linux/include/net/mac80211.h
<<
>>
Prefs
   1/*
   2 * mac80211 <-> driver interface
   3 *
   4 * Copyright 2002-2005, Devicescape Software, Inc.
   5 * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
   6 * Copyright 2007-2010  Johannes Berg <johannes@sipsolutions.net>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#ifndef MAC80211_H
  14#define MAC80211_H
  15
  16#include <linux/bug.h>
  17#include <linux/kernel.h>
  18#include <linux/if_ether.h>
  19#include <linux/skbuff.h>
  20#include <linux/ieee80211.h>
  21#include <net/cfg80211.h>
  22#include <asm/unaligned.h>
  23
  24/**
  25 * DOC: Introduction
  26 *
  27 * mac80211 is the Linux stack for 802.11 hardware that implements
  28 * only partial functionality in hard- or firmware. This document
  29 * defines the interface between mac80211 and low-level hardware
  30 * drivers.
  31 */
  32
  33/**
  34 * DOC: Calling mac80211 from interrupts
  35 *
  36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
  37 * called in hardware interrupt context. The low-level driver must not call any
  38 * other functions in hardware interrupt context. If there is a need for such
  39 * call, the low-level driver should first ACK the interrupt and perform the
  40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
  41 * tasklet function.
  42 *
  43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
  44 *       use the non-IRQ-safe functions!
  45 */
  46
  47/**
  48 * DOC: Warning
  49 *
  50 * If you're reading this document and not the header file itself, it will
  51 * be incomplete because not all documentation has been converted yet.
  52 */
  53
  54/**
  55 * DOC: Frame format
  56 *
  57 * As a general rule, when frames are passed between mac80211 and the driver,
  58 * they start with the IEEE 802.11 header and include the same octets that are
  59 * sent over the air except for the FCS which should be calculated by the
  60 * hardware.
  61 *
  62 * There are, however, various exceptions to this rule for advanced features:
  63 *
  64 * The first exception is for hardware encryption and decryption offload
  65 * where the IV/ICV may or may not be generated in hardware.
  66 *
  67 * Secondly, when the hardware handles fragmentation, the frame handed to
  68 * the driver from mac80211 is the MSDU, not the MPDU.
  69 *
  70 * Finally, for received frames, the driver is able to indicate that it has
  71 * filled a radiotap header and put that in front of the frame; if it does
  72 * not do so then mac80211 may add this under certain circumstances.
  73 */
  74
  75/**
  76 * DOC: mac80211 workqueue
  77 *
  78 * mac80211 provides its own workqueue for drivers and internal mac80211 use.
  79 * The workqueue is a single threaded workqueue and can only be accessed by
  80 * helpers for sanity checking. Drivers must ensure all work added onto the
  81 * mac80211 workqueue should be cancelled on the driver stop() callback.
  82 *
  83 * mac80211 will flushed the workqueue upon interface removal and during
  84 * suspend.
  85 *
  86 * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
  87 *
  88 */
  89
  90struct device;
  91
  92/**
  93 * enum ieee80211_max_queues - maximum number of queues
  94 *
  95 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
  96 * @IEEE80211_MAX_QUEUE_MAP: bitmap with maximum queues set
  97 */
  98enum ieee80211_max_queues {
  99        IEEE80211_MAX_QUEUES =          16,
 100        IEEE80211_MAX_QUEUE_MAP =       BIT(IEEE80211_MAX_QUEUES) - 1,
 101};
 102
 103#define IEEE80211_INVAL_HW_QUEUE        0xff
 104
 105/**
 106 * enum ieee80211_ac_numbers - AC numbers as used in mac80211
 107 * @IEEE80211_AC_VO: voice
 108 * @IEEE80211_AC_VI: video
 109 * @IEEE80211_AC_BE: best effort
 110 * @IEEE80211_AC_BK: background
 111 */
 112enum ieee80211_ac_numbers {
 113        IEEE80211_AC_VO         = 0,
 114        IEEE80211_AC_VI         = 1,
 115        IEEE80211_AC_BE         = 2,
 116        IEEE80211_AC_BK         = 3,
 117};
 118#define IEEE80211_NUM_ACS       4
 119
 120/**
 121 * struct ieee80211_tx_queue_params - transmit queue configuration
 122 *
 123 * The information provided in this structure is required for QoS
 124 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
 125 *
 126 * @aifs: arbitration interframe space [0..255]
 127 * @cw_min: minimum contention window [a value of the form
 128 *      2^n-1 in the range 1..32767]
 129 * @cw_max: maximum contention window [like @cw_min]
 130 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
 131 * @acm: is mandatory admission control required for the access category
 132 * @uapsd: is U-APSD mode enabled for the queue
 133 */
 134struct ieee80211_tx_queue_params {
 135        u16 txop;
 136        u16 cw_min;
 137        u16 cw_max;
 138        u8 aifs;
 139        bool acm;
 140        bool uapsd;
 141};
 142
 143struct ieee80211_low_level_stats {
 144        unsigned int dot11ACKFailureCount;
 145        unsigned int dot11RTSFailureCount;
 146        unsigned int dot11FCSErrorCount;
 147        unsigned int dot11RTSSuccessCount;
 148};
 149
 150/**
 151 * enum ieee80211_chanctx_change - change flag for channel context
 152 * @IEEE80211_CHANCTX_CHANGE_WIDTH: The channel width changed
 153 * @IEEE80211_CHANCTX_CHANGE_RX_CHAINS: The number of RX chains changed
 154 * @IEEE80211_CHANCTX_CHANGE_RADAR: radar detection flag changed
 155 */
 156enum ieee80211_chanctx_change {
 157        IEEE80211_CHANCTX_CHANGE_WIDTH          = BIT(0),
 158        IEEE80211_CHANCTX_CHANGE_RX_CHAINS      = BIT(1),
 159        IEEE80211_CHANCTX_CHANGE_RADAR          = BIT(2),
 160};
 161
 162/**
 163 * struct ieee80211_chanctx_conf - channel context that vifs may be tuned to
 164 *
 165 * This is the driver-visible part. The ieee80211_chanctx
 166 * that contains it is visible in mac80211 only.
 167 *
 168 * @def: the channel definition
 169 * @rx_chains_static: The number of RX chains that must always be
 170 *      active on the channel to receive MIMO transmissions
 171 * @rx_chains_dynamic: The number of RX chains that must be enabled
 172 *      after RTS/CTS handshake to receive SMPS MIMO transmissions;
 173 *      this will always be >= @rx_chains_static.
 174 * @radar_enabled: whether radar detection is enabled on this channel.
 175 * @drv_priv: data area for driver use, will always be aligned to
 176 *      sizeof(void *), size is determined in hw information.
 177 */
 178struct ieee80211_chanctx_conf {
 179        struct cfg80211_chan_def def;
 180
 181        u8 rx_chains_static, rx_chains_dynamic;
 182
 183        bool radar_enabled;
 184
 185        u8 drv_priv[0] __aligned(sizeof(void *));
 186};
 187
 188/**
 189 * enum ieee80211_bss_change - BSS change notification flags
 190 *
 191 * These flags are used with the bss_info_changed() callback
 192 * to indicate which BSS parameter changed.
 193 *
 194 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
 195 *      also implies a change in the AID.
 196 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
 197 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
 198 * @BSS_CHANGED_ERP_SLOT: slot timing changed
 199 * @BSS_CHANGED_HT: 802.11n parameters changed
 200 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
 201 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
 202 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
 203 *      reason (IBSS and managed mode)
 204 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
 205 *      new beacon (beaconing modes)
 206 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
 207 *      enabled/disabled (beaconing modes)
 208 * @BSS_CHANGED_CQM: Connection quality monitor config changed
 209 * @BSS_CHANGED_IBSS: IBSS join status changed
 210 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed.
 211 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note
 212 *      that it is only ever disabled for station mode.
 213 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface.
 214 * @BSS_CHANGED_SSID: SSID changed for this BSS (AP and IBSS mode)
 215 * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode)
 216 * @BSS_CHANGED_PS: PS changed for this BSS (STA mode)
 217 * @BSS_CHANGED_TXPOWER: TX power setting changed for this interface
 218 * @BSS_CHANGED_P2P_PS: P2P powersave settings (CTWindow, opportunistic PS)
 219 *      changed (currently only in P2P client mode, GO mode will be later)
 220 * @BSS_CHANGED_DTIM_PERIOD: the DTIM period value was changed (set when
 221 *      it becomes valid, managed mode only)
 222 * @BSS_CHANGED_BANDWIDTH: The bandwidth used by this interface changed,
 223 *      note that this is only called when it changes after the channel
 224 *      context had been assigned.
 225 */
 226enum ieee80211_bss_change {
 227        BSS_CHANGED_ASSOC               = 1<<0,
 228        BSS_CHANGED_ERP_CTS_PROT        = 1<<1,
 229        BSS_CHANGED_ERP_PREAMBLE        = 1<<2,
 230        BSS_CHANGED_ERP_SLOT            = 1<<3,
 231        BSS_CHANGED_HT                  = 1<<4,
 232        BSS_CHANGED_BASIC_RATES         = 1<<5,
 233        BSS_CHANGED_BEACON_INT          = 1<<6,
 234        BSS_CHANGED_BSSID               = 1<<7,
 235        BSS_CHANGED_BEACON              = 1<<8,
 236        BSS_CHANGED_BEACON_ENABLED      = 1<<9,
 237        BSS_CHANGED_CQM                 = 1<<10,
 238        BSS_CHANGED_IBSS                = 1<<11,
 239        BSS_CHANGED_ARP_FILTER          = 1<<12,
 240        BSS_CHANGED_QOS                 = 1<<13,
 241        BSS_CHANGED_IDLE                = 1<<14,
 242        BSS_CHANGED_SSID                = 1<<15,
 243        BSS_CHANGED_AP_PROBE_RESP       = 1<<16,
 244        BSS_CHANGED_PS                  = 1<<17,
 245        BSS_CHANGED_TXPOWER             = 1<<18,
 246        BSS_CHANGED_P2P_PS              = 1<<19,
 247        BSS_CHANGED_DTIM_PERIOD         = 1<<20,
 248        BSS_CHANGED_BANDWIDTH           = 1<<21,
 249
 250        /* when adding here, make sure to change ieee80211_reconfig */
 251};
 252
 253/*
 254 * The maximum number of IPv4 addresses listed for ARP filtering. If the number
 255 * of addresses for an interface increase beyond this value, hardware ARP
 256 * filtering will be disabled.
 257 */
 258#define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4
 259
 260/**
 261 * enum ieee80211_rssi_event - RSSI threshold event
 262 * An indicator for when RSSI goes below/above a certain threshold.
 263 * @RSSI_EVENT_HIGH: AP's rssi crossed the high threshold set by the driver.
 264 * @RSSI_EVENT_LOW: AP's rssi crossed the low threshold set by the driver.
 265 */
 266enum ieee80211_rssi_event {
 267        RSSI_EVENT_HIGH,
 268        RSSI_EVENT_LOW,
 269};
 270
 271/**
 272 * struct ieee80211_bss_conf - holds the BSS's changing parameters
 273 *
 274 * This structure keeps information about a BSS (and an association
 275 * to that BSS) that can change during the lifetime of the BSS.
 276 *
 277 * @assoc: association status
 278 * @ibss_joined: indicates whether this station is part of an IBSS
 279 *      or not
 280 * @ibss_creator: indicates if a new IBSS network is being created
 281 * @aid: association ID number, valid only when @assoc is true
 282 * @use_cts_prot: use CTS protection
 283 * @use_short_preamble: use 802.11b short preamble;
 284 *      if the hardware cannot handle this it must set the
 285 *      IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
 286 * @use_short_slot: use short slot time (only relevant for ERP);
 287 *      if the hardware cannot handle this it must set the
 288 *      IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
 289 * @dtim_period: num of beacons before the next DTIM, for beaconing,
 290 *      valid in station mode only if after the driver was notified
 291 *      with the %BSS_CHANGED_DTIM_PERIOD flag, will be non-zero then.
 292 * @sync_tsf: last beacon's/probe response's TSF timestamp (could be old
 293 *      as it may have been received during scanning long ago). If the
 294 *      HW flag %IEEE80211_HW_TIMING_BEACON_ONLY is set, then this can
 295 *      only come from a beacon, but might not become valid until after
 296 *      association when a beacon is received (which is notified with the
 297 *      %BSS_CHANGED_DTIM flag.)
 298 * @sync_device_ts: the device timestamp corresponding to the sync_tsf,
 299 *      the driver/device can use this to calculate synchronisation
 300 *      (see @sync_tsf)
 301 * @sync_dtim_count: Only valid when %IEEE80211_HW_TIMING_BEACON_ONLY
 302 *      is requested, see @sync_tsf/@sync_device_ts.
 303 * @beacon_int: beacon interval
 304 * @assoc_capability: capabilities taken from assoc resp
 305 * @basic_rates: bitmap of basic rates, each bit stands for an
 306 *      index into the rate table configured by the driver in
 307 *      the current band.
 308 * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
 309 * @bssid: The BSSID for this BSS
 310 * @enable_beacon: whether beaconing should be enabled or not
 311 * @chandef: Channel definition for this BSS -- the hardware might be
 312 *      configured a higher bandwidth than this BSS uses, for example.
 313 * @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation.
 314 *      This field is only valid when the channel type is one of the HT types.
 315 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value
 316 *      implies disabled
 317 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis
 318 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The
 319 *      may filter ARP queries targeted for other addresses than listed here.
 320 *      The driver must allow ARP queries targeted for all address listed here
 321 *      to pass through. An empty list implies no ARP queries need to pass.
 322 * @arp_addr_cnt: Number of addresses currently on the list. Note that this
 323 *      may be larger than %IEEE80211_BSS_ARP_ADDR_LIST_LEN (the arp_addr_list
 324 *      array size), it's up to the driver what to do in that case.
 325 * @qos: This is a QoS-enabled BSS.
 326 * @idle: This interface is idle. There's also a global idle flag in the
 327 *      hardware config which may be more appropriate depending on what
 328 *      your driver/device needs to do.
 329 * @ps: power-save mode (STA only). This flag is NOT affected by
 330 *      offchannel/dynamic_ps operations.
 331 * @ssid: The SSID of the current vif. Valid in AP and IBSS mode.
 332 * @ssid_len: Length of SSID given in @ssid.
 333 * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode.
 334 * @txpower: TX power in dBm
 335 * @p2p_noa_attr: P2P NoA attribute for P2P powersave
 336 */
 337struct ieee80211_bss_conf {
 338        const u8 *bssid;
 339        /* association related data */
 340        bool assoc, ibss_joined;
 341        bool ibss_creator;
 342        u16 aid;
 343        /* erp related data */
 344        bool use_cts_prot;
 345        bool use_short_preamble;
 346        bool use_short_slot;
 347        bool enable_beacon;
 348        u8 dtim_period;
 349        u16 beacon_int;
 350        u16 assoc_capability;
 351        u64 sync_tsf;
 352        u32 sync_device_ts;
 353        u8 sync_dtim_count;
 354        u32 basic_rates;
 355        int mcast_rate[IEEE80211_NUM_BANDS];
 356        u16 ht_operation_mode;
 357        s32 cqm_rssi_thold;
 358        u32 cqm_rssi_hyst;
 359        struct cfg80211_chan_def chandef;
 360        __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN];
 361        int arp_addr_cnt;
 362        bool qos;
 363        bool idle;
 364        bool ps;
 365        u8 ssid[IEEE80211_MAX_SSID_LEN];
 366        size_t ssid_len;
 367        bool hidden_ssid;
 368        int txpower;
 369        struct ieee80211_p2p_noa_attr p2p_noa_attr;
 370};
 371
 372/**
 373 * enum mac80211_tx_control_flags - flags to describe transmission information/status
 374 *
 375 * These flags are used with the @flags member of &ieee80211_tx_info.
 376 *
 377 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
 378 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
 379 *      number to this frame, taking care of not overwriting the fragment
 380 *      number and increasing the sequence number only when the
 381 *      IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
 382 *      assign sequence numbers to QoS-data frames but cannot do so correctly
 383 *      for non-QoS-data and management frames because beacons need them from
 384 *      that counter as well and mac80211 cannot guarantee proper sequencing.
 385 *      If this flag is set, the driver should instruct the hardware to
 386 *      assign a sequence number to the frame or assign one itself. Cf. IEEE
 387 *      802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
 388 *      beacons and always be clear for frames without a sequence number field.
 389 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
 390 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
 391 *      station
 392 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
 393 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
 394 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
 395 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
 396 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
 397 *      because the destination STA was in powersave mode. Note that to
 398 *      avoid race conditions, the filter must be set by the hardware or
 399 *      firmware upon receiving a frame that indicates that the station
 400 *      went to sleep (must be done on device to filter frames already on
 401 *      the queue) and may only be unset after mac80211 gives the OK for
 402 *      that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
 403 *      since only then is it guaranteed that no more frames are in the
 404 *      hardware queue.
 405 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
 406 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
 407 *      is for the whole aggregation.
 408 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
 409 *      so consider using block ack request (BAR).
 410 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
 411 *      set by rate control algorithms to indicate probe rate, will
 412 *      be cleared for fragmented frames (except on the last fragment)
 413 * @IEEE80211_TX_INTFL_OFFCHAN_TX_OK: Internal to mac80211. Used to indicate
 414 *      that a frame can be transmitted while the queues are stopped for
 415 *      off-channel operation.
 416 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
 417 *      used to indicate that a pending frame requires TX processing before
 418 *      it can be sent out.
 419 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
 420 *      used to indicate that a frame was already retried due to PS
 421 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
 422 *      used to indicate frame should not be encrypted
 423 * @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll
 424 *      frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must
 425 *      be sent although the station is in powersave mode.
 426 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
 427 *      transmit function after the current frame, this can be used
 428 *      by drivers to kick the DMA queue only if unset or when the
 429 *      queue gets full.
 430 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted
 431 *      after TX status because the destination was asleep, it must not
 432 *      be modified again (no seqno assignment, crypto, etc.)
 433 * @IEEE80211_TX_INTFL_MLME_CONN_TX: This frame was transmitted by the MLME
 434 *      code for connection establishment, this indicates that its status
 435 *      should kick the MLME state machine.
 436 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211
 437 *      MLME command (internal to mac80211 to figure out whether to send TX
 438 *      status to user space)
 439 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame
 440 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this
 441 *      frame and selects the maximum number of streams that it can use.
 442 * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on
 443 *      the off-channel channel when a remain-on-channel offload is done
 444 *      in hardware -- normal packets still flow and are expected to be
 445 *      handled properly by the device.
 446 * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP
 447 *      testing. It will be sent out with incorrect Michael MIC key to allow
 448 *      TKIP countermeasures to be tested.
 449 * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate.
 450 *      This flag is actually used for management frame especially for P2P
 451 *      frames not being sent at CCK rate in 2GHz band.
 452 * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period,
 453 *      when its status is reported the service period ends. For frames in
 454 *      an SP that mac80211 transmits, it is already set; for driver frames
 455 *      the driver may set this flag. It is also used to do the same for
 456 *      PS-Poll responses.
 457 * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate.
 458 *      This flag is used to send nullfunc frame at minimum rate when
 459 *      the nullfunc is used for connection monitoring purpose.
 460 * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it
 461 *      would be fragmented by size (this is optional, only used for
 462 *      monitor injection).
 463 *
 464 * Note: If you have to add new flags to the enumeration, then don't
 465 *       forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary.
 466 */
 467enum mac80211_tx_control_flags {
 468        IEEE80211_TX_CTL_REQ_TX_STATUS          = BIT(0),
 469        IEEE80211_TX_CTL_ASSIGN_SEQ             = BIT(1),
 470        IEEE80211_TX_CTL_NO_ACK                 = BIT(2),
 471        IEEE80211_TX_CTL_CLEAR_PS_FILT          = BIT(3),
 472        IEEE80211_TX_CTL_FIRST_FRAGMENT         = BIT(4),
 473        IEEE80211_TX_CTL_SEND_AFTER_DTIM        = BIT(5),
 474        IEEE80211_TX_CTL_AMPDU                  = BIT(6),
 475        IEEE80211_TX_CTL_INJECTED               = BIT(7),
 476        IEEE80211_TX_STAT_TX_FILTERED           = BIT(8),
 477        IEEE80211_TX_STAT_ACK                   = BIT(9),
 478        IEEE80211_TX_STAT_AMPDU                 = BIT(10),
 479        IEEE80211_TX_STAT_AMPDU_NO_BACK         = BIT(11),
 480        IEEE80211_TX_CTL_RATE_CTRL_PROBE        = BIT(12),
 481        IEEE80211_TX_INTFL_OFFCHAN_TX_OK        = BIT(13),
 482        IEEE80211_TX_INTFL_NEED_TXPROCESSING    = BIT(14),
 483        IEEE80211_TX_INTFL_RETRIED              = BIT(15),
 484        IEEE80211_TX_INTFL_DONT_ENCRYPT         = BIT(16),
 485        IEEE80211_TX_CTL_NO_PS_BUFFER           = BIT(17),
 486        IEEE80211_TX_CTL_MORE_FRAMES            = BIT(18),
 487        IEEE80211_TX_INTFL_RETRANSMISSION       = BIT(19),
 488        IEEE80211_TX_INTFL_MLME_CONN_TX         = BIT(20),
 489        IEEE80211_TX_INTFL_NL80211_FRAME_TX     = BIT(21),
 490        IEEE80211_TX_CTL_LDPC                   = BIT(22),
 491        IEEE80211_TX_CTL_STBC                   = BIT(23) | BIT(24),
 492        IEEE80211_TX_CTL_TX_OFFCHAN             = BIT(25),
 493        IEEE80211_TX_INTFL_TKIP_MIC_FAILURE     = BIT(26),
 494        IEEE80211_TX_CTL_NO_CCK_RATE            = BIT(27),
 495        IEEE80211_TX_STATUS_EOSP                = BIT(28),
 496        IEEE80211_TX_CTL_USE_MINRATE            = BIT(29),
 497        IEEE80211_TX_CTL_DONTFRAG               = BIT(30),
 498};
 499
 500#define IEEE80211_TX_CTL_STBC_SHIFT             23
 501
 502/*
 503 * This definition is used as a mask to clear all temporary flags, which are
 504 * set by the tx handlers for each transmission attempt by the mac80211 stack.
 505 */
 506#define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK |               \
 507        IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT |    \
 508        IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU |           \
 509        IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK |               \
 510        IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK |           \
 511        IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER |    \
 512        IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC |                \
 513        IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP)
 514
 515/**
 516 * enum mac80211_rate_control_flags - per-rate flags set by the
 517 *      Rate Control algorithm.
 518 *
 519 * These flags are set by the Rate control algorithm for each rate during tx,
 520 * in the @flags member of struct ieee80211_tx_rate.
 521 *
 522 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
 523 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
 524 *      This is set if the current BSS requires ERP protection.
 525 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
 526 * @IEEE80211_TX_RC_MCS: HT rate.
 527 * @IEEE80211_TX_RC_VHT_MCS: VHT MCS rate, in this case the idx field is split
 528 *      into a higher 4 bits (Nss) and lower 4 bits (MCS number)
 529 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
 530 *      Greenfield mode.
 531 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
 532 * @IEEE80211_TX_RC_80_MHZ_WIDTH: Indicates 80 MHz transmission
 533 * @IEEE80211_TX_RC_160_MHZ_WIDTH: Indicates 160 MHz transmission
 534 *      (80+80 isn't supported yet)
 535 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
 536 *      adjacent 20 MHz channels, if the current channel type is
 537 *      NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
 538 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
 539 */
 540enum mac80211_rate_control_flags {
 541        IEEE80211_TX_RC_USE_RTS_CTS             = BIT(0),
 542        IEEE80211_TX_RC_USE_CTS_PROTECT         = BIT(1),
 543        IEEE80211_TX_RC_USE_SHORT_PREAMBLE      = BIT(2),
 544
 545        /* rate index is an HT/VHT MCS instead of an index */
 546        IEEE80211_TX_RC_MCS                     = BIT(3),
 547        IEEE80211_TX_RC_GREEN_FIELD             = BIT(4),
 548        IEEE80211_TX_RC_40_MHZ_WIDTH            = BIT(5),
 549        IEEE80211_TX_RC_DUP_DATA                = BIT(6),
 550        IEEE80211_TX_RC_SHORT_GI                = BIT(7),
 551        IEEE80211_TX_RC_VHT_MCS                 = BIT(8),
 552        IEEE80211_TX_RC_80_MHZ_WIDTH            = BIT(9),
 553        IEEE80211_TX_RC_160_MHZ_WIDTH           = BIT(10),
 554};
 555
 556
 557/* there are 40 bytes if you don't need the rateset to be kept */
 558#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
 559
 560/* if you do need the rateset, then you have less space */
 561#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
 562
 563/* maximum number of rate stages */
 564#define IEEE80211_TX_MAX_RATES  4
 565
 566/* maximum number of rate table entries */
 567#define IEEE80211_TX_RATE_TABLE_SIZE    4
 568
 569/**
 570 * struct ieee80211_tx_rate - rate selection/status
 571 *
 572 * @idx: rate index to attempt to send with
 573 * @flags: rate control flags (&enum mac80211_rate_control_flags)
 574 * @count: number of tries in this rate before going to the next rate
 575 *
 576 * A value of -1 for @idx indicates an invalid rate and, if used
 577 * in an array of retry rates, that no more rates should be tried.
 578 *
 579 * When used for transmit status reporting, the driver should
 580 * always report the rate along with the flags it used.
 581 *
 582 * &struct ieee80211_tx_info contains an array of these structs
 583 * in the control information, and it will be filled by the rate
 584 * control algorithm according to what should be sent. For example,
 585 * if this array contains, in the format { <idx>, <count> } the
 586 * information
 587 *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
 588 * then this means that the frame should be transmitted
 589 * up to twice at rate 3, up to twice at rate 2, and up to four
 590 * times at rate 1 if it doesn't get acknowledged. Say it gets
 591 * acknowledged by the peer after the fifth attempt, the status
 592 * information should then contain
 593 *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
 594 * since it was transmitted twice at rate 3, twice at rate 2
 595 * and once at rate 1 after which we received an acknowledgement.
 596 */
 597struct ieee80211_tx_rate {
 598        s8 idx;
 599        u16 count:5,
 600            flags:11;
 601} __packed;
 602
 603#define IEEE80211_MAX_TX_RETRY          31
 604
 605static inline void ieee80211_rate_set_vht(struct ieee80211_tx_rate *rate,
 606                                          u8 mcs, u8 nss)
 607{
 608        WARN_ON(mcs & ~0xF);
 609        WARN_ON((nss - 1) & ~0x7);
 610        rate->idx = ((nss - 1) << 4) | mcs;
 611}
 612
 613static inline u8
 614ieee80211_rate_get_vht_mcs(const struct ieee80211_tx_rate *rate)
 615{
 616        return rate->idx & 0xF;
 617}
 618
 619static inline u8
 620ieee80211_rate_get_vht_nss(const struct ieee80211_tx_rate *rate)
 621{
 622        return (rate->idx >> 4) + 1;
 623}
 624
 625/**
 626 * struct ieee80211_tx_info - skb transmit information
 627 *
 628 * This structure is placed in skb->cb for three uses:
 629 *  (1) mac80211 TX control - mac80211 tells the driver what to do
 630 *  (2) driver internal use (if applicable)
 631 *  (3) TX status information - driver tells mac80211 what happened
 632 *
 633 * @flags: transmit info flags, defined above
 634 * @band: the band to transmit on (use for checking for races)
 635 * @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC
 636 * @ack_frame_id: internal frame ID for TX status, used internally
 637 * @control: union for control data
 638 * @status: union for status data
 639 * @driver_data: array of driver_data pointers
 640 * @ampdu_ack_len: number of acked aggregated frames.
 641 *      relevant only if IEEE80211_TX_STAT_AMPDU was set.
 642 * @ampdu_len: number of aggregated frames.
 643 *      relevant only if IEEE80211_TX_STAT_AMPDU was set.
 644 * @ack_signal: signal strength of the ACK frame
 645 */
 646struct ieee80211_tx_info {
 647        /* common information */
 648        u32 flags;
 649        u8 band;
 650
 651        u8 hw_queue;
 652
 653        u16 ack_frame_id;
 654
 655        union {
 656                struct {
 657                        union {
 658                                /* rate control */
 659                                struct {
 660                                        struct ieee80211_tx_rate rates[
 661                                                IEEE80211_TX_MAX_RATES];
 662                                        s8 rts_cts_rate_idx;
 663                                        u8 use_rts:1;
 664                                        u8 use_cts_prot:1;
 665                                        u8 short_preamble:1;
 666                                        u8 skip_table:1;
 667                                        /* 2 bytes free */
 668                                };
 669                                /* only needed before rate control */
 670                                unsigned long jiffies;
 671                        };
 672                        /* NB: vif can be NULL for injected frames */
 673                        struct ieee80211_vif *vif;
 674                        struct ieee80211_key_conf *hw_key;
 675                        /* 8 bytes free */
 676                } control;
 677                struct {
 678                        struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
 679                        int ack_signal;
 680                        u8 ampdu_ack_len;
 681                        u8 ampdu_len;
 682                        u8 antenna;
 683                        /* 21 bytes free */
 684                } status;
 685                struct {
 686                        struct ieee80211_tx_rate driver_rates[
 687                                IEEE80211_TX_MAX_RATES];
 688                        u8 pad[4];
 689
 690                        void *rate_driver_data[
 691                                IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
 692                };
 693                void *driver_data[
 694                        IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
 695        };
 696};
 697
 698/**
 699 * struct ieee80211_sched_scan_ies - scheduled scan IEs
 700 *
 701 * This structure is used to pass the appropriate IEs to be used in scheduled
 702 * scans for all bands.  It contains both the IEs passed from the userspace
 703 * and the ones generated by mac80211.
 704 *
 705 * @ie: array with the IEs for each supported band
 706 * @len: array with the total length of the IEs for each band
 707 */
 708struct ieee80211_sched_scan_ies {
 709        u8 *ie[IEEE80211_NUM_BANDS];
 710        size_t len[IEEE80211_NUM_BANDS];
 711};
 712
 713static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
 714{
 715        return (struct ieee80211_tx_info *)skb->cb;
 716}
 717
 718static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
 719{
 720        return (struct ieee80211_rx_status *)skb->cb;
 721}
 722
 723/**
 724 * ieee80211_tx_info_clear_status - clear TX status
 725 *
 726 * @info: The &struct ieee80211_tx_info to be cleared.
 727 *
 728 * When the driver passes an skb back to mac80211, it must report
 729 * a number of things in TX status. This function clears everything
 730 * in the TX status but the rate control information (it does clear
 731 * the count since you need to fill that in anyway).
 732 *
 733 * NOTE: You can only use this function if you do NOT use
 734 *       info->driver_data! Use info->rate_driver_data
 735 *       instead if you need only the less space that allows.
 736 */
 737static inline void
 738ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
 739{
 740        int i;
 741
 742        BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
 743                     offsetof(struct ieee80211_tx_info, control.rates));
 744        BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
 745                     offsetof(struct ieee80211_tx_info, driver_rates));
 746        BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
 747        /* clear the rate counts */
 748        for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
 749                info->status.rates[i].count = 0;
 750
 751        BUILD_BUG_ON(
 752            offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
 753        memset(&info->status.ampdu_ack_len, 0,
 754               sizeof(struct ieee80211_tx_info) -
 755               offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
 756}
 757
 758
 759/**
 760 * enum mac80211_rx_flags - receive flags
 761 *
 762 * These flags are used with the @flag member of &struct ieee80211_rx_status.
 763 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
 764 *      Use together with %RX_FLAG_MMIC_STRIPPED.
 765 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
 766 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
 767 *      verification has been done by the hardware.
 768 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
 769 *      If this flag is set, the stack cannot do any replay detection
 770 *      hence the driver or hardware will have to do that.
 771 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
 772 *      the frame.
 773 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
 774 *      the frame.
 775 * @RX_FLAG_MACTIME_START: The timestamp passed in the RX status (@mactime
 776 *      field) is valid and contains the time the first symbol of the MPDU
 777 *      was received. This is useful in monitor mode and for proper IBSS
 778 *      merging.
 779 * @RX_FLAG_MACTIME_END: The timestamp passed in the RX status (@mactime
 780 *      field) is valid and contains the time the last symbol of the MPDU
 781 *      (including FCS) was received.
 782 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
 783 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
 784 * @RX_FLAG_VHT: VHT MCS was used and rate_index is MCS index
 785 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
 786 * @RX_FLAG_80MHZ: 80 MHz was used
 787 * @RX_FLAG_80P80MHZ: 80+80 MHz was used
 788 * @RX_FLAG_160MHZ: 160 MHz was used
 789 * @RX_FLAG_SHORT_GI: Short guard interval was used
 790 * @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present.
 791 *      Valid only for data frames (mainly A-MPDU)
 792 * @RX_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, if
 793 *      the driver fills this value it should add %IEEE80211_RADIOTAP_MCS_HAVE_FMT
 794 *      to hw.radiotap_mcs_details to advertise that fact
 795 * @RX_FLAG_AMPDU_DETAILS: A-MPDU details are known, in particular the reference
 796 *      number (@ampdu_reference) must be populated and be a distinct number for
 797 *      each A-MPDU
 798 * @RX_FLAG_AMPDU_REPORT_ZEROLEN: driver reports 0-length subframes
 799 * @RX_FLAG_AMPDU_IS_ZEROLEN: This is a zero-length subframe, for
 800 *      monitoring purposes only
 801 * @RX_FLAG_AMPDU_LAST_KNOWN: last subframe is known, should be set on all
 802 *      subframes of a single A-MPDU
 803 * @RX_FLAG_AMPDU_IS_LAST: this subframe is the last subframe of the A-MPDU
 804 * @RX_FLAG_AMPDU_DELIM_CRC_ERROR: A delimiter CRC error has been detected
 805 *      on this subframe
 806 * @RX_FLAG_AMPDU_DELIM_CRC_KNOWN: The delimiter CRC field is known (the CRC
 807 *      is stored in the @ampdu_delimiter_crc field)
 808 */
 809enum mac80211_rx_flags {
 810        RX_FLAG_MMIC_ERROR              = BIT(0),
 811        RX_FLAG_DECRYPTED               = BIT(1),
 812        RX_FLAG_MMIC_STRIPPED           = BIT(3),
 813        RX_FLAG_IV_STRIPPED             = BIT(4),
 814        RX_FLAG_FAILED_FCS_CRC          = BIT(5),
 815        RX_FLAG_FAILED_PLCP_CRC         = BIT(6),
 816        RX_FLAG_MACTIME_START           = BIT(7),
 817        RX_FLAG_SHORTPRE                = BIT(8),
 818        RX_FLAG_HT                      = BIT(9),
 819        RX_FLAG_40MHZ                   = BIT(10),
 820        RX_FLAG_SHORT_GI                = BIT(11),
 821        RX_FLAG_NO_SIGNAL_VAL           = BIT(12),
 822        RX_FLAG_HT_GF                   = BIT(13),
 823        RX_FLAG_AMPDU_DETAILS           = BIT(14),
 824        RX_FLAG_AMPDU_REPORT_ZEROLEN    = BIT(15),
 825        RX_FLAG_AMPDU_IS_ZEROLEN        = BIT(16),
 826        RX_FLAG_AMPDU_LAST_KNOWN        = BIT(17),
 827        RX_FLAG_AMPDU_IS_LAST           = BIT(18),
 828        RX_FLAG_AMPDU_DELIM_CRC_ERROR   = BIT(19),
 829        RX_FLAG_AMPDU_DELIM_CRC_KNOWN   = BIT(20),
 830        RX_FLAG_MACTIME_END             = BIT(21),
 831        RX_FLAG_VHT                     = BIT(22),
 832        RX_FLAG_80MHZ                   = BIT(23),
 833        RX_FLAG_80P80MHZ                = BIT(24),
 834        RX_FLAG_160MHZ                  = BIT(25),
 835};
 836
 837/**
 838 * struct ieee80211_rx_status - receive status
 839 *
 840 * The low-level driver should provide this information (the subset
 841 * supported by hardware) to the 802.11 code with each received
 842 * frame, in the skb's control buffer (cb).
 843 *
 844 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
 845 *      (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
 846 * @device_timestamp: arbitrary timestamp for the device, mac80211 doesn't use
 847 *      it but can store it and pass it back to the driver for synchronisation
 848 * @band: the active band when this frame was received
 849 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
 850 * @signal: signal strength when receiving this frame, either in dBm, in dB or
 851 *      unspecified depending on the hardware capabilities flags
 852 *      @IEEE80211_HW_SIGNAL_*
 853 * @antenna: antenna used
 854 * @rate_idx: index of data rate into band's supported rates or MCS index if
 855 *      HT or VHT is used (%RX_FLAG_HT/%RX_FLAG_VHT)
 856 * @vht_nss: number of streams (VHT only)
 857 * @flag: %RX_FLAG_*
 858 * @rx_flags: internal RX flags for mac80211
 859 * @ampdu_reference: A-MPDU reference number, must be a different value for
 860 *      each A-MPDU but the same for each subframe within one A-MPDU
 861 * @ampdu_delimiter_crc: A-MPDU delimiter CRC
 862 * @vendor_radiotap_bitmap: radiotap vendor namespace presence bitmap
 863 * @vendor_radiotap_len: radiotap vendor namespace length
 864 * @vendor_radiotap_align: radiotap vendor namespace alignment. Note
 865 *      that the actual data must be at the start of the SKB data
 866 *      already.
 867 * @vendor_radiotap_oui: radiotap vendor namespace OUI
 868 * @vendor_radiotap_subns: radiotap vendor sub namespace
 869 */
 870struct ieee80211_rx_status {
 871        u64 mactime;
 872        u32 device_timestamp;
 873        u32 ampdu_reference;
 874        u32 flag;
 875        u32 vendor_radiotap_bitmap;
 876        u16 vendor_radiotap_len;
 877        u16 freq;
 878        u8 rate_idx;
 879        u8 vht_nss;
 880        u8 rx_flags;
 881        u8 band;
 882        u8 antenna;
 883        s8 signal;
 884        u8 ampdu_delimiter_crc;
 885        u8 vendor_radiotap_align;
 886        u8 vendor_radiotap_oui[3];
 887        u8 vendor_radiotap_subns;
 888};
 889
 890/**
 891 * enum ieee80211_conf_flags - configuration flags
 892 *
 893 * Flags to define PHY configuration options
 894 *
 895 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
 896 *      to determine for example whether to calculate timestamps for packets
 897 *      or not, do not use instead of filter flags!
 898 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only).
 899 *      This is the power save mode defined by IEEE 802.11-2007 section 11.2,
 900 *      meaning that the hardware still wakes up for beacons, is able to
 901 *      transmit frames and receive the possible acknowledgment frames.
 902 *      Not to be confused with hardware specific wakeup/sleep states,
 903 *      driver is responsible for that. See the section "Powersave support"
 904 *      for more.
 905 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
 906 *      the driver should be prepared to handle configuration requests but
 907 *      may turn the device off as much as possible. Typically, this flag will
 908 *      be set when an interface is set UP but not associated or scanning, but
 909 *      it can also be unset in that case when monitor interfaces are active.
 910 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main
 911 *      operating channel.
 912 */
 913enum ieee80211_conf_flags {
 914        IEEE80211_CONF_MONITOR          = (1<<0),
 915        IEEE80211_CONF_PS               = (1<<1),
 916        IEEE80211_CONF_IDLE             = (1<<2),
 917        IEEE80211_CONF_OFFCHANNEL       = (1<<3),
 918};
 919
 920
 921/**
 922 * enum ieee80211_conf_changed - denotes which configuration changed
 923 *
 924 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
 925 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
 926 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
 927 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
 928 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
 929 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
 930 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
 931 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed
 932 *      Note that this is only valid if channel contexts are not used,
 933 *      otherwise each channel context has the number of chains listed.
 934 */
 935enum ieee80211_conf_changed {
 936        IEEE80211_CONF_CHANGE_SMPS              = BIT(1),
 937        IEEE80211_CONF_CHANGE_LISTEN_INTERVAL   = BIT(2),
 938        IEEE80211_CONF_CHANGE_MONITOR           = BIT(3),
 939        IEEE80211_CONF_CHANGE_PS                = BIT(4),
 940        IEEE80211_CONF_CHANGE_POWER             = BIT(5),
 941        IEEE80211_CONF_CHANGE_CHANNEL           = BIT(6),
 942        IEEE80211_CONF_CHANGE_RETRY_LIMITS      = BIT(7),
 943        IEEE80211_CONF_CHANGE_IDLE              = BIT(8),
 944};
 945
 946/**
 947 * enum ieee80211_smps_mode - spatial multiplexing power save mode
 948 *
 949 * @IEEE80211_SMPS_AUTOMATIC: automatic
 950 * @IEEE80211_SMPS_OFF: off
 951 * @IEEE80211_SMPS_STATIC: static
 952 * @IEEE80211_SMPS_DYNAMIC: dynamic
 953 * @IEEE80211_SMPS_NUM_MODES: internal, don't use
 954 */
 955enum ieee80211_smps_mode {
 956        IEEE80211_SMPS_AUTOMATIC,
 957        IEEE80211_SMPS_OFF,
 958        IEEE80211_SMPS_STATIC,
 959        IEEE80211_SMPS_DYNAMIC,
 960
 961        /* keep last */
 962        IEEE80211_SMPS_NUM_MODES,
 963};
 964
 965/**
 966 * struct ieee80211_conf - configuration of the device
 967 *
 968 * This struct indicates how the driver shall configure the hardware.
 969 *
 970 * @flags: configuration flags defined above
 971 *
 972 * @listen_interval: listen interval in units of beacon interval
 973 * @max_sleep_period: the maximum number of beacon intervals to sleep for
 974 *      before checking the beacon for a TIM bit (managed mode only); this
 975 *      value will be only achievable between DTIM frames, the hardware
 976 *      needs to check for the multicast traffic bit in DTIM beacons.
 977 *      This variable is valid only when the CONF_PS flag is set.
 978 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use
 979 *      in power saving. Power saving will not be enabled until a beacon
 980 *      has been received and the DTIM period is known.
 981 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
 982 *      powersave documentation below. This variable is valid only when
 983 *      the CONF_PS flag is set.
 984 *
 985 * @power_level: requested transmit power (in dBm), backward compatibility
 986 *      value only that is set to the minimum of all interfaces
 987 *
 988 * @chandef: the channel definition to tune to
 989 * @radar_enabled: whether radar detection is enabled
 990 *
 991 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
 992 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
 993 *    but actually means the number of transmissions not the number of retries
 994 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
 995 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
 996 *    number of transmissions not the number of retries
 997 *
 998 * @smps_mode: spatial multiplexing powersave mode; note that
 999 *      %IEEE80211_SMPS_STATIC is used when the device is not
1000 *      configured for an HT channel.
1001 *      Note that this is only valid if channel contexts are not used,
1002 *      otherwise each channel context has the number of chains listed.
1003 */
1004struct ieee80211_conf {
1005        u32 flags;
1006        int power_level, dynamic_ps_timeout;
1007        int max_sleep_period;
1008
1009        u16 listen_interval;
1010        u8 ps_dtim_period;
1011
1012        u8 long_frame_max_tx_count, short_frame_max_tx_count;
1013
1014        struct cfg80211_chan_def chandef;
1015        bool radar_enabled;
1016        enum ieee80211_smps_mode smps_mode;
1017};
1018
1019/**
1020 * struct ieee80211_channel_switch - holds the channel switch data
1021 *
1022 * The information provided in this structure is required for channel switch
1023 * operation.
1024 *
1025 * @timestamp: value in microseconds of the 64-bit Time Synchronization
1026 *      Function (TSF) timer when the frame containing the channel switch
1027 *      announcement was received. This is simply the rx.mactime parameter
1028 *      the driver passed into mac80211.
1029 * @block_tx: Indicates whether transmission must be blocked before the
1030 *      scheduled channel switch, as indicated by the AP.
1031 * @chandef: the new channel to switch to
1032 * @count: the number of TBTT's until the channel switch event
1033 */
1034struct ieee80211_channel_switch {
1035        u64 timestamp;
1036        bool block_tx;
1037        struct cfg80211_chan_def chandef;
1038        u8 count;
1039};
1040
1041/**
1042 * enum ieee80211_vif_flags - virtual interface flags
1043 *
1044 * @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering
1045 *      on this virtual interface to avoid unnecessary CPU wakeups
1046 * @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality
1047 *      monitoring on this virtual interface -- i.e. it can monitor
1048 *      connection quality related parameters, such as the RSSI level and
1049 *      provide notifications if configured trigger levels are reached.
1050 */
1051enum ieee80211_vif_flags {
1052        IEEE80211_VIF_BEACON_FILTER             = BIT(0),
1053        IEEE80211_VIF_SUPPORTS_CQM_RSSI         = BIT(1),
1054};
1055
1056/**
1057 * struct ieee80211_vif - per-interface data
1058 *
1059 * Data in this structure is continually present for driver
1060 * use during the life of a virtual interface.
1061 *
1062 * @type: type of this virtual interface
1063 * @bss_conf: BSS configuration for this interface, either our own
1064 *      or the BSS we're associated to
1065 * @addr: address of this interface
1066 * @p2p: indicates whether this AP or STA interface is a p2p
1067 *      interface, i.e. a GO or p2p-sta respectively
1068 * @driver_flags: flags/capabilities the driver has for this interface,
1069 *      these need to be set (or cleared) when the interface is added
1070 *      or, if supported by the driver, the interface type is changed
1071 *      at runtime, mac80211 will never touch this field
1072 * @hw_queue: hardware queue for each AC
1073 * @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only
1074 * @chanctx_conf: The channel context this interface is assigned to, or %NULL
1075 *      when it is not assigned. This pointer is RCU-protected due to the TX
1076 *      path needing to access it; even though the netdev carrier will always
1077 *      be off when it is %NULL there can still be races and packets could be
1078 *      processed after it switches back to %NULL.
1079 * @debugfs_dir: debugfs dentry, can be used by drivers to create own per
1080 *      interface debug files. Note that it will be NULL for the virtual
1081 *      monitor interface (if that is requested.)
1082 * @drv_priv: data area for driver use, will always be aligned to
1083 *      sizeof(void *).
1084 */
1085struct ieee80211_vif {
1086        enum nl80211_iftype type;
1087        struct ieee80211_bss_conf bss_conf;
1088        u8 addr[ETH_ALEN];
1089        bool p2p;
1090
1091        u8 cab_queue;
1092        u8 hw_queue[IEEE80211_NUM_ACS];
1093
1094        struct ieee80211_chanctx_conf __rcu *chanctx_conf;
1095
1096        u32 driver_flags;
1097
1098#ifdef CONFIG_MAC80211_DEBUGFS
1099        struct dentry *debugfs_dir;
1100#endif
1101
1102        /* must be last */
1103        u8 drv_priv[0] __aligned(sizeof(void *));
1104};
1105
1106static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
1107{
1108#ifdef CONFIG_MAC80211_MESH
1109        return vif->type == NL80211_IFTYPE_MESH_POINT;
1110#endif
1111        return false;
1112}
1113
1114/**
1115 * enum ieee80211_key_flags - key flags
1116 *
1117 * These flags are used for communication about keys between the driver
1118 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
1119 *
1120 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
1121 *      driver to indicate that it requires IV generation for this
1122 *      particular key.
1123 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
1124 *      the driver for a TKIP key if it requires Michael MIC
1125 *      generation in software.
1126 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
1127 *      that the key is pairwise rather then a shared key.
1128 * @IEEE80211_KEY_FLAG_SW_MGMT_TX: This flag should be set by the driver for a
1129 *      CCMP key if it requires CCMP encryption of management frames (MFP) to
1130 *      be done in software.
1131 * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver
1132 *      if space should be prepared for the IV, but the IV
1133 *      itself should not be generated. Do not set together with
1134 *      @IEEE80211_KEY_FLAG_GENERATE_IV on the same key.
1135 * @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received
1136 *      management frames. The flag can help drivers that have a hardware
1137 *      crypto implementation that doesn't deal with management frames
1138 *      properly by allowing them to not upload the keys to hardware and
1139 *      fall back to software crypto. Note that this flag deals only with
1140 *      RX, if your crypto engine can't deal with TX you can also set the
1141 *      %IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW.
1142 */
1143enum ieee80211_key_flags {
1144        IEEE80211_KEY_FLAG_GENERATE_IV  = 1<<1,
1145        IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
1146        IEEE80211_KEY_FLAG_PAIRWISE     = 1<<3,
1147        IEEE80211_KEY_FLAG_SW_MGMT_TX   = 1<<4,
1148        IEEE80211_KEY_FLAG_PUT_IV_SPACE = 1<<5,
1149        IEEE80211_KEY_FLAG_RX_MGMT      = 1<<6,
1150};
1151
1152/**
1153 * struct ieee80211_key_conf - key information
1154 *
1155 * This key information is given by mac80211 to the driver by
1156 * the set_key() callback in &struct ieee80211_ops.
1157 *
1158 * @hw_key_idx: To be set by the driver, this is the key index the driver
1159 *      wants to be given when a frame is transmitted and needs to be
1160 *      encrypted in hardware.
1161 * @cipher: The key's cipher suite selector.
1162 * @flags: key flags, see &enum ieee80211_key_flags.
1163 * @keyidx: the key index (0-3)
1164 * @keylen: key material length
1165 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
1166 *      data block:
1167 *      - Temporal Encryption Key (128 bits)
1168 *      - Temporal Authenticator Tx MIC Key (64 bits)
1169 *      - Temporal Authenticator Rx MIC Key (64 bits)
1170 * @icv_len: The ICV length for this key type
1171 * @iv_len: The IV length for this key type
1172 */
1173struct ieee80211_key_conf {
1174        u32 cipher;
1175        u8 icv_len;
1176        u8 iv_len;
1177        u8 hw_key_idx;
1178        u8 flags;
1179        s8 keyidx;
1180        u8 keylen;
1181        u8 key[0];
1182};
1183
1184/**
1185 * enum set_key_cmd - key command
1186 *
1187 * Used with the set_key() callback in &struct ieee80211_ops, this
1188 * indicates whether a key is being removed or added.
1189 *
1190 * @SET_KEY: a key is set
1191 * @DISABLE_KEY: a key must be disabled
1192 */
1193enum set_key_cmd {
1194        SET_KEY, DISABLE_KEY,
1195};
1196
1197/**
1198 * enum ieee80211_sta_state - station state
1199 *
1200 * @IEEE80211_STA_NOTEXIST: station doesn't exist at all,
1201 *      this is a special state for add/remove transitions
1202 * @IEEE80211_STA_NONE: station exists without special state
1203 * @IEEE80211_STA_AUTH: station is authenticated
1204 * @IEEE80211_STA_ASSOC: station is associated
1205 * @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X)
1206 */
1207enum ieee80211_sta_state {
1208        /* NOTE: These need to be ordered correctly! */
1209        IEEE80211_STA_NOTEXIST,
1210        IEEE80211_STA_NONE,
1211        IEEE80211_STA_AUTH,
1212        IEEE80211_STA_ASSOC,
1213        IEEE80211_STA_AUTHORIZED,
1214};
1215
1216/**
1217 * enum ieee80211_sta_rx_bandwidth - station RX bandwidth
1218 * @IEEE80211_STA_RX_BW_20: station can only receive 20 MHz
1219 * @IEEE80211_STA_RX_BW_40: station can receive up to 40 MHz
1220 * @IEEE80211_STA_RX_BW_80: station can receive up to 80 MHz
1221 * @IEEE80211_STA_RX_BW_160: station can receive up to 160 MHz
1222 *      (including 80+80 MHz)
1223 *
1224 * Implementation note: 20 must be zero to be initialized
1225 *      correctly, the values must be sorted.
1226 */
1227enum ieee80211_sta_rx_bandwidth {
1228        IEEE80211_STA_RX_BW_20 = 0,
1229        IEEE80211_STA_RX_BW_40,
1230        IEEE80211_STA_RX_BW_80,
1231        IEEE80211_STA_RX_BW_160,
1232};
1233
1234/**
1235 * struct ieee80211_sta_rates - station rate selection table
1236 *
1237 * @rcu_head: RCU head used for freeing the table on update
1238 * @rates: transmit rates/flags to be used by default.
1239 *      Overriding entries per-packet is possible by using cb tx control.
1240 */
1241struct ieee80211_sta_rates {
1242        struct rcu_head rcu_head;
1243        struct {
1244                s8 idx;
1245                u8 count;
1246                u8 count_cts;
1247                u8 count_rts;
1248                u16 flags;
1249        } rate[IEEE80211_TX_RATE_TABLE_SIZE];
1250};
1251
1252/**
1253 * struct ieee80211_sta - station table entry
1254 *
1255 * A station table entry represents a station we are possibly
1256 * communicating with. Since stations are RCU-managed in
1257 * mac80211, any ieee80211_sta pointer you get access to must
1258 * either be protected by rcu_read_lock() explicitly or implicitly,
1259 * or you must take good care to not use such a pointer after a
1260 * call to your sta_remove callback that removed it.
1261 *
1262 * @addr: MAC address
1263 * @aid: AID we assigned to the station if we're an AP
1264 * @supp_rates: Bitmap of supported rates (per band)
1265 * @ht_cap: HT capabilities of this STA; restricted to our own capabilities
1266 * @vht_cap: VHT capabilities of this STA; restricted to our own capabilities
1267 * @wme: indicates whether the STA supports WME. Only valid during AP-mode.
1268 * @drv_priv: data area for driver use, will always be aligned to
1269 *      sizeof(void *), size is determined in hw information.
1270 * @uapsd_queues: bitmap of queues configured for uapsd. Only valid
1271 *      if wme is supported.
1272 * @max_sp: max Service Period. Only valid if wme is supported.
1273 * @bandwidth: current bandwidth the station can receive with
1274 * @rx_nss: in HT/VHT, the maximum number of spatial streams the
1275 *      station can receive at the moment, changed by operating mode
1276 *      notifications and capabilities. The value is only valid after
1277 *      the station moves to associated state.
1278 * @smps_mode: current SMPS mode (off, static or dynamic)
1279 * @tx_rates: rate control selection table
1280 */
1281struct ieee80211_sta {
1282        u32 supp_rates[IEEE80211_NUM_BANDS];
1283        u8 addr[ETH_ALEN];
1284        u16 aid;
1285        struct ieee80211_sta_ht_cap ht_cap;
1286        struct ieee80211_sta_vht_cap vht_cap;
1287        bool wme;
1288        u8 uapsd_queues;
1289        u8 max_sp;
1290        u8 rx_nss;
1291        enum ieee80211_sta_rx_bandwidth bandwidth;
1292        enum ieee80211_smps_mode smps_mode;
1293        struct ieee80211_sta_rates __rcu *rates;
1294
1295        /* must be last */
1296        u8 drv_priv[0] __aligned(sizeof(void *));
1297};
1298
1299/**
1300 * enum sta_notify_cmd - sta notify command
1301 *
1302 * Used with the sta_notify() callback in &struct ieee80211_ops, this
1303 * indicates if an associated station made a power state transition.
1304 *
1305 * @STA_NOTIFY_SLEEP: a station is now sleeping
1306 * @STA_NOTIFY_AWAKE: a sleeping station woke up
1307 */
1308enum sta_notify_cmd {
1309        STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
1310};
1311
1312/**
1313 * struct ieee80211_tx_control - TX control data
1314 *
1315 * @sta: station table entry, this sta pointer may be NULL and
1316 *      it is not allowed to copy the pointer, due to RCU.
1317 */
1318struct ieee80211_tx_control {
1319        struct ieee80211_sta *sta;
1320};
1321
1322/**
1323 * enum ieee80211_hw_flags - hardware flags
1324 *
1325 * These flags are used to indicate hardware capabilities to
1326 * the stack. Generally, flags here should have their meaning
1327 * done in a way that the simplest hardware doesn't need setting
1328 * any particular flags. There are some exceptions to this rule,
1329 * however, so you are advised to review these flags carefully.
1330 *
1331 * @IEEE80211_HW_HAS_RATE_CONTROL:
1332 *      The hardware or firmware includes rate control, and cannot be
1333 *      controlled by the stack. As such, no rate control algorithm
1334 *      should be instantiated, and the TX rate reported to userspace
1335 *      will be taken from the TX status instead of the rate control
1336 *      algorithm.
1337 *      Note that this requires that the driver implement a number of
1338 *      callbacks so it has the correct information, it needs to have
1339 *      the @set_rts_threshold callback and must look at the BSS config
1340 *      @use_cts_prot for G/N protection, @use_short_slot for slot
1341 *      timing in 2.4 GHz and @use_short_preamble for preambles for
1342 *      CCK frames.
1343 *
1344 * @IEEE80211_HW_RX_INCLUDES_FCS:
1345 *      Indicates that received frames passed to the stack include
1346 *      the FCS at the end.
1347 *
1348 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
1349 *      Some wireless LAN chipsets buffer broadcast/multicast frames
1350 *      for power saving stations in the hardware/firmware and others
1351 *      rely on the host system for such buffering. This option is used
1352 *      to configure the IEEE 802.11 upper layer to buffer broadcast and
1353 *      multicast frames when there are power saving stations so that
1354 *      the driver can fetch them with ieee80211_get_buffered_bc().
1355 *
1356 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
1357 *      Hardware is not capable of short slot operation on the 2.4 GHz band.
1358 *
1359 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
1360 *      Hardware is not capable of receiving frames with short preamble on
1361 *      the 2.4 GHz band.
1362 *
1363 * @IEEE80211_HW_SIGNAL_UNSPEC:
1364 *      Hardware can provide signal values but we don't know its units. We
1365 *      expect values between 0 and @max_signal.
1366 *      If possible please provide dB or dBm instead.
1367 *
1368 * @IEEE80211_HW_SIGNAL_DBM:
1369 *      Hardware gives signal values in dBm, decibel difference from
1370 *      one milliwatt. This is the preferred method since it is standardized
1371 *      between different devices. @max_signal does not need to be set.
1372 *
1373 * @IEEE80211_HW_SPECTRUM_MGMT:
1374 *      Hardware supports spectrum management defined in 802.11h
1375 *      Measurement, Channel Switch, Quieting, TPC
1376 *
1377 * @IEEE80211_HW_AMPDU_AGGREGATION:
1378 *      Hardware supports 11n A-MPDU aggregation.
1379 *
1380 * @IEEE80211_HW_SUPPORTS_PS:
1381 *      Hardware has power save support (i.e. can go to sleep).
1382 *
1383 * @IEEE80211_HW_PS_NULLFUNC_STACK:
1384 *      Hardware requires nullfunc frame handling in stack, implies
1385 *      stack support for dynamic PS.
1386 *
1387 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
1388 *      Hardware has support for dynamic PS.
1389 *
1390 * @IEEE80211_HW_MFP_CAPABLE:
1391 *      Hardware supports management frame protection (MFP, IEEE 802.11w).
1392 *
1393 * @IEEE80211_HW_SUPPORTS_STATIC_SMPS:
1394 *      Hardware supports static spatial multiplexing powersave,
1395 *      ie. can turn off all but one chain even on HT connections
1396 *      that should be using more chains.
1397 *
1398 * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS:
1399 *      Hardware supports dynamic spatial multiplexing powersave,
1400 *      ie. can turn off all but one chain and then wake the rest
1401 *      up as required after, for example, rts/cts handshake.
1402 *
1403 * @IEEE80211_HW_SUPPORTS_UAPSD:
1404 *      Hardware supports Unscheduled Automatic Power Save Delivery
1405 *      (U-APSD) in managed mode. The mode is configured with
1406 *      conf_tx() operation.
1407 *
1408 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS:
1409 *      Hardware can provide ack status reports of Tx frames to
1410 *      the stack.
1411 *
1412 * @IEEE80211_HW_CONNECTION_MONITOR:
1413 *      The hardware performs its own connection monitoring, including
1414 *      periodic keep-alives to the AP and probing the AP on beacon loss.
1415 *      When this flag is set, signaling beacon-loss will cause an immediate
1416 *      change to disassociated state.
1417 *
1418 * @IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC:
1419 *      This device needs to get data from beacon before association (i.e.
1420 *      dtim_period).
1421 *
1422 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports
1423 *      per-station GTKs as used by IBSS RSN or during fast transition. If
1424 *      the device doesn't support per-station GTKs, but can be asked not
1425 *      to decrypt group addressed frames, then IBSS RSN support is still
1426 *      possible but software crypto will be used. Advertise the wiphy flag
1427 *      only in that case.
1428 *
1429 * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
1430 *      autonomously manages the PS status of connected stations. When
1431 *      this flag is set mac80211 will not trigger PS mode for connected
1432 *      stations based on the PM bit of incoming frames.
1433 *      Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
1434 *      the PS mode of connected stations.
1435 *
1436 * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session
1437 *      setup strictly in HW. mac80211 should not attempt to do this in
1438 *      software.
1439 *
1440 * @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of
1441 *      a virtual monitor interface when monitor interfaces are the only
1442 *      active interfaces.
1443 *
1444 * @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface
1445 *      queue mapping in order to use different queues (not just one per AC)
1446 *      for different virtual interfaces. See the doc section on HW queue
1447 *      control for more details.
1448 *
1449 * @IEEE80211_HW_SUPPORTS_RC_TABLE: The driver supports using a rate
1450 *      selection table provided by the rate control algorithm.
1451 *
1452 * @IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF: Use the P2P Device address for any
1453 *      P2P Interface. This will be honoured even if more than one interface
1454 *      is supported.
1455 *
1456 * @IEEE80211_HW_TIMING_BEACON_ONLY: Use sync timing from beacon frames
1457 *      only, to allow getting TBTT of a DTIM beacon.
1458 */
1459enum ieee80211_hw_flags {
1460        IEEE80211_HW_HAS_RATE_CONTROL                   = 1<<0,
1461        IEEE80211_HW_RX_INCLUDES_FCS                    = 1<<1,
1462        IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING        = 1<<2,
1463        IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE          = 1<<3,
1464        IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE      = 1<<4,
1465        IEEE80211_HW_SIGNAL_UNSPEC                      = 1<<5,
1466        IEEE80211_HW_SIGNAL_DBM                         = 1<<6,
1467        IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC             = 1<<7,
1468        IEEE80211_HW_SPECTRUM_MGMT                      = 1<<8,
1469        IEEE80211_HW_AMPDU_AGGREGATION                  = 1<<9,
1470        IEEE80211_HW_SUPPORTS_PS                        = 1<<10,
1471        IEEE80211_HW_PS_NULLFUNC_STACK                  = 1<<11,
1472        IEEE80211_HW_SUPPORTS_DYNAMIC_PS                = 1<<12,
1473        IEEE80211_HW_MFP_CAPABLE                        = 1<<13,
1474        IEEE80211_HW_WANT_MONITOR_VIF                   = 1<<14,
1475        IEEE80211_HW_SUPPORTS_STATIC_SMPS               = 1<<15,
1476        IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS              = 1<<16,
1477        IEEE80211_HW_SUPPORTS_UAPSD                     = 1<<17,
1478        IEEE80211_HW_REPORTS_TX_ACK_STATUS              = 1<<18,
1479        IEEE80211_HW_CONNECTION_MONITOR                 = 1<<19,
1480        IEEE80211_HW_QUEUE_CONTROL                      = 1<<20,
1481        IEEE80211_HW_SUPPORTS_PER_STA_GTK               = 1<<21,
1482        IEEE80211_HW_AP_LINK_PS                         = 1<<22,
1483        IEEE80211_HW_TX_AMPDU_SETUP_IN_HW               = 1<<23,
1484        IEEE80211_HW_SUPPORTS_RC_TABLE                  = 1<<24,
1485        IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF              = 1<<25,
1486        IEEE80211_HW_TIMING_BEACON_ONLY                 = 1<<26,
1487};
1488
1489/**
1490 * struct ieee80211_hw - hardware information and state
1491 *
1492 * This structure contains the configuration and hardware
1493 * information for an 802.11 PHY.
1494 *
1495 * @wiphy: This points to the &struct wiphy allocated for this
1496 *      802.11 PHY. You must fill in the @perm_addr and @dev
1497 *      members of this structure using SET_IEEE80211_DEV()
1498 *      and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
1499 *      bands (with channels, bitrates) are registered here.
1500 *
1501 * @conf: &struct ieee80211_conf, device configuration, don't use.
1502 *
1503 * @priv: pointer to private area that was allocated for driver use
1504 *      along with this structure.
1505 *
1506 * @flags: hardware flags, see &enum ieee80211_hw_flags.
1507 *
1508 * @extra_tx_headroom: headroom to reserve in each transmit skb
1509 *      for use by the driver (e.g. for transmit headers.)
1510 *
1511 * @channel_change_time: time (in microseconds) it takes to change channels.
1512 *
1513 * @max_signal: Maximum value for signal (rssi) in RX information, used
1514 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
1515 *
1516 * @max_listen_interval: max listen interval in units of beacon interval
1517 *     that HW supports
1518 *
1519 * @queues: number of available hardware transmit queues for
1520 *      data packets. WMM/QoS requires at least four, these
1521 *      queues need to have configurable access parameters.
1522 *
1523 * @rate_control_algorithm: rate control algorithm for this hardware.
1524 *      If unset (NULL), the default algorithm will be used. Must be
1525 *      set before calling ieee80211_register_hw().
1526 *
1527 * @vif_data_size: size (in bytes) of the drv_priv data area
1528 *      within &struct ieee80211_vif.
1529 * @sta_data_size: size (in bytes) of the drv_priv data area
1530 *      within &struct ieee80211_sta.
1531 * @chanctx_data_size: size (in bytes) of the drv_priv data area
1532 *      within &struct ieee80211_chanctx_conf.
1533 *
1534 * @max_rates: maximum number of alternate rate retry stages the hw
1535 *      can handle.
1536 * @max_report_rates: maximum number of alternate rate retry stages
1537 *      the hw can report back.
1538 * @max_rate_tries: maximum number of tries for each stage
1539 *
1540 * @napi_weight: weight used for NAPI polling.  You must specify an
1541 *      appropriate value here if a napi_poll operation is provided
1542 *      by your driver.
1543 *
1544 * @max_rx_aggregation_subframes: maximum buffer size (number of
1545 *      sub-frames) to be used for A-MPDU block ack receiver
1546 *      aggregation.
1547 *      This is only relevant if the device has restrictions on the
1548 *      number of subframes, if it relies on mac80211 to do reordering
1549 *      it shouldn't be set.
1550 *
1551 * @max_tx_aggregation_subframes: maximum number of subframes in an
1552 *      aggregate an HT driver will transmit, used by the peer as a
1553 *      hint to size its reorder buffer.
1554 *
1555 * @offchannel_tx_hw_queue: HW queue ID to use for offchannel TX
1556 *      (if %IEEE80211_HW_QUEUE_CONTROL is set)
1557 *
1558 * @radiotap_mcs_details: lists which MCS information can the HW
1559 *      reports, by default it is set to _MCS, _GI and _BW but doesn't
1560 *      include _FMT. Use %IEEE80211_RADIOTAP_MCS_HAVE_* values, only
1561 *      adding _BW is supported today.
1562 *
1563 * @radiotap_vht_details: lists which VHT MCS information the HW reports,
1564 *      the default is _GI | _BANDWIDTH.
1565 *      Use the %IEEE80211_RADIOTAP_VHT_KNOWN_* values.
1566 *
1567 * @netdev_features: netdev features to be set in each netdev created
1568 *      from this HW. Note only HW checksum features are currently
1569 *      compatible with mac80211. Other feature bits will be rejected.
1570 *
1571 * @uapsd_queues: This bitmap is included in (re)association frame to indicate
1572 *      for each access category if it is uAPSD trigger-enabled and delivery-
1573 *      enabled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set this bitmap.
1574 *      Each bit corresponds to different AC. Value '1' in specific bit means
1575 *      that corresponding AC is both trigger- and delivery-enabled. '0' means
1576 *      neither enabled.
1577 *
1578 * @uapsd_max_sp_len: maximum number of total buffered frames the WMM AP may
1579 *      deliver to a WMM STA during any Service Period triggered by the WMM STA.
1580 *      Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct values.
1581 */
1582struct ieee80211_hw {
1583        struct ieee80211_conf conf;
1584        struct wiphy *wiphy;
1585        const char *rate_control_algorithm;
1586        void *priv;
1587        u32 flags;
1588        unsigned int extra_tx_headroom;
1589        int channel_change_time;
1590        int vif_data_size;
1591        int sta_data_size;
1592        int chanctx_data_size;
1593        int napi_weight;
1594        u16 queues;
1595        u16 max_listen_interval;
1596        s8 max_signal;
1597        u8 max_rates;
1598        u8 max_report_rates;
1599        u8 max_rate_tries;
1600        u8 max_rx_aggregation_subframes;
1601        u8 max_tx_aggregation_subframes;
1602        u8 offchannel_tx_hw_queue;
1603        u8 radiotap_mcs_details;
1604        u16 radiotap_vht_details;
1605        netdev_features_t netdev_features;
1606        u8 uapsd_queues;
1607        u8 uapsd_max_sp_len;
1608};
1609
1610/**
1611 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1612 *
1613 * @wiphy: the &struct wiphy which we want to query
1614 *
1615 * mac80211 drivers can use this to get to their respective
1616 * &struct ieee80211_hw. Drivers wishing to get to their own private
1617 * structure can then access it via hw->priv. Note that mac802111 drivers should
1618 * not use wiphy_priv() to try to get their private driver structure as this
1619 * is already used internally by mac80211.
1620 *
1621 * Return: The mac80211 driver hw struct of @wiphy.
1622 */
1623struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1624
1625/**
1626 * SET_IEEE80211_DEV - set device for 802.11 hardware
1627 *
1628 * @hw: the &struct ieee80211_hw to set the device for
1629 * @dev: the &struct device of this 802.11 device
1630 */
1631static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1632{
1633        set_wiphy_dev(hw->wiphy, dev);
1634}
1635
1636/**
1637 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1638 *
1639 * @hw: the &struct ieee80211_hw to set the MAC address for
1640 * @addr: the address to set
1641 */
1642static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1643{
1644        memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1645}
1646
1647static inline struct ieee80211_rate *
1648ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1649                      const struct ieee80211_tx_info *c)
1650{
1651        if (WARN_ON_ONCE(c->control.rates[0].idx < 0))
1652                return NULL;
1653        return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1654}
1655
1656static inline struct ieee80211_rate *
1657ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1658                           const struct ieee80211_tx_info *c)
1659{
1660        if (c->control.rts_cts_rate_idx < 0)
1661                return NULL;
1662        return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1663}
1664
1665static inline struct ieee80211_rate *
1666ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1667                             const struct ieee80211_tx_info *c, int idx)
1668{
1669        if (c->control.rates[idx + 1].idx < 0)
1670                return NULL;
1671        return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1672}
1673
1674/**
1675 * ieee80211_free_txskb - free TX skb
1676 * @hw: the hardware
1677 * @skb: the skb
1678 *
1679 * Free a transmit skb. Use this funtion when some failure
1680 * to transmit happened and thus status cannot be reported.
1681 */
1682void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb);
1683
1684/**
1685 * DOC: Hardware crypto acceleration
1686 *
1687 * mac80211 is capable of taking advantage of many hardware
1688 * acceleration designs for encryption and decryption operations.
1689 *
1690 * The set_key() callback in the &struct ieee80211_ops for a given
1691 * device is called to enable hardware acceleration of encryption and
1692 * decryption. The callback takes a @sta parameter that will be NULL
1693 * for default keys or keys used for transmission only, or point to
1694 * the station information for the peer for individual keys.
1695 * Multiple transmission keys with the same key index may be used when
1696 * VLANs are configured for an access point.
1697 *
1698 * When transmitting, the TX control data will use the @hw_key_idx
1699 * selected by the driver by modifying the &struct ieee80211_key_conf
1700 * pointed to by the @key parameter to the set_key() function.
1701 *
1702 * The set_key() call for the %SET_KEY command should return 0 if
1703 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1704 * added; if you return 0 then hw_key_idx must be assigned to the
1705 * hardware key index, you are free to use the full u8 range.
1706 *
1707 * When the cmd is %DISABLE_KEY then it must succeed.
1708 *
1709 * Note that it is permissible to not decrypt a frame even if a key
1710 * for it has been uploaded to hardware, the stack will not make any
1711 * decision based on whether a key has been uploaded or not but rather
1712 * based on the receive flags.
1713 *
1714 * The &struct ieee80211_key_conf structure pointed to by the @key
1715 * parameter is guaranteed to be valid until another call to set_key()
1716 * removes it, but it can only be used as a cookie to differentiate
1717 * keys.
1718 *
1719 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1720 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1721 * handler.
1722 * The update_tkip_key() call updates the driver with the new phase 1 key.
1723 * This happens every time the iv16 wraps around (every 65536 packets). The
1724 * set_key() call will happen only once for each key (unless the AP did
1725 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1726 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1727 * handler is software decryption with wrap around of iv16.
1728 *
1729 * The set_default_unicast_key() call updates the default WEP key index
1730 * configured to the hardware for WEP encryption type. This is required
1731 * for devices that support offload of data packets (e.g. ARP responses).
1732 */
1733
1734/**
1735 * DOC: Powersave support
1736 *
1737 * mac80211 has support for various powersave implementations.
1738 *
1739 * First, it can support hardware that handles all powersaving by itself,
1740 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware
1741 * flag. In that case, it will be told about the desired powersave mode
1742 * with the %IEEE80211_CONF_PS flag depending on the association status.
1743 * The hardware must take care of sending nullfunc frames when necessary,
1744 * i.e. when entering and leaving powersave mode. The hardware is required
1745 * to look at the AID in beacons and signal to the AP that it woke up when
1746 * it finds traffic directed to it.
1747 *
1748 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
1749 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused
1750 * with hardware wakeup and sleep states. Driver is responsible for waking
1751 * up the hardware before issuing commands to the hardware and putting it
1752 * back to sleep at appropriate times.
1753 *
1754 * When PS is enabled, hardware needs to wakeup for beacons and receive the
1755 * buffered multicast/broadcast frames after the beacon. Also it must be
1756 * possible to send frames and receive the acknowledment frame.
1757 *
1758 * Other hardware designs cannot send nullfunc frames by themselves and also
1759 * need software support for parsing the TIM bitmap. This is also supported
1760 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1761 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1762 * required to pass up beacons. The hardware is still required to handle
1763 * waking up for multicast traffic; if it cannot the driver must handle that
1764 * as best as it can, mac80211 is too slow to do that.
1765 *
1766 * Dynamic powersave is an extension to normal powersave in which the
1767 * hardware stays awake for a user-specified period of time after sending a
1768 * frame so that reply frames need not be buffered and therefore delayed to
1769 * the next wakeup. It's compromise of getting good enough latency when
1770 * there's data traffic and still saving significantly power in idle
1771 * periods.
1772 *
1773 * Dynamic powersave is simply supported by mac80211 enabling and disabling
1774 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS
1775 * flag and mac80211 will handle everything automatically. Additionally,
1776 * hardware having support for the dynamic PS feature may set the
1777 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
1778 * dynamic PS mode itself. The driver needs to look at the
1779 * @dynamic_ps_timeout hardware configuration value and use it that value
1780 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable
1781 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS
1782 * enabled whenever user has enabled powersave.
1783 *
1784 * Driver informs U-APSD client support by enabling
1785 * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
1786 * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS
1787 * Nullfunc frames and stay awake until the service period has ended. To
1788 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames
1789 * from that AC are transmitted with powersave enabled.
1790 *
1791 * Note: U-APSD client mode is not yet supported with
1792 * %IEEE80211_HW_PS_NULLFUNC_STACK.
1793 */
1794
1795/**
1796 * DOC: Beacon filter support
1797 *
1798 * Some hardware have beacon filter support to reduce host cpu wakeups
1799 * which will reduce system power consumption. It usually works so that
1800 * the firmware creates a checksum of the beacon but omits all constantly
1801 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1802 * beacon is forwarded to the host, otherwise it will be just dropped. That
1803 * way the host will only receive beacons where some relevant information
1804 * (for example ERP protection or WMM settings) have changed.
1805 *
1806 * Beacon filter support is advertised with the %IEEE80211_VIF_BEACON_FILTER
1807 * interface capability. The driver needs to enable beacon filter support
1808 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1809 * power save is enabled, the stack will not check for beacon loss and the
1810 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1811 *
1812 * The time (or number of beacons missed) until the firmware notifies the
1813 * driver of a beacon loss event (which in turn causes the driver to call
1814 * ieee80211_beacon_loss()) should be configurable and will be controlled
1815 * by mac80211 and the roaming algorithm in the future.
1816 *
1817 * Since there may be constantly changing information elements that nothing
1818 * in the software stack cares about, we will, in the future, have mac80211
1819 * tell the driver which information elements are interesting in the sense
1820 * that we want to see changes in them. This will include
1821 *  - a list of information element IDs
1822 *  - a list of OUIs for the vendor information element
1823 *
1824 * Ideally, the hardware would filter out any beacons without changes in the
1825 * requested elements, but if it cannot support that it may, at the expense
1826 * of some efficiency, filter out only a subset. For example, if the device
1827 * doesn't support checking for OUIs it should pass up all changes in all
1828 * vendor information elements.
1829 *
1830 * Note that change, for the sake of simplification, also includes information
1831 * elements appearing or disappearing from the beacon.
1832 *
1833 * Some hardware supports an "ignore list" instead, just make sure nothing
1834 * that was requested is on the ignore list, and include commonly changing
1835 * information element IDs in the ignore list, for example 11 (BSS load) and
1836 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1837 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1838 * it could also include some currently unused IDs.
1839 *
1840 *
1841 * In addition to these capabilities, hardware should support notifying the
1842 * host of changes in the beacon RSSI. This is relevant to implement roaming
1843 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1844 * the received data packets). This can consist in notifying the host when
1845 * the RSSI changes significantly or when it drops below or rises above
1846 * configurable thresholds. In the future these thresholds will also be
1847 * configured by mac80211 (which gets them from userspace) to implement
1848 * them as the roaming algorithm requires.
1849 *
1850 * If the hardware cannot implement this, the driver should ask it to
1851 * periodically pass beacon frames to the host so that software can do the
1852 * signal strength threshold checking.
1853 */
1854
1855/**
1856 * DOC: Spatial multiplexing power save
1857 *
1858 * SMPS (Spatial multiplexing power save) is a mechanism to conserve
1859 * power in an 802.11n implementation. For details on the mechanism
1860 * and rationale, please refer to 802.11 (as amended by 802.11n-2009)
1861 * "11.2.3 SM power save".
1862 *
1863 * The mac80211 implementation is capable of sending action frames
1864 * to update the AP about the station's SMPS mode, and will instruct
1865 * the driver to enter the specific mode. It will also announce the
1866 * requested SMPS mode during the association handshake. Hardware
1867 * support for this feature is required, and can be indicated by
1868 * hardware flags.
1869 *
1870 * The default mode will be "automatic", which nl80211/cfg80211
1871 * defines to be dynamic SMPS in (regular) powersave, and SMPS
1872 * turned off otherwise.
1873 *
1874 * To support this feature, the driver must set the appropriate
1875 * hardware support flags, and handle the SMPS flag to the config()
1876 * operation. It will then with this mechanism be instructed to
1877 * enter the requested SMPS mode while associated to an HT AP.
1878 */
1879
1880/**
1881 * DOC: Frame filtering
1882 *
1883 * mac80211 requires to see many management frames for proper
1884 * operation, and users may want to see many more frames when
1885 * in monitor mode. However, for best CPU usage and power consumption,
1886 * having as few frames as possible percolate through the stack is
1887 * desirable. Hence, the hardware should filter as much as possible.
1888 *
1889 * To achieve this, mac80211 uses filter flags (see below) to tell
1890 * the driver's configure_filter() function which frames should be
1891 * passed to mac80211 and which should be filtered out.
1892 *
1893 * Before configure_filter() is invoked, the prepare_multicast()
1894 * callback is invoked with the parameters @mc_count and @mc_list
1895 * for the combined multicast address list of all virtual interfaces.
1896 * It's use is optional, and it returns a u64 that is passed to
1897 * configure_filter(). Additionally, configure_filter() has the
1898 * arguments @changed_flags telling which flags were changed and
1899 * @total_flags with the new flag states.
1900 *
1901 * If your device has no multicast address filters your driver will
1902 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1903 * parameter to see whether multicast frames should be accepted
1904 * or dropped.
1905 *
1906 * All unsupported flags in @total_flags must be cleared.
1907 * Hardware does not support a flag if it is incapable of _passing_
1908 * the frame to the stack. Otherwise the driver must ignore
1909 * the flag, but not clear it.
1910 * You must _only_ clear the flag (announce no support for the
1911 * flag to mac80211) if you are not able to pass the packet type
1912 * to the stack (so the hardware always filters it).
1913 * So for example, you should clear @FIF_CONTROL, if your hardware
1914 * always filters control frames. If your hardware always passes
1915 * control frames to the kernel and is incapable of filtering them,
1916 * you do _not_ clear the @FIF_CONTROL flag.
1917 * This rule applies to all other FIF flags as well.
1918 */
1919
1920/**
1921 * DOC: AP support for powersaving clients
1922 *
1923 * In order to implement AP and P2P GO modes, mac80211 has support for
1924 * client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD.
1925 * There currently is no support for sAPSD.
1926 *
1927 * There is one assumption that mac80211 makes, namely that a client
1928 * will not poll with PS-Poll and trigger with uAPSD at the same time.
1929 * Both are supported, and both can be used by the same client, but
1930 * they can't be used concurrently by the same client. This simplifies
1931 * the driver code.
1932 *
1933 * The first thing to keep in mind is that there is a flag for complete
1934 * driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set,
1935 * mac80211 expects the driver to handle most of the state machine for
1936 * powersaving clients and will ignore the PM bit in incoming frames.
1937 * Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of
1938 * stations' powersave transitions. In this mode, mac80211 also doesn't
1939 * handle PS-Poll/uAPSD.
1940 *
1941 * In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the
1942 * PM bit in incoming frames for client powersave transitions. When a
1943 * station goes to sleep, we will stop transmitting to it. There is,
1944 * however, a race condition: a station might go to sleep while there is
1945 * data buffered on hardware queues. If the device has support for this
1946 * it will reject frames, and the driver should give the frames back to
1947 * mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will
1948 * cause mac80211 to retry the frame when the station wakes up. The
1949 * driver is also notified of powersave transitions by calling its
1950 * @sta_notify callback.
1951 *
1952 * When the station is asleep, it has three choices: it can wake up,
1953 * it can PS-Poll, or it can possibly start a uAPSD service period.
1954 * Waking up is implemented by simply transmitting all buffered (and
1955 * filtered) frames to the station. This is the easiest case. When
1956 * the station sends a PS-Poll or a uAPSD trigger frame, mac80211
1957 * will inform the driver of this with the @allow_buffered_frames
1958 * callback; this callback is optional. mac80211 will then transmit
1959 * the frames as usual and set the %IEEE80211_TX_CTL_NO_PS_BUFFER
1960 * on each frame. The last frame in the service period (or the only
1961 * response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to
1962 * indicate that it ends the service period; as this frame must have
1963 * TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS.
1964 * When TX status is reported for this frame, the service period is
1965 * marked has having ended and a new one can be started by the peer.
1966 *
1967 * Additionally, non-bufferable MMPDUs can also be transmitted by
1968 * mac80211 with the %IEEE80211_TX_CTL_NO_PS_BUFFER set in them.
1969 *
1970 * Another race condition can happen on some devices like iwlwifi
1971 * when there are frames queued for the station and it wakes up
1972 * or polls; the frames that are already queued could end up being
1973 * transmitted first instead, causing reordering and/or wrong
1974 * processing of the EOSP. The cause is that allowing frames to be
1975 * transmitted to a certain station is out-of-band communication to
1976 * the device. To allow this problem to be solved, the driver can
1977 * call ieee80211_sta_block_awake() if frames are buffered when it
1978 * is notified that the station went to sleep. When all these frames
1979 * have been filtered (see above), it must call the function again
1980 * to indicate that the station is no longer blocked.
1981 *
1982 * If the driver buffers frames in the driver for aggregation in any
1983 * way, it must use the ieee80211_sta_set_buffered() call when it is
1984 * notified of the station going to sleep to inform mac80211 of any
1985 * TIDs that have frames buffered. Note that when a station wakes up
1986 * this information is reset (hence the requirement to call it when
1987 * informed of the station going to sleep). Then, when a service
1988 * period starts for any reason, @release_buffered_frames is called
1989 * with the number of frames to be released and which TIDs they are
1990 * to come from. In this case, the driver is responsible for setting
1991 * the EOSP (for uAPSD) and MORE_DATA bits in the released frames,
1992 * to help the @more_data paramter is passed to tell the driver if
1993 * there is more data on other TIDs -- the TIDs to release frames
1994 * from are ignored since mac80211 doesn't know how many frames the
1995 * buffers for those TIDs contain.
1996 *
1997 * If the driver also implement GO mode, where absence periods may
1998 * shorten service periods (or abort PS-Poll responses), it must
1999 * filter those response frames except in the case of frames that
2000 * are buffered in the driver -- those must remain buffered to avoid
2001 * reordering. Because it is possible that no frames are released
2002 * in this case, the driver must call ieee80211_sta_eosp()
2003 * to indicate to mac80211 that the service period ended anyway.
2004 *
2005 * Finally, if frames from multiple TIDs are released from mac80211
2006 * but the driver might reorder them, it must clear & set the flags
2007 * appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP)
2008 * and also take care of the EOSP and MORE_DATA bits in the frame.
2009 * The driver may also use ieee80211_sta_eosp() in this case.
2010 */
2011
2012/**
2013 * DOC: HW queue control
2014 *
2015 * Before HW queue control was introduced, mac80211 only had a single static
2016 * assignment of per-interface AC software queues to hardware queues. This
2017 * was problematic for a few reasons:
2018 * 1) off-channel transmissions might get stuck behind other frames
2019 * 2) multiple virtual interfaces couldn't be handled correctly
2020 * 3) after-DTIM frames could get stuck behind other frames
2021 *
2022 * To solve this, hardware typically uses multiple different queues for all
2023 * the different usages, and this needs to be propagated into mac80211 so it
2024 * won't have the same problem with the software queues.
2025 *
2026 * Therefore, mac80211 now offers the %IEEE80211_HW_QUEUE_CONTROL capability
2027 * flag that tells it that the driver implements its own queue control. To do
2028 * so, the driver will set up the various queues in each &struct ieee80211_vif
2029 * and the offchannel queue in &struct ieee80211_hw. In response, mac80211 will
2030 * use those queue IDs in the hw_queue field of &struct ieee80211_tx_info and
2031 * if necessary will queue the frame on the right software queue that mirrors
2032 * the hardware queue.
2033 * Additionally, the driver has to then use these HW queue IDs for the queue
2034 * management functions (ieee80211_stop_queue() et al.)
2035 *
2036 * The driver is free to set up the queue mappings as needed, multiple virtual
2037 * interfaces may map to the same hardware queues if needed. The setup has to
2038 * happen during add_interface or change_interface callbacks. For example, a
2039 * driver supporting station+station and station+AP modes might decide to have
2040 * 10 hardware queues to handle different scenarios:
2041 *
2042 * 4 AC HW queues for 1st vif: 0, 1, 2, 3
2043 * 4 AC HW queues for 2nd vif: 4, 5, 6, 7
2044 * after-DTIM queue for AP:   8
2045 * off-channel queue:         9
2046 *
2047 * It would then set up the hardware like this:
2048 *   hw.offchannel_tx_hw_queue = 9
2049 *
2050 * and the first virtual interface that is added as follows:
2051 *   vif.hw_queue[IEEE80211_AC_VO] = 0
2052 *   vif.hw_queue[IEEE80211_AC_VI] = 1
2053 *   vif.hw_queue[IEEE80211_AC_BE] = 2
2054 *   vif.hw_queue[IEEE80211_AC_BK] = 3
2055 *   vif.cab_queue = 8 // if AP mode, otherwise %IEEE80211_INVAL_HW_QUEUE
2056 * and the second virtual interface with 4-7.
2057 *
2058 * If queue 6 gets full, for example, mac80211 would only stop the second
2059 * virtual interface's BE queue since virtual interface queues are per AC.
2060 *
2061 * Note that the vif.cab_queue value should be set to %IEEE80211_INVAL_HW_QUEUE
2062 * whenever the queue is not used (i.e. the interface is not in AP mode) if the
2063 * queue could potentially be shared since mac80211 will look at cab_queue when
2064 * a queue is stopped/woken even if the interface is not in AP mode.
2065 */
2066
2067/**
2068 * enum ieee80211_filter_flags - hardware filter flags
2069 *
2070 * These flags determine what the filter in hardware should be
2071 * programmed to let through and what should not be passed to the
2072 * stack. It is always safe to pass more frames than requested,
2073 * but this has negative impact on power consumption.
2074 *
2075 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
2076 *      think of the BSS as your network segment and then this corresponds
2077 *      to the regular ethernet device promiscuous mode.
2078 *
2079 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
2080 *      by the user or if the hardware is not capable of filtering by
2081 *      multicast address.
2082 *
2083 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
2084 *      %RX_FLAG_FAILED_FCS_CRC for them)
2085 *
2086 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
2087 *      the %RX_FLAG_FAILED_PLCP_CRC for them
2088 *
2089 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
2090 *      to the hardware that it should not filter beacons or probe responses
2091 *      by BSSID. Filtering them can greatly reduce the amount of processing
2092 *      mac80211 needs to do and the amount of CPU wakeups, so you should
2093 *      honour this flag if possible.
2094 *
2095 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
2096 *      is not set then only those addressed to this station.
2097 *
2098 * @FIF_OTHER_BSS: pass frames destined to other BSSes
2099 *
2100 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only
2101 *      those addressed to this station.
2102 *
2103 * @FIF_PROBE_REQ: pass probe request frames
2104 */
2105enum ieee80211_filter_flags {
2106        FIF_PROMISC_IN_BSS      = 1<<0,
2107        FIF_ALLMULTI            = 1<<1,
2108        FIF_FCSFAIL             = 1<<2,
2109        FIF_PLCPFAIL            = 1<<3,
2110        FIF_BCN_PRBRESP_PROMISC = 1<<4,
2111        FIF_CONTROL             = 1<<5,
2112        FIF_OTHER_BSS           = 1<<6,
2113        FIF_PSPOLL              = 1<<7,
2114        FIF_PROBE_REQ           = 1<<8,
2115};
2116
2117/**
2118 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
2119 *
2120 * These flags are used with the ampdu_action() callback in
2121 * &struct ieee80211_ops to indicate which action is needed.
2122 *
2123 * Note that drivers MUST be able to deal with a TX aggregation
2124 * session being stopped even before they OK'ed starting it by
2125 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer
2126 * might receive the addBA frame and send a delBA right away!
2127 *
2128 * @IEEE80211_AMPDU_RX_START: start RX aggregation
2129 * @IEEE80211_AMPDU_RX_STOP: stop RX aggregation
2130 * @IEEE80211_AMPDU_TX_START: start TX aggregation
2131 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
2132 * @IEEE80211_AMPDU_TX_STOP_CONT: stop TX aggregation but continue transmitting
2133 *      queued packets, now unaggregated. After all packets are transmitted the
2134 *      driver has to call ieee80211_stop_tx_ba_cb_irqsafe().
2135 * @IEEE80211_AMPDU_TX_STOP_FLUSH: stop TX aggregation and flush all packets,
2136 *      called when the station is removed. There's no need or reason to call
2137 *      ieee80211_stop_tx_ba_cb_irqsafe() in this case as mac80211 assumes the
2138 *      session is gone and removes the station.
2139 * @IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: called when TX aggregation is stopped
2140 *      but the driver hasn't called ieee80211_stop_tx_ba_cb_irqsafe() yet and
2141 *      now the connection is dropped and the station will be removed. Drivers
2142 *      should clean up and drop remaining packets when this is called.
2143 */
2144enum ieee80211_ampdu_mlme_action {
2145        IEEE80211_AMPDU_RX_START,
2146        IEEE80211_AMPDU_RX_STOP,
2147        IEEE80211_AMPDU_TX_START,
2148        IEEE80211_AMPDU_TX_STOP_CONT,
2149        IEEE80211_AMPDU_TX_STOP_FLUSH,
2150        IEEE80211_AMPDU_TX_STOP_FLUSH_CONT,
2151        IEEE80211_AMPDU_TX_OPERATIONAL,
2152};
2153
2154/**
2155 * enum ieee80211_frame_release_type - frame release reason
2156 * @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll
2157 * @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to
2158 *      frame received on trigger-enabled AC
2159 */
2160enum ieee80211_frame_release_type {
2161        IEEE80211_FRAME_RELEASE_PSPOLL,
2162        IEEE80211_FRAME_RELEASE_UAPSD,
2163};
2164
2165/**
2166 * enum ieee80211_rate_control_changed - flags to indicate what changed
2167 *
2168 * @IEEE80211_RC_BW_CHANGED: The bandwidth that can be used to transmit
2169 *      to this station changed. The actual bandwidth is in the station
2170 *      information -- for HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40
2171 *      flag changes, for HT and VHT the bandwidth field changes.
2172 * @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed.
2173 * @IEEE80211_RC_SUPP_RATES_CHANGED: The supported rate set of this peer
2174 *      changed (in IBSS mode) due to discovering more information about
2175 *      the peer.
2176 * @IEEE80211_RC_NSS_CHANGED: N_SS (number of spatial streams) was changed
2177 *      by the peer
2178 */
2179enum ieee80211_rate_control_changed {
2180        IEEE80211_RC_BW_CHANGED         = BIT(0),
2181        IEEE80211_RC_SMPS_CHANGED       = BIT(1),
2182        IEEE80211_RC_SUPP_RATES_CHANGED = BIT(2),
2183        IEEE80211_RC_NSS_CHANGED        = BIT(3),
2184};
2185
2186/**
2187 * enum ieee80211_roc_type - remain on channel type
2188 *
2189 * With the support for multi channel contexts and multi channel operations,
2190 * remain on channel operations might be limited/deferred/aborted by other
2191 * flows/operations which have higher priority (and vise versa).
2192 * Specifying the ROC type can be used by devices to prioritize the ROC
2193 * operations compared to other operations/flows.
2194 *
2195 * @IEEE80211_ROC_TYPE_NORMAL: There are no special requirements for this ROC.
2196 * @IEEE80211_ROC_TYPE_MGMT_TX: The remain on channel request is required
2197 *      for sending managment frames offchannel.
2198 */
2199enum ieee80211_roc_type {
2200        IEEE80211_ROC_TYPE_NORMAL = 0,
2201        IEEE80211_ROC_TYPE_MGMT_TX,
2202};
2203
2204/**
2205 * struct ieee80211_ops - callbacks from mac80211 to the driver
2206 *
2207 * This structure contains various callbacks that the driver may
2208 * handle or, in some cases, must handle, for example to configure
2209 * the hardware to a new channel or to transmit a frame.
2210 *
2211 * @tx: Handler that 802.11 module calls for each transmitted frame.
2212 *      skb contains the buffer starting from the IEEE 802.11 header.
2213 *      The low-level driver should send the frame out based on
2214 *      configuration in the TX control data. This handler should,
2215 *      preferably, never fail and stop queues appropriately.
2216 *      Must be atomic.
2217 *
2218 * @start: Called before the first netdevice attached to the hardware
2219 *      is enabled. This should turn on the hardware and must turn on
2220 *      frame reception (for possibly enabled monitor interfaces.)
2221 *      Returns negative error codes, these may be seen in userspace,
2222 *      or zero.
2223 *      When the device is started it should not have a MAC address
2224 *      to avoid acknowledging frames before a non-monitor device
2225 *      is added.
2226 *      Must be implemented and can sleep.
2227 *
2228 * @stop: Called after last netdevice attached to the hardware
2229 *      is disabled. This should turn off the hardware (at least
2230 *      it must turn off frame reception.)
2231 *      May be called right after add_interface if that rejects
2232 *      an interface. If you added any work onto the mac80211 workqueue
2233 *      you should ensure to cancel it on this callback.
2234 *      Must be implemented and can sleep.
2235 *
2236 * @suspend: Suspend the device; mac80211 itself will quiesce before and
2237 *      stop transmitting and doing any other configuration, and then
2238 *      ask the device to suspend. This is only invoked when WoWLAN is
2239 *      configured, otherwise the device is deconfigured completely and
2240 *      reconfigured at resume time.
2241 *      The driver may also impose special conditions under which it
2242 *      wants to use the "normal" suspend (deconfigure), say if it only
2243 *      supports WoWLAN when the device is associated. In this case, it
2244 *      must return 1 from this function.
2245 *
2246 * @resume: If WoWLAN was configured, this indicates that mac80211 is
2247 *      now resuming its operation, after this the device must be fully
2248 *      functional again. If this returns an error, the only way out is
2249 *      to also unregister the device. If it returns 1, then mac80211
2250 *      will also go through the regular complete restart on resume.
2251 *
2252 * @set_wakeup: Enable or disable wakeup when WoWLAN configuration is
2253 *      modified. The reason is that device_set_wakeup_enable() is
2254 *      supposed to be called when the configuration changes, not only
2255 *      in suspend().
2256 *
2257 * @add_interface: Called when a netdevice attached to the hardware is
2258 *      enabled. Because it is not called for monitor mode devices, @start
2259 *      and @stop must be implemented.
2260 *      The driver should perform any initialization it needs before
2261 *      the device can be enabled. The initial configuration for the
2262 *      interface is given in the conf parameter.
2263 *      The callback may refuse to add an interface by returning a
2264 *      negative error code (which will be seen in userspace.)
2265 *      Must be implemented and can sleep.
2266 *
2267 * @change_interface: Called when a netdevice changes type. This callback
2268 *      is optional, but only if it is supported can interface types be
2269 *      switched while the interface is UP. The callback may sleep.
2270 *      Note that while an interface is being switched, it will not be
2271 *      found by the interface iteration callbacks.
2272 *
2273 * @remove_interface: Notifies a driver that an interface is going down.
2274 *      The @stop callback is called after this if it is the last interface
2275 *      and no monitor interfaces are present.
2276 *      When all interfaces are removed, the MAC address in the hardware
2277 *      must be cleared so the device no longer acknowledges packets,
2278 *      the mac_addr member of the conf structure is, however, set to the
2279 *      MAC address of the device going away.
2280 *      Hence, this callback must be implemented. It can sleep.
2281 *
2282 * @config: Handler for configuration requests. IEEE 802.11 code calls this
2283 *      function to change hardware configuration, e.g., channel.
2284 *      This function should never fail but returns a negative error code
2285 *      if it does. The callback can sleep.
2286 *
2287 * @bss_info_changed: Handler for configuration requests related to BSS
2288 *      parameters that may vary during BSS's lifespan, and may affect low
2289 *      level driver (e.g. assoc/disassoc status, erp parameters).
2290 *      This function should not be used if no BSS has been set, unless
2291 *      for association indication. The @changed parameter indicates which
2292 *      of the bss parameters has changed when a call is made. The callback
2293 *      can sleep.
2294 *
2295 * @prepare_multicast: Prepare for multicast filter configuration.
2296 *      This callback is optional, and its return value is passed
2297 *      to configure_filter(). This callback must be atomic.
2298 *
2299 * @configure_filter: Configure the device's RX filter.
2300 *      See the section "Frame filtering" for more information.
2301 *      This callback must be implemented and can sleep.
2302 *
2303 * @set_multicast_list: Configure the device's interface specific RX multicast
2304 *      filter. This callback is optional. This callback must be atomic.
2305 *
2306 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
2307 *      must be set or cleared for a given STA. Must be atomic.
2308 *
2309 * @set_key: See the section "Hardware crypto acceleration"
2310 *      This callback is only called between add_interface and
2311 *      remove_interface calls, i.e. while the given virtual interface
2312 *      is enabled.
2313 *      Returns a negative error code if the key can't be added.
2314 *      The callback can sleep.
2315 *
2316 * @update_tkip_key: See the section "Hardware crypto acceleration"
2317 *      This callback will be called in the context of Rx. Called for drivers
2318 *      which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
2319 *      The callback must be atomic.
2320 *
2321 * @set_rekey_data: If the device supports GTK rekeying, for example while the
2322 *      host is suspended, it can assign this callback to retrieve the data
2323 *      necessary to do GTK rekeying, this is the KEK, KCK and replay counter.
2324 *      After rekeying was done it should (for example during resume) notify
2325 *      userspace of the new replay counter using ieee80211_gtk_rekey_notify().
2326 *
2327 * @set_default_unicast_key: Set the default (unicast) key index, useful for
2328 *      WEP when the device sends data packets autonomously, e.g. for ARP
2329 *      offloading. The index can be 0-3, or -1 for unsetting it.
2330 *
2331 * @hw_scan: Ask the hardware to service the scan request, no need to start
2332 *      the scan state machine in stack. The scan must honour the channel
2333 *      configuration done by the regulatory agent in the wiphy's
2334 *      registered bands. The hardware (or the driver) needs to make sure
2335 *      that power save is disabled.
2336 *      The @req ie/ie_len members are rewritten by mac80211 to contain the
2337 *      entire IEs after the SSID, so that drivers need not look at these
2338 *      at all but just send them after the SSID -- mac80211 includes the
2339 *      (extended) supported rates and HT information (where applicable).
2340 *      When the scan finishes, ieee80211_scan_completed() must be called;
2341 *      note that it also must be called when the scan cannot finish due to
2342 *      any error unless this callback returned a negative error code.
2343 *      The callback can sleep.
2344 *
2345 * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan.
2346 *      The driver should ask the hardware to cancel the scan (if possible),
2347 *      but the scan will be completed only after the driver will call
2348 *      ieee80211_scan_completed().
2349 *      This callback is needed for wowlan, to prevent enqueueing a new
2350 *      scan_work after the low-level driver was already suspended.
2351 *      The callback can sleep.
2352 *
2353 * @sched_scan_start: Ask the hardware to start scanning repeatedly at
2354 *      specific intervals.  The driver must call the
2355 *      ieee80211_sched_scan_results() function whenever it finds results.
2356 *      This process will continue until sched_scan_stop is called.
2357 *
2358 * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan.
2359 *
2360 * @sw_scan_start: Notifier function that is called just before a software scan
2361 *      is started. Can be NULL, if the driver doesn't need this notification.
2362 *      The callback can sleep.
2363 *
2364 * @sw_scan_complete: Notifier function that is called just after a
2365 *      software scan finished. Can be NULL, if the driver doesn't need
2366 *      this notification.
2367 *      The callback can sleep.
2368 *
2369 * @get_stats: Return low-level statistics.
2370 *      Returns zero if statistics are available.
2371 *      The callback can sleep.
2372 *
2373 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
2374 *      callback should be provided to read the TKIP transmit IVs (both IV32
2375 *      and IV16) for the given key from hardware.
2376 *      The callback must be atomic.
2377 *
2378 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this
2379 *      if the device does fragmentation by itself; if this callback is
2380 *      implemented then the stack will not do fragmentation.
2381 *      The callback can sleep.
2382 *
2383 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
2384 *      The callback can sleep.
2385 *
2386 * @sta_add: Notifies low level driver about addition of an associated station,
2387 *      AP, IBSS/WDS/mesh peer etc. This callback can sleep.
2388 *
2389 * @sta_remove: Notifies low level driver about removal of an associated
2390 *      station, AP, IBSS/WDS/mesh peer etc. This callback can sleep.
2391 *
2392 * @sta_add_debugfs: Drivers can use this callback to add debugfs files
2393 *      when a station is added to mac80211's station list. This callback
2394 *      and @sta_remove_debugfs should be within a CONFIG_MAC80211_DEBUGFS
2395 *      conditional. This callback can sleep.
2396 *
2397 * @sta_remove_debugfs: Remove the debugfs files which were added using
2398 *      @sta_add_debugfs. This callback can sleep.
2399 *
2400 * @sta_notify: Notifies low level driver about power state transition of an
2401 *      associated station, AP,  IBSS/WDS/mesh peer etc. For a VIF operating
2402 *      in AP mode, this callback will not be called when the flag
2403 *      %IEEE80211_HW_AP_LINK_PS is set. Must be atomic.
2404 *
2405 * @sta_state: Notifies low level driver about state transition of a
2406 *      station (which can be the AP, a client, IBSS/WDS/mesh peer etc.)
2407 *      This callback is mutually exclusive with @sta_add/@sta_remove.
2408 *      It must not fail for down transitions but may fail for transitions
2409 *      up the list of states.
2410 *      The callback can sleep.
2411 *
2412 * @sta_rc_update: Notifies the driver of changes to the bitrates that can be
2413 *      used to transmit to the station. The changes are advertised with bits
2414 *      from &enum ieee80211_rate_control_changed and the values are reflected
2415 *      in the station data. This callback should only be used when the driver
2416 *      uses hardware rate control (%IEEE80211_HW_HAS_RATE_CONTROL) since
2417 *      otherwise the rate control algorithm is notified directly.
2418 *      Must be atomic.
2419 *
2420 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
2421 *      bursting) for a hardware TX queue.
2422 *      Returns a negative error code on failure.
2423 *      The callback can sleep.
2424 *
2425 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
2426 *      this is only used for IBSS mode BSSID merging and debugging. Is not a
2427 *      required function.
2428 *      The callback can sleep.
2429 *
2430 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
2431 *      Currently, this is only used for IBSS mode debugging. Is not a
2432 *      required function.
2433 *      The callback can sleep.
2434 *
2435 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
2436 *      with other STAs in the IBSS. This is only used in IBSS mode. This
2437 *      function is optional if the firmware/hardware takes full care of
2438 *      TSF synchronization.
2439 *      The callback can sleep.
2440 *
2441 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
2442 *      This is needed only for IBSS mode and the result of this function is
2443 *      used to determine whether to reply to Probe Requests.
2444 *      Returns non-zero if this device sent the last beacon.
2445 *      The callback can sleep.
2446 *
2447 * @ampdu_action: Perform a certain A-MPDU action
2448 *      The RA/TID combination determines the destination and TID we want
2449 *      the ampdu action to be performed for. The action is defined through
2450 *      ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
2451 *      is the first frame we expect to perform the action on. Notice
2452 *      that TX/RX_STOP can pass NULL for this parameter.
2453 *      The @buf_size parameter is only valid when the action is set to
2454 *      %IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder
2455 *      buffer size (number of subframes) for this session -- the driver
2456 *      may neither send aggregates containing more subframes than this
2457 *      nor send aggregates in a way that lost frames would exceed the
2458 *      buffer size. If just limiting the aggregate size, this would be
2459 *      possible with a buf_size of 8:
2460 *       - TX: 1.....7
2461 *       - RX:  2....7 (lost frame #1)
2462 *       - TX:        8..1...
2463 *      which is invalid since #1 was now re-transmitted well past the
2464 *      buffer size of 8. Correct ways to retransmit #1 would be:
2465 *       - TX:       1 or 18 or 81
2466 *      Even "189" would be wrong since 1 could be lost again.
2467 *
2468 *      Returns a negative error code on failure.
2469 *      The callback can sleep.
2470 *
2471 * @get_survey: Return per-channel survey information
2472 *
2473 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
2474 *      need to set wiphy->rfkill_poll to %true before registration,
2475 *      and need to call wiphy_rfkill_set_hw_state() in the callback.
2476 *      The callback can sleep.
2477 *
2478 * @set_coverage_class: Set slot time for given coverage class as specified
2479 *      in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout
2480 *      accordingly. This callback is not required and may sleep.
2481 *
2482 * @testmode_cmd: Implement a cfg80211 test mode command.
2483 *      The callback can sleep.
2484 * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep.
2485 *
2486 * @flush: Flush all pending frames from the hardware queue, making sure
2487 *      that the hardware queues are empty. The @queues parameter is a bitmap
2488 *      of queues to flush, which is useful if different virtual interfaces
2489 *      use different hardware queues; it may also indicate all queues.
2490 *      If the parameter @drop is set to %true, pending frames may be dropped.
2491 *      The callback can sleep.
2492 *
2493 * @channel_switch: Drivers that need (or want) to offload the channel
2494 *      switch operation for CSAs received from the AP may implement this
2495 *      callback. They must then call ieee80211_chswitch_done() to indicate
2496 *      completion of the channel switch.
2497 *
2498 * @napi_poll: Poll Rx queue for incoming data frames.
2499 *
2500 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
2501 *      Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
2502 *      reject TX/RX mask combinations they cannot support by returning -EINVAL
2503 *      (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
2504 *
2505 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
2506 *
2507 * @remain_on_channel: Starts an off-channel period on the given channel, must
2508 *      call back to ieee80211_ready_on_channel() when on that channel. Note
2509 *      that normal channel traffic is not stopped as this is intended for hw
2510 *      offload. Frames to transmit on the off-channel channel are transmitted
2511 *      normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the
2512 *      duration (which will always be non-zero) expires, the driver must call
2513 *      ieee80211_remain_on_channel_expired().
2514 *      Note that this callback may be called while the device is in IDLE and
2515 *      must be accepted in this case.
2516 *      This callback may sleep.
2517 * @cancel_remain_on_channel: Requests that an ongoing off-channel period is
2518 *      aborted before it expires. This callback may sleep.
2519 *
2520 * @set_ringparam: Set tx and rx ring sizes.
2521 *
2522 * @get_ringparam: Get tx and rx ring current and maximum sizes.
2523 *
2524 * @tx_frames_pending: Check if there is any pending frame in the hardware
2525 *      queues before entering power save.
2526 *
2527 * @set_bitrate_mask: Set a mask of rates to be used for rate control selection
2528 *      when transmitting a frame. Currently only legacy rates are handled.
2529 *      The callback can sleep.
2530 * @rssi_callback: Notify driver when the average RSSI goes above/below
2531 *      thresholds that were registered previously. The callback can sleep.
2532 *
2533 * @release_buffered_frames: Release buffered frames according to the given
2534 *      parameters. In the case where the driver buffers some frames for
2535 *      sleeping stations mac80211 will use this callback to tell the driver
2536 *      to release some frames, either for PS-poll or uAPSD.
2537 *      Note that if the @more_data paramter is %false the driver must check
2538 *      if there are more frames on the given TIDs, and if there are more than
2539 *      the frames being released then it must still set the more-data bit in
2540 *      the frame. If the @more_data parameter is %true, then of course the
2541 *      more-data bit must always be set.
2542 *      The @tids parameter tells the driver which TIDs to release frames
2543 *      from, for PS-poll it will always have only a single bit set.
2544 *      In the case this is used for a PS-poll initiated release, the
2545 *      @num_frames parameter will always be 1 so code can be shared. In
2546 *      this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag
2547 *      on the TX status (and must report TX status) so that the PS-poll
2548 *      period is properly ended. This is used to avoid sending multiple
2549 *      responses for a retried PS-poll frame.
2550 *      In the case this is used for uAPSD, the @num_frames parameter may be
2551 *      bigger than one, but the driver may send fewer frames (it must send
2552 *      at least one, however). In this case it is also responsible for
2553 *      setting the EOSP flag in the QoS header of the frames. Also, when the
2554 *      service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP
2555 *      on the last frame in the SP. Alternatively, it may call the function
2556 *      ieee80211_sta_eosp() to inform mac80211 of the end of the SP.
2557 *      This callback must be atomic.
2558 * @allow_buffered_frames: Prepare device to allow the given number of frames
2559 *      to go out to the given station. The frames will be sent by mac80211
2560 *      via the usual TX path after this call. The TX information for frames
2561 *      released will also have the %IEEE80211_TX_CTL_NO_PS_BUFFER flag set
2562 *      and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case
2563 *      frames from multiple TIDs are released and the driver might reorder
2564 *      them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag
2565 *      on the last frame and clear it on all others and also handle the EOSP
2566 *      bit in the QoS header correctly. Alternatively, it can also call the
2567 *      ieee80211_sta_eosp() function.
2568 *      The @tids parameter is a bitmap and tells the driver which TIDs the
2569 *      frames will be on; it will at most have two bits set.
2570 *      This callback must be atomic.
2571 *
2572 * @get_et_sset_count:  Ethtool API to get string-set count.
2573 *
2574 * @get_et_stats:  Ethtool API to get a set of u64 stats.
2575 *
2576 * @get_et_strings:  Ethtool API to get a set of strings to describe stats
2577 *      and perhaps other supported types of ethtool data-sets.
2578 *
2579 * @get_rssi: Get current signal strength in dBm, the function is optional
2580 *      and can sleep.
2581 *
2582 * @mgd_prepare_tx: Prepare for transmitting a management frame for association
2583 *      before associated. In multi-channel scenarios, a virtual interface is
2584 *      bound to a channel before it is associated, but as it isn't associated
2585 *      yet it need not necessarily be given airtime, in particular since any
2586 *      transmission to a P2P GO needs to be synchronized against the GO's
2587 *      powersave state. mac80211 will call this function before transmitting a
2588 *      management frame prior to having successfully associated to allow the
2589 *      driver to give it channel time for the transmission, to get a response
2590 *      and to be able to synchronize with the GO.
2591 *      The callback will be called before each transmission and upon return
2592 *      mac80211 will transmit the frame right away.
2593 *      The callback is optional and can (should!) sleep.
2594 *
2595 * @add_chanctx: Notifies device driver about new channel context creation.
2596 * @remove_chanctx: Notifies device driver about channel context destruction.
2597 * @change_chanctx: Notifies device driver about channel context changes that
2598 *      may happen when combining different virtual interfaces on the same
2599 *      channel context with different settings
2600 * @assign_vif_chanctx: Notifies device driver about channel context being bound
2601 *      to vif. Possible use is for hw queue remapping.
2602 * @unassign_vif_chanctx: Notifies device driver about channel context being
2603 *      unbound from vif.
2604 * @start_ap: Start operation on the AP interface, this is called after all the
2605 *      information in bss_conf is set and beacon can be retrieved. A channel
2606 *      context is bound before this is called. Note that if the driver uses
2607 *      software scan or ROC, this (and @stop_ap) isn't called when the AP is
2608 *      just "paused" for scanning/ROC, which is indicated by the beacon being
2609 *      disabled/enabled via @bss_info_changed.
2610 * @stop_ap: Stop operation on the AP interface.
2611 *
2612 * @restart_complete: Called after a call to ieee80211_restart_hw(), when the
2613 *      reconfiguration has completed. This can help the driver implement the
2614 *      reconfiguration step. Also called when reconfiguring because the
2615 *      driver's resume function returned 1, as this is just like an "inline"
2616 *      hardware restart. This callback may sleep.
2617 *
2618 * @ipv6_addr_change: IPv6 address assignment on the given interface changed.
2619 *      Currently, this is only called for managed or P2P client interfaces.
2620 *      This callback is optional; it must not sleep.
2621 */
2622struct ieee80211_ops {
2623        void (*tx)(struct ieee80211_hw *hw,
2624                   struct ieee80211_tx_control *control,
2625                   struct sk_buff *skb);
2626        int (*start)(struct ieee80211_hw *hw);
2627        void (*stop)(struct ieee80211_hw *hw);
2628#ifdef CONFIG_PM
2629        int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan);
2630        int (*resume)(struct ieee80211_hw *hw);
2631        void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled);
2632#endif
2633        int (*add_interface)(struct ieee80211_hw *hw,
2634                             struct ieee80211_vif *vif);
2635        int (*change_interface)(struct ieee80211_hw *hw,
2636                                struct ieee80211_vif *vif,
2637                                enum nl80211_iftype new_type, bool p2p);
2638        void (*remove_interface)(struct ieee80211_hw *hw,
2639                                 struct ieee80211_vif *vif);
2640        int (*config)(struct ieee80211_hw *hw, u32 changed);
2641        void (*bss_info_changed)(struct ieee80211_hw *hw,
2642                                 struct ieee80211_vif *vif,
2643                                 struct ieee80211_bss_conf *info,
2644                                 u32 changed);
2645
2646        int (*start_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
2647        void (*stop_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
2648
2649        u64 (*prepare_multicast)(struct ieee80211_hw *hw,
2650                                 struct netdev_hw_addr_list *mc_list);
2651        void (*configure_filter)(struct ieee80211_hw *hw,
2652                                 unsigned int changed_flags,
2653                                 unsigned int *total_flags,
2654                                 u64 multicast);
2655        void (*set_multicast_list)(struct ieee80211_hw *hw,
2656                                   struct ieee80211_vif *vif, bool allmulti,
2657                                   struct netdev_hw_addr_list *mc_list);
2658
2659        int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
2660                       bool set);
2661        int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2662                       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2663                       struct ieee80211_key_conf *key);
2664        void (*update_tkip_key)(struct ieee80211_hw *hw,
2665                                struct ieee80211_vif *vif,
2666                                struct ieee80211_key_conf *conf,
2667                                struct ieee80211_sta *sta,
2668                                u32 iv32, u16 *phase1key);
2669        void (*set_rekey_data)(struct ieee80211_hw *hw,
2670                               struct ieee80211_vif *vif,
2671                               struct cfg80211_gtk_rekey_data *data);
2672        void (*set_default_unicast_key)(struct ieee80211_hw *hw,
2673                                        struct ieee80211_vif *vif, int idx);
2674        int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2675                       struct cfg80211_scan_request *req);
2676        void (*cancel_hw_scan)(struct ieee80211_hw *hw,
2677                               struct ieee80211_vif *vif);
2678        int (*sched_scan_start)(struct ieee80211_hw *hw,
2679                                struct ieee80211_vif *vif,
2680                                struct cfg80211_sched_scan_request *req,
2681                                struct ieee80211_sched_scan_ies *ies);
2682        void (*sched_scan_stop)(struct ieee80211_hw *hw,
2683                               struct ieee80211_vif *vif);
2684        void (*sw_scan_start)(struct ieee80211_hw *hw);
2685        void (*sw_scan_complete)(struct ieee80211_hw *hw);
2686        int (*get_stats)(struct ieee80211_hw *hw,
2687                         struct ieee80211_low_level_stats *stats);
2688        void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
2689                             u32 *iv32, u16 *iv16);
2690        int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
2691        int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
2692        int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2693                       struct ieee80211_sta *sta);
2694        int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2695                          struct ieee80211_sta *sta);
2696#ifdef CONFIG_MAC80211_DEBUGFS
2697        void (*sta_add_debugfs)(struct ieee80211_hw *hw,
2698                                struct ieee80211_vif *vif,
2699                                struct ieee80211_sta *sta,
2700                                struct dentry *dir);
2701        void (*sta_remove_debugfs)(struct ieee80211_hw *hw,
2702                                   struct ieee80211_vif *vif,
2703                                   struct ieee80211_sta *sta,
2704                                   struct dentry *dir);
2705#endif
2706        void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2707                        enum sta_notify_cmd, struct ieee80211_sta *sta);
2708        int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2709                         struct ieee80211_sta *sta,
2710                         enum ieee80211_sta_state old_state,
2711                         enum ieee80211_sta_state new_state);
2712        void (*sta_rc_update)(struct ieee80211_hw *hw,
2713                              struct ieee80211_vif *vif,
2714                              struct ieee80211_sta *sta,
2715                              u32 changed);
2716        int (*conf_tx)(struct ieee80211_hw *hw,
2717                       struct ieee80211_vif *vif, u16 ac,
2718                       const struct ieee80211_tx_queue_params *params);
2719        u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
2720        void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2721                        u64 tsf);
2722        void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
2723        int (*tx_last_beacon)(struct ieee80211_hw *hw);
2724        int (*ampdu_action)(struct ieee80211_hw *hw,
2725                            struct ieee80211_vif *vif,
2726                            enum ieee80211_ampdu_mlme_action action,
2727                            struct ieee80211_sta *sta, u16 tid, u16 *ssn,
2728                            u8 buf_size);
2729        int (*get_survey)(struct ieee80211_hw *hw, int idx,
2730                struct survey_info *survey);
2731        void (*rfkill_poll)(struct ieee80211_hw *hw);
2732        void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class);
2733#ifdef CONFIG_NL80211_TESTMODE
2734        int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
2735        int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb,
2736                             struct netlink_callback *cb,
2737                             void *data, int len);
2738#endif
2739        void (*flush)(struct ieee80211_hw *hw, u32 queues, bool drop);
2740        void (*channel_switch)(struct ieee80211_hw *hw,
2741                               struct ieee80211_channel_switch *ch_switch);
2742        int (*napi_poll)(struct ieee80211_hw *hw, int budget);
2743        int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
2744        int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
2745
2746        int (*remain_on_channel)(struct ieee80211_hw *hw,
2747                                 struct ieee80211_vif *vif,
2748                                 struct ieee80211_channel *chan,
2749                                 int duration,
2750                                 enum ieee80211_roc_type type);
2751        int (*cancel_remain_on_channel)(struct ieee80211_hw *hw);
2752        int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx);
2753        void (*get_ringparam)(struct ieee80211_hw *hw,
2754                              u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
2755        bool (*tx_frames_pending)(struct ieee80211_hw *hw);
2756        int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2757                                const struct cfg80211_bitrate_mask *mask);
2758        void (*rssi_callback)(struct ieee80211_hw *hw,
2759                              struct ieee80211_vif *vif,
2760                              enum ieee80211_rssi_event rssi_event);
2761
2762        void (*allow_buffered_frames)(struct ieee80211_hw *hw,
2763                                      struct ieee80211_sta *sta,
2764                                      u16 tids, int num_frames,
2765                                      enum ieee80211_frame_release_type reason,
2766                                      bool more_data);
2767        void (*release_buffered_frames)(struct ieee80211_hw *hw,
2768                                        struct ieee80211_sta *sta,
2769                                        u16 tids, int num_frames,
2770                                        enum ieee80211_frame_release_type reason,
2771                                        bool more_data);
2772
2773        int     (*get_et_sset_count)(struct ieee80211_hw *hw,
2774                                     struct ieee80211_vif *vif, int sset);
2775        void    (*get_et_stats)(struct ieee80211_hw *hw,
2776                                struct ieee80211_vif *vif,
2777                                struct ethtool_stats *stats, u64 *data);
2778        void    (*get_et_strings)(struct ieee80211_hw *hw,
2779                                  struct ieee80211_vif *vif,
2780                                  u32 sset, u8 *data);
2781        int     (*get_rssi)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2782                            struct ieee80211_sta *sta, s8 *rssi_dbm);
2783
2784        void    (*mgd_prepare_tx)(struct ieee80211_hw *hw,
2785                                  struct ieee80211_vif *vif);
2786
2787        int (*add_chanctx)(struct ieee80211_hw *hw,
2788                           struct ieee80211_chanctx_conf *ctx);
2789        void (*remove_chanctx)(struct ieee80211_hw *hw,
2790                               struct ieee80211_chanctx_conf *ctx);
2791        void (*change_chanctx)(struct ieee80211_hw *hw,
2792                               struct ieee80211_chanctx_conf *ctx,
2793                               u32 changed);
2794        int (*assign_vif_chanctx)(struct ieee80211_hw *hw,
2795                                  struct ieee80211_vif *vif,
2796                                  struct ieee80211_chanctx_conf *ctx);
2797        void (*unassign_vif_chanctx)(struct ieee80211_hw *hw,
2798                                     struct ieee80211_vif *vif,
2799                                     struct ieee80211_chanctx_conf *ctx);
2800
2801        void (*restart_complete)(struct ieee80211_hw *hw);
2802
2803#if IS_ENABLED(CONFIG_IPV6)
2804        void (*ipv6_addr_change)(struct ieee80211_hw *hw,
2805                                 struct ieee80211_vif *vif,
2806                                 struct inet6_dev *idev);
2807#endif
2808};
2809
2810/**
2811 * ieee80211_alloc_hw -  Allocate a new hardware device
2812 *
2813 * This must be called once for each hardware device. The returned pointer
2814 * must be used to refer to this device when calling other functions.
2815 * mac80211 allocates a private data area for the driver pointed to by
2816 * @priv in &struct ieee80211_hw, the size of this area is given as
2817 * @priv_data_len.
2818 *
2819 * @priv_data_len: length of private data
2820 * @ops: callbacks for this device
2821 *
2822 * Return: A pointer to the new hardware device, or %NULL on error.
2823 */
2824struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
2825                                        const struct ieee80211_ops *ops);
2826
2827/**
2828 * ieee80211_register_hw - Register hardware device
2829 *
2830 * You must call this function before any other functions in
2831 * mac80211. Note that before a hardware can be registered, you
2832 * need to fill the contained wiphy's information.
2833 *
2834 * @hw: the device to register as returned by ieee80211_alloc_hw()
2835 *
2836 * Return: 0 on success. An error code otherwise.
2837 */
2838int ieee80211_register_hw(struct ieee80211_hw *hw);
2839
2840/**
2841 * struct ieee80211_tpt_blink - throughput blink description
2842 * @throughput: throughput in Kbit/sec
2843 * @blink_time: blink time in milliseconds
2844 *      (full cycle, ie. one off + one on period)
2845 */
2846struct ieee80211_tpt_blink {
2847        int throughput;
2848        int blink_time;
2849};
2850
2851/**
2852 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags
2853 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio
2854 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working
2855 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one
2856 *      interface is connected in some way, including being an AP
2857 */
2858enum ieee80211_tpt_led_trigger_flags {
2859        IEEE80211_TPT_LEDTRIG_FL_RADIO          = BIT(0),
2860        IEEE80211_TPT_LEDTRIG_FL_WORK           = BIT(1),
2861        IEEE80211_TPT_LEDTRIG_FL_CONNECTED      = BIT(2),
2862};
2863
2864#ifdef CONFIG_MAC80211_LEDS
2865extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
2866extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
2867extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
2868extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
2869extern char *__ieee80211_create_tpt_led_trigger(
2870                                struct ieee80211_hw *hw, unsigned int flags,
2871                                const struct ieee80211_tpt_blink *blink_table,
2872                                unsigned int blink_table_len);
2873#endif
2874/**
2875 * ieee80211_get_tx_led_name - get name of TX LED
2876 *
2877 * mac80211 creates a transmit LED trigger for each wireless hardware
2878 * that can be used to drive LEDs if your driver registers a LED device.
2879 * This function returns the name (or %NULL if not configured for LEDs)
2880 * of the trigger so you can automatically link the LED device.
2881 *
2882 * @hw: the hardware to get the LED trigger name for
2883 *
2884 * Return: The name of the LED trigger. %NULL if not configured for LEDs.
2885 */
2886static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
2887{
2888#ifdef CONFIG_MAC80211_LEDS
2889        return __ieee80211_get_tx_led_name(hw);
2890#else
2891        return NULL;
2892#endif
2893}
2894
2895/**
2896 * ieee80211_get_rx_led_name - get name of RX LED
2897 *
2898 * mac80211 creates a receive LED trigger for each wireless hardware
2899 * that can be used to drive LEDs if your driver registers a LED device.
2900 * This function returns the name (or %NULL if not configured for LEDs)
2901 * of the trigger so you can automatically link the LED device.
2902 *
2903 * @hw: the hardware to get the LED trigger name for
2904 *
2905 * Return: The name of the LED trigger. %NULL if not configured for LEDs.
2906 */
2907static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
2908{
2909#ifdef CONFIG_MAC80211_LEDS
2910        return __ieee80211_get_rx_led_name(hw);
2911#else
2912        return NULL;
2913#endif
2914}
2915
2916/**
2917 * ieee80211_get_assoc_led_name - get name of association LED
2918 *
2919 * mac80211 creates a association LED trigger for each wireless hardware
2920 * that can be used to drive LEDs if your driver registers a LED device.
2921 * This function returns the name (or %NULL if not configured for LEDs)
2922 * of the trigger so you can automatically link the LED device.
2923 *
2924 * @hw: the hardware to get the LED trigger name for
2925 *
2926 * Return: The name of the LED trigger. %NULL if not configured for LEDs.
2927 */
2928static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
2929{
2930#ifdef CONFIG_MAC80211_LEDS
2931        return __ieee80211_get_assoc_led_name(hw);
2932#else
2933        return NULL;
2934#endif
2935}
2936
2937/**
2938 * ieee80211_get_radio_led_name - get name of radio LED
2939 *
2940 * mac80211 creates a radio change LED trigger for each wireless hardware
2941 * that can be used to drive LEDs if your driver registers a LED device.
2942 * This function returns the name (or %NULL if not configured for LEDs)
2943 * of the trigger so you can automatically link the LED device.
2944 *
2945 * @hw: the hardware to get the LED trigger name for
2946 *
2947 * Return: The name of the LED trigger. %NULL if not configured for LEDs.
2948 */
2949static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
2950{
2951#ifdef CONFIG_MAC80211_LEDS
2952        return __ieee80211_get_radio_led_name(hw);
2953#else
2954        return NULL;
2955#endif
2956}
2957
2958/**
2959 * ieee80211_create_tpt_led_trigger - create throughput LED trigger
2960 * @hw: the hardware to create the trigger for
2961 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags
2962 * @blink_table: the blink table -- needs to be ordered by throughput
2963 * @blink_table_len: size of the blink table
2964 *
2965 * Return: %NULL (in case of error, or if no LED triggers are
2966 * configured) or the name of the new trigger.
2967 *
2968 * Note: This function must be called before ieee80211_register_hw().
2969 */
2970static inline char *
2971ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags,
2972                                 const struct ieee80211_tpt_blink *blink_table,
2973                                 unsigned int blink_table_len)
2974{
2975#ifdef CONFIG_MAC80211_LEDS
2976        return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table,
2977                                                  blink_table_len);
2978#else
2979        return NULL;
2980#endif
2981}
2982
2983/**
2984 * ieee80211_unregister_hw - Unregister a hardware device
2985 *
2986 * This function instructs mac80211 to free allocated resources
2987 * and unregister netdevices from the networking subsystem.
2988 *
2989 * @hw: the hardware to unregister
2990 */
2991void ieee80211_unregister_hw(struct ieee80211_hw *hw);
2992
2993/**
2994 * ieee80211_free_hw - free hardware descriptor
2995 *
2996 * This function frees everything that was allocated, including the
2997 * private data for the driver. You must call ieee80211_unregister_hw()
2998 * before calling this function.
2999 *
3000 * @hw: the hardware to free
3001 */
3002void ieee80211_free_hw(struct ieee80211_hw *hw);
3003
3004/**
3005 * ieee80211_restart_hw - restart hardware completely
3006 *
3007 * Call this function when the hardware was restarted for some reason
3008 * (hardware error, ...) and the driver is unable to restore its state
3009 * by itself. mac80211 assumes that at this point the driver/hardware
3010 * is completely uninitialised and stopped, it starts the process by
3011 * calling the ->start() operation. The driver will need to reset all
3012 * internal state that it has prior to calling this function.
3013 *
3014 * @hw: the hardware to restart
3015 */
3016void ieee80211_restart_hw(struct ieee80211_hw *hw);
3017
3018/** ieee80211_napi_schedule - schedule NAPI poll
3019 *
3020 * Use this function to schedule NAPI polling on a device.
3021 *
3022 * @hw: the hardware to start polling
3023 */
3024void ieee80211_napi_schedule(struct ieee80211_hw *hw);
3025
3026/** ieee80211_napi_complete - complete NAPI polling
3027 *
3028 * Use this function to finish NAPI polling on a device.
3029 *
3030 * @hw: the hardware to stop polling
3031 */
3032void ieee80211_napi_complete(struct ieee80211_hw *hw);
3033
3034/**
3035 * ieee80211_rx - receive frame
3036 *
3037 * Use this function to hand received frames to mac80211. The receive
3038 * buffer in @skb must start with an IEEE 802.11 header. In case of a
3039 * paged @skb is used, the driver is recommended to put the ieee80211
3040 * header of the frame on the linear part of the @skb to avoid memory
3041 * allocation and/or memcpy by the stack.
3042 *
3043 * This function may not be called in IRQ context. Calls to this function
3044 * for a single hardware must be synchronized against each other. Calls to
3045 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
3046 * mixed for a single hardware. Must not run concurrently with
3047 * ieee80211_tx_status() or ieee80211_tx_status_ni().
3048 *
3049 * In process context use instead ieee80211_rx_ni().
3050 *
3051 * @hw: the hardware this frame came in on
3052 * @skb: the buffer to receive, owned by mac80211 after this call
3053 */
3054void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
3055
3056/**
3057 * ieee80211_rx_irqsafe - receive frame
3058 *
3059 * Like ieee80211_rx() but can be called in IRQ context
3060 * (internally defers to a tasklet.)
3061 *
3062 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
3063 * be mixed for a single hardware.Must not run concurrently with
3064 * ieee80211_tx_status() or ieee80211_tx_status_ni().
3065 *
3066 * @hw: the hardware this frame came in on
3067 * @skb: the buffer to receive, owned by mac80211 after this call
3068 */
3069void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
3070
3071/**
3072 * ieee80211_rx_ni - receive frame (in process context)
3073 *
3074 * Like ieee80211_rx() but can be called in process context
3075 * (internally disables bottom halves).
3076 *
3077 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
3078 * not be mixed for a single hardware. Must not run concurrently with
3079 * ieee80211_tx_status() or ieee80211_tx_status_ni().
3080 *
3081 * @hw: the hardware this frame came in on
3082 * @skb: the buffer to receive, owned by mac80211 after this call
3083 */
3084static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
3085                                   struct sk_buff *skb)
3086{
3087        local_bh_disable();
3088        ieee80211_rx(hw, skb);
3089        local_bh_enable();
3090}
3091
3092/**
3093 * ieee80211_sta_ps_transition - PS transition for connected sta
3094 *
3095 * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS
3096 * flag set, use this function to inform mac80211 about a connected station
3097 * entering/leaving PS mode.
3098 *
3099 * This function may not be called in IRQ context or with softirqs enabled.
3100 *
3101 * Calls to this function for a single hardware must be synchronized against
3102 * each other.
3103 *
3104 * @sta: currently connected sta
3105 * @start: start or stop PS
3106 *
3107 * Return: 0 on success. -EINVAL when the requested PS mode is already set.
3108 */
3109int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start);
3110
3111/**
3112 * ieee80211_sta_ps_transition_ni - PS transition for connected sta
3113 *                                  (in process context)
3114 *
3115 * Like ieee80211_sta_ps_transition() but can be called in process context
3116 * (internally disables bottom halves). Concurrent call restriction still
3117 * applies.
3118 *
3119 * @sta: currently connected sta
3120 * @start: start or stop PS
3121 *
3122 * Return: Like ieee80211_sta_ps_transition().
3123 */
3124static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta,
3125                                                  bool start)
3126{
3127        int ret;
3128
3129        local_bh_disable();
3130        ret = ieee80211_sta_ps_transition(sta, start);
3131        local_bh_enable();
3132
3133        return ret;
3134}
3135
3136/*
3137 * The TX headroom reserved by mac80211 for its own tx_status functions.
3138 * This is enough for the radiotap header.
3139 */
3140#define IEEE80211_TX_STATUS_HEADROOM    14
3141
3142/**
3143 * ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames
3144 * @sta: &struct ieee80211_sta pointer for the sleeping station
3145 * @tid: the TID that has buffered frames
3146 * @buffered: indicates whether or not frames are buffered for this TID
3147 *
3148 * If a driver buffers frames for a powersave station instead of passing
3149 * them back to mac80211 for retransmission, the station may still need
3150 * to be told that there are buffered frames via the TIM bit.
3151 *
3152 * This function informs mac80211 whether or not there are frames that are
3153 * buffered in the driver for a given TID; mac80211 can then use this data
3154 * to set the TIM bit (NOTE: This may call back into the driver's set_tim
3155 * call! Beware of the locking!)
3156 *
3157 * If all frames are released to the station (due to PS-poll or uAPSD)
3158 * then the driver needs to inform mac80211 that there no longer are
3159 * frames buffered. However, when the station wakes up mac80211 assumes
3160 * that all buffered frames will be transmitted and clears this data,
3161 * drivers need to make sure they inform mac80211 about all buffered
3162 * frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP).
3163 *
3164 * Note that technically mac80211 only needs to know this per AC, not per
3165 * TID, but since driver buffering will inevitably happen per TID (since
3166 * it is related to aggregation) it is easier to make mac80211 map the
3167 * TID to the AC as required instead of keeping track in all drivers that
3168 * use this API.
3169 */
3170void ieee80211_sta_set_buffered(struct ieee80211_sta *sta,
3171                                u8 tid, bool buffered);
3172
3173/**
3174 * ieee80211_get_tx_rates - get the selected transmit rates for a packet
3175 *
3176 * Call this function in a driver with per-packet rate selection support
3177 * to combine the rate info in the packet tx info with the most recent
3178 * rate selection table for the station entry.
3179 *
3180 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3181 * @sta: the receiver station to which this packet is sent.
3182 * @skb: the frame to be transmitted.
3183 * @dest: buffer for extracted rate/retry information
3184 * @max_rates: maximum number of rates to fetch
3185 */
3186void ieee80211_get_tx_rates(struct ieee80211_vif *vif,
3187                            struct ieee80211_sta *sta,
3188                            struct sk_buff *skb,
3189                            struct ieee80211_tx_rate *dest,
3190                            int max_rates);
3191
3192/**
3193 * ieee80211_tx_status - transmit status callback
3194 *
3195 * Call this function for all transmitted frames after they have been
3196 * transmitted. It is permissible to not call this function for
3197 * multicast frames but this can affect statistics.
3198 *
3199 * This function may not be called in IRQ context. Calls to this function
3200 * for a single hardware must be synchronized against each other. Calls
3201 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe()
3202 * may not be mixed for a single hardware. Must not run concurrently with
3203 * ieee80211_rx() or ieee80211_rx_ni().
3204 *
3205 * @hw: the hardware the frame was transmitted by
3206 * @skb: the frame that was transmitted, owned by mac80211 after this call
3207 */
3208void ieee80211_tx_status(struct ieee80211_hw *hw,
3209                         struct sk_buff *skb);
3210
3211/**
3212 * ieee80211_tx_status_ni - transmit status callback (in process context)
3213 *
3214 * Like ieee80211_tx_status() but can be called in process context.
3215 *
3216 * Calls to this function, ieee80211_tx_status() and
3217 * ieee80211_tx_status_irqsafe() may not be mixed
3218 * for a single hardware.
3219 *
3220 * @hw: the hardware the frame was transmitted by
3221 * @skb: the frame that was transmitted, owned by mac80211 after this call
3222 */
3223static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw,
3224                                          struct sk_buff *skb)
3225{
3226        local_bh_disable();
3227        ieee80211_tx_status(hw, skb);
3228        local_bh_enable();
3229}
3230
3231/**
3232 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
3233 *
3234 * Like ieee80211_tx_status() but can be called in IRQ context
3235 * (internally defers to a tasklet.)
3236 *
3237 * Calls to this function, ieee80211_tx_status() and
3238 * ieee80211_tx_status_ni() may not be mixed for a single hardware.
3239 *
3240 * @hw: the hardware the frame was transmitted by
3241 * @skb: the frame that was transmitted, owned by mac80211 after this call
3242 */
3243void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
3244                                 struct sk_buff *skb);
3245
3246/**
3247 * ieee80211_report_low_ack - report non-responding station
3248 *
3249 * When operating in AP-mode, call this function to report a non-responding
3250 * connected STA.
3251 *
3252 * @sta: the non-responding connected sta
3253 * @num_packets: number of packets sent to @sta without a response
3254 */
3255void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets);
3256
3257/**
3258 * ieee80211_beacon_get_tim - beacon generation function
3259 * @hw: pointer obtained from ieee80211_alloc_hw().
3260 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3261 * @tim_offset: pointer to variable that will receive the TIM IE offset.
3262 *      Set to 0 if invalid (in non-AP modes).
3263 * @tim_length: pointer to variable that will receive the TIM IE length,
3264 *      (including the ID and length bytes!).
3265 *      Set to 0 if invalid (in non-AP modes).
3266 *
3267 * If the driver implements beaconing modes, it must use this function to
3268 * obtain the beacon frame/template.
3269 *
3270 * If the beacon frames are generated by the host system (i.e., not in
3271 * hardware/firmware), the driver uses this function to get each beacon
3272 * frame from mac80211 -- it is responsible for calling this function
3273 * before the beacon is needed (e.g. based on hardware interrupt).
3274 *
3275 * If the beacon frames are generated by the device, then the driver
3276 * must use the returned beacon as the template and change the TIM IE
3277 * according to the current DTIM parameters/TIM bitmap.
3278 *
3279 * The driver is responsible for freeing the returned skb.
3280 *
3281 * Return: The beacon template. %NULL on error.
3282 */
3283struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
3284                                         struct ieee80211_vif *vif,
3285                                         u16 *tim_offset, u16 *tim_length);
3286
3287/**
3288 * ieee80211_beacon_get - beacon generation function
3289 * @hw: pointer obtained from ieee80211_alloc_hw().
3290 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3291 *
3292 * See ieee80211_beacon_get_tim().
3293 *
3294 * Return: See ieee80211_beacon_get_tim().
3295 */
3296static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
3297                                                   struct ieee80211_vif *vif)
3298{
3299        return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
3300}
3301
3302/**
3303 * ieee80211_proberesp_get - retrieve a Probe Response template
3304 * @hw: pointer obtained from ieee80211_alloc_hw().
3305 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3306 *
3307 * Creates a Probe Response template which can, for example, be uploaded to
3308 * hardware. The destination address should be set by the caller.
3309 *
3310 * Can only be called in AP mode.
3311 *
3312 * Return: The Probe Response template. %NULL on error.
3313 */
3314struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw,
3315                                        struct ieee80211_vif *vif);
3316
3317/**
3318 * ieee80211_pspoll_get - retrieve a PS Poll template
3319 * @hw: pointer obtained from ieee80211_alloc_hw().
3320 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3321 *
3322 * Creates a PS Poll a template which can, for example, uploaded to
3323 * hardware. The template must be updated after association so that correct
3324 * AID, BSSID and MAC address is used.
3325 *
3326 * Note: Caller (or hardware) is responsible for setting the
3327 * &IEEE80211_FCTL_PM bit.
3328 *
3329 * Return: The PS Poll template. %NULL on error.
3330 */
3331struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
3332                                     struct ieee80211_vif *vif);
3333
3334/**
3335 * ieee80211_nullfunc_get - retrieve a nullfunc template
3336 * @hw: pointer obtained from ieee80211_alloc_hw().
3337 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3338 *
3339 * Creates a Nullfunc template which can, for example, uploaded to
3340 * hardware. The template must be updated after association so that correct
3341 * BSSID and address is used.
3342 *
3343 * Note: Caller (or hardware) is responsible for setting the
3344 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields.
3345 *
3346 * Return: The nullfunc template. %NULL on error.
3347 */
3348struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
3349                                       struct ieee80211_vif *vif);
3350
3351/**
3352 * ieee80211_probereq_get - retrieve a Probe Request template
3353 * @hw: pointer obtained from ieee80211_alloc_hw().
3354 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3355 * @ssid: SSID buffer
3356 * @ssid_len: length of SSID
3357 * @tailroom: tailroom to reserve at end of SKB for IEs
3358 *
3359 * Creates a Probe Request template which can, for example, be uploaded to
3360 * hardware.
3361 *
3362 * Return: The Probe Request template. %NULL on error.
3363 */
3364struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
3365                                       struct ieee80211_vif *vif,
3366                                       const u8 *ssid, size_t ssid_len,
3367                                       size_t tailroom);
3368
3369/**
3370 * ieee80211_rts_get - RTS frame generation function
3371 * @hw: pointer obtained from ieee80211_alloc_hw().
3372 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3373 * @frame: pointer to the frame that is going to be protected by the RTS.
3374 * @frame_len: the frame length (in octets).
3375 * @frame_txctl: &struct ieee80211_tx_info of the frame.
3376 * @rts: The buffer where to store the RTS frame.
3377 *
3378 * If the RTS frames are generated by the host system (i.e., not in
3379 * hardware/firmware), the low-level driver uses this function to receive
3380 * the next RTS frame from the 802.11 code. The low-level is responsible
3381 * for calling this function before and RTS frame is needed.
3382 */
3383void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
3384                       const void *frame, size_t frame_len,
3385                       const struct ieee80211_tx_info *frame_txctl,
3386                       struct ieee80211_rts *rts);
3387
3388/**
3389 * ieee80211_rts_duration - Get the duration field for an RTS frame
3390 * @hw: pointer obtained from ieee80211_alloc_hw().
3391 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3392 * @frame_len: the length of the frame that is going to be protected by the RTS.
3393 * @frame_txctl: &struct ieee80211_tx_info of the frame.
3394 *
3395 * If the RTS is generated in firmware, but the host system must provide
3396 * the duration field, the low-level driver uses this function to receive
3397 * the duration field value in little-endian byteorder.
3398 *
3399 * Return: The duration.
3400 */
3401__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
3402                              struct ieee80211_vif *vif, size_t frame_len,
3403                              const struct ieee80211_tx_info *frame_txctl);
3404
3405/**
3406 * ieee80211_ctstoself_get - CTS-to-self frame generation function
3407 * @hw: pointer obtained from ieee80211_alloc_hw().
3408 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3409 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
3410 * @frame_len: the frame length (in octets).
3411 * @frame_txctl: &struct ieee80211_tx_info of the frame.
3412 * @cts: The buffer where to store the CTS-to-self frame.
3413 *
3414 * If the CTS-to-self frames are generated by the host system (i.e., not in
3415 * hardware/firmware), the low-level driver uses this function to receive
3416 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
3417 * for calling this function before and CTS-to-self frame is needed.
3418 */
3419void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
3420                             struct ieee80211_vif *vif,
3421                             const void *frame, size_t frame_len,
3422                             const struct ieee80211_tx_info *frame_txctl,
3423                             struct ieee80211_cts *cts);
3424
3425/**
3426 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
3427 * @hw: pointer obtained from ieee80211_alloc_hw().
3428 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3429 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
3430 * @frame_txctl: &struct ieee80211_tx_info of the frame.
3431 *
3432 * If the CTS-to-self is generated in firmware, but the host system must provide
3433 * the duration field, the low-level driver uses this function to receive
3434 * the duration field value in little-endian byteorder.
3435 *
3436 * Return: The duration.
3437 */
3438__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
3439                                    struct ieee80211_vif *vif,
3440                                    size_t frame_len,
3441                                    const struct ieee80211_tx_info *frame_txctl);
3442
3443/**
3444 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
3445 * @hw: pointer obtained from ieee80211_alloc_hw().
3446 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3447 * @band: the band to calculate the frame duration on
3448 * @frame_len: the length of the frame.
3449 * @rate: the rate at which the frame is going to be transmitted.
3450 *
3451 * Calculate the duration field of some generic frame, given its
3452 * length and transmission rate (in 100kbps).
3453 *
3454 * Return: The duration.
3455 */
3456__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
3457                                        struct ieee80211_vif *vif,
3458                                        enum ieee80211_band band,
3459                                        size_t frame_len,
3460                                        struct ieee80211_rate *rate);
3461
3462/**
3463 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
3464 * @hw: pointer as obtained from ieee80211_alloc_hw().
3465 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3466 *
3467 * Function for accessing buffered broadcast and multicast frames. If
3468 * hardware/firmware does not implement buffering of broadcast/multicast
3469 * frames when power saving is used, 802.11 code buffers them in the host
3470 * memory. The low-level driver uses this function to fetch next buffered
3471 * frame. In most cases, this is used when generating beacon frame.
3472 *
3473 * Return: A pointer to the next buffered skb or NULL if no more buffered
3474 * frames are available.
3475 *
3476 * Note: buffered frames are returned only after DTIM beacon frame was
3477 * generated with ieee80211_beacon_get() and the low-level driver must thus
3478 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
3479 * NULL if the previous generated beacon was not DTIM, so the low-level driver
3480 * does not need to check for DTIM beacons separately and should be able to
3481 * use common code for all beacons.
3482 */
3483struct sk_buff *
3484ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
3485
3486/**
3487 * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32
3488 *
3489 * This function returns the TKIP phase 1 key for the given IV32.
3490 *
3491 * @keyconf: the parameter passed with the set key
3492 * @iv32: IV32 to get the P1K for
3493 * @p1k: a buffer to which the key will be written, as 5 u16 values
3494 */
3495void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf,
3496                               u32 iv32, u16 *p1k);
3497
3498/**
3499 * ieee80211_get_tkip_p1k - get a TKIP phase 1 key
3500 *
3501 * This function returns the TKIP phase 1 key for the IV32 taken
3502 * from the given packet.
3503 *
3504 * @keyconf: the parameter passed with the set key
3505 * @skb: the packet to take the IV32 value from that will be encrypted
3506 *      with this P1K
3507 * @p1k: a buffer to which the key will be written, as 5 u16 values
3508 */
3509static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf,
3510                                          struct sk_buff *skb, u16 *p1k)
3511{
3512        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3513        const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
3514        u32 iv32 = get_unaligned_le32(&data[4]);
3515
3516        ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k);
3517}
3518
3519/**
3520 * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX
3521 *
3522 * This function returns the TKIP phase 1 key for the given IV32
3523 * and transmitter address.
3524 *
3525 * @keyconf: the parameter passed with the set key
3526 * @ta: TA that will be used with the key
3527 * @iv32: IV32 to get the P1K for
3528 * @p1k: a buffer to which the key will be written, as 5 u16 values
3529 */
3530void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf,
3531                               const u8 *ta, u32 iv32, u16 *p1k);
3532
3533/**
3534 * ieee80211_get_tkip_p2k - get a TKIP phase 2 key
3535 *
3536 * This function computes the TKIP RC4 key for the IV values
3537 * in the packet.
3538 *
3539 * @keyconf: the parameter passed with the set key
3540 * @skb: the packet to take the IV32/IV16 values from that will be
3541 *      encrypted with this key
3542 * @p2k: a buffer to which the key will be written, 16 bytes
3543 */
3544void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf,
3545                            struct sk_buff *skb, u8 *p2k);
3546
3547/**
3548 * ieee80211_aes_cmac_calculate_k1_k2 - calculate the AES-CMAC sub keys
3549 *
3550 * This function computes the two AES-CMAC sub-keys, based on the
3551 * previously installed master key.
3552 *
3553 * @keyconf: the parameter passed with the set key
3554 * @k1: a buffer to be filled with the 1st sub-key
3555 * @k2: a buffer to be filled with the 2nd sub-key
3556 */
3557void ieee80211_aes_cmac_calculate_k1_k2(struct ieee80211_key_conf *keyconf,
3558                                        u8 *k1, u8 *k2);
3559
3560/**
3561 * struct ieee80211_key_seq - key sequence counter
3562 *
3563 * @tkip: TKIP data, containing IV32 and IV16 in host byte order
3564 * @ccmp: PN data, most significant byte first (big endian,
3565 *      reverse order than in packet)
3566 * @aes_cmac: PN data, most significant byte first (big endian,
3567 *      reverse order than in packet)
3568 */
3569struct ieee80211_key_seq {
3570        union {
3571                struct {
3572                        u32 iv32;
3573                        u16 iv16;
3574                } tkip;
3575                struct {
3576                        u8 pn[6];
3577                } ccmp;
3578                struct {
3579                        u8 pn[6];
3580                } aes_cmac;
3581        };
3582};
3583
3584/**
3585 * ieee80211_get_key_tx_seq - get key TX sequence counter
3586 *
3587 * @keyconf: the parameter passed with the set key
3588 * @seq: buffer to receive the sequence data
3589 *
3590 * This function allows a driver to retrieve the current TX IV/PN
3591 * for the given key. It must not be called if IV generation is
3592 * offloaded to the device.
3593 *
3594 * Note that this function may only be called when no TX processing
3595 * can be done concurrently, for example when queues are stopped
3596 * and the stop has been synchronized.
3597 */
3598void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
3599                              struct ieee80211_key_seq *seq);
3600
3601/**
3602 * ieee80211_get_key_rx_seq - get key RX sequence counter
3603 *
3604 * @keyconf: the parameter passed with the set key
3605 * @tid: The TID, or -1 for the management frame value (CCMP only);
3606 *      the value on TID 0 is also used for non-QoS frames. For
3607 *      CMAC, only TID 0 is valid.
3608 * @seq: buffer to receive the sequence data
3609 *
3610 * This function allows a driver to retrieve the current RX IV/PNs
3611 * for the given key. It must not be called if IV checking is done
3612 * by the device and not by mac80211.
3613 *
3614 * Note that this function may only be called when no RX processing
3615 * can be done concurrently.
3616 */
3617void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
3618                              int tid, struct ieee80211_key_seq *seq);
3619
3620/**
3621 * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying
3622 * @vif: virtual interface the rekeying was done on
3623 * @bssid: The BSSID of the AP, for checking association
3624 * @replay_ctr: the new replay counter after GTK rekeying
3625 * @gfp: allocation flags
3626 */
3627void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
3628                                const u8 *replay_ctr, gfp_t gfp);
3629
3630/**
3631 * ieee80211_wake_queue - wake specific queue
3632 * @hw: pointer as obtained from ieee80211_alloc_hw().
3633 * @queue: queue number (counted from zero).
3634 *
3635 * Drivers should use this function instead of netif_wake_queue.
3636 */
3637void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
3638
3639/**
3640 * ieee80211_stop_queue - stop specific queue
3641 * @hw: pointer as obtained from ieee80211_alloc_hw().
3642 * @queue: queue number (counted from zero).
3643 *
3644 * Drivers should use this function instead of netif_stop_queue.
3645 */
3646void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
3647
3648/**
3649 * ieee80211_queue_stopped - test status of the queue
3650 * @hw: pointer as obtained from ieee80211_alloc_hw().
3651 * @queue: queue number (counted from zero).
3652 *
3653 * Drivers should use this function instead of netif_stop_queue.
3654 *
3655 * Return: %true if the queue is stopped. %false otherwise.
3656 */
3657
3658int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
3659
3660/**
3661 * ieee80211_stop_queues - stop all queues
3662 * @hw: pointer as obtained from ieee80211_alloc_hw().
3663 *
3664 * Drivers should use this function instead of netif_stop_queue.
3665 */
3666void ieee80211_stop_queues(struct ieee80211_hw *hw);
3667
3668/**
3669 * ieee80211_wake_queues - wake all queues
3670 * @hw: pointer as obtained from ieee80211_alloc_hw().
3671 *
3672 * Drivers should use this function instead of netif_wake_queue.
3673 */
3674void ieee80211_wake_queues(struct ieee80211_hw *hw);
3675
3676/**
3677 * ieee80211_scan_completed - completed hardware scan
3678 *
3679 * When hardware scan offload is used (i.e. the hw_scan() callback is
3680 * assigned) this function needs to be called by the driver to notify
3681 * mac80211 that the scan finished. This function can be called from
3682 * any context, including hardirq context.
3683 *
3684 * @hw: the hardware that finished the scan
3685 * @aborted: set to true if scan was aborted
3686 */
3687void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
3688
3689/**
3690 * ieee80211_sched_scan_results - got results from scheduled scan
3691 *
3692 * When a scheduled scan is running, this function needs to be called by the
3693 * driver whenever there are new scan results available.
3694 *
3695 * @hw: the hardware that is performing scheduled scans
3696 */
3697void ieee80211_sched_scan_results(struct ieee80211_hw *hw);
3698
3699/**
3700 * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped
3701 *
3702 * When a scheduled scan is running, this function can be called by
3703 * the driver if it needs to stop the scan to perform another task.
3704 * Usual scenarios are drivers that cannot continue the scheduled scan
3705 * while associating, for instance.
3706 *
3707 * @hw: the hardware that is performing scheduled scans
3708 */
3709void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw);
3710
3711/**
3712 * enum ieee80211_interface_iteration_flags - interface iteration flags
3713 * @IEEE80211_IFACE_ITER_NORMAL: Iterate over all interfaces that have
3714 *      been added to the driver; However, note that during hardware
3715 *      reconfiguration (after restart_hw) it will iterate over a new
3716 *      interface and over all the existing interfaces even if they
3717 *      haven't been re-added to the driver yet.
3718 * @IEEE80211_IFACE_ITER_RESUME_ALL: During resume, iterate over all
3719 *      interfaces, even if they haven't been re-added to the driver yet.
3720 */
3721enum ieee80211_interface_iteration_flags {
3722        IEEE80211_IFACE_ITER_NORMAL     = 0,
3723        IEEE80211_IFACE_ITER_RESUME_ALL = BIT(0),
3724};
3725
3726/**
3727 * ieee80211_iterate_active_interfaces - iterate active interfaces
3728 *
3729 * This function iterates over the interfaces associated with a given
3730 * hardware that are currently active and calls the callback for them.
3731 * This function allows the iterator function to sleep, when the iterator
3732 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
3733 * be used.
3734 * Does not iterate over a new interface during add_interface().
3735 *
3736 * @hw: the hardware struct of which the interfaces should be iterated over
3737 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags
3738 * @iterator: the iterator function to call
3739 * @data: first argument of the iterator function
3740 */
3741void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
3742                                         u32 iter_flags,
3743                                         void (*iterator)(void *data, u8 *mac,
3744                                                struct ieee80211_vif *vif),
3745                                         void *data);
3746
3747/**
3748 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
3749 *
3750 * This function iterates over the interfaces associated with a given
3751 * hardware that are currently active and calls the callback for them.
3752 * This function requires the iterator callback function to be atomic,
3753 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
3754 * Does not iterate over a new interface during add_interface().
3755 *
3756 * @hw: the hardware struct of which the interfaces should be iterated over
3757 * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags
3758 * @iterator: the iterator function to call, cannot sleep
3759 * @data: first argument of the iterator function
3760 */
3761void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
3762                                                u32 iter_flags,
3763                                                void (*iterator)(void *data,
3764                                                    u8 *mac,
3765                                                    struct ieee80211_vif *vif),
3766                                                void *data);
3767
3768/**
3769 * ieee80211_queue_work - add work onto the mac80211 workqueue
3770 *
3771 * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
3772 * This helper ensures drivers are not queueing work when they should not be.
3773 *
3774 * @hw: the hardware struct for the interface we are adding work for
3775 * @work: the work we want to add onto the mac80211 workqueue
3776 */
3777void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
3778
3779/**
3780 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
3781 *
3782 * Drivers and mac80211 use this to queue delayed work onto the mac80211
3783 * workqueue.
3784 *
3785 * @hw: the hardware struct for the interface we are adding work for
3786 * @dwork: delayable work to queue onto the mac80211 workqueue
3787 * @delay: number of jiffies to wait before queueing
3788 */
3789void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
3790                                  struct delayed_work *dwork,
3791                                  unsigned long delay);
3792
3793/**
3794 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
3795 * @sta: the station for which to start a BA session
3796 * @tid: the TID to BA on.
3797 * @timeout: session timeout value (in TUs)
3798 *
3799 * Return: success if addBA request was sent, failure otherwise
3800 *
3801 * Although mac80211/low level driver/user space application can estimate
3802 * the need to start aggregation on a certain RA/TID, the session level
3803 * will be managed by the mac80211.
3804 */
3805int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid,
3806                                  u16 timeout);
3807
3808/**
3809 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
3810 * @vif: &struct ieee80211_vif pointer from the add_interface callback
3811 * @ra: receiver address of the BA session recipient.
3812 * @tid: the TID to BA on.
3813 *
3814 * This function must be called by low level driver once it has
3815 * finished with preparations for the BA session. It can be called
3816 * from any context.
3817 */
3818void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
3819                                      u16 tid);
3820
3821/**
3822 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
3823 * @sta: the station whose BA session to stop
3824 * @tid: the TID to stop BA.
3825 *
3826 * Return: negative error if the TID is invalid, or no aggregation active
3827 *
3828 * Although mac80211/low level driver/user space application can estimate
3829 * the need to stop aggregation on a certain RA/TID, the session level
3830 * will be managed by the mac80211.
3831 */
3832int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
3833
3834/**
3835 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
3836 * @vif: &struct ieee80211_vif pointer from the add_interface callback
3837 * @ra: receiver address of the BA session recipient.
3838 * @tid: the desired TID to BA on.
3839 *
3840 * This function must be called by low level driver once it has
3841 * finished with preparations for the BA session tear down. It
3842 * can be called from any context.
3843 */
3844void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
3845                                     u16 tid);
3846
3847/**
3848 * ieee80211_find_sta - find a station
3849 *
3850 * @vif: virtual interface to look for station on
3851 * @addr: station's address
3852 *
3853 * Return: The station, if found. %NULL otherwise.
3854 *
3855 * Note: This function must be called under RCU lock and the
3856 * resulting pointer is only valid under RCU lock as well.
3857 */
3858struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
3859                                         const u8 *addr);
3860
3861/**
3862 * ieee80211_find_sta_by_ifaddr - find a station on hardware
3863 *
3864 * @hw: pointer as obtained from ieee80211_alloc_hw()
3865 * @addr: remote station's address
3866 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'.
3867 *
3868 * Return: The station, if found. %NULL otherwise.
3869 *
3870 * Note: This function must be called under RCU lock and the
3871 * resulting pointer is only valid under RCU lock as well.
3872 *
3873 * NOTE: You may pass NULL for localaddr, but then you will just get
3874 *      the first STA that matches the remote address 'addr'.
3875 *      We can have multiple STA associated with multiple
3876 *      logical stations (e.g. consider a station connecting to another
3877 *      BSSID on the same AP hardware without disconnecting first).
3878 *      In this case, the result of this method with localaddr NULL
3879 *      is not reliable.
3880 *
3881 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.
3882 */
3883struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
3884                                               const u8 *addr,
3885                                               const u8 *localaddr);
3886
3887/**
3888 * ieee80211_sta_block_awake - block station from waking up
3889 * @hw: the hardware
3890 * @pubsta: the station
3891 * @block: whether to block or unblock
3892 *
3893 * Some devices require that all frames that are on the queues
3894 * for a specific station that went to sleep are flushed before
3895 * a poll response or frames after the station woke up can be
3896 * delivered to that it. Note that such frames must be rejected
3897 * by the driver as filtered, with the appropriate status flag.
3898 *
3899 * This function allows implementing this mode in a race-free
3900 * manner.
3901 *
3902 * To do this, a driver must keep track of the number of frames
3903 * still enqueued for a specific station. If this number is not
3904 * zero when the station goes to sleep, the driver must call
3905 * this function to force mac80211 to consider the station to
3906 * be asleep regardless of the station's actual state. Once the
3907 * number of outstanding frames reaches zero, the driver must
3908 * call this function again to unblock the station. That will
3909 * cause mac80211 to be able to send ps-poll responses, and if
3910 * the station queried in the meantime then frames will also
3911 * be sent out as a result of this. Additionally, the driver
3912 * will be notified that the station woke up some time after
3913 * it is unblocked, regardless of whether the station actually
3914 * woke up while blocked or not.
3915 */
3916void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
3917                               struct ieee80211_sta *pubsta, bool block);
3918
3919/**
3920 * ieee80211_sta_eosp - notify mac80211 about end of SP
3921 * @pubsta: the station
3922 *
3923 * When a device transmits frames in a way that it can't tell
3924 * mac80211 in the TX status about the EOSP, it must clear the
3925 * %IEEE80211_TX_STATUS_EOSP bit and call this function instead.
3926 * This applies for PS-Poll as well as uAPSD.
3927 *
3928 * Note that just like with _tx_status() and _rx() drivers must
3929 * not mix calls to irqsafe/non-irqsafe versions, this function
3930 * must not be mixed with those either. Use the all irqsafe, or
3931 * all non-irqsafe, don't mix!
3932 *
3933 * NB: the _irqsafe version of this function doesn't exist, no
3934 *     driver needs it right now. Don't call this function if
3935 *     you'd need the _irqsafe version, look at the git history
3936 *     and restore the _irqsafe version!
3937 */
3938void ieee80211_sta_eosp(struct ieee80211_sta *pubsta);
3939
3940/**
3941 * ieee80211_iter_keys - iterate keys programmed into the device
3942 * @hw: pointer obtained from ieee80211_alloc_hw()
3943 * @vif: virtual interface to iterate, may be %NULL for all
3944 * @iter: iterator function that will be called for each key
3945 * @iter_data: custom data to pass to the iterator function
3946 *
3947 * This function can be used to iterate all the keys known to
3948 * mac80211, even those that weren't previously programmed into
3949 * the device. This is intended for use in WoWLAN if the device
3950 * needs reprogramming of the keys during suspend. Note that due
3951 * to locking reasons, it is also only safe to call this at few
3952 * spots since it must hold the RTNL and be able to sleep.
3953 *
3954 * The order in which the keys are iterated matches the order
3955 * in which they were originally installed and handed to the
3956 * set_key callback.
3957 */
3958void ieee80211_iter_keys(struct ieee80211_hw *hw,
3959                         struct ieee80211_vif *vif,
3960                         void (*iter)(struct ieee80211_hw *hw,
3961                                      struct ieee80211_vif *vif,
3962                                      struct ieee80211_sta *sta,
3963                                      struct ieee80211_key_conf *key,
3964                                      void *data),
3965                         void *iter_data);
3966
3967/**
3968 * ieee80211_iter_chan_contexts_atomic - iterate channel contexts
3969 * @hw: pointre obtained from ieee80211_alloc_hw().
3970 * @iter: iterator function
3971 * @iter_data: data passed to iterator function
3972 *
3973 * Iterate all active channel contexts. This function is atomic and
3974 * doesn't acquire any locks internally that might be held in other
3975 * places while calling into the driver.
3976 *
3977 * The iterator will not find a context that's being added (during
3978 * the driver callback to add it) but will find it while it's being
3979 * removed.
3980 *
3981 * Note that during hardware restart, all contexts that existed
3982 * before the restart are considered already present so will be
3983 * found while iterating, whether they've been re-added already
3984 * or not.
3985 */
3986void ieee80211_iter_chan_contexts_atomic(
3987        struct ieee80211_hw *hw,
3988        void (*iter)(struct ieee80211_hw *hw,
3989                     struct ieee80211_chanctx_conf *chanctx_conf,
3990                     void *data),
3991        void *iter_data);
3992
3993/**
3994 * ieee80211_ap_probereq_get - retrieve a Probe Request template
3995 * @hw: pointer obtained from ieee80211_alloc_hw().
3996 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
3997 *
3998 * Creates a Probe Request template which can, for example, be uploaded to
3999 * hardware. The template is filled with bssid, ssid and supported rate
4000 * information. This function must only be called from within the
4001 * .bss_info_changed callback function and only in managed mode. The function
4002 * is only useful when the interface is associated, otherwise it will return
4003 * %NULL.
4004 *
4005 * Return: The Probe Request template. %NULL on error.
4006 */
4007struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw,
4008                                          struct ieee80211_vif *vif);
4009
4010/**
4011 * ieee80211_beacon_loss - inform hardware does not receive beacons
4012 *
4013 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4014 *
4015 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER and
4016 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the
4017 * hardware is not receiving beacons with this function.
4018 */
4019void ieee80211_beacon_loss(struct ieee80211_vif *vif);
4020
4021/**
4022 * ieee80211_connection_loss - inform hardware has lost connection to the AP
4023 *
4024 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4025 *
4026 * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER, and
4027 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver
4028 * needs to inform if the connection to the AP has been lost.
4029 * The function may also be called if the connection needs to be terminated
4030 * for some other reason, even if %IEEE80211_HW_CONNECTION_MONITOR isn't set.
4031 *
4032 * This function will cause immediate change to disassociated state,
4033 * without connection recovery attempts.
4034 */
4035void ieee80211_connection_loss(struct ieee80211_vif *vif);
4036
4037/**
4038 * ieee80211_resume_disconnect - disconnect from AP after resume
4039 *
4040 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4041 *
4042 * Instructs mac80211 to disconnect from the AP after resume.
4043 * Drivers can use this after WoWLAN if they know that the
4044 * connection cannot be kept up, for example because keys were
4045 * used while the device was asleep but the replay counters or
4046 * similar cannot be retrieved from the device during resume.
4047 *
4048 * Note that due to implementation issues, if the driver uses
4049 * the reconfiguration functionality during resume the interface
4050 * will still be added as associated first during resume and then
4051 * disconnect normally later.
4052 *
4053 * This function can only be called from the resume callback and
4054 * the driver must not be holding any of its own locks while it
4055 * calls this function, or at least not any locks it needs in the
4056 * key configuration paths (if it supports HW crypto).
4057 */
4058void ieee80211_resume_disconnect(struct ieee80211_vif *vif);
4059
4060/**
4061 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring
4062 *      rssi threshold triggered
4063 *
4064 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4065 * @rssi_event: the RSSI trigger event type
4066 * @gfp: context flags
4067 *
4068 * When the %IEEE80211_VIF_SUPPORTS_CQM_RSSI is set, and a connection quality
4069 * monitoring is configured with an rssi threshold, the driver will inform
4070 * whenever the rssi level reaches the threshold.
4071 */
4072void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
4073                               enum nl80211_cqm_rssi_threshold_event rssi_event,
4074                               gfp_t gfp);
4075
4076/**
4077 * ieee80211_radar_detected - inform that a radar was detected
4078 *
4079 * @hw: pointer as obtained from ieee80211_alloc_hw()
4080 */
4081void ieee80211_radar_detected(struct ieee80211_hw *hw);
4082
4083/**
4084 * ieee80211_chswitch_done - Complete channel switch process
4085 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4086 * @success: make the channel switch successful or not
4087 *
4088 * Complete the channel switch post-process: set the new operational channel
4089 * and wake up the suspended queues.
4090 */
4091void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success);
4092
4093/**
4094 * ieee80211_request_smps - request SM PS transition
4095 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4096 * @smps_mode: new SM PS mode
4097 *
4098 * This allows the driver to request an SM PS transition in managed
4099 * mode. This is useful when the driver has more information than
4100 * the stack about possible interference, for example by bluetooth.
4101 */
4102void ieee80211_request_smps(struct ieee80211_vif *vif,
4103                            enum ieee80211_smps_mode smps_mode);
4104
4105/**
4106 * ieee80211_ready_on_channel - notification of remain-on-channel start
4107 * @hw: pointer as obtained from ieee80211_alloc_hw()
4108 */
4109void ieee80211_ready_on_channel(struct ieee80211_hw *hw);
4110
4111/**
4112 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired
4113 * @hw: pointer as obtained from ieee80211_alloc_hw()
4114 */
4115void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw);
4116
4117/**
4118 * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions
4119 *
4120 * in order not to harm the system performance and user experience, the device
4121 * may request not to allow any rx ba session and tear down existing rx ba
4122 * sessions based on system constraints such as periodic BT activity that needs
4123 * to limit wlan activity (eg.sco or a2dp)."
4124 * in such cases, the intention is to limit the duration of the rx ppdu and
4125 * therefore prevent the peer device to use a-mpdu aggregation.
4126 *
4127 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4128 * @ba_rx_bitmap: Bit map of open rx ba per tid
4129 * @addr: & to bssid mac address
4130 */
4131void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap,
4132                                  const u8 *addr);
4133
4134/**
4135 * ieee80211_send_bar - send a BlockAckReq frame
4136 *
4137 * can be used to flush pending frames from the peer's aggregation reorder
4138 * buffer.
4139 *
4140 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
4141 * @ra: the peer's destination address
4142 * @tid: the TID of the aggregation session
4143 * @ssn: the new starting sequence number for the receiver
4144 */
4145void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn);
4146
4147/* Rate control API */
4148
4149/**
4150 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
4151 *
4152 * @hw: The hardware the algorithm is invoked for.
4153 * @sband: The band this frame is being transmitted on.
4154 * @bss_conf: the current BSS configuration
4155 * @skb: the skb that will be transmitted, the control information in it needs
4156 *      to be filled in
4157 * @reported_rate: The rate control algorithm can fill this in to indicate
4158 *      which rate should be reported to userspace as the current rate and
4159 *      used for rate calculations in the mesh network.
4160 * @rts: whether RTS will be used for this frame because it is longer than the
4161 *      RTS threshold
4162 * @short_preamble: whether mac80211 will request short-preamble transmission
4163 *      if the selected rate supports it
4164 * @max_rate_idx: user-requested maximum (legacy) rate
4165 *      (deprecated; this will be removed once drivers get updated to use
4166 *      rate_idx_mask)
4167 * @rate_idx_mask: user-requested (legacy) rate mask
4168 * @rate_idx_mcs_mask: user-requested MCS rate mask (NULL if not in use)
4169 * @bss: whether this frame is sent out in AP or IBSS mode
4170 */
4171struct ieee80211_tx_rate_control {
4172        struct ieee80211_hw *hw;
4173        struct ieee80211_supported_band *sband;
4174        struct ieee80211_bss_conf *bss_conf;
4175        struct sk_buff *skb;
4176        struct ieee80211_tx_rate reported_rate;
4177        bool rts, short_preamble;
4178        u8 max_rate_idx;
4179        u32 rate_idx_mask;
4180        u8 *rate_idx_mcs_mask;
4181        bool bss;
4182};
4183
4184struct rate_control_ops {
4185        struct module *module;
4186        const char *name;
4187        void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
4188        void (*free)(void *priv);
4189
4190        void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
4191        void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
4192                          struct ieee80211_sta *sta, void *priv_sta);
4193        void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
4194                            struct ieee80211_sta *sta, void *priv_sta,
4195                            u32 changed);
4196        void (*free_sta)(void *priv, struct ieee80211_sta *sta,
4197                         void *priv_sta);
4198
4199        void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
4200                          struct ieee80211_sta *sta, void *priv_sta,
4201                          struct sk_buff *skb);
4202        void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
4203                         struct ieee80211_tx_rate_control *txrc);
4204
4205        void (*add_sta_debugfs)(void *priv, void *priv_sta,
4206                                struct dentry *dir);
4207        void (*remove_sta_debugfs)(void *priv, void *priv_sta);
4208};
4209
4210static inline int rate_supported(struct ieee80211_sta *sta,
4211                                 enum ieee80211_band band,
4212                                 int index)
4213{
4214        return (sta == NULL || sta->supp_rates[band] & BIT(index));
4215}
4216
4217/**
4218 * rate_control_send_low - helper for drivers for management/no-ack frames
4219 *
4220 * Rate control algorithms that agree to use the lowest rate to
4221 * send management frames and NO_ACK data with the respective hw
4222 * retries should use this in the beginning of their mac80211 get_rate
4223 * callback. If true is returned the rate control can simply return.
4224 * If false is returned we guarantee that sta and sta and priv_sta is
4225 * not null.
4226 *
4227 * Rate control algorithms wishing to do more intelligent selection of
4228 * rate for multicast/broadcast frames may choose to not use this.
4229 *
4230 * @sta: &struct ieee80211_sta pointer to the target destination. Note
4231 *      that this may be null.
4232 * @priv_sta: private rate control structure. This may be null.
4233 * @txrc: rate control information we sholud populate for mac80211.
4234 */
4235bool rate_control_send_low(struct ieee80211_sta *sta,
4236                           void *priv_sta,
4237                           struct ieee80211_tx_rate_control *txrc);
4238
4239
4240static inline s8
4241rate_lowest_index(struct ieee80211_supported_band *sband,
4242                  struct ieee80211_sta *sta)
4243{
4244        int i;
4245
4246        for (i = 0; i < sband->n_bitrates; i++)
4247                if (rate_supported(sta, sband->band, i))
4248                        return i;
4249
4250        /* warn when we cannot find a rate. */
4251        WARN_ON_ONCE(1);
4252
4253        /* and return 0 (the lowest index) */
4254        return 0;
4255}
4256
4257static inline
4258bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
4259                              struct ieee80211_sta *sta)
4260{
4261        unsigned int i;
4262
4263        for (i = 0; i < sband->n_bitrates; i++)
4264                if (rate_supported(sta, sband->band, i))
4265                        return true;
4266        return false;
4267}
4268
4269/**
4270 * rate_control_set_rates - pass the sta rate selection to mac80211/driver
4271 *
4272 * When not doing a rate control probe to test rates, rate control should pass
4273 * its rate selection to mac80211. If the driver supports receiving a station
4274 * rate table, it will use it to ensure that frames are always sent based on
4275 * the most recent rate control module decision.
4276 *
4277 * @hw: pointer as obtained from ieee80211_alloc_hw()
4278 * @pubsta: &struct ieee80211_sta pointer to the target destination.
4279 * @rates: new tx rate set to be used for this station.
4280 */
4281int rate_control_set_rates(struct ieee80211_hw *hw,
4282                           struct ieee80211_sta *pubsta,
4283                           struct ieee80211_sta_rates *rates);
4284
4285int ieee80211_rate_control_register(struct rate_control_ops *ops);
4286void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
4287
4288static inline bool
4289conf_is_ht20(struct ieee80211_conf *conf)
4290{
4291        return conf->chandef.width == NL80211_CHAN_WIDTH_20;
4292}
4293
4294static inline bool
4295conf_is_ht40_minus(struct ieee80211_conf *conf)
4296{
4297        return conf->chandef.width == NL80211_CHAN_WIDTH_40 &&
4298               conf->chandef.center_freq1 < conf->chandef.chan->center_freq;
4299}
4300
4301static inline bool
4302conf_is_ht40_plus(struct ieee80211_conf *conf)
4303{
4304        return conf->chandef.width == NL80211_CHAN_WIDTH_40 &&
4305               conf->chandef.center_freq1 > conf->chandef.chan->center_freq;
4306}
4307
4308static inline bool
4309conf_is_ht40(struct ieee80211_conf *conf)
4310{
4311        return conf->chandef.width == NL80211_CHAN_WIDTH_40;
4312}
4313
4314static inline bool
4315conf_is_ht(struct ieee80211_conf *conf)
4316{
4317        return conf->chandef.width != NL80211_CHAN_WIDTH_20_NOHT;
4318}
4319
4320static inline enum nl80211_iftype
4321ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p)
4322{
4323        if (p2p) {
4324                switch (type) {
4325                case NL80211_IFTYPE_STATION:
4326                        return NL80211_IFTYPE_P2P_CLIENT;
4327                case NL80211_IFTYPE_AP:
4328                        return NL80211_IFTYPE_P2P_GO;
4329                default:
4330                        break;
4331                }
4332        }
4333        return type;
4334}
4335
4336static inline enum nl80211_iftype
4337ieee80211_vif_type_p2p(struct ieee80211_vif *vif)
4338{
4339        return ieee80211_iftype_p2p(vif->type, vif->p2p);
4340}
4341
4342void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
4343                                   int rssi_min_thold,
4344                                   int rssi_max_thold);
4345
4346void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif);
4347
4348/**
4349 * ieee80211_ave_rssi - report the average RSSI for the specified interface
4350 *
4351 * @vif: the specified virtual interface
4352 *
4353 * Note: This function assumes that the given vif is valid.
4354 *
4355 * Return: The average RSSI value for the requested interface, or 0 if not
4356 * applicable.
4357 */
4358int ieee80211_ave_rssi(struct ieee80211_vif *vif);
4359
4360/**
4361 * ieee80211_report_wowlan_wakeup - report WoWLAN wakeup
4362 * @vif: virtual interface
4363 * @wakeup: wakeup reason(s)
4364 * @gfp: allocation flags
4365 *
4366 * See cfg80211_report_wowlan_wakeup().
4367 */
4368void ieee80211_report_wowlan_wakeup(struct ieee80211_vif *vif,
4369                                    struct cfg80211_wowlan_wakeup *wakeup,
4370                                    gfp_t gfp);
4371
4372#endif /* MAC80211_H */
4373