemalloc share space).
1334         * If it's a valid mapping, we cannot use page->pfmemalloc but we
1335         * do not lose pfmemalloc information as the pages would not be
1336         * allocated using __GFP_MEMALLOC.
1337         */
1338        frag->page.p              = page;
1339        frag->page_offset         = off;
1340        skb_frag_size_set(frag, size);
1341
1342        page = compound_head(page);
1343        if (page->pfmemalloc && !page->mapping)
1344                skb->pfmemalloc = true;
1345}
1346
1347/**
1348 * skb_fill_page_desc - initialise a paged fragment in an skb
1349 * @skb: buffer containing fragment to be initialised
1350 * @i: paged fragment index to initialise
1351 * @page: the page to use for this fragment
1352 * @off: the offset to the data with @page
1353 * @size: the length of the data
1354 *
1355 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1356 * @skb to point to &size bytes at offset @off within @page. In
1357 * addition updates @skb such that @i is the last fragment.
1358 *
1359 * Does not take any additional reference on the fragment.
1360 */
1361static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1362                                      struct page *page, int off, int size)
1363{
1364        __skb_fill_page_desc(skb, i, page, off, size);
1365        skb_shinfo(skb)->nr_frags = i + 1;
1366}
1367
1368extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1369                            int off, int size, unsigned int truesize);
1370
1371#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1372#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1373#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1374
1375#ifdef NET_SKBUFF_DATA_USES_OFFSET
1376static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1377{
1378        return skb->head + skb->tail;
1379}
1380
1381static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1382{
1383        skb->tail = skb->data - skb->head;
1384}
1385
1386static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1387{
1388        skb_reset_tail_pointer(skb);
1389        skb->tail += offset;
1390}
1391#else /* NET_SKBUFF_DATA_USES_OFFSET */
1392static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1393{
1394        return skb->tail;
1395}
1396
1397static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1398{
1399        skb->tail = skb->data;
1400}
1401
1402static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1403{
1404        skb->tail = skb->data + offset;
1405}
1406
1407#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1408
1409/*
1410 *      Add data to an sk_buff
1411 */
1412extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1413static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1414{
1415        unsigned char *tmp = skb_tail_pointer(skb);
1416        SKB_LINEAR_ASSERT(skb);
1417        skb->tail += len;
1418        skb->len  += len;
1419        return tmp;
1420}
1421
1422extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1423static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1424{
1425        skb->data -= len;
1426        skb->len  += len;
1427        return skb->data;
1428}
1429
1430extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1431static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1432{
1433        skb->len -= len;
1434        BUG_ON(skb->len < skb->data_len);
1435        return skb->data += len;
1436}
1437
1438static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1439{
1440        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1441}
1442
1443extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1444
1445static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1446{
1447        if (len > skb_headlen(skb) &&
1448            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1449                return NULL;
1450        skb->len -= len;
1451        return skb->data += len;
1452}
1453
1454static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1455{
1456        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1457}
1458
1459static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1460{
1461        if (likely(len <= skb_headlen(skb)))
1462                return 1;
1463        if (unlikely(len > skb->len))
1464                return 0;
1465        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1466}
1467
1468/**
1469 *      skb_headroom - bytes at buffer head
1470 *      @skb: buffer to check
1471 *
1472 *      Return the number of bytes of free space at the head of an &sk_buff.
1473 */
1474static inline unsigned int skb_headroom(const struct sk_buff *skb)
1475{
1476        return skb->data - skb->head;
1477}
1478
1479/**
1480 *      skb_tailroom - bytes at buffer end
1481 *      @skb: buffer to check
1482 *
1483 *      Return the number of bytes of free space at the tail of an sk_buff
1484 */
1485static inline int skb_tailroom(const struct sk_buff *skb)
1486{
1487        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1488}
1489
1490/**
1491 *      skb_availroom - bytes at buffer end
1492 *      @skb: buffer to check
1493 *
1494 *      Return the number of bytes of free space at the tail of an sk_buff
1495 *      allocated by sk_stream_alloc()
1496 */
1497static inline int skb_availroom(const struct sk_buff *skb)
1498{
1499        if (skb_is_nonlinear(skb))
1500                return 0;
1501
1502        return skb->end - skb->tail - skb->reserved_tailroom;
1503}
1504
1505/**
1506 *      skb_reserve - adjust headroom
1507 *      @skb: buffer to alter
1508 *      @len: bytes to move
1509 *
1510 *      Increase the headroom of an empty &sk_buff by reducing the tail
1511 *      room. This is only allowed for an empty buffer.
1512 */
1513static inline void skb_reserve(struct sk_buff *skb, int len)
1514{
1515        skb->data += len;
1516        skb->tail += len;
1517}
1518
1519static inline void skb_reset_inner_headers(struct sk_buff *skb)
1520{
1521        skb->inner_mac_header = skb->mac_header;
1522        skb->inner_network_header = skb->network_header;
1523        skb->inner_transport_header = skb->transport_header;
1524}
1525
1526static inline void skb_reset_mac_len(struct sk_buff *skb)
1527{
1528        skb->mac_len = skb->network_header - skb->mac_header;
1529}
1530
1531#ifdef NET_SKBUFF_DATA_USES_OFFSET
1532static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1533                                                        *skb)
1534{
1535        return skb->head + skb->inner_transport_header;
1536}
1537
1538static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1539{
1540        skb->inner_transport_header = skb->data - skb->head;
1541}
1542
1543static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1544                                                   const int offset)
1545{
1546        skb_reset_inner_transport_header(skb);
1547        skb->inner_transport_header += offset;
1548}
1549
1550static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1551{
1552        return skb->head + skb->inner_network_header;
1553}
1554
1555static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1556{
1557        skb->inner_network_header = skb->data - skb->head;
1558}
1559
1560static inline void skb_set_inner_network_header(struct sk_buff *skb,
1561                                                const int offset)
1562{
1563        skb_reset_inner_network_header(skb);
1564        skb->inner_network_header += offset;
1565}
1566
1567static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1568{
1569        return skb->head + skb->inner_mac_header;
1570}
1571
1572static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1573{
1574        skb->inner_mac_header = skb->data - skb->head;
1575}
1576
1577static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1578                                            const int offset)
1579{
1580        skb_reset_inner_mac_header(skb);
1581        skb->inner_mac_header += offset;
1582}
1583static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1584{
1585        return skb->transport_header != ~0U;
1586}
1587
1588static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1589{
1590        return skb->head + skb->transport_header;
1591}
1592
1593static inline void skb_reset_transport_header(struct sk_buff *skb)
1594{
1595        skb->transport_header = skb->data - skb->head;
1596}
1597
1598static inline void skb_set_transport_header(struct sk_buff *skb,
1599                                            const int offset)
1600{
1601        skb_reset_transport_header(skb);
1602        skb->transport_header += offset;
1603}
1604
1605static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1606{
1607        return skb->head + skb->network_header;
1608}
1609
1610static inline void skb_reset_network_header(struct sk_buff *skb)
1611{
1612        skb->network_header = skb->data - skb->head;
1613}
1614
1615static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1616{
1617        skb_reset_network_header(skb);
1618        skb->network_header += offset;
1619}
1620
1621static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1622{
1623        return skb->head + skb->mac_header;
1624}
1625
1626static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1627{
1628        return skb->mac_header != ~0U;
1629}
1630
1631static inline void skb_reset_mac_header(struct sk_buff *skb)
1632{
1633        skb->mac_header = skb->data - skb->head;
1634}
1635
1636static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1637{
1638        skb_reset_mac_header(skb);
1639        skb->mac_header += offset;
1640}
1641
1642#else /* NET_SKBUFF_DATA_USES_OFFSET */
1643static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1644                                                        *skb)
1645{
1646        return skb->inner_transport_header;
1647}
1648
1649static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1650{
1651        skb->inner_transport_header = skb->data;
1652}
1653
1654static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1655                                                   const int offset)
1656{
1657        skb->inner_transport_header = skb->data + offset;
1658}
1659
1660static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1661{
1662        return skb->inner_network_header;
1663}
1664
1665static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1666{
1667        skb->inner_network_header = skb->data;
1668}
1669
1670static inline void skb_set_inner_network_header(struct sk_buff *skb,
1671                                                const int offset)
1672{
1673        skb->inner_network_header = skb->data + offset;
1674}
1675
1676static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1677{
1678        return skb->inner_mac_header;
1679}
1680
1681static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1682{
1683        skb->inner_mac_header = skb->data;
1684}
1685
1686static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1687                                                const int offset)
1688{
1689        skb->inner_mac_header = skb->data + offset;
1690}
1691static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1692{
1693        return skb->transport_header != NULL;
1694}
1695
1696static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1697{
1698        return skb->transport_header;
1699}
1700
1701static inline void skb_reset_transport_header(struct sk_buff *skb)
1702{
1703        skb->transport_header = skb->data;
1704}
1705
1706static inline void skb_set_transport_header(struct sk_buff *skb,
1707                                            const int offset)
1708{
1709        skb->transport_header = skb->data + offset;
1710}
1711
1712static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1713{
1714        return skb->network_header;
1715}
1716
1717static inline void skb_reset_network_header(struct sk_buff *skb)
1718{
1719        skb->network_header = skb->data;
1720}
1721
1722static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1723{
1724        skb->network_header = skb->data + offset;
1725}
1726
1727static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1728{
1729        return skb->mac_header;
1730}
1731
1732static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1733{
1734        return skb->mac_header != NULL;
1735}
1736
1737static inline void skb_reset_mac_header(struct sk_buff *skb)
1738{
1739        skb->mac_header = skb->data;
1740}
1741
1742static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1743{
1744        skb->mac_header = skb->data + offset;
1745}
1746#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1747
1748static inline void skb_probe_transport_header(struct sk_buff *skb,
1749                                              const int offset_hint)
1750{
1751        struct flow_keys keys;
1752
1753        if (skb_transport_header_was_set(skb))
1754                return;
1755        else if (skb_flow_dissect(skb, &keys))
1756                skb_set_transport_header(skb, keys.thoff);
1757        else
1758                skb_set_transport_header(skb, offset_hint);
1759}
1760
1761static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1762{
1763        if (skb_mac_header_was_set(skb)) {
1764                const unsigned char *old_mac = skb_mac_header(skb);
1765
1766                skb_set_mac_header(skb, -skb->mac_len);
1767                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1768        }
1769}
1770
1771static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1772{
1773        return skb->csum_start - skb_headroom(skb);
1774}
1775
1776static inline int skb_transport_offset(const struct sk_buff *skb)
1777{
1778        return skb_transport_header(skb) - skb->data;
1779}
1780
1781static inline u32 skb_network_header_len(const struct sk_buff *skb)
1782{
1783        return skb->transport_header - skb->network_header;
1784}
1785
1786static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1787{
1788        return skb->inner_transport_header - skb->inner_network_header;
1789}
1790
1791static inline int skb_network_offset(const struct sk_buff *skb)
1792{
1793        return skb_network_header(skb) - skb->data;
1794}
1795
1796static inline int skb_inner_network_offset(const struct sk_buff *skb)
1797{
1798        return skb_inner_network_header(skb) - skb->data;
1799}
1800
1801static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1802{
1803        return pskb_may_pull(skb, skb_network_offset(skb) + len);
1804}
1805
1806/*
1807 * CPUs often take a performance hit when accessing unaligned memory
1808 * locations. The actual performance hit varies, it can be small if the
1809 * hardware handles it or large if we have to take an exception and fix it
1810 * in software.
1811 *
1812 * Since an ethernet header is 14 bytes network drivers often end up with
1813 * the IP header at an unaligned offset. The IP header can be aligned by
1814 * shifting the start of the packet by 2 bytes. Drivers should do this
1815 * with:
1816 *
1817 * skb_reserve(skb, NET_IP_ALIGN);
1818 *
1819 * The downside to this alignment of the IP header is that the DMA is now
1820 * unaligned. On some architectures the cost of an unaligned DMA is high
1821 * and this cost outweighs the gains made by aligning the IP header.
1822 *
1823 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1824 * to be overridden.
1825 */
1826#ifndef NET_IP_ALIGN
1827#define NET_IP_ALIGN    2
1828#endif
1829
1830/*
1831 * The networking layer reserves some headroom in skb data (via
1832 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1833 * the header has to grow. In the default case, if the header has to grow
1834 * 32 bytes or less we avoid the reallocation.
1835 *
1836 * Unfortunately this headroom changes the DMA alignment of the resulting
1837 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1838 * on some architectures. An architecture can override this value,
1839 * perhaps setting it to a cacheline in size (since that will maintain
1840 * cacheline alignment of the DMA). It must be a power of 2.
1841 *
1842 * Various parts of the networking layer expect at least 32 bytes of
1843 * headroom, you should not reduce this.
1844 *
1845 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1846 * to reduce average number of cache lines per packet.
1847 * get_rps_cpus() for example only access one 64 bytes aligned block :
1848 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1849 */
1850#ifndef NET_SKB_PAD
1851#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
1852#endif
1853
1854extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1855
1856static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1857{
1858        if (unlikely(skb_is_nonlinear(skb))) {
1859                WARN_ON(1);
1860                return;
1861        }
1862        skb->len = len;
1863        skb_set_tail_pointer(skb, len);
1864}
1865
1866extern void skb_trim(struct sk_buff *skb, unsigned int len);
1867
1868static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1869{
1870        if (skb->data_len)
1871                return ___pskb_trim(skb, len);
1872        __skb_trim(skb, len);
1873        return 0;
1874}
1875
1876static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1877{
1878        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1879}
1880
1881/**
1882 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1883 *      @skb: buffer to alter
1884 *      @len: new length
1885 *
1886 *      This is identical to pskb_trim except that the caller knows that
1887 *      the skb is not cloned so we should never get an error due to out-
1888 *      of-memory.
1889 */
1890static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1891{
1892        int err = pskb_trim(skb, len);
1893        BUG_ON(err);
1894}
1895
1896/**
1897 *      skb_orphan - orphan a buffer
1898 *      @skb: buffer to orphan
1899 *
1900 *      If a buffer currently has an owner then we call the owner's
1901 *      destructor function and make the @skb unowned. The buffer continues
1902 *      to exist but is no longer charged to its former owner.
1903 */
1904static inline void skb_orphan(struct sk_buff *skb)
1905{
1906        if (skb->destructor)
1907                skb->destructor(skb);
1908        skb->destructor = NULL;
1909        skb->sk         = NULL;
1910}
1911
1912/**
1913 *      skb_orphan_frags - orphan the frags contained in a buffer
1914 *      @skb: buffer to orphan frags from
1915 *      @gfp_mask: allocation mask for replacement pages
1916 *
1917 *      For each frag in the SKB which needs a destructor (i.e. has an
1918 *      owner) create a copy of that frag and release the original
1919 *      page by calling the destructor.
1920 */
1921static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1922{
1923        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1924                return 0;
1925        return skb_copy_ubufs(skb, gfp_mask);
1926}
1927
1928/**
1929 *      __skb_queue_purge - empty a list
1930 *      @list: list to empty
1931 *
1932 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1933 *      the list and one reference dropped. This function does not take the
1934 *      list lock and the caller must hold the relevant locks to use it.
1935 */
1936extern void skb_queue_purge(struct sk_buff_head *list);
1937static inline void __skb_queue_purge(struct sk_buff_head *list)
1938{
1939        struct sk_buff *skb;
1940        while ((skb = __skb_dequeue(list)) != NULL)
1941                kfree_skb(skb);
1942}
1943
1944#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1945#define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1946#define NETDEV_PAGECNT_MAX_BIAS    NETDEV_FRAG_PAGE_MAX_SIZE
1947
1948extern void *netdev_alloc_frag(unsigned int fragsz);
1949
1950extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1951                                          unsigned int length,
1952                                          gfp_t gfp_mask);
1953
1954/**
1955 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1956 *      @dev: network device to receive on
1957 *      @length: length to allocate
1958 *
1959 *      Allocate a new &sk_buff and assign it a usage count of one. The
1960 *      buffer has unspecified headroom built in. Users should allocate
1961 *      the headroom they think they need without accounting for the
1962 *      built in space. The built in space is used for optimisations.
1963 *
1964 *      %NULL is returned if there is no free memory. Although this function
1965 *      allocates memory it can be called from an interrupt.
1966 */
1967static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1968                                               unsigned int length)
1969{
1970        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1971}
1972
1973/* legacy helper around __netdev_alloc_skb() */
1974static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1975                                              gfp_t gfp_mask)
1976{
1977        return __netdev_alloc_skb(NULL, length, gfp_mask);
1978}
1979
1980/* legacy helper around netdev_alloc_skb() */
1981static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1982{
1983        return netdev_alloc_skb(NULL, length);
1984}
1985
1986
1987static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1988                unsigned int length, gfp_t gfp)
1989{
1990        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1991
1992        if (NET_IP_ALIGN && skb)
1993                skb_reserve(skb, NET_IP_ALIGN);
1994        return skb;
1995}
1996
1997static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1998                unsigned int length)
1999{
2000        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2001}
2002
2003/*
2004 *      __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2005 *      @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2006 *      @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2007 *      @order: size of the allocation
2008 *
2009 *      Allocate a new page.
2010 *
2011 *      %NULL is returned if there is no free memory.
2012*/
2013static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2014                                              struct sk_buff *skb,
2015                                              unsigned int order)
2016{
2017        struct page *page;
2018
2019        gfp_mask |= __GFP_COLD;
2020
2021        if (!(gfp_mask & __GFP_NOMEMALLOC))
2022                gfp_mask |= __GFP_MEMALLOC;
2023
2024        page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2025        if (skb && page && page->pfmemalloc)
2026                skb->pfmemalloc = true;
2027
2028        return page;
2029}
2030
2031/**
2032 *      __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2033 *      @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2034 *      @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2035 *
2036 *      Allocate a new page.
2037 *
2038 *      %NULL is returned if there is no free memory.
2039 */
2040static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2041                                             struct sk_buff *skb)
2042{
2043        return __skb_alloc_pages(gfp_mask, skb, 0);
2044}
2045
2046/**
2047 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2048 *      @page: The page that was allocated from skb_alloc_page
2049 *      @skb: The skb that may need pfmemalloc set
2050 */
2051static inline void skb_propagate_pfmemalloc(struct page *page,
2052                                             struct sk_buff *skb)
2053{
2054        if (page && page->pfmemalloc)
2055                skb->pfmemalloc = true;
2056}
2057
2058/**
2059 * skb_frag_page - retrieve the page refered to by a paged fragment
2060 * @frag: the paged fragment
2061 *
2062 * Returns the &struct page associated with @frag.
2063 */
2064static inline struct page *skb_frag_page(const skb_frag_t *frag)
2065{
2066        return frag->page.p;
2067}
2068
2069/**
2070 * __skb_frag_ref - take an addition reference on a paged fragment.
2071 * @frag: the paged fragment
2072 *
2073 * Takes an additional reference on the paged fragment @frag.
2074 */
2075static inline void __skb_frag_ref(skb_frag_t *frag)
2076{
2077        get_page(skb_frag_page(frag));
2078}
2079
2080/**
2081 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2082 * @skb: the buffer
2083 * @f: the fragment offset.
2084 *
2085 * Takes an additional reference on the @f'th paged fragment of @skb.
2086 */
2087static inline void skb_frag_ref(struct sk_buff *skb, int f)
2088{
2089        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2090}
2091
2092/**
2093 * __skb_frag_unref - release a reference on a paged fragment.
2094 * @frag: the paged fragment
2095 *
2096 * Releases a reference on the paged fragment @frag.
2097 */
2098static inline void __skb_frag_unref(skb_frag_t *frag)
2099{
2100        put_page(skb_frag_page(frag));
2101}
2102
2103/**
2104 * skb_frag_unref - release a reference on a paged fragment of an skb.
2105 * @skb: the buffer
2106 * @f: the fragment offset
2107 *
2108 * Releases a reference on the @f'th paged fragment of @skb.
2109 */
2110static inline void skb_frag_unref(struct sk_buff *skb, int f)
2111{
2112        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2113}
2114
2115/**
2116 * skb_frag_address - gets the address of the data contained in a paged fragment
2117 * @frag: the paged fragment buffer
2118 *
2119 * Returns the address of the data within @frag. The page must already
2120 * be mapped.
2121 */
2122static inline void *skb_frag_address(const skb_frag_t *frag)
2123{
2124        return page_address(skb_frag_page(frag)) + frag->page_offset;
2125}
2126
2127/**
2128 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2129 * @frag: the paged fragment buffer
2130 *
2131 * Returns the address of the data within @frag. Checks that the page
2132 * is mapped and returns %NULL otherwise.
2133 */
2134static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2135{
2136        void *ptr = page_address(skb_frag_page(frag));
2137        if (unlikely(!ptr))
2138                return NULL;
2139
2140        return ptr + frag->page_offset;
2141}
2142
2143/**
2144 * __skb_frag_set_page - sets the page contained in a paged fragment
2145 * @frag: the paged fragment
2146 * @page: the page to set
2147 *
2148 * Sets the fragment @frag to contain @page.
2149 */
2150static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2151{
2152        frag->page.p = page;
2153}
2154
2155/**
2156 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2157 * @skb: the buffer
2158 * @f: the fragment offset
2159 * @page: the page to set
2160 *
2161 * Sets the @f'th fragment of @skb to contain @page.
2162 */
2163static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2164                                     struct page *page)
2165{
2166        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2167}
2168
2169/**
2170 * skb_frag_dma_map - maps a paged fragment via the DMA API
2171 * @dev: the device to map the fragment to
2172 * @frag: the paged fragment to map
2173 * @offset: the offset within the fragment (starting at the
2174 *          fragment's own offset)
2175 * @size: the number of bytes to map
2176 * @dir: the direction of the mapping (%PCI_DMA_*)
2177 *
2178 * Maps the page associated with @frag to @device.
2179 */
2180static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2181                                          const skb_frag_t *frag,
2182                                          size_t offset, size_t size,
2183                                          enum dma_data_direction dir)
2184{
2185        return dma_map_page(dev, skb_frag_page(frag),
2186                            frag->page_offset + offset, size, dir);
2187}
2188
2189static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2190                                        gfp_t gfp_mask)
2191{
2192        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2193}
2194
2195/**
2196 *      skb_clone_writable - is the header of a clone writable
2197 *      @skb: buffer to check
2198 *      @len: length up to which to write
2199 *
2200 *      Returns true if modifying the header part of the cloned buffer
2201 *      does not requires the data to be copied.
2202 */
2203static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2204{
2205        return !skb_header_cloned(skb) &&
2206               skb_headroom(skb) + len <= skb->hdr_len;
2207}
2208
2209static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2210                            int cloned)
2211{
2212        int delta = 0;
2213
2214        if (headroom > skb_headroom(skb))
2215                delta = headroom - skb_headroom(skb);
2216
2217        if (delta || cloned)
2218                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2219                                        GFP_ATOMIC);
2220        return 0;
2221}
2222
2223/**
2224 *      skb_cow - copy header of skb when it is required
2225 *      @skb: buffer to cow
2226 *      @headroom: needed headroom
2227 *
2228 *      If the skb passed lacks sufficient headroom or its data part
2229 *      is shared, data is reallocated. If reallocation fails, an error
2230 *      is returned and original skb is not changed.
2231 *
2232 *      The result is skb with writable area skb->head...skb->tail
2233 *      and at least @headroom of space at head.
2234 */
2235static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2236{
2237        return __skb_cow(skb, headroom, skb_cloned(skb));
2238}
2239
2240/**
2241 *      skb_cow_head - skb_cow but only making the head writable
2242 *      @skb: buffer to cow
2243 *      @headroom: needed headroom
2244 *
2245 *      This function is identical to skb_cow except that we replace the
2246 *      skb_cloned check by skb_header_cloned.  It should be used when
2247 *      you only need to push on some header and do not need to modify
2248 *      the data.
2249 */
2250static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2251{
2252        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2253}
2254
2255/**
2256 *      skb_padto       - pad an skbuff up to a minimal size
2257 *      @skb: buffer to pad
2258 *      @len: minimal length
2259 *
2260 *      Pads up a buffer to ensure the trailing bytes exist and are
2261 *      blanked. If the buffer already contains sufficient data it
2262 *      is untouched. Otherwise it is extended. Returns zero on
2263 *      success. The skb is freed on error.
2264 */
2265 
2266static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2267{
2268        unsigned int size = skb->len;
2269        if (likely(size >= len))
2270                return 0;
2271        return skb_pad(skb, len - size);
2272}
2273
2274static inline int skb_add_data(struct sk_buff *skb,
2275                               char __user *from, int copy)
2276{
2277        const int off = skb->len;
2278
2279        if (skb->ip_summed == CHECKSUM_NONE) {
2280                int err = 0;
2281                __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2282                                                            copy, 0, &err);
2283                if (!err) {
2284                        skb->csum = csum_block_add(skb->csum, csum, off);
2285                        return 0;
2286                }
2287        } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2288                return 0;
2289
2290        __skb_trim(skb, off);
2291        return -EFAULT;
2292}
2293
2294static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2295                                    const struct page *page, int off)
2296{
2297        if (i) {
2298                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2299
2300                return page == skb_frag_page(frag) &&
2301                       off == frag->page_offset + skb_frag_size(frag);
2302        }
2303        return false;
2304}
2305
2306static inline int __skb_linearize(struct sk_buff *skb)
2307{
2308        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2309}
2310
2311/**
2312 *      skb_linearize - convert paged skb to linear one
2313 *      @skb: buffer to linarize
2314 *
2315 *      If there is no free memory -ENOMEM is returned, otherwise zero
2316 *      is returned and the old skb data released.
2317 */
2318static inline int skb_linearize(struct sk_buff *skb)
2319{
2320        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2321}
2322
2323/**
2324 * skb_has_shared_frag - can any frag be overwritten
2325 * @skb: buffer to test
2326 *
2327 * Return true if the skb has at least one frag that might be modified
2328 * by an external entity (as in vmsplice()/sendfile())
2329 */
2330static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2331{
2332        return skb_is_nonlinear(skb) &&
2333               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2334}
2335
2336/**
2337 *      skb_linearize_cow - make sure skb is linear and writable
2338 *      @skb: buffer to process
2339 *
2340 *      If there is no free memory -ENOMEM is returned, otherwise zero
2341 *      is returned and the old skb data released.
2342 */
2343static inline int skb_linearize_cow(struct sk_buff *skb)
2344{
2345        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2346               __skb_linearize(skb) : 0;
2347}
2348
2349/**
2350 *      skb_postpull_rcsum - update checksum for received skb after pull
2351 *      @skb: buffer to update
2352 *      @start: start of data before pull
2353 *      @len: length of data pulled
2354 *
2355 *      After doing a pull on a received packet, you need to call this to
2356 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2357 *      CHECKSUM_NONE so that it can be recomputed from scratch.
2358 */
2359
2360static inline void skb_postpull_rcsum(struct sk_buff *skb,
2361                                      const void *start, unsigned int len)
2362{
2363        if (skb->ip_summed == CHECKSUM_COMPLETE)
2364                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2365}
2366
2367unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2368
2369/**
2370 *      pskb_trim_rcsum - trim received skb and update checksum
2371 *      @skb: buffer to trim
2372 *      @len: new length
2373 *
2374 *      This is exactly the same as pskb_trim except that it ensures the
2375 *      checksum of received packets are still valid after the operation.
2376 */
2377
2378static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2379{
2380        if (likely(len >= skb->len))
2381                return 0;
2382        if (skb->ip_summed == CHECKSUM_COMPLETE)
2383                skb->ip_summed = CHECKSUM_NONE;
2384        return __pskb_trim(skb, len);
2385}
2386
2387#define skb_queue_walk(queue, skb) \
2388                for (skb = (queue)->next;                                       \
2389                     skb != (struct sk_buff *)(queue);                          \
2390                     skb = skb->next)
2391
2392#define skb_queue_walk_safe(queue, skb, tmp)                                    \
2393                for (skb = (queue)->next, tmp = skb->next;                      \
2394                     skb != (struct sk_buff *)(queue);                          \
2395                     skb = tmp, tmp = skb->next)
2396
2397#define skb_queue_walk_from(queue, skb)                                         \
2398                for (; skb != (struct sk_buff *)(queue);                        \
2399                     skb = skb->next)
2400
2401#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
2402                for (tmp = skb->next;                                           \
2403                     skb != (struct sk_buff *)(queue);                          \
2404                     skb = tmp, tmp = skb->next)
2405
2406#define skb_queue_reverse_walk(queue, skb) \
2407                for (skb = (queue)->prev;                                       \
2408                     skb != (struct sk_buff *)(queue);                          \
2409                     skb = skb->prev)
2410
2411#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
2412                for (skb = (queue)->prev, tmp = skb->prev;                      \
2413                     skb != (struct sk_buff *)(queue);                          \
2414                     skb = tmp, tmp = skb->prev)
2415
2416#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
2417                for (tmp = skb->prev;                                           \
2418                     skb != (struct sk_buff *)(queue);                          \
2419                     skb = tmp, tmp = skb->prev)
2420
2421static inline bool skb_has_frag_list(const struct sk_buff *skb)
2422{
2423        return skb_shinfo(skb)->frag_list != NULL;
2424}
2425
2426static inline void skb_frag_list_init(struct sk_buff *skb)
2427{
2428        skb_shinfo(skb)->frag_list = NULL;
2429}
2430
2431static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2432{
2433        frag->next = skb_shinfo(skb)->frag_list;
2434        skb_shinfo(skb)->frag_list = frag;
2435}
2436
2437#define skb_walk_frags(skb, iter)       \
2438        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2439
2440extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2441                                           int *peeked, int *off, int *err);
2442extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2443                                         int noblock, int *err);
2444extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2445                                     struct poll_table_struct *wait);
2446extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
2447                                               int offset, struct iovec *to,
2448                                               int size);
2449extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2450                                                        int hlen,
2451                                                        struct iovec *iov);
2452extern int             skb_copy_datagram_from_iovec(struct sk_buff *skb,
2453                                                    int offset,
2454                                                    const struct iovec *from,
2455                                                    int from_offset,
2456                                                    int len);
2457extern int             skb_copy_datagram_const_iovec(const struct sk_buff *from,
2458                                                     int offset,
2459                                                     const struct iovec *to,
2460                                                     int to_offset,
2461                                                     int size);
2462extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2463extern void            skb_free_datagram_locked(struct sock *sk,
2464                                                struct sk_buff *skb);
2465extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2466                                         unsigned int flags);
2467extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
2468                                    int len, __wsum csum);
2469extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
2470                                     void *to, int len);
2471extern int             skb_store_bits(struct sk_buff *skb, int offset,
2472                                      const void *from, int len);
2473extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
2474                                              int offset, u8 *to, int len,
2475                                              __wsum csum);
2476extern int             skb_splice_bits(struct sk_buff *skb,
2477                                                unsigned int offset,
2478                                                struct pipe_inode_info *pipe,
2479                                                unsigned int len,
2480                                                unsigned int flags);
2481extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2482extern void            skb_split(struct sk_buff *skb,
2483                                 struct sk_buff *skb1, const u32 len);
2484extern int             skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2485                                 int shiftlen);
2486
2487extern struct sk_buff *skb_segment(struct sk_buff *skb,
2488                                   netdev_features_t features);
2489
2490static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2491                                       int len, void *buffer)
2492{
2493        int hlen = skb_headlen(skb);
2494
2495        if (hlen - offset >= len)
2496                return skb->data + offset;
2497
2498        if (skb_copy_bits(skb, offset, buffer, len) < 0)
2499                return NULL;
2500
2501        return buffer;
2502}
2503
2504static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2505                                             void *to,
2506                                             const unsigned int len)
2507{
2508        memcpy(to, skb->data, len);
2509}
2510
2511static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2512                                                    const int offset, void *to,
2513                                                    const unsigned int len)
2514{
2515        memcpy(to, skb->data + offset, len);
2516}
2517
2518static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2519                                           const void *from,
2520                                           const unsigned int len)
2521{
2522        memcpy(skb->data, from, len);
2523}
2524
2525static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2526                                                  const int offset,
2527                                                  const void *from,
2528                                                  const unsigned int len)
2529{
2530        memcpy(skb->data + offset, from, len);
2531}
2532
2533extern void skb_init(void);
2534
2535static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2536{
2537        return skb->tstamp;
2538}
2539
2540/**
2541 *      skb_get_timestamp - get timestamp from a skb
2542 *      @skb: skb to get stamp from
2543 *      @stamp: pointer to struct timeval to store stamp in
2544 *
2545 *      Timestamps are stored in the skb as offsets to a base timestamp.
2546 *      This function converts the offset back to a struct timeval and stores
2547 *      it in stamp.
2548 */
2549static inline void skb_get_timestamp(const struct sk_buff *skb,
2550                                     struct timeval *stamp)
2551{
2552        *stamp = ktime_to_timeval(skb->tstamp);
2553}
2554
2555static inline void skb_get_timestampns(const struct sk_buff *skb,
2556                                       struct timespec *stamp)
2557{
2558        *stamp = ktime_to_timespec(skb->tstamp);
2559}
2560
2561static inline void __net_timestamp(struct sk_buff *skb)
2562{
2563        skb->tstamp = ktime_get_real();
2564}
2565
2566static inline ktime_t net_timedelta(ktime_t t)
2567{
2568        return ktime_sub(ktime_get_real(), t);
2569}
2570
2571static inline ktime_t net_invalid_timestamp(void)
2572{
2573        return ktime_set(0, 0);
2574}
2575
2576extern void skb_timestamping_init(void);
2577
2578#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2579
2580extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2581extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2582
2583#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2584
2585static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2586{
2587}
2588
2589static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2590{
2591        return false;
2592}
2593
2594#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2595
2596/**
2597 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2598 *
2599 * PHY drivers may accept clones of transmitted packets for
2600 * timestamping via their phy_driver.txtstamp method. These drivers
2601 * must call this function to return the skb back to the stack, with
2602 * or without a timestamp.
2603 *
2604 * @skb: clone of the the original outgoing packet
2605 * @hwtstamps: hardware time stamps, may be NULL if not available
2606 *
2607 */
2608void skb_complete_tx_timestamp(struct sk_buff *skb,
2609                               struct skb_shared_hwtstamps *hwtstamps);
2610
2611/**
2612 * skb_tstamp_tx - queue clone of skb with send time stamps
2613 * @orig_skb:   the original outgoing packet
2614 * @hwtstamps:  hardware time stamps, may be NULL if not available
2615 *
2616 * If the skb has a socket associated, then this function clones the
2617 * skb (thus sharing the actual data and optional structures), stores
2618 * the optional hardware time stamping information (if non NULL) or
2619 * generates a software time stamp (otherwise), then queues the clone
2620 * to the error queue of the socket.  Errors are silently ignored.
2621 */
2622extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2623                        struct skb_shared_hwtstamps *hwtstamps);
2624
2625static inline void sw_tx_timestamp(struct sk_buff *skb)
2626{
2627        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2628            !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2629                skb_tstamp_tx(skb, NULL);
2630}
2631
2632/**
2633 * skb_tx_timestamp() - Driver hook for transmit timestamping
2634 *
2635 * Ethernet MAC Drivers should call this function in their hard_xmit()
2636 * function immediately before giving the sk_buff to the MAC hardware.
2637 *
2638 * @skb: A socket buffer.
2639 */
2640static inline void skb_tx_timestamp(struct sk_buff *skb)
2641{
2642        skb_clone_tx_timestamp(skb);
2643        sw_tx_timestamp(skb);
2644}
2645
2646/**
2647 * skb_complete_wifi_ack - deliver skb with wifi status
2648 *
2649 * @skb: the original outgoing packet
2650 * @acked: ack status
2651 *
2652 */
2653void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2654
2655extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2656extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2657
2658static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2659{
2660        return skb->ip_summed & CHECKSUM_UNNECESSARY;
2661}
2662
2663/**
2664 *      skb_checksum_complete - Calculate checksum of an entire packet
2665 *      @skb: packet to process
2666 *
2667 *      This function calculates the checksum over the entire packet plus
2668 *      the value of skb->csum.  The latter can be used to supply the
2669 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
2670 *      checksum.
2671 *
2672 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
2673 *      this function can be used to verify that checksum on received
2674 *      packets.  In that case the function should return zero if the
2675 *      checksum is correct.  In particular, this function will return zero
2676 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2677 *      hardware has already verified the correctness of the checksum.
2678 */
2679static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2680{
2681        return skb_csum_unnecessary(skb) ?
2682               0 : __skb_checksum_complete(skb);
2683}
2684
2685#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2686extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2687static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2688{
2689        if (nfct && atomic_dec_and_test(&nfct->use))
2690                nf_conntrack_destroy(nfct);
2691}
2692static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2693{
2694        if (nfct)
2695                atomic_inc(&nfct->use);
2696}
2697#endif
2698#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2699static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2700{
2701        if (skb)
2702                atomic_inc(&skb->users);
2703}
2704static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2705{
2706        if (skb)
2707                kfree_skb(skb);
2708}
2709#endif
2710#ifdef CONFIG_BRIDGE_NETFILTER
2711static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2712{
2713        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2714                kfree(nf_bridge);
2715}
2716static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2717{
2718        if (nf_bridge)
2719                atomic_inc(&nf_bridge->use);
2720}
2721#endif /* CONFIG_BRIDGE_NETFILTER */
2722static inline void nf_reset(struct sk_buff *skb)
2723{
2724#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2725        nf_conntrack_put(skb->nfct);
2726        skb->nfct = NULL;
2727#endif
2728#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2729        nf_conntrack_put_reasm(skb->nfct_reasm);
2730        skb->nfct_reasm = NULL;
2731#endif
2732#ifdef CONFIG_BRIDGE_NETFILTER
2733        nf_bridge_put(skb->nf_bridge);
2734        skb->nf_bridge = NULL;
2735#endif
2736}
2737
2738static inline void nf_reset_trace(struct sk_buff *skb)
2739{
2740#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2741        skb->nf_trace = 0;
2742#endif
2743}
2744
2745/* Note: This doesn't put any conntrack and bridge info in dst. */
2746static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2747{
2748#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2749        dst->nfct = src->nfct;
2750        nf_conntrack_get(src->nfct);
2751        dst->nfctinfo = src->nfctinfo;
2752#endif
2753#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2754        dst->nfct_reasm = src->nfct_reasm;
2755        nf_conntrack_get_reasm(src->nfct_reasm);
2756#endif
2757#ifdef CONFIG_BRIDGE_NETFILTER
2758        dst->nf_bridge  = src->nf_bridge;
2759        nf_bridge_get(src->nf_bridge);
2760#endif
2761}
2762
2763static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2764{
2765#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2766        nf_conntrack_put(dst->nfct);
2767#endif
2768#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2769        nf_conntrack_put_reasm(dst->nfct_reasm);
2770#endif
2771#ifdef CONFIG_BRIDGE_NETFILTER
2772        nf_bridge_put(dst->nf_bridge);
2773#endif
2774        __nf_copy(dst, src);
2775}
2776
2777#ifdef CONFIG_NETWORK_SECMARK
2778static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2779{
2780        to->secmark = from->secmark;
2781}
2782
2783static inline void skb_init_secmark(struct sk_buff *skb)
2784{
2785        skb->secmark = 0;
2786}
2787#else
2788static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2789{ }
2790
2791static inline void skb_init_secmark(struct sk_buff *skb)
2792{ }
2793#endif
2794
2795static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2796{
2797        skb->queue_mapping = queue_mapping;
2798}
2799
2800static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2801{
2802        return skb->queue_mapping;
2803}
2804
2805static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2806{
2807        to->queue_mapping = from->queue_mapping;
2808}
2809
2810static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2811{
2812        skb->queue_mapping = rx_queue + 1;
2813}
2814
2815static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2816{
2817        return skb->queue_mapping - 1;
2818}
2819
2820static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2821{
2822        return skb->queue_mapping != 0;
2823}
2824
2825extern u16 __skb_tx_hash(const struct net_device *dev,
2826                         const struct sk_buff *skb,
2827                         unsigned int num_tx_queues);
2828
2829#ifdef CONFIG_XFRM
2830static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2831{
2832        return skb->sp;
2833}
2834#else
2835static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2836{
2837        return NULL;
2838}
2839#endif
2840
2841/* Keeps track of mac header offset relative to skb->head.
2842 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2843 * For non-tunnel skb it points to skb_mac_header() and for
2844 * tunnel skb it points to outer mac header. */
2845struct skb_gso_cb {
2846        int mac_offset;
2847};
2848#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2849
2850static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2851{
2852        return (skb_mac_header(inner_skb) - inner_skb->head) -
2853                SKB_GSO_CB(inner_skb)->mac_offset;
2854}
2855
2856static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
2857{
2858        int new_headroom, headroom;
2859        int ret;
2860
2861        headroom = skb_headroom(skb);
2862        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
2863        if (ret)
2864                return ret;
2865
2866        new_headroom = skb_headroom(skb);
2867        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
2868        return 0;
2869}
2870
2871static inline bool skb_is_gso(const struct sk_buff *skb)
2872{
2873        return skb_shinfo(skb)->gso_size;
2874}
2875
2876static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2877{
2878        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2879}
2880
2881extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2882
2883static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2884{
2885        /* LRO sets gso_size but not gso_type, whereas if GSO is really
2886         * wanted then gso_type will be set. */
2887        const struct skb_shared_info *shinfo = skb_shinfo(skb);
2888
2889        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2890            unlikely(shinfo->gso_type == 0)) {
2891                __skb_warn_lro_forwarding(skb);
2892                return true;
2893        }
2894        return false;
2895}
2896
2897static inline void skb_forward_csum(struct sk_buff *skb)
2898{
2899        /* Unfortunately we don't support this one.  Any brave souls? */
2900        if (skb->ip_summed == CHECKSUM_COMPLETE)
2901                skb->ip_summed = CHECKSUM_NONE;
2902}
2903
2904/**
2905 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2906 * @skb: skb to check
2907 *
2908 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2909 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2910 * use this helper, to document places where we make this assertion.
2911 */
2912static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2913{
2914#ifdef DEBUG
2915        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2916#endif
2917}
2918
2919bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2920
2921u32 __skb_get_poff(const struct sk_buff *skb);
2922
2923/**
2924 * skb_head_is_locked - Determine if the skb->head is locked down
2925 * @skb: skb to check
2926 *
2927 * The head on skbs build around a head frag can be removed if they are
2928 * not cloned.  This function returns true if the skb head is locked down
2929 * due to either being allocated via kmalloc, or by being a clone with
2930 * multiple references to the head.
2931 */
2932static inline bool skb_head_is_locked(const struct sk_buff *skb)
2933{
2934        return !skb->head_frag || skb_cloned(skb);
2935}
2936#endif  /* __KERNEL__ */
2937#endif  /* _LINUX_SKBUFF_H */
2938