linux/include/linux/slab.h
<<
>>
Prefs
   1/*
   2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   3 *
   4 * (C) SGI 2006, Christoph Lameter
   5 *      Cleaned up and restructured to ease the addition of alternative
   6 *      implementations of SLAB allocators.
   7 */
   8
   9#ifndef _LINUX_SLAB_H
  10#define _LINUX_SLAB_H
  11
  12#include <linux/gfp.h>
  13#include <linux/types.h>
  14#include <linux/workqueue.h>
  15
  16
  17/*
  18 * Flags to pass to kmem_cache_create().
  19 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  20 */
  21#define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
  22#define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
  23#define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
  24#define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
  25#define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
  26#define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
  27#define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
  28/*
  29 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  30 *
  31 * This delays freeing the SLAB page by a grace period, it does _NOT_
  32 * delay object freeing. This means that if you do kmem_cache_free()
  33 * that memory location is free to be reused at any time. Thus it may
  34 * be possible to see another object there in the same RCU grace period.
  35 *
  36 * This feature only ensures the memory location backing the object
  37 * stays valid, the trick to using this is relying on an independent
  38 * object validation pass. Something like:
  39 *
  40 *  rcu_read_lock()
  41 * again:
  42 *  obj = lockless_lookup(key);
  43 *  if (obj) {
  44 *    if (!try_get_ref(obj)) // might fail for free objects
  45 *      goto again;
  46 *
  47 *    if (obj->key != key) { // not the object we expected
  48 *      put_ref(obj);
  49 *      goto again;
  50 *    }
  51 *  }
  52 *  rcu_read_unlock();
  53 *
  54 * See also the comment on struct slab_rcu in mm/slab.c.
  55 */
  56#define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
  57#define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
  58#define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
  59
  60/* Flag to prevent checks on free */
  61#ifdef CONFIG_DEBUG_OBJECTS
  62# define SLAB_DEBUG_OBJECTS     0x00400000UL
  63#else
  64# define SLAB_DEBUG_OBJECTS     0x00000000UL
  65#endif
  66
  67#define SLAB_NOLEAKTRACE        0x00800000UL    /* Avoid kmemleak tracing */
  68
  69/* Don't track use of uninitialized memory */
  70#ifdef CONFIG_KMEMCHECK
  71# define SLAB_NOTRACK           0x01000000UL
  72#else
  73# define SLAB_NOTRACK           0x00000000UL
  74#endif
  75#ifdef CONFIG_FAILSLAB
  76# define SLAB_FAILSLAB          0x02000000UL    /* Fault injection mark */
  77#else
  78# define SLAB_FAILSLAB          0x00000000UL
  79#endif
  80
  81/* The following flags affect the page allocator grouping pages by mobility */
  82#define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
  83#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
  84/*
  85 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  86 *
  87 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  88 *
  89 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  90 * Both make kfree a no-op.
  91 */
  92#define ZERO_SIZE_PTR ((void *)16)
  93
  94#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  95                                (unsigned long)ZERO_SIZE_PTR)
  96
  97
  98struct mem_cgroup;
  99/*
 100 * struct kmem_cache related prototypes
 101 */
 102void __init kmem_cache_init(void);
 103int slab_is_available(void);
 104
 105struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
 106                        unsigned long,
 107                        void (*)(void *));
 108struct kmem_cache *
 109kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
 110                        unsigned long, void (*)(void *), struct kmem_cache *);
 111void kmem_cache_destroy(struct kmem_cache *);
 112int kmem_cache_shrink(struct kmem_cache *);
 113void kmem_cache_free(struct kmem_cache *, void *);
 114
 115/*
 116 * Please use this macro to create slab caches. Simply specify the
 117 * name of the structure and maybe some flags that are listed above.
 118 *
 119 * The alignment of the struct determines object alignment. If you
 120 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 121 * then the objects will be properly aligned in SMP configurations.
 122 */
 123#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
 124                sizeof(struct __struct), __alignof__(struct __struct),\
 125                (__flags), NULL)
 126
 127/*
 128 * Common kmalloc functions provided by all allocators
 129 */
 130void * __must_check __krealloc(const void *, size_t, gfp_t);
 131void * __must_check krealloc(const void *, size_t, gfp_t);
 132void kfree(const void *);
 133void kzfree(const void *);
 134size_t ksize(const void *);
 135
 136/*
 137 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 138 * alignment larger than the alignment of a 64-bit integer.
 139 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 140 */
 141#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 142#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 143#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 144#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
 145#else
 146#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 147#endif
 148
 149#ifdef CONFIG_SLOB
 150/*
 151 * Common fields provided in kmem_cache by all slab allocators
 152 * This struct is either used directly by the allocator (SLOB)
 153 * or the allocator must include definitions for all fields
 154 * provided in kmem_cache_common in their definition of kmem_cache.
 155 *
 156 * Once we can do anonymous structs (C11 standard) we could put a
 157 * anonymous struct definition in these allocators so that the
 158 * separate allocations in the kmem_cache structure of SLAB and
 159 * SLUB is no longer needed.
 160 */
 161struct kmem_cache {
 162        unsigned int object_size;/* The original size of the object */
 163        unsigned int size;      /* The aligned/padded/added on size  */
 164        unsigned int align;     /* Alignment as calculated */
 165        unsigned long flags;    /* Active flags on the slab */
 166        const char *name;       /* Slab name for sysfs */
 167        int refcount;           /* Use counter */
 168        void (*ctor)(void *);   /* Called on object slot creation */
 169        struct list_head list;  /* List of all slab caches on the system */
 170};
 171
 172#define KMALLOC_MAX_SIZE (1UL << 30)
 173
 174#include <linux/slob_def.h>
 175
 176#else /* CONFIG_SLOB */
 177
 178/*
 179 * Kmalloc array related definitions
 180 */
 181
 182#ifdef CONFIG_SLAB
 183/*
 184 * The largest kmalloc size supported by the SLAB allocators is
 185 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 186 * less than 32 MB.
 187 *
 188 * WARNING: Its not easy to increase this value since the allocators have
 189 * to do various tricks to work around compiler limitations in order to
 190 * ensure proper constant folding.
 191 */
 192#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 193                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
 194#define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
 195#ifndef KMALLOC_SHIFT_LOW
 196#define KMALLOC_SHIFT_LOW       5
 197#endif
 198#else
 199/*
 200 * SLUB allocates up to order 2 pages directly and otherwise
 201 * passes the request to the page allocator.
 202 */
 203#define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
 204#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
 205#ifndef KMALLOC_SHIFT_LOW
 206#define KMALLOC_SHIFT_LOW       3
 207#endif
 208#endif
 209
 210/* Maximum allocatable size */
 211#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
 212/* Maximum size for which we actually use a slab cache */
 213#define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
 214/* Maximum order allocatable via the slab allocagtor */
 215#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 216
 217/*
 218 * Kmalloc subsystem.
 219 */
 220#ifndef KMALLOC_MIN_SIZE
 221#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 222#endif
 223
 224extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 225#ifdef CONFIG_ZONE_DMA
 226extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 227#endif
 228
 229/*
 230 * Figure out which kmalloc slab an allocation of a certain size
 231 * belongs to.
 232 * 0 = zero alloc
 233 * 1 =  65 .. 96 bytes
 234 * 2 = 120 .. 192 bytes
 235 * n = 2^(n-1) .. 2^n -1
 236 */
 237static __always_inline int kmalloc_index(size_t size)
 238{
 239        if (!size)
 240                return 0;
 241
 242        if (size <= KMALLOC_MIN_SIZE)
 243                return KMALLOC_SHIFT_LOW;
 244
 245        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 246                return 1;
 247        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 248                return 2;
 249        if (size <=          8) return 3;
 250        if (size <=         16) return 4;
 251        if (size <=         32) return 5;
 252        if (size <=         64) return 6;
 253        if (size <=        128) return 7;
 254        if (size <=        256) return 8;
 255        if (size <=        512) return 9;
 256        if (size <=       1024) return 10;
 257        if (size <=   2 * 1024) return 11;
 258        if (size <=   4 * 1024) return 12;
 259        if (size <=   8 * 1024) return 13;
 260        if (size <=  16 * 1024) return 14;
 261        if (size <=  32 * 1024) return 15;
 262        if (size <=  64 * 1024) return 16;
 263        if (size <= 128 * 1024) return 17;
 264        if (size <= 256 * 1024) return 18;
 265        if (size <= 512 * 1024) return 19;
 266        if (size <= 1024 * 1024) return 20;
 267        if (size <=  2 * 1024 * 1024) return 21;
 268        if (size <=  4 * 1024 * 1024) return 22;
 269        if (size <=  8 * 1024 * 1024) return 23;
 270        if (size <=  16 * 1024 * 1024) return 24;
 271        if (size <=  32 * 1024 * 1024) return 25;
 272        if (size <=  64 * 1024 * 1024) return 26;
 273        BUG();
 274
 275        /* Will never be reached. Needed because the compiler may complain */
 276        return -1;
 277}
 278
 279#ifdef CONFIG_SLAB
 280#include <linux/slab_def.h>
 281#elif defined(CONFIG_SLUB)
 282#include <linux/slub_def.h>
 283#else
 284#error "Unknown slab allocator"
 285#endif
 286
 287/*
 288 * Determine size used for the nth kmalloc cache.
 289 * return size or 0 if a kmalloc cache for that
 290 * size does not exist
 291 */
 292static __always_inline int kmalloc_size(int n)
 293{
 294        if (n > 2)
 295                return 1 << n;
 296
 297        if (n == 1 && KMALLOC_MIN_SIZE <= 32)
 298                return 96;
 299
 300        if (n == 2 && KMALLOC_MIN_SIZE <= 64)
 301                return 192;
 302
 303        return 0;
 304}
 305#endif /* !CONFIG_SLOB */
 306
 307/*
 308 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 309 * Intended for arches that get misalignment faults even for 64 bit integer
 310 * aligned buffers.
 311 */
 312#ifndef ARCH_SLAB_MINALIGN
 313#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 314#endif
 315/*
 316 * This is the main placeholder for memcg-related information in kmem caches.
 317 * struct kmem_cache will hold a pointer to it, so the memory cost while
 318 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
 319 * would otherwise be if that would be bundled in kmem_cache: we'll need an
 320 * extra pointer chase. But the trade off clearly lays in favor of not
 321 * penalizing non-users.
 322 *
 323 * Both the root cache and the child caches will have it. For the root cache,
 324 * this will hold a dynamically allocated array large enough to hold
 325 * information about the currently limited memcgs in the system.
 326 *
 327 * Child caches will hold extra metadata needed for its operation. Fields are:
 328 *
 329 * @memcg: pointer to the memcg this cache belongs to
 330 * @list: list_head for the list of all caches in this memcg
 331 * @root_cache: pointer to the global, root cache, this cache was derived from
 332 * @dead: set to true after the memcg dies; the cache may still be around.
 333 * @nr_pages: number of pages that belongs to this cache.
 334 * @destroy: worker to be called whenever we are ready, or believe we may be
 335 *           ready, to destroy this cache.
 336 */
 337struct memcg_cache_params {
 338        bool is_root_cache;
 339        union {
 340                struct kmem_cache *memcg_caches[0];
 341                struct {
 342                        struct mem_cgroup *memcg;
 343                        struct list_head list;
 344                        struct kmem_cache *root_cache;
 345                        bool dead;
 346                        atomic_t nr_pages;
 347                        struct work_struct destroy;
 348                };
 349        };
 350};
 351
 352int memcg_update_all_caches(int num_memcgs);
 353
 354struct seq_file;
 355int cache_show(struct kmem_cache *s, struct seq_file *m);
 356void print_slabinfo_header(struct seq_file *m);
 357
 358/**
 359 * kmalloc_array - allocate memory for an array.
 360 * @n: number of elements.
 361 * @size: element size.
 362 * @flags: the type of memory to allocate.
 363 *
 364 * The @flags argument may be one of:
 365 *
 366 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 367 *
 368 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 369 *
 370 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 371 *   For example, use this inside interrupt handlers.
 372 *
 373 * %GFP_HIGHUSER - Allocate pages from high memory.
 374 *
 375 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 376 *
 377 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 378 *
 379 * %GFP_NOWAIT - Allocation will not sleep.
 380 *
 381 * %GFP_THISNODE - Allocate node-local memory only.
 382 *
 383 * %GFP_DMA - Allocation suitable for DMA.
 384 *   Should only be used for kmalloc() caches. Otherwise, use a
 385 *   slab created with SLAB_DMA.
 386 *
 387 * Also it is possible to set different flags by OR'ing
 388 * in one or more of the following additional @flags:
 389 *
 390 * %__GFP_COLD - Request cache-cold pages instead of
 391 *   trying to return cache-warm pages.
 392 *
 393 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 394 *
 395 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 396 *   (think twice before using).
 397 *
 398 * %__GFP_NORETRY - If memory is not immediately available,
 399 *   then give up at once.
 400 *
 401 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 402 *
 403 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 404 *
 405 * There are other flags available as well, but these are not intended
 406 * for general use, and so are not documented here. For a full list of
 407 * potential flags, always refer to linux/gfp.h.
 408 */
 409static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
 410{
 411        if (size != 0 && n > SIZE_MAX / size)
 412                return NULL;
 413        return __kmalloc(n * size, flags);
 414}
 415
 416/**
 417 * kcalloc - allocate memory for an array. The memory is set to zero.
 418 * @n: number of elements.
 419 * @size: element size.
 420 * @flags: the type of memory to allocate (see kmalloc).
 421 */
 422static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
 423{
 424        return kmalloc_array(n, size, flags | __GFP_ZERO);
 425}
 426
 427#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
 428/**
 429 * kmalloc_node - allocate memory from a specific node
 430 * @size: how many bytes of memory are required.
 431 * @flags: the type of memory to allocate (see kcalloc).
 432 * @node: node to allocate from.
 433 *
 434 * kmalloc() for non-local nodes, used to allocate from a specific node
 435 * if available. Equivalent to kmalloc() in the non-NUMA single-node
 436 * case.
 437 */
 438static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 439{
 440        return kmalloc(size, flags);
 441}
 442
 443static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
 444{
 445        return __kmalloc(size, flags);
 446}
 447
 448void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 449
 450static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
 451                                        gfp_t flags, int node)
 452{
 453        return kmem_cache_alloc(cachep, flags);
 454}
 455#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
 456
 457/*
 458 * kmalloc_track_caller is a special version of kmalloc that records the
 459 * calling function of the routine calling it for slab leak tracking instead
 460 * of just the calling function (confusing, eh?).
 461 * It's useful when the call to kmalloc comes from a widely-used standard
 462 * allocator where we care about the real place the memory allocation
 463 * request comes from.
 464 */
 465#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
 466        (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
 467        (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
 468extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
 469#define kmalloc_track_caller(size, flags) \
 470        __kmalloc_track_caller(size, flags, _RET_IP_)
 471#else
 472#define kmalloc_track_caller(size, flags) \
 473        __kmalloc(size, flags)
 474#endif /* DEBUG_SLAB */
 475
 476#ifdef CONFIG_NUMA
 477/*
 478 * kmalloc_node_track_caller is a special version of kmalloc_node that
 479 * records the calling function of the routine calling it for slab leak
 480 * tracking instead of just the calling function (confusing, eh?).
 481 * It's useful when the call to kmalloc_node comes from a widely-used
 482 * standard allocator where we care about the real place the memory
 483 * allocation request comes from.
 484 */
 485#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
 486        (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
 487        (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
 488extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
 489#define kmalloc_node_track_caller(size, flags, node) \
 490        __kmalloc_node_track_caller(size, flags, node, \
 491                        _RET_IP_)
 492#else
 493#define kmalloc_node_track_caller(size, flags, node) \
 494        __kmalloc_node(size, flags, node)
 495#endif
 496
 497#else /* CONFIG_NUMA */
 498
 499#define kmalloc_node_track_caller(size, flags, node) \
 500        kmalloc_track_caller(size, flags)
 501
 502#endif /* CONFIG_NUMA */
 503
 504/*
 505 * Shortcuts
 506 */
 507static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 508{
 509        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 510}
 511
 512/**
 513 * kzalloc - allocate memory. The memory is set to zero.
 514 * @size: how many bytes of memory are required.
 515 * @flags: the type of memory to allocate (see kmalloc).
 516 */
 517static inline void *kzalloc(size_t size, gfp_t flags)
 518{
 519        return kmalloc(size, flags | __GFP_ZERO);
 520}
 521
 522/**
 523 * kzalloc_node - allocate zeroed memory from a particular memory node.
 524 * @size: how many bytes of memory are required.
 525 * @flags: the type of memory to allocate (see kmalloc).
 526 * @node: memory node from which to allocate
 527 */
 528static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
 529{
 530        return kmalloc_node(size, flags | __GFP_ZERO, node);
 531}
 532
 533/*
 534 * Determine the size of a slab object
 535 */
 536static inline unsigned int kmem_cache_size(struct kmem_cache *s)
 537{
 538        return s->object_size;
 539}
 540
 541void __init kmem_cache_init_late(void);
 542
 543#endif  /* _LINUX_SLAB_H */
 544