linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/memcontrol.h>
  58#include <linux/res_counter.h>
  59#include <linux/static_key.h>
  60#include <linux/aio.h>
  61#include <linux/sched.h>
  62
  63#include <linux/filter.h>
  64#include <linux/rculist_nulls.h>
  65#include <linux/poll.h>
  66
  67#include <linux/atomic.h>
  68#include <net/dst.h>
  69#include <net/checksum.h>
  70
  71struct cgroup;
  72struct cgroup_subsys;
  73#ifdef CONFIG_NET
  74int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
  75void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
  76#else
  77static inline
  78int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  79{
  80        return 0;
  81}
  82static inline
  83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  84{
  85}
  86#endif
  87/*
  88 * This structure really needs to be cleaned up.
  89 * Most of it is for TCP, and not used by any of
  90 * the other protocols.
  91 */
  92
  93/* Define this to get the SOCK_DBG debugging facility. */
  94#define SOCK_DEBUGGING
  95#ifdef SOCK_DEBUGGING
  96#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  97                                        printk(KERN_DEBUG msg); } while (0)
  98#else
  99/* Validate arguments and do nothing */
 100static inline __printf(2, 3)
 101void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
 102{
 103}
 104#endif
 105
 106/* This is the per-socket lock.  The spinlock provides a synchronization
 107 * between user contexts and software interrupt processing, whereas the
 108 * mini-semaphore synchronizes multiple users amongst themselves.
 109 */
 110typedef struct {
 111        spinlock_t              slock;
 112        int                     owned;
 113        wait_queue_head_t       wq;
 114        /*
 115         * We express the mutex-alike socket_lock semantics
 116         * to the lock validator by explicitly managing
 117         * the slock as a lock variant (in addition to
 118         * the slock itself):
 119         */
 120#ifdef CONFIG_DEBUG_LOCK_ALLOC
 121        struct lockdep_map dep_map;
 122#endif
 123} socket_lock_t;
 124
 125struct sock;
 126struct proto;
 127struct net;
 128
 129typedef __u32 __bitwise __portpair;
 130typedef __u64 __bitwise __addrpair;
 131
 132/**
 133 *      struct sock_common - minimal network layer representation of sockets
 134 *      @skc_daddr: Foreign IPv4 addr
 135 *      @skc_rcv_saddr: Bound local IPv4 addr
 136 *      @skc_hash: hash value used with various protocol lookup tables
 137 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 138 *      @skc_dport: placeholder for inet_dport/tw_dport
 139 *      @skc_num: placeholder for inet_num/tw_num
 140 *      @skc_family: network address family
 141 *      @skc_state: Connection state
 142 *      @skc_reuse: %SO_REUSEADDR setting
 143 *      @skc_reuseport: %SO_REUSEPORT setting
 144 *      @skc_bound_dev_if: bound device index if != 0
 145 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 146 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 147 *      @skc_prot: protocol handlers inside a network family
 148 *      @skc_net: reference to the network namespace of this socket
 149 *      @skc_node: main hash linkage for various protocol lookup tables
 150 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 151 *      @skc_tx_queue_mapping: tx queue number for this connection
 152 *      @skc_refcnt: reference count
 153 *
 154 *      This is the minimal network layer representation of sockets, the header
 155 *      for struct sock and struct inet_timewait_sock.
 156 */
 157struct sock_common {
 158        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 159         * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
 160         */
 161        union {
 162                __addrpair      skc_addrpair;
 163                struct {
 164                        __be32  skc_daddr;
 165                        __be32  skc_rcv_saddr;
 166                };
 167        };
 168        union  {
 169                unsigned int    skc_hash;
 170                __u16           skc_u16hashes[2];
 171        };
 172        /* skc_dport && skc_num must be grouped as well */
 173        union {
 174                __portpair      skc_portpair;
 175                struct {
 176                        __be16  skc_dport;
 177                        __u16   skc_num;
 178                };
 179        };
 180
 181        unsigned short          skc_family;
 182        volatile unsigned char  skc_state;
 183        unsigned char           skc_reuse:4;
 184        unsigned char           skc_reuseport:4;
 185        int                     skc_bound_dev_if;
 186        union {
 187                struct hlist_node       skc_bind_node;
 188                struct hlist_nulls_node skc_portaddr_node;
 189        };
 190        struct proto            *skc_prot;
 191#ifdef CONFIG_NET_NS
 192        struct net              *skc_net;
 193#endif
 194        /*
 195         * fields between dontcopy_begin/dontcopy_end
 196         * are not copied in sock_copy()
 197         */
 198        /* private: */
 199        int                     skc_dontcopy_begin[0];
 200        /* public: */
 201        union {
 202                struct hlist_node       skc_node;
 203                struct hlist_nulls_node skc_nulls_node;
 204        };
 205        int                     skc_tx_queue_mapping;
 206        atomic_t                skc_refcnt;
 207        /* private: */
 208        int                     skc_dontcopy_end[0];
 209        /* public: */
 210};
 211
 212struct cg_proto;
 213/**
 214  *     struct sock - network layer representation of sockets
 215  *     @__sk_common: shared layout with inet_timewait_sock
 216  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 217  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 218  *     @sk_lock:       synchronizer
 219  *     @sk_rcvbuf: size of receive buffer in bytes
 220  *     @sk_wq: sock wait queue and async head
 221  *     @sk_rx_dst: receive input route used by early tcp demux
 222  *     @sk_dst_cache: destination cache
 223  *     @sk_dst_lock: destination cache lock
 224  *     @sk_policy: flow policy
 225  *     @sk_receive_queue: incoming packets
 226  *     @sk_wmem_alloc: transmit queue bytes committed
 227  *     @sk_write_queue: Packet sending queue
 228  *     @sk_async_wait_queue: DMA copied packets
 229  *     @sk_omem_alloc: "o" is "option" or "other"
 230  *     @sk_wmem_queued: persistent queue size
 231  *     @sk_forward_alloc: space allocated forward
 232  *     @sk_allocation: allocation mode
 233  *     @sk_sndbuf: size of send buffer in bytes
 234  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 235  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 236  *     @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
 237  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 238  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 239  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 240  *     @sk_gso_max_size: Maximum GSO segment size to build
 241  *     @sk_gso_max_segs: Maximum number of GSO segments
 242  *     @sk_lingertime: %SO_LINGER l_linger setting
 243  *     @sk_backlog: always used with the per-socket spinlock held
 244  *     @sk_callback_lock: used with the callbacks in the end of this struct
 245  *     @sk_error_queue: rarely used
 246  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 247  *                       IPV6_ADDRFORM for instance)
 248  *     @sk_err: last error
 249  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 250  *                   persistent failure not just 'timed out'
 251  *     @sk_drops: raw/udp drops counter
 252  *     @sk_ack_backlog: current listen backlog
 253  *     @sk_max_ack_backlog: listen backlog set in listen()
 254  *     @sk_priority: %SO_PRIORITY setting
 255  *     @sk_cgrp_prioidx: socket group's priority map index
 256  *     @sk_type: socket type (%SOCK_STREAM, etc)
 257  *     @sk_protocol: which protocol this socket belongs in this network family
 258  *     @sk_peer_pid: &struct pid for this socket's peer
 259  *     @sk_peer_cred: %SO_PEERCRED setting
 260  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 261  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 262  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 263  *     @sk_rxhash: flow hash received from netif layer
 264  *     @sk_filter: socket filtering instructions
 265  *     @sk_protinfo: private area, net family specific, when not using slab
 266  *     @sk_timer: sock cleanup timer
 267  *     @sk_stamp: time stamp of last packet received
 268  *     @sk_socket: Identd and reporting IO signals
 269  *     @sk_user_data: RPC layer private data
 270  *     @sk_frag: cached page frag
 271  *     @sk_peek_off: current peek_offset value
 272  *     @sk_send_head: front of stuff to transmit
 273  *     @sk_security: used by security modules
 274  *     @sk_mark: generic packet mark
 275  *     @sk_classid: this socket's cgroup classid
 276  *     @sk_cgrp: this socket's cgroup-specific proto data
 277  *     @sk_write_pending: a write to stream socket waits to start
 278  *     @sk_state_change: callback to indicate change in the state of the sock
 279  *     @sk_data_ready: callback to indicate there is data to be processed
 280  *     @sk_write_space: callback to indicate there is bf sending space available
 281  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 282  *     @sk_backlog_rcv: callback to process the backlog
 283  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 284 */
 285struct sock {
 286        /*
 287         * Now struct inet_timewait_sock also uses sock_common, so please just
 288         * don't add nothing before this first member (__sk_common) --acme
 289         */
 290        struct sock_common      __sk_common;
 291#define sk_node                 __sk_common.skc_node
 292#define sk_nulls_node           __sk_common.skc_nulls_node
 293#define sk_refcnt               __sk_common.skc_refcnt
 294#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 295
 296#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 297#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 298#define sk_hash                 __sk_common.skc_hash
 299#define sk_family               __sk_common.skc_family
 300#define sk_state                __sk_common.skc_state
 301#define sk_reuse                __sk_common.skc_reuse
 302#define sk_reuseport            __sk_common.skc_reuseport
 303#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 304#define sk_bind_node            __sk_common.skc_bind_node
 305#define sk_prot                 __sk_common.skc_prot
 306#define sk_net                  __sk_common.skc_net
 307        socket_lock_t           sk_lock;
 308        struct sk_buff_head     sk_receive_queue;
 309        /*
 310         * The backlog queue is special, it is always used with
 311         * the per-socket spinlock held and requires low latency
 312         * access. Therefore we special case it's implementation.
 313         * Note : rmem_alloc is in this structure to fill a hole
 314         * on 64bit arches, not because its logically part of
 315         * backlog.
 316         */
 317        struct {
 318                atomic_t        rmem_alloc;
 319                int             len;
 320                struct sk_buff  *head;
 321                struct sk_buff  *tail;
 322        } sk_backlog;
 323#define sk_rmem_alloc sk_backlog.rmem_alloc
 324        int                     sk_forward_alloc;
 325#ifdef CONFIG_RPS
 326        __u32                   sk_rxhash;
 327#endif
 328        atomic_t                sk_drops;
 329        int                     sk_rcvbuf;
 330
 331        struct sk_filter __rcu  *sk_filter;
 332        struct socket_wq __rcu  *sk_wq;
 333
 334#ifdef CONFIG_NET_DMA
 335        struct sk_buff_head     sk_async_wait_queue;
 336#endif
 337
 338#ifdef CONFIG_XFRM
 339        struct xfrm_policy      *sk_policy[2];
 340#endif
 341        unsigned long           sk_flags;
 342        struct dst_entry        *sk_rx_dst;
 343        struct dst_entry __rcu  *sk_dst_cache;
 344        spinlock_t              sk_dst_lock;
 345        atomic_t                sk_wmem_alloc;
 346        atomic_t                sk_omem_alloc;
 347        int                     sk_sndbuf;
 348        struct sk_buff_head     sk_write_queue;
 349        kmemcheck_bitfield_begin(flags);
 350        unsigned int            sk_shutdown  : 2,
 351                                sk_no_check  : 2,
 352                                sk_userlocks : 4,
 353                                sk_protocol  : 8,
 354                                sk_type      : 16;
 355        kmemcheck_bitfield_end(flags);
 356        int                     sk_wmem_queued;
 357        gfp_t                   sk_allocation;
 358        netdev_features_t       sk_route_caps;
 359        netdev_features_t       sk_route_nocaps;
 360        int                     sk_gso_type;
 361        unsigned int            sk_gso_max_size;
 362        u16                     sk_gso_max_segs;
 363        int                     sk_rcvlowat;
 364        unsigned long           sk_lingertime;
 365        struct sk_buff_head     sk_error_queue;
 366        struct proto            *sk_prot_creator;
 367        rwlock_t                sk_callback_lock;
 368        int                     sk_err,
 369                                sk_err_soft;
 370        unsigned short          sk_ack_backlog;
 371        unsigned short          sk_max_ack_backlog;
 372        __u32                   sk_priority;
 373#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
 374        __u32                   sk_cgrp_prioidx;
 375#endif
 376        struct pid              *sk_peer_pid;
 377        const struct cred       *sk_peer_cred;
 378        long                    sk_rcvtimeo;
 379        long                    sk_sndtimeo;
 380        void                    *sk_protinfo;
 381        struct timer_list       sk_timer;
 382        ktime_t                 sk_stamp;
 383        struct socket           *sk_socket;
 384        void                    *sk_user_data;
 385        struct page_frag        sk_frag;
 386        struct sk_buff          *sk_send_head;
 387        __s32                   sk_peek_off;
 388        int                     sk_write_pending;
 389#ifdef CONFIG_SECURITY
 390        void                    *sk_security;
 391#endif
 392        __u32                   sk_mark;
 393        u32                     sk_classid;
 394        struct cg_proto         *sk_cgrp;
 395        void                    (*sk_state_change)(struct sock *sk);
 396        void                    (*sk_data_ready)(struct sock *sk, int bytes);
 397        void                    (*sk_write_space)(struct sock *sk);
 398        void                    (*sk_error_report)(struct sock *sk);
 399        int                     (*sk_backlog_rcv)(struct sock *sk,
 400                                                  struct sk_buff *skb);
 401        void                    (*sk_destruct)(struct sock *sk);
 402};
 403
 404/*
 405 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 406 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 407 * on a socket means that the socket will reuse everybody else's port
 408 * without looking at the other's sk_reuse value.
 409 */
 410
 411#define SK_NO_REUSE     0
 412#define SK_CAN_REUSE    1
 413#define SK_FORCE_REUSE  2
 414
 415static inline int sk_peek_offset(struct sock *sk, int flags)
 416{
 417        if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 418                return sk->sk_peek_off;
 419        else
 420                return 0;
 421}
 422
 423static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 424{
 425        if (sk->sk_peek_off >= 0) {
 426                if (sk->sk_peek_off >= val)
 427                        sk->sk_peek_off -= val;
 428                else
 429                        sk->sk_peek_off = 0;
 430        }
 431}
 432
 433static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 434{
 435        if (sk->sk_peek_off >= 0)
 436                sk->sk_peek_off += val;
 437}
 438
 439/*
 440 * Hashed lists helper routines
 441 */
 442static inline struct sock *sk_entry(const struct hlist_node *node)
 443{
 444        return hlist_entry(node, struct sock, sk_node);
 445}
 446
 447static inline struct sock *__sk_head(const struct hlist_head *head)
 448{
 449        return hlist_entry(head->first, struct sock, sk_node);
 450}
 451
 452static inline struct sock *sk_head(const struct hlist_head *head)
 453{
 454        return hlist_empty(head) ? NULL : __sk_head(head);
 455}
 456
 457static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 458{
 459        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 460}
 461
 462static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 463{
 464        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 465}
 466
 467static inline struct sock *sk_next(const struct sock *sk)
 468{
 469        return sk->sk_node.next ?
 470                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 471}
 472
 473static inline struct sock *sk_nulls_next(const struct sock *sk)
 474{
 475        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 476                hlist_nulls_entry(sk->sk_nulls_node.next,
 477                                  struct sock, sk_nulls_node) :
 478                NULL;
 479}
 480
 481static inline bool sk_unhashed(const struct sock *sk)
 482{
 483        return hlist_unhashed(&sk->sk_node);
 484}
 485
 486static inline bool sk_hashed(const struct sock *sk)
 487{
 488        return !sk_unhashed(sk);
 489}
 490
 491static inline void sk_node_init(struct hlist_node *node)
 492{
 493        node->pprev = NULL;
 494}
 495
 496static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 497{
 498        node->pprev = NULL;
 499}
 500
 501static inline void __sk_del_node(struct sock *sk)
 502{
 503        __hlist_del(&sk->sk_node);
 504}
 505
 506/* NB: equivalent to hlist_del_init_rcu */
 507static inline bool __sk_del_node_init(struct sock *sk)
 508{
 509        if (sk_hashed(sk)) {
 510                __sk_del_node(sk);
 511                sk_node_init(&sk->sk_node);
 512                return true;
 513        }
 514        return false;
 515}
 516
 517/* Grab socket reference count. This operation is valid only
 518   when sk is ALREADY grabbed f.e. it is found in hash table
 519   or a list and the lookup is made under lock preventing hash table
 520   modifications.
 521 */
 522
 523static inline void sock_hold(struct sock *sk)
 524{
 525        atomic_inc(&sk->sk_refcnt);
 526}
 527
 528/* Ungrab socket in the context, which assumes that socket refcnt
 529   cannot hit zero, f.e. it is true in context of any socketcall.
 530 */
 531static inline void __sock_put(struct sock *sk)
 532{
 533        atomic_dec(&sk->sk_refcnt);
 534}
 535
 536static inline bool sk_del_node_init(struct sock *sk)
 537{
 538        bool rc = __sk_del_node_init(sk);
 539
 540        if (rc) {
 541                /* paranoid for a while -acme */
 542                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 543                __sock_put(sk);
 544        }
 545        return rc;
 546}
 547#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 548
 549static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 550{
 551        if (sk_hashed(sk)) {
 552                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 553                return true;
 554        }
 555        return false;
 556}
 557
 558static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 559{
 560        bool rc = __sk_nulls_del_node_init_rcu(sk);
 561
 562        if (rc) {
 563                /* paranoid for a while -acme */
 564                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 565                __sock_put(sk);
 566        }
 567        return rc;
 568}
 569
 570static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 571{
 572        hlist_add_head(&sk->sk_node, list);
 573}
 574
 575static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 576{
 577        sock_hold(sk);
 578        __sk_add_node(sk, list);
 579}
 580
 581static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 582{
 583        sock_hold(sk);
 584        hlist_add_head_rcu(&sk->sk_node, list);
 585}
 586
 587static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 588{
 589        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 590}
 591
 592static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 593{
 594        sock_hold(sk);
 595        __sk_nulls_add_node_rcu(sk, list);
 596}
 597
 598static inline void __sk_del_bind_node(struct sock *sk)
 599{
 600        __hlist_del(&sk->sk_bind_node);
 601}
 602
 603static inline void sk_add_bind_node(struct sock *sk,
 604                                        struct hlist_head *list)
 605{
 606        hlist_add_head(&sk->sk_bind_node, list);
 607}
 608
 609#define sk_for_each(__sk, list) \
 610        hlist_for_each_entry(__sk, list, sk_node)
 611#define sk_for_each_rcu(__sk, list) \
 612        hlist_for_each_entry_rcu(__sk, list, sk_node)
 613#define sk_nulls_for_each(__sk, node, list) \
 614        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 615#define sk_nulls_for_each_rcu(__sk, node, list) \
 616        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 617#define sk_for_each_from(__sk) \
 618        hlist_for_each_entry_from(__sk, sk_node)
 619#define sk_nulls_for_each_from(__sk, node) \
 620        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 621                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 622#define sk_for_each_safe(__sk, tmp, list) \
 623        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 624#define sk_for_each_bound(__sk, list) \
 625        hlist_for_each_entry(__sk, list, sk_bind_node)
 626
 627static inline struct user_namespace *sk_user_ns(struct sock *sk)
 628{
 629        /* Careful only use this in a context where these parameters
 630         * can not change and must all be valid, such as recvmsg from
 631         * userspace.
 632         */
 633        return sk->sk_socket->file->f_cred->user_ns;
 634}
 635
 636/* Sock flags */
 637enum sock_flags {
 638        SOCK_DEAD,
 639        SOCK_DONE,
 640        SOCK_URGINLINE,
 641        SOCK_KEEPOPEN,
 642        SOCK_LINGER,
 643        SOCK_DESTROY,
 644        SOCK_BROADCAST,
 645        SOCK_TIMESTAMP,
 646        SOCK_ZAPPED,
 647        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 648        SOCK_DBG, /* %SO_DEBUG setting */
 649        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 650        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 651        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 652        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 653        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 654        SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 655        SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 656        SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 657        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 658        SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 659        SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 660        SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 661        SOCK_FASYNC, /* fasync() active */
 662        SOCK_RXQ_OVFL,
 663        SOCK_ZEROCOPY, /* buffers from userspace */
 664        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 665        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 666                     * Will use last 4 bytes of packet sent from
 667                     * user-space instead.
 668                     */
 669        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 670        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 671};
 672
 673static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 674{
 675        nsk->sk_flags = osk->sk_flags;
 676}
 677
 678static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 679{
 680        __set_bit(flag, &sk->sk_flags);
 681}
 682
 683static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 684{
 685        __clear_bit(flag, &sk->sk_flags);
 686}
 687
 688static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 689{
 690        return test_bit(flag, &sk->sk_flags);
 691}
 692
 693#ifdef CONFIG_NET
 694extern struct static_key memalloc_socks;
 695static inline int sk_memalloc_socks(void)
 696{
 697        return static_key_false(&memalloc_socks);
 698}
 699#else
 700
 701static inline int sk_memalloc_socks(void)
 702{
 703        return 0;
 704}
 705
 706#endif
 707
 708static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
 709{
 710        return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
 711}
 712
 713static inline void sk_acceptq_removed(struct sock *sk)
 714{
 715        sk->sk_ack_backlog--;
 716}
 717
 718static inline void sk_acceptq_added(struct sock *sk)
 719{
 720        sk->sk_ack_backlog++;
 721}
 722
 723static inline bool sk_acceptq_is_full(const struct sock *sk)
 724{
 725        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 726}
 727
 728/*
 729 * Compute minimal free write space needed to queue new packets.
 730 */
 731static inline int sk_stream_min_wspace(const struct sock *sk)
 732{
 733        return sk->sk_wmem_queued >> 1;
 734}
 735
 736static inline int sk_stream_wspace(const struct sock *sk)
 737{
 738        return sk->sk_sndbuf - sk->sk_wmem_queued;
 739}
 740
 741extern void sk_stream_write_space(struct sock *sk);
 742
 743static inline bool sk_stream_memory_free(const struct sock *sk)
 744{
 745        return sk->sk_wmem_queued < sk->sk_sndbuf;
 746}
 747
 748/* OOB backlog add */
 749static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 750{
 751        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 752        skb_dst_force(skb);
 753
 754        if (!sk->sk_backlog.tail)
 755                sk->sk_backlog.head = skb;
 756        else
 757                sk->sk_backlog.tail->next = skb;
 758
 759        sk->sk_backlog.tail = skb;
 760        skb->next = NULL;
 761}
 762
 763/*
 764 * Take into account size of receive queue and backlog queue
 765 * Do not take into account this skb truesize,
 766 * to allow even a single big packet to come.
 767 */
 768static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
 769                                     unsigned int limit)
 770{
 771        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 772
 773        return qsize > limit;
 774}
 775
 776/* The per-socket spinlock must be held here. */
 777static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 778                                              unsigned int limit)
 779{
 780        if (sk_rcvqueues_full(sk, skb, limit))
 781                return -ENOBUFS;
 782
 783        __sk_add_backlog(sk, skb);
 784        sk->sk_backlog.len += skb->truesize;
 785        return 0;
 786}
 787
 788extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 789
 790static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 791{
 792        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 793                return __sk_backlog_rcv(sk, skb);
 794
 795        return sk->sk_backlog_rcv(sk, skb);
 796}
 797
 798static inline void sock_rps_record_flow(const struct sock *sk)
 799{
 800#ifdef CONFIG_RPS
 801        struct rps_sock_flow_table *sock_flow_table;
 802
 803        rcu_read_lock();
 804        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 805        rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 806        rcu_read_unlock();
 807#endif
 808}
 809
 810static inline void sock_rps_reset_flow(const struct sock *sk)
 811{
 812#ifdef CONFIG_RPS
 813        struct rps_sock_flow_table *sock_flow_table;
 814
 815        rcu_read_lock();
 816        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 817        rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 818        rcu_read_unlock();
 819#endif
 820}
 821
 822static inline void sock_rps_save_rxhash(struct sock *sk,
 823                                        const struct sk_buff *skb)
 824{
 825#ifdef CONFIG_RPS
 826        if (unlikely(sk->sk_rxhash != skb->rxhash)) {
 827                sock_rps_reset_flow(sk);
 828                sk->sk_rxhash = skb->rxhash;
 829        }
 830#endif
 831}
 832
 833static inline void sock_rps_reset_rxhash(struct sock *sk)
 834{
 835#ifdef CONFIG_RPS
 836        sock_rps_reset_flow(sk);
 837        sk->sk_rxhash = 0;
 838#endif
 839}
 840
 841#define sk_wait_event(__sk, __timeo, __condition)                       \
 842        ({      int __rc;                                               \
 843                release_sock(__sk);                                     \
 844                __rc = __condition;                                     \
 845                if (!__rc) {                                            \
 846                        *(__timeo) = schedule_timeout(*(__timeo));      \
 847                }                                                       \
 848                lock_sock(__sk);                                        \
 849                __rc = __condition;                                     \
 850                __rc;                                                   \
 851        })
 852
 853extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 854extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 855extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 856extern int sk_stream_error(struct sock *sk, int flags, int err);
 857extern void sk_stream_kill_queues(struct sock *sk);
 858extern void sk_set_memalloc(struct sock *sk);
 859extern void sk_clear_memalloc(struct sock *sk);
 860
 861extern int sk_wait_data(struct sock *sk, long *timeo);
 862
 863struct request_sock_ops;
 864struct timewait_sock_ops;
 865struct inet_hashinfo;
 866struct raw_hashinfo;
 867struct module;
 868
 869/*
 870 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 871 * un-modified. Special care is taken when initializing object to zero.
 872 */
 873static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 874{
 875        if (offsetof(struct sock, sk_node.next) != 0)
 876                memset(sk, 0, offsetof(struct sock, sk_node.next));
 877        memset(&sk->sk_node.pprev, 0,
 878               size - offsetof(struct sock, sk_node.pprev));
 879}
 880
 881/* Networking protocol blocks we attach to sockets.
 882 * socket layer -> transport layer interface
 883 * transport -> network interface is defined by struct inet_proto
 884 */
 885struct proto {
 886        void                    (*close)(struct sock *sk,
 887                                        long timeout);
 888        int                     (*connect)(struct sock *sk,
 889                                        struct sockaddr *uaddr,
 890                                        int addr_len);
 891        int                     (*disconnect)(struct sock *sk, int flags);
 892
 893        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 894
 895        int                     (*ioctl)(struct sock *sk, int cmd,
 896                                         unsigned long arg);
 897        int                     (*init)(struct sock *sk);
 898        void                    (*destroy)(struct sock *sk);
 899        void                    (*shutdown)(struct sock *sk, int how);
 900        int                     (*setsockopt)(struct sock *sk, int level,
 901                                        int optname, char __user *optval,
 902                                        unsigned int optlen);
 903        int                     (*getsockopt)(struct sock *sk, int level,
 904                                        int optname, char __user *optval,
 905                                        int __user *option);
 906#ifdef CONFIG_COMPAT
 907        int                     (*compat_setsockopt)(struct sock *sk,
 908                                        int level,
 909                                        int optname, char __user *optval,
 910                                        unsigned int optlen);
 911        int                     (*compat_getsockopt)(struct sock *sk,
 912                                        int level,
 913                                        int optname, char __user *optval,
 914                                        int __user *option);
 915        int                     (*compat_ioctl)(struct sock *sk,
 916                                        unsigned int cmd, unsigned long arg);
 917#endif
 918        int                     (*sendmsg)(struct kiocb *iocb, struct sock *sk,
 919                                           struct msghdr *msg, size_t len);
 920        int                     (*recvmsg)(struct kiocb *iocb, struct sock *sk,
 921                                           struct msghdr *msg,
 922                                           size_t len, int noblock, int flags,
 923                                           int *addr_len);
 924        int                     (*sendpage)(struct sock *sk, struct page *page,
 925                                        int offset, size_t size, int flags);
 926        int                     (*bind)(struct sock *sk,
 927                                        struct sockaddr *uaddr, int addr_len);
 928
 929        int                     (*backlog_rcv) (struct sock *sk,
 930                                                struct sk_buff *skb);
 931
 932        void            (*release_cb)(struct sock *sk);
 933        void            (*mtu_reduced)(struct sock *sk);
 934
 935        /* Keeping track of sk's, looking them up, and port selection methods. */
 936        void                    (*hash)(struct sock *sk);
 937        void                    (*unhash)(struct sock *sk);
 938        void                    (*rehash)(struct sock *sk);
 939        int                     (*get_port)(struct sock *sk, unsigned short snum);
 940        void                    (*clear_sk)(struct sock *sk, int size);
 941
 942        /* Keeping track of sockets in use */
 943#ifdef CONFIG_PROC_FS
 944        unsigned int            inuse_idx;
 945#endif
 946
 947        /* Memory pressure */
 948        void                    (*enter_memory_pressure)(struct sock *sk);
 949        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
 950        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 951        /*
 952         * Pressure flag: try to collapse.
 953         * Technical note: it is used by multiple contexts non atomically.
 954         * All the __sk_mem_schedule() is of this nature: accounting
 955         * is strict, actions are advisory and have some latency.
 956         */
 957        int                     *memory_pressure;
 958        long                    *sysctl_mem;
 959        int                     *sysctl_wmem;
 960        int                     *sysctl_rmem;
 961        int                     max_header;
 962        bool                    no_autobind;
 963
 964        struct kmem_cache       *slab;
 965        unsigned int            obj_size;
 966        int                     slab_flags;
 967
 968        struct percpu_counter   *orphan_count;
 969
 970        struct request_sock_ops *rsk_prot;
 971        struct timewait_sock_ops *twsk_prot;
 972
 973        union {
 974                struct inet_hashinfo    *hashinfo;
 975                struct udp_table        *udp_table;
 976                struct raw_hashinfo     *raw_hash;
 977        } h;
 978
 979        struct module           *owner;
 980
 981        char                    name[32];
 982
 983        struct list_head        node;
 984#ifdef SOCK_REFCNT_DEBUG
 985        atomic_t                socks;
 986#endif
 987#ifdef CONFIG_MEMCG_KMEM
 988        /*
 989         * cgroup specific init/deinit functions. Called once for all
 990         * protocols that implement it, from cgroups populate function.
 991         * This function has to setup any files the protocol want to
 992         * appear in the kmem cgroup filesystem.
 993         */
 994        int                     (*init_cgroup)(struct mem_cgroup *memcg,
 995                                               struct cgroup_subsys *ss);
 996        void                    (*destroy_cgroup)(struct mem_cgroup *memcg);
 997        struct cg_proto         *(*proto_cgroup)(struct mem_cgroup *memcg);
 998#endif
 999};
1000
1001/*
1002 * Bits in struct cg_proto.flags
1003 */
1004enum cg_proto_flags {
1005        /* Currently active and new sockets should be assigned to cgroups */
1006        MEMCG_SOCK_ACTIVE,
1007        /* It was ever activated; we must disarm static keys on destruction */
1008        MEMCG_SOCK_ACTIVATED,
1009};
1010
1011struct cg_proto {
1012        void                    (*enter_memory_pressure)(struct sock *sk);
1013        struct res_counter      *memory_allocated;      /* Current allocated memory. */
1014        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1015        int                     *memory_pressure;
1016        long                    *sysctl_mem;
1017        unsigned long           flags;
1018        /*
1019         * memcg field is used to find which memcg we belong directly
1020         * Each memcg struct can hold more than one cg_proto, so container_of
1021         * won't really cut.
1022         *
1023         * The elegant solution would be having an inverse function to
1024         * proto_cgroup in struct proto, but that means polluting the structure
1025         * for everybody, instead of just for memcg users.
1026         */
1027        struct mem_cgroup       *memcg;
1028};
1029
1030extern int proto_register(struct proto *prot, int alloc_slab);
1031extern void proto_unregister(struct proto *prot);
1032
1033static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1034{
1035        return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1036}
1037
1038static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1039{
1040        return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1041}
1042
1043#ifdef SOCK_REFCNT_DEBUG
1044static inline void sk_refcnt_debug_inc(struct sock *sk)
1045{
1046        atomic_inc(&sk->sk_prot->socks);
1047}
1048
1049static inline void sk_refcnt_debug_dec(struct sock *sk)
1050{
1051        atomic_dec(&sk->sk_prot->socks);
1052        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1053               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1054}
1055
1056static inline void sk_refcnt_debug_release(const struct sock *sk)
1057{
1058        if (atomic_read(&sk->sk_refcnt) != 1)
1059                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1060                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1061}
1062#else /* SOCK_REFCNT_DEBUG */
1063#define sk_refcnt_debug_inc(sk) do { } while (0)
1064#define sk_refcnt_debug_dec(sk) do { } while (0)
1065#define sk_refcnt_debug_release(sk) do { } while (0)
1066#endif /* SOCK_REFCNT_DEBUG */
1067
1068#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1069extern struct static_key memcg_socket_limit_enabled;
1070static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1071                                               struct cg_proto *cg_proto)
1072{
1073        return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1074}
1075#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1076#else
1077#define mem_cgroup_sockets_enabled 0
1078static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1079                                               struct cg_proto *cg_proto)
1080{
1081        return NULL;
1082}
1083#endif
1084
1085
1086static inline bool sk_has_memory_pressure(const struct sock *sk)
1087{
1088        return sk->sk_prot->memory_pressure != NULL;
1089}
1090
1091static inline bool sk_under_memory_pressure(const struct sock *sk)
1092{
1093        if (!sk->sk_prot->memory_pressure)
1094                return false;
1095
1096        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1097                return !!*sk->sk_cgrp->memory_pressure;
1098
1099        return !!*sk->sk_prot->memory_pressure;
1100}
1101
1102static inline void sk_leave_memory_pressure(struct sock *sk)
1103{
1104        int *memory_pressure = sk->sk_prot->memory_pressure;
1105
1106        if (!memory_pressure)
1107                return;
1108
1109        if (*memory_pressure)
1110                *memory_pressure = 0;
1111
1112        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1113                struct cg_proto *cg_proto = sk->sk_cgrp;
1114                struct proto *prot = sk->sk_prot;
1115
1116                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1117                        if (*cg_proto->memory_pressure)
1118                                *cg_proto->memory_pressure = 0;
1119        }
1120
1121}
1122
1123static inline void sk_enter_memory_pressure(struct sock *sk)
1124{
1125        if (!sk->sk_prot->enter_memory_pressure)
1126                return;
1127
1128        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1129                struct cg_proto *cg_proto = sk->sk_cgrp;
1130                struct proto *prot = sk->sk_prot;
1131
1132                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1133                        cg_proto->enter_memory_pressure(sk);
1134        }
1135
1136        sk->sk_prot->enter_memory_pressure(sk);
1137}
1138
1139static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1140{
1141        long *prot = sk->sk_prot->sysctl_mem;
1142        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1143                prot = sk->sk_cgrp->sysctl_mem;
1144        return prot[index];
1145}
1146
1147static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1148                                              unsigned long amt,
1149                                              int *parent_status)
1150{
1151        struct res_counter *fail;
1152        int ret;
1153
1154        ret = res_counter_charge_nofail(prot->memory_allocated,
1155                                        amt << PAGE_SHIFT, &fail);
1156        if (ret < 0)
1157                *parent_status = OVER_LIMIT;
1158}
1159
1160static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1161                                              unsigned long amt)
1162{
1163        res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1164}
1165
1166static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1167{
1168        u64 ret;
1169        ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1170        return ret >> PAGE_SHIFT;
1171}
1172
1173static inline long
1174sk_memory_allocated(const struct sock *sk)
1175{
1176        struct proto *prot = sk->sk_prot;
1177        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1178                return memcg_memory_allocated_read(sk->sk_cgrp);
1179
1180        return atomic_long_read(prot->memory_allocated);
1181}
1182
1183static inline long
1184sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1185{
1186        struct proto *prot = sk->sk_prot;
1187
1188        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1189                memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1190                /* update the root cgroup regardless */
1191                atomic_long_add_return(amt, prot->memory_allocated);
1192                return memcg_memory_allocated_read(sk->sk_cgrp);
1193        }
1194
1195        return atomic_long_add_return(amt, prot->memory_allocated);
1196}
1197
1198static inline void
1199sk_memory_allocated_sub(struct sock *sk, int amt)
1200{
1201        struct proto *prot = sk->sk_prot;
1202
1203        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1204                memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1205
1206        atomic_long_sub(amt, prot->memory_allocated);
1207}
1208
1209static inline void sk_sockets_allocated_dec(struct sock *sk)
1210{
1211        struct proto *prot = sk->sk_prot;
1212
1213        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1214                struct cg_proto *cg_proto = sk->sk_cgrp;
1215
1216                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1217                        percpu_counter_dec(cg_proto->sockets_allocated);
1218        }
1219
1220        percpu_counter_dec(prot->sockets_allocated);
1221}
1222
1223static inline void sk_sockets_allocated_inc(struct sock *sk)
1224{
1225        struct proto *prot = sk->sk_prot;
1226
1227        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1228                struct cg_proto *cg_proto = sk->sk_cgrp;
1229
1230                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1231                        percpu_counter_inc(cg_proto->sockets_allocated);
1232        }
1233
1234        percpu_counter_inc(prot->sockets_allocated);
1235}
1236
1237static inline int
1238sk_sockets_allocated_read_positive(struct sock *sk)
1239{
1240        struct proto *prot = sk->sk_prot;
1241
1242        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1243                return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1244
1245        return percpu_counter_read_positive(prot->sockets_allocated);
1246}
1247
1248static inline int
1249proto_sockets_allocated_sum_positive(struct proto *prot)
1250{
1251        return percpu_counter_sum_positive(prot->sockets_allocated);
1252}
1253
1254static inline long
1255proto_memory_allocated(struct proto *prot)
1256{
1257        return atomic_long_read(prot->memory_allocated);
1258}
1259
1260static inline bool
1261proto_memory_pressure(struct proto *prot)
1262{
1263        if (!prot->memory_pressure)
1264                return false;
1265        return !!*prot->memory_pressure;
1266}
1267
1268
1269#ifdef CONFIG_PROC_FS
1270/* Called with local bh disabled */
1271extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1272extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1273#else
1274static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1275                int inc)
1276{
1277}
1278#endif
1279
1280
1281/* With per-bucket locks this operation is not-atomic, so that
1282 * this version is not worse.
1283 */
1284static inline void __sk_prot_rehash(struct sock *sk)
1285{
1286        sk->sk_prot->unhash(sk);
1287        sk->sk_prot->hash(sk);
1288}
1289
1290void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1291
1292/* About 10 seconds */
1293#define SOCK_DESTROY_TIME (10*HZ)
1294
1295/* Sockets 0-1023 can't be bound to unless you are superuser */
1296#define PROT_SOCK       1024
1297
1298#define SHUTDOWN_MASK   3
1299#define RCV_SHUTDOWN    1
1300#define SEND_SHUTDOWN   2
1301
1302#define SOCK_SNDBUF_LOCK        1
1303#define SOCK_RCVBUF_LOCK        2
1304#define SOCK_BINDADDR_LOCK      4
1305#define SOCK_BINDPORT_LOCK      8
1306
1307/* sock_iocb: used to kick off async processing of socket ios */
1308struct sock_iocb {
1309        struct list_head        list;
1310
1311        int                     flags;
1312        int                     size;
1313        struct socket           *sock;
1314        struct sock             *sk;
1315        struct scm_cookie       *scm;
1316        struct msghdr           *msg, async_msg;
1317        struct kiocb            *kiocb;
1318};
1319
1320static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1321{
1322        return (struct sock_iocb *)iocb->private;
1323}
1324
1325static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1326{
1327        return si->kiocb;
1328}
1329
1330struct socket_alloc {
1331        struct socket socket;
1332        struct inode vfs_inode;
1333};
1334
1335static inline struct socket *SOCKET_I(struct inode *inode)
1336{
1337        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1338}
1339
1340static inline struct inode *SOCK_INODE(struct socket *socket)
1341{
1342        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1343}
1344
1345/*
1346 * Functions for memory accounting
1347 */
1348extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1349extern void __sk_mem_reclaim(struct sock *sk);
1350
1351#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1352#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1353#define SK_MEM_SEND     0
1354#define SK_MEM_RECV     1
1355
1356static inline int sk_mem_pages(int amt)
1357{
1358        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1359}
1360
1361static inline bool sk_has_account(struct sock *sk)
1362{
1363        /* return true if protocol supports memory accounting */
1364        return !!sk->sk_prot->memory_allocated;
1365}
1366
1367static inline bool sk_wmem_schedule(struct sock *sk, int size)
1368{
1369        if (!sk_has_account(sk))
1370                return true;
1371        return size <= sk->sk_forward_alloc ||
1372                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1373}
1374
1375static inline bool
1376sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1377{
1378        if (!sk_has_account(sk))
1379                return true;
1380        return size<= sk->sk_forward_alloc ||
1381                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1382                skb_pfmemalloc(skb);
1383}
1384
1385static inline void sk_mem_reclaim(struct sock *sk)
1386{
1387        if (!sk_has_account(sk))
1388                return;
1389        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1390                __sk_mem_reclaim(sk);
1391}
1392
1393static inline void sk_mem_reclaim_partial(struct sock *sk)
1394{
1395        if (!sk_has_account(sk))
1396                return;
1397        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1398                __sk_mem_reclaim(sk);
1399}
1400
1401static inline void sk_mem_charge(struct sock *sk, int size)
1402{
1403        if (!sk_has_account(sk))
1404                return;
1405        sk->sk_forward_alloc -= size;
1406}
1407
1408static inline void sk_mem_uncharge(struct sock *sk, int size)
1409{
1410        if (!sk_has_account(sk))
1411                return;
1412        sk->sk_forward_alloc += size;
1413}
1414
1415static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1416{
1417        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1418        sk->sk_wmem_queued -= skb->truesize;
1419        sk_mem_uncharge(sk, skb->truesize);
1420        __kfree_skb(skb);
1421}
1422
1423/* Used by processes to "lock" a socket state, so that
1424 * interrupts and bottom half handlers won't change it
1425 * from under us. It essentially blocks any incoming
1426 * packets, so that we won't get any new data or any
1427 * packets that change the state of the socket.
1428 *
1429 * While locked, BH processing will add new packets to
1430 * the backlog queue.  This queue is processed by the
1431 * owner of the socket lock right before it is released.
1432 *
1433 * Since ~2.3.5 it is also exclusive sleep lock serializing
1434 * accesses from user process context.
1435 */
1436#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1437
1438/*
1439 * Macro so as to not evaluate some arguments when
1440 * lockdep is not enabled.
1441 *
1442 * Mark both the sk_lock and the sk_lock.slock as a
1443 * per-address-family lock class.
1444 */
1445#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1446do {                                                                    \
1447        sk->sk_lock.owned = 0;                                          \
1448        init_waitqueue_head(&sk->sk_lock.wq);                           \
1449        spin_lock_init(&(sk)->sk_lock.slock);                           \
1450        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1451                        sizeof((sk)->sk_lock));                         \
1452        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1453                                (skey), (sname));                               \
1454        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1455} while (0)
1456
1457extern void lock_sock_nested(struct sock *sk, int subclass);
1458
1459static inline void lock_sock(struct sock *sk)
1460{
1461        lock_sock_nested(sk, 0);
1462}
1463
1464extern void release_sock(struct sock *sk);
1465
1466/* BH context may only use the following locking interface. */
1467#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1468#define bh_lock_sock_nested(__sk) \
1469                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1470                                SINGLE_DEPTH_NESTING)
1471#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1472
1473extern bool lock_sock_fast(struct sock *sk);
1474/**
1475 * unlock_sock_fast - complement of lock_sock_fast
1476 * @sk: socket
1477 * @slow: slow mode
1478 *
1479 * fast unlock socket for user context.
1480 * If slow mode is on, we call regular release_sock()
1481 */
1482static inline void unlock_sock_fast(struct sock *sk, bool slow)
1483{
1484        if (slow)
1485                release_sock(sk);
1486        else
1487                spin_unlock_bh(&sk->sk_lock.slock);
1488}
1489
1490
1491extern struct sock              *sk_alloc(struct net *net, int family,
1492                                          gfp_t priority,
1493                                          struct proto *prot);
1494extern void                     sk_free(struct sock *sk);
1495extern void                     sk_release_kernel(struct sock *sk);
1496extern struct sock              *sk_clone_lock(const struct sock *sk,
1497                                               const gfp_t priority);
1498
1499extern struct sk_buff           *sock_wmalloc(struct sock *sk,
1500                                              unsigned long size, int force,
1501                                              gfp_t priority);
1502extern struct sk_buff           *sock_rmalloc(struct sock *sk,
1503                                              unsigned long size, int force,
1504                                              gfp_t priority);
1505extern void                     sock_wfree(struct sk_buff *skb);
1506extern void                     sock_rfree(struct sk_buff *skb);
1507extern void                     sock_edemux(struct sk_buff *skb);
1508
1509extern int                      sock_setsockopt(struct socket *sock, int level,
1510                                                int op, char __user *optval,
1511                                                unsigned int optlen);
1512
1513extern int                      sock_getsockopt(struct socket *sock, int level,
1514                                                int op, char __user *optval,
1515                                                int __user *optlen);
1516extern struct sk_buff           *sock_alloc_send_skb(struct sock *sk,
1517                                                     unsigned long size,
1518                                                     int noblock,
1519                                                     int *errcode);
1520extern struct sk_buff           *sock_alloc_send_pskb(struct sock *sk,
1521                                                      unsigned long header_len,
1522                                                      unsigned long data_len,
1523                                                      int noblock,
1524                                                      int *errcode);
1525extern void *sock_kmalloc(struct sock *sk, int size,
1526                          gfp_t priority);
1527extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1528extern void sk_send_sigurg(struct sock *sk);
1529
1530/*
1531 * Functions to fill in entries in struct proto_ops when a protocol
1532 * does not implement a particular function.
1533 */
1534extern int                      sock_no_bind(struct socket *,
1535                                             struct sockaddr *, int);
1536extern int                      sock_no_connect(struct socket *,
1537                                                struct sockaddr *, int, int);
1538extern int                      sock_no_socketpair(struct socket *,
1539                                                   struct socket *);
1540extern int                      sock_no_accept(struct socket *,
1541                                               struct socket *, int);
1542extern int                      sock_no_getname(struct socket *,
1543                                                struct sockaddr *, int *, int);
1544extern unsigned int             sock_no_poll(struct file *, struct socket *,
1545                                             struct poll_table_struct *);
1546extern int                      sock_no_ioctl(struct socket *, unsigned int,
1547                                              unsigned long);
1548extern int                      sock_no_listen(struct socket *, int);
1549extern int                      sock_no_shutdown(struct socket *, int);
1550extern int                      sock_no_getsockopt(struct socket *, int , int,
1551                                                   char __user *, int __user *);
1552extern int                      sock_no_setsockopt(struct socket *, int, int,
1553                                                   char __user *, unsigned int);
1554extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1555                                                struct msghdr *, size_t);
1556extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1557                                                struct msghdr *, size_t, int);
1558extern int                      sock_no_mmap(struct file *file,
1559                                             struct socket *sock,
1560                                             struct vm_area_struct *vma);
1561extern ssize_t                  sock_no_sendpage(struct socket *sock,
1562                                                struct page *page,
1563                                                int offset, size_t size,
1564                                                int flags);
1565
1566/*
1567 * Functions to fill in entries in struct proto_ops when a protocol
1568 * uses the inet style.
1569 */
1570extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1571                                  char __user *optval, int __user *optlen);
1572extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1573                               struct msghdr *msg, size_t size, int flags);
1574extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1575                                  char __user *optval, unsigned int optlen);
1576extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1577                int optname, char __user *optval, int __user *optlen);
1578extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1579                int optname, char __user *optval, unsigned int optlen);
1580
1581extern void sk_common_release(struct sock *sk);
1582
1583/*
1584 *      Default socket callbacks and setup code
1585 */
1586
1587/* Initialise core socket variables */
1588extern void sock_init_data(struct socket *sock, struct sock *sk);
1589
1590extern void sk_filter_release_rcu(struct rcu_head *rcu);
1591
1592/**
1593 *      sk_filter_release - release a socket filter
1594 *      @fp: filter to remove
1595 *
1596 *      Remove a filter from a socket and release its resources.
1597 */
1598
1599static inline void sk_filter_release(struct sk_filter *fp)
1600{
1601        if (atomic_dec_and_test(&fp->refcnt))
1602                call_rcu(&fp->rcu, sk_filter_release_rcu);
1603}
1604
1605static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1606{
1607        unsigned int size = sk_filter_len(fp);
1608
1609        atomic_sub(size, &sk->sk_omem_alloc);
1610        sk_filter_release(fp);
1611}
1612
1613static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1614{
1615        atomic_inc(&fp->refcnt);
1616        atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1617}
1618
1619/*
1620 * Socket reference counting postulates.
1621 *
1622 * * Each user of socket SHOULD hold a reference count.
1623 * * Each access point to socket (an hash table bucket, reference from a list,
1624 *   running timer, skb in flight MUST hold a reference count.
1625 * * When reference count hits 0, it means it will never increase back.
1626 * * When reference count hits 0, it means that no references from
1627 *   outside exist to this socket and current process on current CPU
1628 *   is last user and may/should destroy this socket.
1629 * * sk_free is called from any context: process, BH, IRQ. When
1630 *   it is called, socket has no references from outside -> sk_free
1631 *   may release descendant resources allocated by the socket, but
1632 *   to the time when it is called, socket is NOT referenced by any
1633 *   hash tables, lists etc.
1634 * * Packets, delivered from outside (from network or from another process)
1635 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1636 *   when they sit in queue. Otherwise, packets will leak to hole, when
1637 *   socket is looked up by one cpu and unhasing is made by another CPU.
1638 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1639 *   (leak to backlog). Packet socket does all the processing inside
1640 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1641 *   use separate SMP lock, so that they are prone too.
1642 */
1643
1644/* Ungrab socket and destroy it, if it was the last reference. */
1645static inline void sock_put(struct sock *sk)
1646{
1647        if (atomic_dec_and_test(&sk->sk_refcnt))
1648                sk_free(sk);
1649}
1650
1651extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1652                          const int nested);
1653
1654static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1655{
1656        sk->sk_tx_queue_mapping = tx_queue;
1657}
1658
1659static inline void sk_tx_queue_clear(struct sock *sk)
1660{
1661        sk->sk_tx_queue_mapping = -1;
1662}
1663
1664static inline int sk_tx_queue_get(const struct sock *sk)
1665{
1666        return sk ? sk->sk_tx_queue_mapping : -1;
1667}
1668
1669static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1670{
1671        sk_tx_queue_clear(sk);
1672        sk->sk_socket = sock;
1673}
1674
1675static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1676{
1677        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1678        return &rcu_dereference_raw(sk->sk_wq)->wait;
1679}
1680/* Detach socket from process context.
1681 * Announce socket dead, detach it from wait queue and inode.
1682 * Note that parent inode held reference count on this struct sock,
1683 * we do not release it in this function, because protocol
1684 * probably wants some additional cleanups or even continuing
1685 * to work with this socket (TCP).
1686 */
1687static inline void sock_orphan(struct sock *sk)
1688{
1689        write_lock_bh(&sk->sk_callback_lock);
1690        sock_set_flag(sk, SOCK_DEAD);
1691        sk_set_socket(sk, NULL);
1692        sk->sk_wq  = NULL;
1693        write_unlock_bh(&sk->sk_callback_lock);
1694}
1695
1696static inline void sock_graft(struct sock *sk, struct socket *parent)
1697{
1698        write_lock_bh(&sk->sk_callback_lock);
1699        sk->sk_wq = parent->wq;
1700        parent->sk = sk;
1701        sk_set_socket(sk, parent);
1702        security_sock_graft(sk, parent);
1703        write_unlock_bh(&sk->sk_callback_lock);
1704}
1705
1706extern kuid_t sock_i_uid(struct sock *sk);
1707extern unsigned long sock_i_ino(struct sock *sk);
1708
1709static inline struct dst_entry *
1710__sk_dst_get(struct sock *sk)
1711{
1712        return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1713                                                       lockdep_is_held(&sk->sk_lock.slock));
1714}
1715
1716static inline struct dst_entry *
1717sk_dst_get(struct sock *sk)
1718{
1719        struct dst_entry *dst;
1720
1721        rcu_read_lock();
1722        dst = rcu_dereference(sk->sk_dst_cache);
1723        if (dst)
1724                dst_hold(dst);
1725        rcu_read_unlock();
1726        return dst;
1727}
1728
1729extern void sk_reset_txq(struct sock *sk);
1730
1731static inline void dst_negative_advice(struct sock *sk)
1732{
1733        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1734
1735        if (dst && dst->ops->negative_advice) {
1736                ndst = dst->ops->negative_advice(dst);
1737
1738                if (ndst != dst) {
1739                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1740                        sk_reset_txq(sk);
1741                }
1742        }
1743}
1744
1745static inline void
1746__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1747{
1748        struct dst_entry *old_dst;
1749
1750        sk_tx_queue_clear(sk);
1751        /*
1752         * This can be called while sk is owned by the caller only,
1753         * with no state that can be checked in a rcu_dereference_check() cond
1754         */
1755        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1756        rcu_assign_pointer(sk->sk_dst_cache, dst);
1757        dst_release(old_dst);
1758}
1759
1760static inline void
1761sk_dst_set(struct sock *sk, struct dst_entry *dst)
1762{
1763        spin_lock(&sk->sk_dst_lock);
1764        __sk_dst_set(sk, dst);
1765        spin_unlock(&sk->sk_dst_lock);
1766}
1767
1768static inline void
1769__sk_dst_reset(struct sock *sk)
1770{
1771        __sk_dst_set(sk, NULL);
1772}
1773
1774static inline void
1775sk_dst_reset(struct sock *sk)
1776{
1777        spin_lock(&sk->sk_dst_lock);
1778        __sk_dst_reset(sk);
1779        spin_unlock(&sk->sk_dst_lock);
1780}
1781
1782extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1783
1784extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1785
1786static inline bool sk_can_gso(const struct sock *sk)
1787{
1788        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1789}
1790
1791extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1792
1793static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1794{
1795        sk->sk_route_nocaps |= flags;
1796        sk->sk_route_caps &= ~flags;
1797}
1798
1799static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1800                                           char __user *from, char *to,
1801                                           int copy, int offset)
1802{
1803        if (skb->ip_summed == CHECKSUM_NONE) {
1804                int err = 0;
1805                __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1806                if (err)
1807                        return err;
1808                skb->csum = csum_block_add(skb->csum, csum, offset);
1809        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1810                if (!access_ok(VERIFY_READ, from, copy) ||
1811                    __copy_from_user_nocache(to, from, copy))
1812                        return -EFAULT;
1813        } else if (copy_from_user(to, from, copy))
1814                return -EFAULT;
1815
1816        return 0;
1817}
1818
1819static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1820                                       char __user *from, int copy)
1821{
1822        int err, offset = skb->len;
1823
1824        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1825                                       copy, offset);
1826        if (err)
1827                __skb_trim(skb, offset);
1828
1829        return err;
1830}
1831
1832static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1833                                           struct sk_buff *skb,
1834                                           struct page *page,
1835                                           int off, int copy)
1836{
1837        int err;
1838
1839        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1840                                       copy, skb->len);
1841        if (err)
1842                return err;
1843
1844        skb->len             += copy;
1845        skb->data_len        += copy;
1846        skb->truesize        += copy;
1847        sk->sk_wmem_queued   += copy;
1848        sk_mem_charge(sk, copy);
1849        return 0;
1850}
1851
1852static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1853                                   struct sk_buff *skb, struct page *page,
1854                                   int off, int copy)
1855{
1856        if (skb->ip_summed == CHECKSUM_NONE) {
1857                int err = 0;
1858                __wsum csum = csum_and_copy_from_user(from,
1859                                                     page_address(page) + off,
1860                                                            copy, 0, &err);
1861                if (err)
1862                        return err;
1863                skb->csum = csum_block_add(skb->csum, csum, skb->len);
1864        } else if (copy_from_user(page_address(page) + off, from, copy))
1865                return -EFAULT;
1866
1867        skb->len             += copy;
1868        skb->data_len        += copy;
1869        skb->truesize        += copy;
1870        sk->sk_wmem_queued   += copy;
1871        sk_mem_charge(sk, copy);
1872        return 0;
1873}
1874
1875/**
1876 * sk_wmem_alloc_get - returns write allocations
1877 * @sk: socket
1878 *
1879 * Returns sk_wmem_alloc minus initial offset of one
1880 */
1881static inline int sk_wmem_alloc_get(const struct sock *sk)
1882{
1883        return atomic_read(&sk->sk_wmem_alloc) - 1;
1884}
1885
1886/**
1887 * sk_rmem_alloc_get - returns read allocations
1888 * @sk: socket
1889 *
1890 * Returns sk_rmem_alloc
1891 */
1892static inline int sk_rmem_alloc_get(const struct sock *sk)
1893{
1894        return atomic_read(&sk->sk_rmem_alloc);
1895}
1896
1897/**
1898 * sk_has_allocations - check if allocations are outstanding
1899 * @sk: socket
1900 *
1901 * Returns true if socket has write or read allocations
1902 */
1903static inline bool sk_has_allocations(const struct sock *sk)
1904{
1905        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1906}
1907
1908/**
1909 * wq_has_sleeper - check if there are any waiting processes
1910 * @wq: struct socket_wq
1911 *
1912 * Returns true if socket_wq has waiting processes
1913 *
1914 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1915 * barrier call. They were added due to the race found within the tcp code.
1916 *
1917 * Consider following tcp code paths:
1918 *
1919 * CPU1                  CPU2
1920 *
1921 * sys_select            receive packet
1922 *   ...                 ...
1923 *   __add_wait_queue    update tp->rcv_nxt
1924 *   ...                 ...
1925 *   tp->rcv_nxt check   sock_def_readable
1926 *   ...                 {
1927 *   schedule               rcu_read_lock();
1928 *                          wq = rcu_dereference(sk->sk_wq);
1929 *                          if (wq && waitqueue_active(&wq->wait))
1930 *                              wake_up_interruptible(&wq->wait)
1931 *                          ...
1932 *                       }
1933 *
1934 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1935 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1936 * could then endup calling schedule and sleep forever if there are no more
1937 * data on the socket.
1938 *
1939 */
1940static inline bool wq_has_sleeper(struct socket_wq *wq)
1941{
1942        /* We need to be sure we are in sync with the
1943         * add_wait_queue modifications to the wait queue.
1944         *
1945         * This memory barrier is paired in the sock_poll_wait.
1946         */
1947        smp_mb();
1948        return wq && waitqueue_active(&wq->wait);
1949}
1950
1951/**
1952 * sock_poll_wait - place memory barrier behind the poll_wait call.
1953 * @filp:           file
1954 * @wait_address:   socket wait queue
1955 * @p:              poll_table
1956 *
1957 * See the comments in the wq_has_sleeper function.
1958 */
1959static inline void sock_poll_wait(struct file *filp,
1960                wait_queue_head_t *wait_address, poll_table *p)
1961{
1962        if (!poll_does_not_wait(p) && wait_address) {
1963                poll_wait(filp, wait_address, p);
1964                /* We need to be sure we are in sync with the
1965                 * socket flags modification.
1966                 *
1967                 * This memory barrier is paired in the wq_has_sleeper.
1968                 */
1969                smp_mb();
1970        }
1971}
1972
1973/*
1974 *      Queue a received datagram if it will fit. Stream and sequenced
1975 *      protocols can't normally use this as they need to fit buffers in
1976 *      and play with them.
1977 *
1978 *      Inlined as it's very short and called for pretty much every
1979 *      packet ever received.
1980 */
1981
1982static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1983{
1984        skb_orphan(skb);
1985        skb->sk = sk;
1986        skb->destructor = sock_wfree;
1987        /*
1988         * We used to take a refcount on sk, but following operation
1989         * is enough to guarantee sk_free() wont free this sock until
1990         * all in-flight packets are completed
1991         */
1992        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1993}
1994
1995static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1996{
1997        skb_orphan(skb);
1998        skb->sk = sk;
1999        skb->destructor = sock_rfree;
2000        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2001        sk_mem_charge(sk, skb->truesize);
2002}
2003
2004extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2005                           unsigned long expires);
2006
2007extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2008
2009extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2010
2011extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2012
2013/*
2014 *      Recover an error report and clear atomically
2015 */
2016
2017static inline int sock_error(struct sock *sk)
2018{
2019        int err;
2020        if (likely(!sk->sk_err))
2021                return 0;
2022        err = xchg(&sk->sk_err, 0);
2023        return -err;
2024}
2025
2026static inline unsigned long sock_wspace(struct sock *sk)
2027{
2028        int amt = 0;
2029
2030        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2031                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2032                if (amt < 0)
2033                        amt = 0;
2034        }
2035        return amt;
2036}
2037
2038static inline void sk_wake_async(struct sock *sk, int how, int band)
2039{
2040        if (sock_flag(sk, SOCK_FASYNC))
2041                sock_wake_async(sk->sk_socket, how, band);
2042}
2043
2044#define SOCK_MIN_SNDBUF 2048
2045/*
2046 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2047 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2048 */
2049#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2050
2051static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2052{
2053        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2054                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2055                sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2056        }
2057}
2058
2059struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2060
2061/**
2062 * sk_page_frag - return an appropriate page_frag
2063 * @sk: socket
2064 *
2065 * If socket allocation mode allows current thread to sleep, it means its
2066 * safe to use the per task page_frag instead of the per socket one.
2067 */
2068static inline struct page_frag *sk_page_frag(struct sock *sk)
2069{
2070        if (sk->sk_allocation & __GFP_WAIT)
2071                return &current->task_frag;
2072
2073        return &sk->sk_frag;
2074}
2075
2076extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2077
2078/*
2079 *      Default write policy as shown to user space via poll/select/SIGIO
2080 */
2081static inline bool sock_writeable(const struct sock *sk)
2082{
2083        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2084}
2085
2086static inline gfp_t gfp_any(void)
2087{
2088        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2089}
2090
2091static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2092{
2093        return noblock ? 0 : sk->sk_rcvtimeo;
2094}
2095
2096static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2097{
2098        return noblock ? 0 : sk->sk_sndtimeo;
2099}
2100
2101static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2102{
2103        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2104}
2105
2106/* Alas, with timeout socket operations are not restartable.
2107 * Compare this to poll().
2108 */
2109static inline int sock_intr_errno(long timeo)
2110{
2111        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2112}
2113
2114extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2115        struct sk_buff *skb);
2116extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2117        struct sk_buff *skb);
2118
2119static inline void
2120sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2121{
2122        ktime_t kt = skb->tstamp;
2123        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2124
2125        /*
2126         * generate control messages if
2127         * - receive time stamping in software requested (SOCK_RCVTSTAMP
2128         *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2129         * - software time stamp available and wanted
2130         *   (SOCK_TIMESTAMPING_SOFTWARE)
2131         * - hardware time stamps available and wanted
2132         *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2133         *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2134         */
2135        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2136            sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2137            (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2138            (hwtstamps->hwtstamp.tv64 &&
2139             sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2140            (hwtstamps->syststamp.tv64 &&
2141             sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2142                __sock_recv_timestamp(msg, sk, skb);
2143        else
2144                sk->sk_stamp = kt;
2145
2146        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2147                __sock_recv_wifi_status(msg, sk, skb);
2148}
2149
2150extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2151                                     struct sk_buff *skb);
2152
2153static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2154                                          struct sk_buff *skb)
2155{
2156#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2157                           (1UL << SOCK_RCVTSTAMP)                      | \
2158                           (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)       | \
2159                           (1UL << SOCK_TIMESTAMPING_SOFTWARE)          | \
2160                           (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)      | \
2161                           (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2162
2163        if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2164                __sock_recv_ts_and_drops(msg, sk, skb);
2165        else
2166                sk->sk_stamp = skb->tstamp;
2167}
2168
2169/**
2170 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2171 * @sk:         socket sending this packet
2172 * @tx_flags:   filled with instructions for time stamping
2173 *
2174 * Currently only depends on SOCK_TIMESTAMPING* flags.
2175 */
2176extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2177
2178/**
2179 * sk_eat_skb - Release a skb if it is no longer needed
2180 * @sk: socket to eat this skb from
2181 * @skb: socket buffer to eat
2182 * @copied_early: flag indicating whether DMA operations copied this data early
2183 *
2184 * This routine must be called with interrupts disabled or with the socket
2185 * locked so that the sk_buff queue operation is ok.
2186*/
2187#ifdef CONFIG_NET_DMA
2188static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2189{
2190        __skb_unlink(skb, &sk->sk_receive_queue);
2191        if (!copied_early)
2192                __kfree_skb(skb);
2193        else
2194                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2195}
2196#else
2197static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2198{
2199        __skb_unlink(skb, &sk->sk_receive_queue);
2200        __kfree_skb(skb);
2201}
2202#endif
2203
2204static inline
2205struct net *sock_net(const struct sock *sk)
2206{
2207        return read_pnet(&sk->sk_net);
2208}
2209
2210static inline
2211void sock_net_set(struct sock *sk, struct net *net)
2212{
2213        write_pnet(&sk->sk_net, net);
2214}
2215
2216/*
2217 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2218 * They should not hold a reference to a namespace in order to allow
2219 * to stop it.
2220 * Sockets after sk_change_net should be released using sk_release_kernel
2221 */
2222static inline void sk_change_net(struct sock *sk, struct net *net)
2223{
2224        put_net(sock_net(sk));
2225        sock_net_set(sk, hold_net(net));
2226}
2227
2228static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2229{
2230        if (skb->sk) {
2231                struct sock *sk = skb->sk;
2232
2233                skb->destructor = NULL;
2234                skb->sk = NULL;
2235                return sk;
2236        }
2237        return NULL;
2238}
2239
2240extern void sock_enable_timestamp(struct sock *sk, int flag);
2241extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2242extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2243
2244/*
2245 *      Enable debug/info messages
2246 */
2247extern int net_msg_warn;
2248#define NETDEBUG(fmt, args...) \
2249        do { if (net_msg_warn) printk(fmt,##args); } while (0)
2250
2251#define LIMIT_NETDEBUG(fmt, args...) \
2252        do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2253
2254extern __u32 sysctl_wmem_max;
2255extern __u32 sysctl_rmem_max;
2256
2257extern int sysctl_optmem_max;
2258
2259extern __u32 sysctl_wmem_default;
2260extern __u32 sysctl_rmem_default;
2261
2262#endif  /* _SOCK_H */
2263