linux/include/linux/usb.h
<<
>>
Prefs
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR                       180
   8#define USB_DEVICE_MAJOR                189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>        /* for mdelay() */
  15#include <linux/interrupt.h>    /* for in_interrupt() */
  16#include <linux/list.h>         /* for struct list_head */
  17#include <linux/kref.h>         /* for struct kref */
  18#include <linux/device.h>       /* for struct device */
  19#include <linux/fs.h>           /* for struct file_operations */
  20#include <linux/completion.h>   /* for struct completion */
  21#include <linux/sched.h>        /* for current && schedule_timeout */
  22#include <linux/mutex.h>        /* for struct mutex */
  23#include <linux/pm_runtime.h>   /* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  55 *      with one or more transfer descriptors (TDs) per urb
  56 * @ep_dev: ep_device for sysfs info
  57 * @extra: descriptors following this endpoint in the configuration
  58 * @extralen: how many bytes of "extra" are valid
  59 * @enabled: URBs may be submitted to this endpoint
  60 *
  61 * USB requests are always queued to a given endpoint, identified by a
  62 * descriptor within an active interface in a given USB configuration.
  63 */
  64struct usb_host_endpoint {
  65        struct usb_endpoint_descriptor          desc;
  66        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  67        struct list_head                urb_list;
  68        void                            *hcpriv;
  69        struct ep_device                *ep_dev;        /* For sysfs info */
  70
  71        unsigned char *extra;   /* Extra descriptors */
  72        int extralen;
  73        int enabled;
  74};
  75
  76/* host-side wrapper for one interface setting's parsed descriptors */
  77struct usb_host_interface {
  78        struct usb_interface_descriptor desc;
  79
  80        int extralen;
  81        unsigned char *extra;   /* Extra descriptors */
  82
  83        /* array of desc.bNumEndpoint endpoints associated with this
  84         * interface setting.  these will be in no particular order.
  85         */
  86        struct usb_host_endpoint *endpoint;
  87
  88        char *string;           /* iInterface string, if present */
  89};
  90
  91enum usb_interface_condition {
  92        USB_INTERFACE_UNBOUND = 0,
  93        USB_INTERFACE_BINDING,
  94        USB_INTERFACE_BOUND,
  95        USB_INTERFACE_UNBINDING,
  96};
  97
  98/**
  99 * struct usb_interface - what usb device drivers talk to
 100 * @altsetting: array of interface structures, one for each alternate
 101 *      setting that may be selected.  Each one includes a set of
 102 *      endpoint configurations.  They will be in no particular order.
 103 * @cur_altsetting: the current altsetting.
 104 * @num_altsetting: number of altsettings defined.
 105 * @intf_assoc: interface association descriptor
 106 * @minor: the minor number assigned to this interface, if this
 107 *      interface is bound to a driver that uses the USB major number.
 108 *      If this interface does not use the USB major, this field should
 109 *      be unused.  The driver should set this value in the probe()
 110 *      function of the driver, after it has been assigned a minor
 111 *      number from the USB core by calling usb_register_dev().
 112 * @condition: binding state of the interface: not bound, binding
 113 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 114 * @sysfs_files_created: sysfs attributes exist
 115 * @ep_devs_created: endpoint child pseudo-devices exist
 116 * @unregistering: flag set when the interface is being unregistered
 117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 118 *      capability during autosuspend.
 119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 120 *      has been deferred.
 121 * @needs_binding: flag set when the driver should be re-probed or unbound
 122 *      following a reset or suspend operation it doesn't support.
 123 * @dev: driver model's view of this device
 124 * @usb_dev: if an interface is bound to the USB major, this will point
 125 *      to the sysfs representation for that device.
 126 * @pm_usage_cnt: PM usage counter for this interface
 127 * @reset_ws: Used for scheduling resets from atomic context.
 128 * @reset_running: set to 1 if the interface is currently running a
 129 *      queued reset so that usb_cancel_queued_reset() doesn't try to
 130 *      remove from the workqueue when running inside the worker
 131 *      thread. See __usb_queue_reset_device().
 132 * @resetting_device: USB core reset the device, so use alt setting 0 as
 133 *      current; needs bandwidth alloc after reset.
 134 *
 135 * USB device drivers attach to interfaces on a physical device.  Each
 136 * interface encapsulates a single high level function, such as feeding
 137 * an audio stream to a speaker or reporting a change in a volume control.
 138 * Many USB devices only have one interface.  The protocol used to talk to
 139 * an interface's endpoints can be defined in a usb "class" specification,
 140 * or by a product's vendor.  The (default) control endpoint is part of
 141 * every interface, but is never listed among the interface's descriptors.
 142 *
 143 * The driver that is bound to the interface can use standard driver model
 144 * calls such as dev_get_drvdata() on the dev member of this structure.
 145 *
 146 * Each interface may have alternate settings.  The initial configuration
 147 * of a device sets altsetting 0, but the device driver can change
 148 * that setting using usb_set_interface().  Alternate settings are often
 149 * used to control the use of periodic endpoints, such as by having
 150 * different endpoints use different amounts of reserved USB bandwidth.
 151 * All standards-conformant USB devices that use isochronous endpoints
 152 * will use them in non-default settings.
 153 *
 154 * The USB specification says that alternate setting numbers must run from
 155 * 0 to one less than the total number of alternate settings.  But some
 156 * devices manage to mess this up, and the structures aren't necessarily
 157 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 158 * look up an alternate setting in the altsetting array based on its number.
 159 */
 160struct usb_interface {
 161        /* array of alternate settings for this interface,
 162         * stored in no particular order */
 163        struct usb_host_interface *altsetting;
 164
 165        struct usb_host_interface *cur_altsetting;      /* the currently
 166                                         * active alternate setting */
 167        unsigned num_altsetting;        /* number of alternate settings */
 168
 169        /* If there is an interface association descriptor then it will list
 170         * the associated interfaces */
 171        struct usb_interface_assoc_descriptor *intf_assoc;
 172
 173        int minor;                      /* minor number this interface is
 174                                         * bound to */
 175        enum usb_interface_condition condition;         /* state of binding */
 176        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 177        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 178        unsigned unregistering:1;       /* unregistration is in progress */
 179        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 180        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 181        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 182        unsigned reset_running:1;
 183        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 184
 185        struct device dev;              /* interface specific device info */
 186        struct device *usb_dev;
 187        atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
 188        struct work_struct reset_ws;    /* for resets in atomic context */
 189};
 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 191
 192static inline void *usb_get_intfdata(struct usb_interface *intf)
 193{
 194        return dev_get_drvdata(&intf->dev);
 195}
 196
 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 198{
 199        dev_set_drvdata(&intf->dev, data);
 200}
 201
 202struct usb_interface *usb_get_intf(struct usb_interface *intf);
 203void usb_put_intf(struct usb_interface *intf);
 204
 205/* this maximum is arbitrary */
 206#define USB_MAXINTERFACES       32
 207#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 208
 209/**
 210 * struct usb_interface_cache - long-term representation of a device interface
 211 * @num_altsetting: number of altsettings defined.
 212 * @ref: reference counter.
 213 * @altsetting: variable-length array of interface structures, one for
 214 *      each alternate setting that may be selected.  Each one includes a
 215 *      set of endpoint configurations.  They will be in no particular order.
 216 *
 217 * These structures persist for the lifetime of a usb_device, unlike
 218 * struct usb_interface (which persists only as long as its configuration
 219 * is installed).  The altsetting arrays can be accessed through these
 220 * structures at any time, permitting comparison of configurations and
 221 * providing support for the /proc/bus/usb/devices pseudo-file.
 222 */
 223struct usb_interface_cache {
 224        unsigned num_altsetting;        /* number of alternate settings */
 225        struct kref ref;                /* reference counter */
 226
 227        /* variable-length array of alternate settings for this interface,
 228         * stored in no particular order */
 229        struct usb_host_interface altsetting[0];
 230};
 231#define ref_to_usb_interface_cache(r) \
 232                container_of(r, struct usb_interface_cache, ref)
 233#define altsetting_to_usb_interface_cache(a) \
 234                container_of(a, struct usb_interface_cache, altsetting[0])
 235
 236/**
 237 * struct usb_host_config - representation of a device's configuration
 238 * @desc: the device's configuration descriptor.
 239 * @string: pointer to the cached version of the iConfiguration string, if
 240 *      present for this configuration.
 241 * @intf_assoc: list of any interface association descriptors in this config
 242 * @interface: array of pointers to usb_interface structures, one for each
 243 *      interface in the configuration.  The number of interfaces is stored
 244 *      in desc.bNumInterfaces.  These pointers are valid only while the
 245 *      the configuration is active.
 246 * @intf_cache: array of pointers to usb_interface_cache structures, one
 247 *      for each interface in the configuration.  These structures exist
 248 *      for the entire life of the device.
 249 * @extra: pointer to buffer containing all extra descriptors associated
 250 *      with this configuration (those preceding the first interface
 251 *      descriptor).
 252 * @extralen: length of the extra descriptors buffer.
 253 *
 254 * USB devices may have multiple configurations, but only one can be active
 255 * at any time.  Each encapsulates a different operational environment;
 256 * for example, a dual-speed device would have separate configurations for
 257 * full-speed and high-speed operation.  The number of configurations
 258 * available is stored in the device descriptor as bNumConfigurations.
 259 *
 260 * A configuration can contain multiple interfaces.  Each corresponds to
 261 * a different function of the USB device, and all are available whenever
 262 * the configuration is active.  The USB standard says that interfaces
 263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 264 * of devices get this wrong.  In addition, the interface array is not
 265 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 266 * look up an interface entry based on its number.
 267 *
 268 * Device drivers should not attempt to activate configurations.  The choice
 269 * of which configuration to install is a policy decision based on such
 270 * considerations as available power, functionality provided, and the user's
 271 * desires (expressed through userspace tools).  However, drivers can call
 272 * usb_reset_configuration() to reinitialize the current configuration and
 273 * all its interfaces.
 274 */
 275struct usb_host_config {
 276        struct usb_config_descriptor    desc;
 277
 278        char *string;           /* iConfiguration string, if present */
 279
 280        /* List of any Interface Association Descriptors in this
 281         * configuration. */
 282        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 283
 284        /* the interfaces associated with this configuration,
 285         * stored in no particular order */
 286        struct usb_interface *interface[USB_MAXINTERFACES];
 287
 288        /* Interface information available even when this is not the
 289         * active configuration */
 290        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 291
 292        unsigned char *extra;   /* Extra descriptors */
 293        int extralen;
 294};
 295
 296/* USB2.0 and USB3.0 device BOS descriptor set */
 297struct usb_host_bos {
 298        struct usb_bos_descriptor       *desc;
 299
 300        /* wireless cap descriptor is handled by wusb */
 301        struct usb_ext_cap_descriptor   *ext_cap;
 302        struct usb_ss_cap_descriptor    *ss_cap;
 303        struct usb_ss_container_id_descriptor   *ss_id;
 304};
 305
 306int __usb_get_extra_descriptor(char *buffer, unsigned size,
 307        unsigned char type, void **ptr);
 308#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 309                                __usb_get_extra_descriptor((ifpoint)->extra, \
 310                                (ifpoint)->extralen, \
 311                                type, (void **)ptr)
 312
 313/* ----------------------------------------------------------------------- */
 314
 315/* USB device number allocation bitmap */
 316struct usb_devmap {
 317        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 318};
 319
 320/*
 321 * Allocated per bus (tree of devices) we have:
 322 */
 323struct usb_bus {
 324        struct device *controller;      /* host/master side hardware */
 325        int busnum;                     /* Bus number (in order of reg) */
 326        const char *bus_name;           /* stable id (PCI slot_name etc) */
 327        u8 uses_dma;                    /* Does the host controller use DMA? */
 328        u8 uses_pio_for_control;        /*
 329                                         * Does the host controller use PIO
 330                                         * for control transfers?
 331                                         */
 332        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 333        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 334        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 335        unsigned no_stop_on_short:1;    /*
 336                                         * Quirk: some controllers don't stop
 337                                         * the ep queue on a short transfer
 338                                         * with the URB_SHORT_NOT_OK flag set.
 339                                         */
 340        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 341
 342        int devnum_next;                /* Next open device number in
 343                                         * round-robin allocation */
 344
 345        struct usb_devmap devmap;       /* device address allocation map */
 346        struct usb_device *root_hub;    /* Root hub */
 347        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 348        struct list_head bus_list;      /* list of busses */
 349
 350        int bandwidth_allocated;        /* on this bus: how much of the time
 351                                         * reserved for periodic (intr/iso)
 352                                         * requests is used, on average?
 353                                         * Units: microseconds/frame.
 354                                         * Limits: Full/low speed reserve 90%,
 355                                         * while high speed reserves 80%.
 356                                         */
 357        int bandwidth_int_reqs;         /* number of Interrupt requests */
 358        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 359
 360        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 361
 362#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 363        struct mon_bus *mon_bus;        /* non-null when associated */
 364        int monitored;                  /* non-zero when monitored */
 365#endif
 366};
 367
 368/* ----------------------------------------------------------------------- */
 369
 370/* This is arbitrary.
 371 * From USB 2.0 spec Table 11-13, offset 7, a hub can
 372 * have up to 255 ports. The most yet reported is 10.
 373 *
 374 * Current Wireless USB host hardware (Intel i1480 for example) allows
 375 * up to 22 devices to connect. Upcoming hardware might raise that
 376 * limit. Because the arrays need to add a bit for hub status data, we
 377 * do 31, so plus one evens out to four bytes.
 378 */
 379#define USB_MAXCHILDREN         (31)
 380
 381struct usb_tt;
 382
 383enum usb_device_removable {
 384        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 385        USB_DEVICE_REMOVABLE,
 386        USB_DEVICE_FIXED,
 387};
 388
 389enum usb_port_connect_type {
 390        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 391        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 392        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 393        USB_PORT_NOT_USED,
 394};
 395
 396/*
 397 * USB 3.0 Link Power Management (LPM) parameters.
 398 *
 399 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 400 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 401 * All three are stored in nanoseconds.
 402 */
 403struct usb3_lpm_parameters {
 404        /*
 405         * Maximum exit latency (MEL) for the host to send a packet to the
 406         * device (either a Ping for isoc endpoints, or a data packet for
 407         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 408         * in the path to transition the links to U0.
 409         */
 410        unsigned int mel;
 411        /*
 412         * Maximum exit latency for a device-initiated LPM transition to bring
 413         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 414         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 415         */
 416        unsigned int pel;
 417
 418        /*
 419         * The System Exit Latency (SEL) includes PEL, and three other
 420         * latencies.  After a device initiates a U0 transition, it will take
 421         * some time from when the device sends the ERDY to when it will finally
 422         * receive the data packet.  Basically, SEL should be the worse-case
 423         * latency from when a device starts initiating a U0 transition to when
 424         * it will get data.
 425         */
 426        unsigned int sel;
 427        /*
 428         * The idle timeout value that is currently programmed into the parent
 429         * hub for this device.  When the timer counts to zero, the parent hub
 430         * will initiate an LPM transition to either U1 or U2.
 431         */
 432        int timeout;
 433};
 434
 435/**
 436 * struct usb_device - kernel's representation of a USB device
 437 * @devnum: device number; address on a USB bus
 438 * @devpath: device ID string for use in messages (e.g., /port/...)
 439 * @route: tree topology hex string for use with xHCI
 440 * @state: device state: configured, not attached, etc.
 441 * @speed: device speed: high/full/low (or error)
 442 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 443 * @ttport: device port on that tt hub
 444 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 445 * @parent: our hub, unless we're the root
 446 * @bus: bus we're part of
 447 * @ep0: endpoint 0 data (default control pipe)
 448 * @dev: generic device interface
 449 * @descriptor: USB device descriptor
 450 * @bos: USB device BOS descriptor set
 451 * @config: all of the device's configs
 452 * @actconfig: the active configuration
 453 * @ep_in: array of IN endpoints
 454 * @ep_out: array of OUT endpoints
 455 * @rawdescriptors: raw descriptors for each config
 456 * @bus_mA: Current available from the bus
 457 * @portnum: parent port number (origin 1)
 458 * @level: number of USB hub ancestors
 459 * @can_submit: URBs may be submitted
 460 * @persist_enabled:  USB_PERSIST enabled for this device
 461 * @have_langid: whether string_langid is valid
 462 * @authorized: policy has said we can use it;
 463 *      (user space) policy determines if we authorize this device to be
 464 *      used or not. By default, wired USB devices are authorized.
 465 *      WUSB devices are not, until we authorize them from user space.
 466 *      FIXME -- complete doc
 467 * @authenticated: Crypto authentication passed
 468 * @wusb: device is Wireless USB
 469 * @lpm_capable: device supports LPM
 470 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 471 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
 472 * @usb3_lpm_enabled: USB3 hardware LPM enabled
 473 * @string_langid: language ID for strings
 474 * @product: iProduct string, if present (static)
 475 * @manufacturer: iManufacturer string, if present (static)
 476 * @serial: iSerialNumber string, if present (static)
 477 * @filelist: usbfs files that are open to this device
 478 * @maxchild: number of ports if hub
 479 * @quirks: quirks of the whole device
 480 * @urbnum: number of URBs submitted for the whole device
 481 * @active_duration: total time device is not suspended
 482 * @connect_time: time device was first connected
 483 * @do_remote_wakeup:  remote wakeup should be enabled
 484 * @reset_resume: needs reset instead of resume
 485 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 486 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 487 *      specific data for the device.
 488 * @slot_id: Slot ID assigned by xHCI
 489 * @removable: Device can be physically removed from this port
 490 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 491 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 492 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 493 *      to keep track of the number of functions that require USB 3.0 Link Power
 494 *      Management to be disabled for this usb_device.  This count should only
 495 *      be manipulated by those functions, with the bandwidth_mutex is held.
 496 *
 497 * Notes:
 498 * Usbcore drivers should not set usbdev->state directly.  Instead use
 499 * usb_set_device_state().
 500 */
 501struct usb_device {
 502        int             devnum;
 503        char            devpath[16];
 504        u32             route;
 505        enum usb_device_state   state;
 506        enum usb_device_speed   speed;
 507
 508        struct usb_tt   *tt;
 509        int             ttport;
 510
 511        unsigned int toggle[2];
 512
 513        struct usb_device *parent;
 514        struct usb_bus *bus;
 515        struct usb_host_endpoint ep0;
 516
 517        struct device dev;
 518
 519        struct usb_device_descriptor descriptor;
 520        struct usb_host_bos *bos;
 521        struct usb_host_config *config;
 522
 523        struct usb_host_config *actconfig;
 524        struct usb_host_endpoint *ep_in[16];
 525        struct usb_host_endpoint *ep_out[16];
 526
 527        char **rawdescriptors;
 528
 529        unsigned short bus_mA;
 530        u8 portnum;
 531        u8 level;
 532
 533        unsigned can_submit:1;
 534        unsigned persist_enabled:1;
 535        unsigned have_langid:1;
 536        unsigned authorized:1;
 537        unsigned authenticated:1;
 538        unsigned wusb:1;
 539        unsigned lpm_capable:1;
 540        unsigned usb2_hw_lpm_capable:1;
 541        unsigned usb2_hw_lpm_enabled:1;
 542        unsigned usb3_lpm_enabled:1;
 543        int string_langid;
 544
 545        /* static strings from the device */
 546        char *product;
 547        char *manufacturer;
 548        char *serial;
 549
 550        struct list_head filelist;
 551
 552        int maxchild;
 553
 554        u32 quirks;
 555        atomic_t urbnum;
 556
 557        unsigned long active_duration;
 558
 559#ifdef CONFIG_PM
 560        unsigned long connect_time;
 561
 562        unsigned do_remote_wakeup:1;
 563        unsigned reset_resume:1;
 564        unsigned port_is_suspended:1;
 565#endif
 566        struct wusb_dev *wusb_dev;
 567        int slot_id;
 568        enum usb_device_removable removable;
 569        struct usb3_lpm_parameters u1_params;
 570        struct usb3_lpm_parameters u2_params;
 571        unsigned lpm_disable_count;
 572};
 573#define to_usb_device(d) container_of(d, struct usb_device, dev)
 574
 575static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 576{
 577        return to_usb_device(intf->dev.parent);
 578}
 579
 580extern struct usb_device *usb_get_dev(struct usb_device *dev);
 581extern void usb_put_dev(struct usb_device *dev);
 582extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 583        int port1);
 584
 585/**
 586 * usb_hub_for_each_child - iterate over all child devices on the hub
 587 * @hdev:  USB device belonging to the usb hub
 588 * @port1: portnum associated with child device
 589 * @child: child device pointer
 590 */
 591#define usb_hub_for_each_child(hdev, port1, child) \
 592        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 593                        port1 <= hdev->maxchild; \
 594                        child = usb_hub_find_child(hdev, ++port1)) \
 595                if (!child) continue; else
 596
 597/* USB device locking */
 598#define usb_lock_device(udev)           device_lock(&(udev)->dev)
 599#define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
 600#define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
 601extern int usb_lock_device_for_reset(struct usb_device *udev,
 602                                     const struct usb_interface *iface);
 603
 604/* USB port reset for device reinitialization */
 605extern int usb_reset_device(struct usb_device *dev);
 606extern void usb_queue_reset_device(struct usb_interface *dev);
 607
 608#ifdef CONFIG_ACPI
 609extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 610        bool enable);
 611extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 612#else
 613static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 614        bool enable) { return 0; }
 615static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 616        { return true; }
 617#endif
 618
 619/* USB autosuspend and autoresume */
 620#ifdef CONFIG_PM_RUNTIME
 621extern void usb_enable_autosuspend(struct usb_device *udev);
 622extern void usb_disable_autosuspend(struct usb_device *udev);
 623
 624extern int usb_autopm_get_interface(struct usb_interface *intf);
 625extern void usb_autopm_put_interface(struct usb_interface *intf);
 626extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 627extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 628extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 629extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 630
 631static inline void usb_mark_last_busy(struct usb_device *udev)
 632{
 633        pm_runtime_mark_last_busy(&udev->dev);
 634}
 635
 636#else
 637
 638static inline int usb_enable_autosuspend(struct usb_device *udev)
 639{ return 0; }
 640static inline int usb_disable_autosuspend(struct usb_device *udev)
 641{ return 0; }
 642
 643static inline int usb_autopm_get_interface(struct usb_interface *intf)
 644{ return 0; }
 645static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 646{ return 0; }
 647
 648static inline void usb_autopm_put_interface(struct usb_interface *intf)
 649{ }
 650static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 651{ }
 652static inline void usb_autopm_get_interface_no_resume(
 653                struct usb_interface *intf)
 654{ }
 655static inline void usb_autopm_put_interface_no_suspend(
 656                struct usb_interface *intf)
 657{ }
 658static inline void usb_mark_last_busy(struct usb_device *udev)
 659{ }
 660#endif
 661
 662extern int usb_disable_lpm(struct usb_device *udev);
 663extern void usb_enable_lpm(struct usb_device *udev);
 664/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 665extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 666extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 667
 668extern int usb_disable_ltm(struct usb_device *udev);
 669extern void usb_enable_ltm(struct usb_device *udev);
 670
 671static inline bool usb_device_supports_ltm(struct usb_device *udev)
 672{
 673        if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 674                return false;
 675        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 676}
 677
 678
 679/*-------------------------------------------------------------------------*/
 680
 681/* for drivers using iso endpoints */
 682extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 683
 684/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 685extern int usb_alloc_streams(struct usb_interface *interface,
 686                struct usb_host_endpoint **eps, unsigned int num_eps,
 687                unsigned int num_streams, gfp_t mem_flags);
 688
 689/* Reverts a group of bulk endpoints back to not using stream IDs. */
 690extern void usb_free_streams(struct usb_interface *interface,
 691                struct usb_host_endpoint **eps, unsigned int num_eps,
 692                gfp_t mem_flags);
 693
 694/* used these for multi-interface device registration */
 695extern int usb_driver_claim_interface(struct usb_driver *driver,
 696                        struct usb_interface *iface, void *priv);
 697
 698/**
 699 * usb_interface_claimed - returns true iff an interface is claimed
 700 * @iface: the interface being checked
 701 *
 702 * Returns true (nonzero) iff the interface is claimed, else false (zero).
 703 * Callers must own the driver model's usb bus readlock.  So driver
 704 * probe() entries don't need extra locking, but other call contexts
 705 * may need to explicitly claim that lock.
 706 *
 707 */
 708static inline int usb_interface_claimed(struct usb_interface *iface)
 709{
 710        return (iface->dev.driver != NULL);
 711}
 712
 713extern void usb_driver_release_interface(struct usb_driver *driver,
 714                        struct usb_interface *iface);
 715const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 716                                         const struct usb_device_id *id);
 717extern int usb_match_one_id(struct usb_interface *interface,
 718                            const struct usb_device_id *id);
 719
 720extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 721                int minor);
 722extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 723                unsigned ifnum);
 724extern struct usb_host_interface *usb_altnum_to_altsetting(
 725                const struct usb_interface *intf, unsigned int altnum);
 726extern struct usb_host_interface *usb_find_alt_setting(
 727                struct usb_host_config *config,
 728                unsigned int iface_num,
 729                unsigned int alt_num);
 730
 731
 732/**
 733 * usb_make_path - returns stable device path in the usb tree
 734 * @dev: the device whose path is being constructed
 735 * @buf: where to put the string
 736 * @size: how big is "buf"?
 737 *
 738 * Returns length of the string (> 0) or negative if size was too small.
 739 *
 740 * This identifier is intended to be "stable", reflecting physical paths in
 741 * hardware such as physical bus addresses for host controllers or ports on
 742 * USB hubs.  That makes it stay the same until systems are physically
 743 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 744 * controllers.  Adding and removing devices, including virtual root hubs
 745 * in host controller driver modules, does not change these path identifiers;
 746 * neither does rebooting or re-enumerating.  These are more useful identifiers
 747 * than changeable ("unstable") ones like bus numbers or device addresses.
 748 *
 749 * With a partial exception for devices connected to USB 2.0 root hubs, these
 750 * identifiers are also predictable.  So long as the device tree isn't changed,
 751 * plugging any USB device into a given hub port always gives it the same path.
 752 * Because of the use of "companion" controllers, devices connected to ports on
 753 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 754 * high speed, and a different one if they are full or low speed.
 755 */
 756static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 757{
 758        int actual;
 759        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 760                          dev->devpath);
 761        return (actual >= (int)size) ? -1 : actual;
 762}
 763
 764/*-------------------------------------------------------------------------*/
 765
 766#define USB_DEVICE_ID_MATCH_DEVICE \
 767                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 768#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 769                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 770#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 771                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 772#define USB_DEVICE_ID_MATCH_DEV_INFO \
 773                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 774                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 775                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 776#define USB_DEVICE_ID_MATCH_INT_INFO \
 777                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 778                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 779                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 780
 781/**
 782 * USB_DEVICE - macro used to describe a specific usb device
 783 * @vend: the 16 bit USB Vendor ID
 784 * @prod: the 16 bit USB Product ID
 785 *
 786 * This macro is used to create a struct usb_device_id that matches a
 787 * specific device.
 788 */
 789#define USB_DEVICE(vend, prod) \
 790        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 791        .idVendor = (vend), \
 792        .idProduct = (prod)
 793/**
 794 * USB_DEVICE_VER - describe a specific usb device with a version range
 795 * @vend: the 16 bit USB Vendor ID
 796 * @prod: the 16 bit USB Product ID
 797 * @lo: the bcdDevice_lo value
 798 * @hi: the bcdDevice_hi value
 799 *
 800 * This macro is used to create a struct usb_device_id that matches a
 801 * specific device, with a version range.
 802 */
 803#define USB_DEVICE_VER(vend, prod, lo, hi) \
 804        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 805        .idVendor = (vend), \
 806        .idProduct = (prod), \
 807        .bcdDevice_lo = (lo), \
 808        .bcdDevice_hi = (hi)
 809
 810/**
 811 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 812 * @vend: the 16 bit USB Vendor ID
 813 * @prod: the 16 bit USB Product ID
 814 * @cl: bInterfaceClass value
 815 *
 816 * This macro is used to create a struct usb_device_id that matches a
 817 * specific interface class of devices.
 818 */
 819#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 820        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 821                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 822        .idVendor = (vend), \
 823        .idProduct = (prod), \
 824        .bInterfaceClass = (cl)
 825
 826/**
 827 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 828 * @vend: the 16 bit USB Vendor ID
 829 * @prod: the 16 bit USB Product ID
 830 * @pr: bInterfaceProtocol value
 831 *
 832 * This macro is used to create a struct usb_device_id that matches a
 833 * specific interface protocol of devices.
 834 */
 835#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 836        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 837                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 838        .idVendor = (vend), \
 839        .idProduct = (prod), \
 840        .bInterfaceProtocol = (pr)
 841
 842/**
 843 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 844 * @vend: the 16 bit USB Vendor ID
 845 * @prod: the 16 bit USB Product ID
 846 * @num: bInterfaceNumber value
 847 *
 848 * This macro is used to create a struct usb_device_id that matches a
 849 * specific interface number of devices.
 850 */
 851#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 852        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 853                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 854        .idVendor = (vend), \
 855        .idProduct = (prod), \
 856        .bInterfaceNumber = (num)
 857
 858/**
 859 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 860 * @cl: bDeviceClass value
 861 * @sc: bDeviceSubClass value
 862 * @pr: bDeviceProtocol value
 863 *
 864 * This macro is used to create a struct usb_device_id that matches a
 865 * specific class of devices.
 866 */
 867#define USB_DEVICE_INFO(cl, sc, pr) \
 868        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 869        .bDeviceClass = (cl), \
 870        .bDeviceSubClass = (sc), \
 871        .bDeviceProtocol = (pr)
 872
 873/**
 874 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 875 * @cl: bInterfaceClass value
 876 * @sc: bInterfaceSubClass value
 877 * @pr: bInterfaceProtocol value
 878 *
 879 * This macro is used to create a struct usb_device_id that matches a
 880 * specific class of interfaces.
 881 */
 882#define USB_INTERFACE_INFO(cl, sc, pr) \
 883        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 884        .bInterfaceClass = (cl), \
 885        .bInterfaceSubClass = (sc), \
 886        .bInterfaceProtocol = (pr)
 887
 888/**
 889 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 890 * @vend: the 16 bit USB Vendor ID
 891 * @prod: the 16 bit USB Product ID
 892 * @cl: bInterfaceClass value
 893 * @sc: bInterfaceSubClass value
 894 * @pr: bInterfaceProtocol value
 895 *
 896 * This macro is used to create a struct usb_device_id that matches a
 897 * specific device with a specific class of interfaces.
 898 *
 899 * This is especially useful when explicitly matching devices that have
 900 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 901 */
 902#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 903        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 904                | USB_DEVICE_ID_MATCH_DEVICE, \
 905        .idVendor = (vend), \
 906        .idProduct = (prod), \
 907        .bInterfaceClass = (cl), \
 908        .bInterfaceSubClass = (sc), \
 909        .bInterfaceProtocol = (pr)
 910
 911/**
 912 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 913 * @vend: the 16 bit USB Vendor ID
 914 * @cl: bInterfaceClass value
 915 * @sc: bInterfaceSubClass value
 916 * @pr: bInterfaceProtocol value
 917 *
 918 * This macro is used to create a struct usb_device_id that matches a
 919 * specific vendor with a specific class of interfaces.
 920 *
 921 * This is especially useful when explicitly matching devices that have
 922 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 923 */
 924#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 925        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 926                | USB_DEVICE_ID_MATCH_VENDOR, \
 927        .idVendor = (vend), \
 928        .bInterfaceClass = (cl), \
 929        .bInterfaceSubClass = (sc), \
 930        .bInterfaceProtocol = (pr)
 931
 932/* ----------------------------------------------------------------------- */
 933
 934/* Stuff for dynamic usb ids */
 935struct usb_dynids {
 936        spinlock_t lock;
 937        struct list_head list;
 938};
 939
 940struct usb_dynid {
 941        struct list_head node;
 942        struct usb_device_id id;
 943};
 944
 945extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
 946                                struct device_driver *driver,
 947                                const char *buf, size_t count);
 948
 949extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
 950
 951/**
 952 * struct usbdrv_wrap - wrapper for driver-model structure
 953 * @driver: The driver-model core driver structure.
 954 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
 955 */
 956struct usbdrv_wrap {
 957        struct device_driver driver;
 958        int for_devices;
 959};
 960
 961/**
 962 * struct usb_driver - identifies USB interface driver to usbcore
 963 * @name: The driver name should be unique among USB drivers,
 964 *      and should normally be the same as the module name.
 965 * @probe: Called to see if the driver is willing to manage a particular
 966 *      interface on a device.  If it is, probe returns zero and uses
 967 *      usb_set_intfdata() to associate driver-specific data with the
 968 *      interface.  It may also use usb_set_interface() to specify the
 969 *      appropriate altsetting.  If unwilling to manage the interface,
 970 *      return -ENODEV, if genuine IO errors occurred, an appropriate
 971 *      negative errno value.
 972 * @disconnect: Called when the interface is no longer accessible, usually
 973 *      because its device has been (or is being) disconnected or the
 974 *      driver module is being unloaded.
 975 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
 976 *      the "usbfs" filesystem.  This lets devices provide ways to
 977 *      expose information to user space regardless of where they
 978 *      do (or don't) show up otherwise in the filesystem.
 979 * @suspend: Called when the device is going to be suspended by the
 980 *      system either from system sleep or runtime suspend context. The
 981 *      return value will be ignored in system sleep context, so do NOT
 982 *      try to continue using the device if suspend fails in this case.
 983 *      Instead, let the resume or reset-resume routine recover from
 984 *      the failure.
 985 * @resume: Called when the device is being resumed by the system.
 986 * @reset_resume: Called when the suspended device has been reset instead
 987 *      of being resumed.
 988 * @pre_reset: Called by usb_reset_device() when the device is about to be
 989 *      reset.  This routine must not return until the driver has no active
 990 *      URBs for the device, and no more URBs may be submitted until the
 991 *      post_reset method is called.
 992 * @post_reset: Called by usb_reset_device() after the device
 993 *      has been reset
 994 * @id_table: USB drivers use ID table to support hotplugging.
 995 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
 996 *      or your driver's probe function will never get called.
 997 * @dynids: used internally to hold the list of dynamically added device
 998 *      ids for this driver.
 999 * @drvwrap: Driver-model core structure wrapper.
1000 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1001 *      added to this driver by preventing the sysfs file from being created.
1002 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1003 *      for interfaces bound to this driver.
1004 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1005 *      endpoints before calling the driver's disconnect method.
1006 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1007 *      to initiate lower power link state transitions when an idle timeout
1008 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1009 *
1010 * USB interface drivers must provide a name, probe() and disconnect()
1011 * methods, and an id_table.  Other driver fields are optional.
1012 *
1013 * The id_table is used in hotplugging.  It holds a set of descriptors,
1014 * and specialized data may be associated with each entry.  That table
1015 * is used by both user and kernel mode hotplugging support.
1016 *
1017 * The probe() and disconnect() methods are called in a context where
1018 * they can sleep, but they should avoid abusing the privilege.  Most
1019 * work to connect to a device should be done when the device is opened,
1020 * and undone at the last close.  The disconnect code needs to address
1021 * concurrency issues with respect to open() and close() methods, as
1022 * well as forcing all pending I/O requests to complete (by unlinking
1023 * them as necessary, and blocking until the unlinks complete).
1024 */
1025struct usb_driver {
1026        const char *name;
1027
1028        int (*probe) (struct usb_interface *intf,
1029                      const struct usb_device_id *id);
1030
1031        void (*disconnect) (struct usb_interface *intf);
1032
1033        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1034                        void *buf);
1035
1036        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1037        int (*resume) (struct usb_interface *intf);
1038        int (*reset_resume)(struct usb_interface *intf);
1039
1040        int (*pre_reset)(struct usb_interface *intf);
1041        int (*post_reset)(struct usb_interface *intf);
1042
1043        const struct usb_device_id *id_table;
1044
1045        struct usb_dynids dynids;
1046        struct usbdrv_wrap drvwrap;
1047        unsigned int no_dynamic_id:1;
1048        unsigned int supports_autosuspend:1;
1049        unsigned int disable_hub_initiated_lpm:1;
1050        unsigned int soft_unbind:1;
1051};
1052#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1053
1054/**
1055 * struct usb_device_driver - identifies USB device driver to usbcore
1056 * @name: The driver name should be unique among USB drivers,
1057 *      and should normally be the same as the module name.
1058 * @probe: Called to see if the driver is willing to manage a particular
1059 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1060 *      to associate driver-specific data with the device.  If unwilling
1061 *      to manage the device, return a negative errno value.
1062 * @disconnect: Called when the device is no longer accessible, usually
1063 *      because it has been (or is being) disconnected or the driver's
1064 *      module is being unloaded.
1065 * @suspend: Called when the device is going to be suspended by the system.
1066 * @resume: Called when the device is being resumed by the system.
1067 * @drvwrap: Driver-model core structure wrapper.
1068 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1069 *      for devices bound to this driver.
1070 *
1071 * USB drivers must provide all the fields listed above except drvwrap.
1072 */
1073struct usb_device_driver {
1074        const char *name;
1075
1076        int (*probe) (struct usb_device *udev);
1077        void (*disconnect) (struct usb_device *udev);
1078
1079        int (*suspend) (struct usb_device *udev, pm_message_t message);
1080        int (*resume) (struct usb_device *udev, pm_message_t message);
1081        struct usbdrv_wrap drvwrap;
1082        unsigned int supports_autosuspend:1;
1083};
1084#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1085                drvwrap.driver)
1086
1087extern struct bus_type usb_bus_type;
1088
1089/**
1090 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1091 * @name: the usb class device name for this driver.  Will show up in sysfs.
1092 * @devnode: Callback to provide a naming hint for a possible
1093 *      device node to create.
1094 * @fops: pointer to the struct file_operations of this driver.
1095 * @minor_base: the start of the minor range for this driver.
1096 *
1097 * This structure is used for the usb_register_dev() and
1098 * usb_unregister_dev() functions, to consolidate a number of the
1099 * parameters used for them.
1100 */
1101struct usb_class_driver {
1102        char *name;
1103        char *(*devnode)(struct device *dev, umode_t *mode);
1104        const struct file_operations *fops;
1105        int minor_base;
1106};
1107
1108/*
1109 * use these in module_init()/module_exit()
1110 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1111 */
1112extern int usb_register_driver(struct usb_driver *, struct module *,
1113                               const char *);
1114
1115/* use a define to avoid include chaining to get THIS_MODULE & friends */
1116#define usb_register(driver) \
1117        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1118
1119extern void usb_deregister(struct usb_driver *);
1120
1121/**
1122 * module_usb_driver() - Helper macro for registering a USB driver
1123 * @__usb_driver: usb_driver struct
1124 *
1125 * Helper macro for USB drivers which do not do anything special in module
1126 * init/exit. This eliminates a lot of boilerplate. Each module may only
1127 * use this macro once, and calling it replaces module_init() and module_exit()
1128 */
1129#define module_usb_driver(__usb_driver) \
1130        module_driver(__usb_driver, usb_register, \
1131                       usb_deregister)
1132
1133extern int usb_register_device_driver(struct usb_device_driver *,
1134                        struct module *);
1135extern void usb_deregister_device_driver(struct usb_device_driver *);
1136
1137extern int usb_register_dev(struct usb_interface *intf,
1138                            struct usb_class_driver *class_driver);
1139extern void usb_deregister_dev(struct usb_interface *intf,
1140                               struct usb_class_driver *class_driver);
1141
1142extern int usb_disabled(void);
1143
1144/* ----------------------------------------------------------------------- */
1145
1146/*
1147 * URB support, for asynchronous request completions
1148 */
1149
1150/*
1151 * urb->transfer_flags:
1152 *
1153 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1154 */
1155#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1156#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1157                                         * slot in the schedule */
1158#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1159#define URB_NO_FSBR             0x0020  /* UHCI-specific */
1160#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1161#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1162                                         * needed */
1163#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1164
1165/* The following flags are used internally by usbcore and HCDs */
1166#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1167#define URB_DIR_OUT             0
1168#define URB_DIR_MASK            URB_DIR_IN
1169
1170#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1171#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1172#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1173#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1174#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1175#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1176#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1177#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1178
1179struct usb_iso_packet_descriptor {
1180        unsigned int offset;
1181        unsigned int length;            /* expected length */
1182        unsigned int actual_length;
1183        int status;
1184};
1185
1186struct urb;
1187
1188struct usb_anchor {
1189        struct list_head urb_list;
1190        wait_queue_head_t wait;
1191        spinlock_t lock;
1192        unsigned int poisoned:1;
1193};
1194
1195static inline void init_usb_anchor(struct usb_anchor *anchor)
1196{
1197        INIT_LIST_HEAD(&anchor->urb_list);
1198        init_waitqueue_head(&anchor->wait);
1199        spin_lock_init(&anchor->lock);
1200}
1201
1202typedef void (*usb_complete_t)(struct urb *);
1203
1204/**
1205 * struct urb - USB Request Block
1206 * @urb_list: For use by current owner of the URB.
1207 * @anchor_list: membership in the list of an anchor
1208 * @anchor: to anchor URBs to a common mooring
1209 * @ep: Points to the endpoint's data structure.  Will eventually
1210 *      replace @pipe.
1211 * @pipe: Holds endpoint number, direction, type, and more.
1212 *      Create these values with the eight macros available;
1213 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1214 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1215 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1216 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1217 *      is a different endpoint (and pipe) from "out" endpoint two.
1218 *      The current configuration controls the existence, type, and
1219 *      maximum packet size of any given endpoint.
1220 * @stream_id: the endpoint's stream ID for bulk streams
1221 * @dev: Identifies the USB device to perform the request.
1222 * @status: This is read in non-iso completion functions to get the
1223 *      status of the particular request.  ISO requests only use it
1224 *      to tell whether the URB was unlinked; detailed status for
1225 *      each frame is in the fields of the iso_frame-desc.
1226 * @transfer_flags: A variety of flags may be used to affect how URB
1227 *      submission, unlinking, or operation are handled.  Different
1228 *      kinds of URB can use different flags.
1229 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1230 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1231 *      (however, do not leave garbage in transfer_buffer even then).
1232 *      This buffer must be suitable for DMA; allocate it with
1233 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1234 *      of this buffer will be modified.  This buffer is used for the data
1235 *      stage of control transfers.
1236 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1237 *      the device driver is saying that it provided this DMA address,
1238 *      which the host controller driver should use in preference to the
1239 *      transfer_buffer.
1240 * @sg: scatter gather buffer list
1241 * @num_mapped_sgs: (internal) number of mapped sg entries
1242 * @num_sgs: number of entries in the sg list
1243 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1244 *      be broken up into chunks according to the current maximum packet
1245 *      size for the endpoint, which is a function of the configuration
1246 *      and is encoded in the pipe.  When the length is zero, neither
1247 *      transfer_buffer nor transfer_dma is used.
1248 * @actual_length: This is read in non-iso completion functions, and
1249 *      it tells how many bytes (out of transfer_buffer_length) were
1250 *      transferred.  It will normally be the same as requested, unless
1251 *      either an error was reported or a short read was performed.
1252 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1253 *      short reads be reported as errors.
1254 * @setup_packet: Only used for control transfers, this points to eight bytes
1255 *      of setup data.  Control transfers always start by sending this data
1256 *      to the device.  Then transfer_buffer is read or written, if needed.
1257 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1258 *      this field; setup_packet must point to a valid buffer.
1259 * @start_frame: Returns the initial frame for isochronous transfers.
1260 * @number_of_packets: Lists the number of ISO transfer buffers.
1261 * @interval: Specifies the polling interval for interrupt or isochronous
1262 *      transfers.  The units are frames (milliseconds) for full and low
1263 *      speed devices, and microframes (1/8 millisecond) for highspeed
1264 *      and SuperSpeed devices.
1265 * @error_count: Returns the number of ISO transfers that reported errors.
1266 * @context: For use in completion functions.  This normally points to
1267 *      request-specific driver context.
1268 * @complete: Completion handler. This URB is passed as the parameter to the
1269 *      completion function.  The completion function may then do what
1270 *      it likes with the URB, including resubmitting or freeing it.
1271 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1272 *      collect the transfer status for each buffer.
1273 *
1274 * This structure identifies USB transfer requests.  URBs must be allocated by
1275 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1276 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1277 * are submitted using usb_submit_urb(), and pending requests may be canceled
1278 * using usb_unlink_urb() or usb_kill_urb().
1279 *
1280 * Data Transfer Buffers:
1281 *
1282 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1283 * taken from the general page pool.  That is provided by transfer_buffer
1284 * (control requests also use setup_packet), and host controller drivers
1285 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1286 * mapping operations can be expensive on some platforms (perhaps using a dma
1287 * bounce buffer or talking to an IOMMU),
1288 * although they're cheap on commodity x86 and ppc hardware.
1289 *
1290 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1291 * which tells the host controller driver that no such mapping is needed for
1292 * the transfer_buffer since
1293 * the device driver is DMA-aware.  For example, a device driver might
1294 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1295 * When this transfer flag is provided, host controller drivers will
1296 * attempt to use the dma address found in the transfer_dma
1297 * field rather than determining a dma address themselves.
1298 *
1299 * Note that transfer_buffer must still be set if the controller
1300 * does not support DMA (as indicated by bus.uses_dma) and when talking
1301 * to root hub. If you have to trasfer between highmem zone and the device
1302 * on such controller, create a bounce buffer or bail out with an error.
1303 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1304 * capable, assign NULL to it, so that usbmon knows not to use the value.
1305 * The setup_packet must always be set, so it cannot be located in highmem.
1306 *
1307 * Initialization:
1308 *
1309 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1310 * zero), and complete fields.  All URBs must also initialize
1311 * transfer_buffer and transfer_buffer_length.  They may provide the
1312 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1313 * to be treated as errors; that flag is invalid for write requests.
1314 *
1315 * Bulk URBs may
1316 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1317 * should always terminate with a short packet, even if it means adding an
1318 * extra zero length packet.
1319 *
1320 * Control URBs must provide a valid pointer in the setup_packet field.
1321 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1322 * beforehand.
1323 *
1324 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1325 * or, for highspeed devices, 125 microsecond units)
1326 * to poll for transfers.  After the URB has been submitted, the interval
1327 * field reflects how the transfer was actually scheduled.
1328 * The polling interval may be more frequent than requested.
1329 * For example, some controllers have a maximum interval of 32 milliseconds,
1330 * while others support intervals of up to 1024 milliseconds.
1331 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1332 * endpoints, as well as high speed interrupt endpoints, the encoding of
1333 * the transfer interval in the endpoint descriptor is logarithmic.
1334 * Device drivers must convert that value to linear units themselves.)
1335 *
1336 * If an isochronous endpoint queue isn't already running, the host
1337 * controller will schedule a new URB to start as soon as bandwidth
1338 * utilization allows.  If the queue is running then a new URB will be
1339 * scheduled to start in the first transfer slot following the end of the
1340 * preceding URB, if that slot has not already expired.  If the slot has
1341 * expired (which can happen when IRQ delivery is delayed for a long time),
1342 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1343 * is clear then the URB will be scheduled to start in the expired slot,
1344 * implying that some of its packets will not be transferred; if the flag
1345 * is set then the URB will be scheduled in the first unexpired slot,
1346 * breaking the queue's synchronization.  Upon URB completion, the
1347 * start_frame field will be set to the (micro)frame number in which the
1348 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1349 * and can go from as low as 256 to as high as 65536 frames.
1350 *
1351 * Isochronous URBs have a different data transfer model, in part because
1352 * the quality of service is only "best effort".  Callers provide specially
1353 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1354 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1355 * URBs are normally queued, submitted by drivers to arrange that
1356 * transfers are at least double buffered, and then explicitly resubmitted
1357 * in completion handlers, so
1358 * that data (such as audio or video) streams at as constant a rate as the
1359 * host controller scheduler can support.
1360 *
1361 * Completion Callbacks:
1362 *
1363 * The completion callback is made in_interrupt(), and one of the first
1364 * things that a completion handler should do is check the status field.
1365 * The status field is provided for all URBs.  It is used to report
1366 * unlinked URBs, and status for all non-ISO transfers.  It should not
1367 * be examined before the URB is returned to the completion handler.
1368 *
1369 * The context field is normally used to link URBs back to the relevant
1370 * driver or request state.
1371 *
1372 * When the completion callback is invoked for non-isochronous URBs, the
1373 * actual_length field tells how many bytes were transferred.  This field
1374 * is updated even when the URB terminated with an error or was unlinked.
1375 *
1376 * ISO transfer status is reported in the status and actual_length fields
1377 * of the iso_frame_desc array, and the number of errors is reported in
1378 * error_count.  Completion callbacks for ISO transfers will normally
1379 * (re)submit URBs to ensure a constant transfer rate.
1380 *
1381 * Note that even fields marked "public" should not be touched by the driver
1382 * when the urb is owned by the hcd, that is, since the call to
1383 * usb_submit_urb() till the entry into the completion routine.
1384 */
1385struct urb {
1386        /* private: usb core and host controller only fields in the urb */
1387        struct kref kref;               /* reference count of the URB */
1388        void *hcpriv;                   /* private data for host controller */
1389        atomic_t use_count;             /* concurrent submissions counter */
1390        atomic_t reject;                /* submissions will fail */
1391        int unlinked;                   /* unlink error code */
1392
1393        /* public: documented fields in the urb that can be used by drivers */
1394        struct list_head urb_list;      /* list head for use by the urb's
1395                                         * current owner */
1396        struct list_head anchor_list;   /* the URB may be anchored */
1397        struct usb_anchor *anchor;
1398        struct usb_device *dev;         /* (in) pointer to associated device */
1399        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1400        unsigned int pipe;              /* (in) pipe information */
1401        unsigned int stream_id;         /* (in) stream ID */
1402        int status;                     /* (return) non-ISO status */
1403        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1404        void *transfer_buffer;          /* (in) associated data buffer */
1405        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1406        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1407        int num_mapped_sgs;             /* (internal) mapped sg entries */
1408        int num_sgs;                    /* (in) number of entries in the sg list */
1409        u32 transfer_buffer_length;     /* (in) data buffer length */
1410        u32 actual_length;              /* (return) actual transfer length */
1411        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1412        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1413        int start_frame;                /* (modify) start frame (ISO) */
1414        int number_of_packets;          /* (in) number of ISO packets */
1415        int interval;                   /* (modify) transfer interval
1416                                         * (INT/ISO) */
1417        int error_count;                /* (return) number of ISO errors */
1418        void *context;                  /* (in) context for completion */
1419        usb_complete_t complete;        /* (in) completion routine */
1420        struct usb_iso_packet_descriptor iso_frame_desc[0];
1421                                        /* (in) ISO ONLY */
1422};
1423
1424/* ----------------------------------------------------------------------- */
1425
1426/**
1427 * usb_fill_control_urb - initializes a control urb
1428 * @urb: pointer to the urb to initialize.
1429 * @dev: pointer to the struct usb_device for this urb.
1430 * @pipe: the endpoint pipe
1431 * @setup_packet: pointer to the setup_packet buffer
1432 * @transfer_buffer: pointer to the transfer buffer
1433 * @buffer_length: length of the transfer buffer
1434 * @complete_fn: pointer to the usb_complete_t function
1435 * @context: what to set the urb context to.
1436 *
1437 * Initializes a control urb with the proper information needed to submit
1438 * it to a device.
1439 */
1440static inline void usb_fill_control_urb(struct urb *urb,
1441                                        struct usb_device *dev,
1442                                        unsigned int pipe,
1443                                        unsigned char *setup_packet,
1444                                        void *transfer_buffer,
1445                                        int buffer_length,
1446                                        usb_complete_t complete_fn,
1447                                        void *context)
1448{
1449        urb->dev = dev;
1450        urb->pipe = pipe;
1451        urb->setup_packet = setup_packet;
1452        urb->transfer_buffer = transfer_buffer;
1453        urb->transfer_buffer_length = buffer_length;
1454        urb->complete = complete_fn;
1455        urb->context = context;
1456}
1457
1458/**
1459 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1460 * @urb: pointer to the urb to initialize.
1461 * @dev: pointer to the struct usb_device for this urb.
1462 * @pipe: the endpoint pipe
1463 * @transfer_buffer: pointer to the transfer buffer
1464 * @buffer_length: length of the transfer buffer
1465 * @complete_fn: pointer to the usb_complete_t function
1466 * @context: what to set the urb context to.
1467 *
1468 * Initializes a bulk urb with the proper information needed to submit it
1469 * to a device.
1470 */
1471static inline void usb_fill_bulk_urb(struct urb *urb,
1472                                     struct usb_device *dev,
1473                                     unsigned int pipe,
1474                                     void *transfer_buffer,
1475                                     int buffer_length,
1476                                     usb_complete_t complete_fn,
1477                                     void *context)
1478{
1479        urb->dev = dev;
1480        urb->pipe = pipe;
1481        urb->transfer_buffer = transfer_buffer;
1482        urb->transfer_buffer_length = buffer_length;
1483        urb->complete = complete_fn;
1484        urb->context = context;
1485}
1486
1487/**
1488 * usb_fill_int_urb - macro to help initialize a interrupt urb
1489 * @urb: pointer to the urb to initialize.
1490 * @dev: pointer to the struct usb_device for this urb.
1491 * @pipe: the endpoint pipe
1492 * @transfer_buffer: pointer to the transfer buffer
1493 * @buffer_length: length of the transfer buffer
1494 * @complete_fn: pointer to the usb_complete_t function
1495 * @context: what to set the urb context to.
1496 * @interval: what to set the urb interval to, encoded like
1497 *      the endpoint descriptor's bInterval value.
1498 *
1499 * Initializes a interrupt urb with the proper information needed to submit
1500 * it to a device.
1501 *
1502 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1503 * encoding of the endpoint interval, and express polling intervals in
1504 * microframes (eight per millisecond) rather than in frames (one per
1505 * millisecond).
1506 *
1507 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1508 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1509 * through to the host controller, rather than being translated into microframe
1510 * units.
1511 */
1512static inline void usb_fill_int_urb(struct urb *urb,
1513                                    struct usb_device *dev,
1514                                    unsigned int pipe,
1515                                    void *transfer_buffer,
1516                                    int buffer_length,
1517                                    usb_complete_t complete_fn,
1518                                    void *context,
1519                                    int interval)
1520{
1521        urb->dev = dev;
1522        urb->pipe = pipe;
1523        urb->transfer_buffer = transfer_buffer;
1524        urb->transfer_buffer_length = buffer_length;
1525        urb->complete = complete_fn;
1526        urb->context = context;
1527        if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1528                urb->interval = 1 << (interval - 1);
1529        else
1530                urb->interval = interval;
1531        urb->start_frame = -1;
1532}
1533
1534extern void usb_init_urb(struct urb *urb);
1535extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1536extern void usb_free_urb(struct urb *urb);
1537#define usb_put_urb usb_free_urb
1538extern struct urb *usb_get_urb(struct urb *urb);
1539extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1540extern int usb_unlink_urb(struct urb *urb);
1541extern void usb_kill_urb(struct urb *urb);
1542extern void usb_poison_urb(struct urb *urb);
1543extern void usb_unpoison_urb(struct urb *urb);
1544extern void usb_block_urb(struct urb *urb);
1545extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1546extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1547extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1548extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1549extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1550extern void usb_unanchor_urb(struct urb *urb);
1551extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1552                                         unsigned int timeout);
1553extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1554extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1555extern int usb_anchor_empty(struct usb_anchor *anchor);
1556
1557#define usb_unblock_urb usb_unpoison_urb
1558
1559/**
1560 * usb_urb_dir_in - check if an URB describes an IN transfer
1561 * @urb: URB to be checked
1562 *
1563 * Returns 1 if @urb describes an IN transfer (device-to-host),
1564 * otherwise 0.
1565 */
1566static inline int usb_urb_dir_in(struct urb *urb)
1567{
1568        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1569}
1570
1571/**
1572 * usb_urb_dir_out - check if an URB describes an OUT transfer
1573 * @urb: URB to be checked
1574 *
1575 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1576 * otherwise 0.
1577 */
1578static inline int usb_urb_dir_out(struct urb *urb)
1579{
1580        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1581}
1582
1583void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1584        gfp_t mem_flags, dma_addr_t *dma);
1585void usb_free_coherent(struct usb_device *dev, size_t size,
1586        void *addr, dma_addr_t dma);
1587
1588#if 0
1589struct urb *usb_buffer_map(struct urb *urb);
1590void usb_buffer_dmasync(struct urb *urb);
1591void usb_buffer_unmap(struct urb *urb);
1592#endif
1593
1594struct scatterlist;
1595int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1596                      struct scatterlist *sg, int nents);
1597#if 0
1598void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1599                           struct scatterlist *sg, int n_hw_ents);
1600#endif
1601void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1602                         struct scatterlist *sg, int n_hw_ents);
1603
1604/*-------------------------------------------------------------------*
1605 *                         SYNCHRONOUS CALL SUPPORT                  *
1606 *-------------------------------------------------------------------*/
1607
1608extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1609        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1610        void *data, __u16 size, int timeout);
1611extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1612        void *data, int len, int *actual_length, int timeout);
1613extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1614        void *data, int len, int *actual_length,
1615        int timeout);
1616
1617/* wrappers around usb_control_msg() for the most common standard requests */
1618extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1619        unsigned char descindex, void *buf, int size);
1620extern int usb_get_status(struct usb_device *dev,
1621        int type, int target, void *data);
1622extern int usb_string(struct usb_device *dev, int index,
1623        char *buf, size_t size);
1624
1625/* wrappers that also update important state inside usbcore */
1626extern int usb_clear_halt(struct usb_device *dev, int pipe);
1627extern int usb_reset_configuration(struct usb_device *dev);
1628extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1629extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1630
1631/* this request isn't really synchronous, but it belongs with the others */
1632extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1633
1634/*
1635 * timeouts, in milliseconds, used for sending/receiving control messages
1636 * they typically complete within a few frames (msec) after they're issued
1637 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1638 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1639 */
1640#define USB_CTRL_GET_TIMEOUT    5000
1641#define USB_CTRL_SET_TIMEOUT    5000
1642
1643
1644/**
1645 * struct usb_sg_request - support for scatter/gather I/O
1646 * @status: zero indicates success, else negative errno
1647 * @bytes: counts bytes transferred.
1648 *
1649 * These requests are initialized using usb_sg_init(), and then are used
1650 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1651 * members of the request object aren't for driver access.
1652 *
1653 * The status and bytecount values are valid only after usb_sg_wait()
1654 * returns.  If the status is zero, then the bytecount matches the total
1655 * from the request.
1656 *
1657 * After an error completion, drivers may need to clear a halt condition
1658 * on the endpoint.
1659 */
1660struct usb_sg_request {
1661        int                     status;
1662        size_t                  bytes;
1663
1664        /* private:
1665         * members below are private to usbcore,
1666         * and are not provided for driver access!
1667         */
1668        spinlock_t              lock;
1669
1670        struct usb_device       *dev;
1671        int                     pipe;
1672
1673        int                     entries;
1674        struct urb              **urbs;
1675
1676        int                     count;
1677        struct completion       complete;
1678};
1679
1680int usb_sg_init(
1681        struct usb_sg_request   *io,
1682        struct usb_device       *dev,
1683        unsigned                pipe,
1684        unsigned                period,
1685        struct scatterlist      *sg,
1686        int                     nents,
1687        size_t                  length,
1688        gfp_t                   mem_flags
1689);
1690void usb_sg_cancel(struct usb_sg_request *io);
1691void usb_sg_wait(struct usb_sg_request *io);
1692
1693
1694/* ----------------------------------------------------------------------- */
1695
1696/*
1697 * For various legacy reasons, Linux has a small cookie that's paired with
1698 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1699 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1700 * an unsigned int encoded as:
1701 *
1702 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1703 *                                       1 = Device-to-Host [In] ...
1704 *                                      like endpoint bEndpointAddress)
1705 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1706 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1707 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1708 *                                       10 = control, 11 = bulk)
1709 *
1710 * Given the device address and endpoint descriptor, pipes are redundant.
1711 */
1712
1713/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1714/* (yet ... they're the values used by usbfs) */
1715#define PIPE_ISOCHRONOUS                0
1716#define PIPE_INTERRUPT                  1
1717#define PIPE_CONTROL                    2
1718#define PIPE_BULK                       3
1719
1720#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1721#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1722
1723#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1724#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1725
1726#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1727#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1728#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1729#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1730#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1731
1732static inline unsigned int __create_pipe(struct usb_device *dev,
1733                unsigned int endpoint)
1734{
1735        return (dev->devnum << 8) | (endpoint << 15);
1736}
1737
1738/* Create various pipes... */
1739#define usb_sndctrlpipe(dev, endpoint)  \
1740        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1741#define usb_rcvctrlpipe(dev, endpoint)  \
1742        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1743#define usb_sndisocpipe(dev, endpoint)  \
1744        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1745#define usb_rcvisocpipe(dev, endpoint)  \
1746        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1747#define usb_sndbulkpipe(dev, endpoint)  \
1748        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1749#define usb_rcvbulkpipe(dev, endpoint)  \
1750        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1751#define usb_sndintpipe(dev, endpoint)   \
1752        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1753#define usb_rcvintpipe(dev, endpoint)   \
1754        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1755
1756static inline struct usb_host_endpoint *
1757usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1758{
1759        struct usb_host_endpoint **eps;
1760        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1761        return eps[usb_pipeendpoint(pipe)];
1762}
1763
1764/*-------------------------------------------------------------------------*/
1765
1766static inline __u16
1767usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1768{
1769        struct usb_host_endpoint        *ep;
1770        unsigned                        epnum = usb_pipeendpoint(pipe);
1771
1772        if (is_out) {
1773                WARN_ON(usb_pipein(pipe));
1774                ep = udev->ep_out[epnum];
1775        } else {
1776                WARN_ON(usb_pipeout(pipe));
1777                ep = udev->ep_in[epnum];
1778        }
1779        if (!ep)
1780                return 0;
1781
1782        /* NOTE:  only 0x07ff bits are for packet size... */
1783        return usb_endpoint_maxp(&ep->desc);
1784}
1785
1786/* ----------------------------------------------------------------------- */
1787
1788/* translate USB error codes to codes user space understands */
1789static inline int usb_translate_errors(int error_code)
1790{
1791        switch (error_code) {
1792        case 0:
1793        case -ENOMEM:
1794        case -ENODEV:
1795        case -EOPNOTSUPP:
1796                return error_code;
1797        default:
1798                return -EIO;
1799        }
1800}
1801
1802/* Events from the usb core */
1803#define USB_DEVICE_ADD          0x0001
1804#define USB_DEVICE_REMOVE       0x0002
1805#define USB_BUS_ADD             0x0003
1806#define USB_BUS_REMOVE          0x0004
1807extern void usb_register_notify(struct notifier_block *nb);
1808extern void usb_unregister_notify(struct notifier_block *nb);
1809
1810/* debugfs stuff */
1811extern struct dentry *usb_debug_root;
1812
1813#endif  /* __KERNEL__ */
1814
1815#endif
1816