linux/kernel/cpuset.c
<<
>>
Prefs
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/backing-dev.h>
  55#include <linux/sort.h>
  56
  57#include <asm/uaccess.h>
  58#include <linux/atomic.h>
  59#include <linux/mutex.h>
  60#include <linux/workqueue.h>
  61#include <linux/cgroup.h>
  62
  63/*
  64 * Tracks how many cpusets are currently defined in system.
  65 * When there is only one cpuset (the root cpuset) we can
  66 * short circuit some hooks.
  67 */
  68int number_of_cpusets __read_mostly;
  69
  70/* Forward declare cgroup structures */
  71struct cgroup_subsys cpuset_subsys;
  72struct cpuset;
  73
  74/* See "Frequency meter" comments, below. */
  75
  76struct fmeter {
  77        int cnt;                /* unprocessed events count */
  78        int val;                /* most recent output value */
  79        time_t time;            /* clock (secs) when val computed */
  80        spinlock_t lock;        /* guards read or write of above */
  81};
  82
  83struct cpuset {
  84        struct cgroup_subsys_state css;
  85
  86        unsigned long flags;            /* "unsigned long" so bitops work */
  87        cpumask_var_t cpus_allowed;     /* CPUs allowed to tasks in cpuset */
  88        nodemask_t mems_allowed;        /* Memory Nodes allowed to tasks */
  89
  90        struct fmeter fmeter;           /* memory_pressure filter */
  91
  92        /*
  93         * Tasks are being attached to this cpuset.  Used to prevent
  94         * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  95         */
  96        int attach_in_progress;
  97
  98        /* partition number for rebuild_sched_domains() */
  99        int pn;
 100
 101        /* for custom sched domain */
 102        int relax_domain_level;
 103
 104        struct work_struct hotplug_work;
 105};
 106
 107/* Retrieve the cpuset for a cgroup */
 108static inline struct cpuset *cgroup_cs(struct cgroup *cont)
 109{
 110        return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
 111                            struct cpuset, css);
 112}
 113
 114/* Retrieve the cpuset for a task */
 115static inline struct cpuset *task_cs(struct task_struct *task)
 116{
 117        return container_of(task_subsys_state(task, cpuset_subsys_id),
 118                            struct cpuset, css);
 119}
 120
 121static inline struct cpuset *parent_cs(const struct cpuset *cs)
 122{
 123        struct cgroup *pcgrp = cs->css.cgroup->parent;
 124
 125        if (pcgrp)
 126                return cgroup_cs(pcgrp);
 127        return NULL;
 128}
 129
 130#ifdef CONFIG_NUMA
 131static inline bool task_has_mempolicy(struct task_struct *task)
 132{
 133        return task->mempolicy;
 134}
 135#else
 136static inline bool task_has_mempolicy(struct task_struct *task)
 137{
 138        return false;
 139}
 140#endif
 141
 142
 143/* bits in struct cpuset flags field */
 144typedef enum {
 145        CS_ONLINE,
 146        CS_CPU_EXCLUSIVE,
 147        CS_MEM_EXCLUSIVE,
 148        CS_MEM_HARDWALL,
 149        CS_MEMORY_MIGRATE,
 150        CS_SCHED_LOAD_BALANCE,
 151        CS_SPREAD_PAGE,
 152        CS_SPREAD_SLAB,
 153} cpuset_flagbits_t;
 154
 155/* convenient tests for these bits */
 156static inline bool is_cpuset_online(const struct cpuset *cs)
 157{
 158        return test_bit(CS_ONLINE, &cs->flags);
 159}
 160
 161static inline int is_cpu_exclusive(const struct cpuset *cs)
 162{
 163        return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 164}
 165
 166static inline int is_mem_exclusive(const struct cpuset *cs)
 167{
 168        return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 169}
 170
 171static inline int is_mem_hardwall(const struct cpuset *cs)
 172{
 173        return test_bit(CS_MEM_HARDWALL, &cs->flags);
 174}
 175
 176static inline int is_sched_load_balance(const struct cpuset *cs)
 177{
 178        return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 179}
 180
 181static inline int is_memory_migrate(const struct cpuset *cs)
 182{
 183        return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 184}
 185
 186static inline int is_spread_page(const struct cpuset *cs)
 187{
 188        return test_bit(CS_SPREAD_PAGE, &cs->flags);
 189}
 190
 191static inline int is_spread_slab(const struct cpuset *cs)
 192{
 193        return test_bit(CS_SPREAD_SLAB, &cs->flags);
 194}
 195
 196static struct cpuset top_cpuset = {
 197        .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 198                  (1 << CS_MEM_EXCLUSIVE)),
 199};
 200
 201/**
 202 * cpuset_for_each_child - traverse online children of a cpuset
 203 * @child_cs: loop cursor pointing to the current child
 204 * @pos_cgrp: used for iteration
 205 * @parent_cs: target cpuset to walk children of
 206 *
 207 * Walk @child_cs through the online children of @parent_cs.  Must be used
 208 * with RCU read locked.
 209 */
 210#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs)            \
 211        cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup)      \
 212                if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
 213
 214/**
 215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 216 * @des_cs: loop cursor pointing to the current descendant
 217 * @pos_cgrp: used for iteration
 218 * @root_cs: target cpuset to walk ancestor of
 219 *
 220 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 221 * with RCU read locked.  The caller may modify @pos_cgrp by calling
 222 * cgroup_rightmost_descendant() to skip subtree.
 223 */
 224#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs)       \
 225        cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
 226                if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
 227
 228/*
 229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
 230 * and callback_mutex.  The latter may nest inside the former.  We also
 231 * require taking task_lock() when dereferencing a task's cpuset pointer.
 232 * See "The task_lock() exception", at the end of this comment.
 233 *
 234 * A task must hold both mutexes to modify cpusets.  If a task holds
 235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 236 * is the only task able to also acquire callback_mutex and be able to
 237 * modify cpusets.  It can perform various checks on the cpuset structure
 238 * first, knowing nothing will change.  It can also allocate memory while
 239 * just holding cpuset_mutex.  While it is performing these checks, various
 240 * callback routines can briefly acquire callback_mutex to query cpusets.
 241 * Once it is ready to make the changes, it takes callback_mutex, blocking
 242 * everyone else.
 243 *
 244 * Calls to the kernel memory allocator can not be made while holding
 245 * callback_mutex, as that would risk double tripping on callback_mutex
 246 * from one of the callbacks into the cpuset code from within
 247 * __alloc_pages().
 248 *
 249 * If a task is only holding callback_mutex, then it has read-only
 250 * access to cpusets.
 251 *
 252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 253 * by other task, we use alloc_lock in the task_struct fields to protect
 254 * them.
 255 *
 256 * The cpuset_common_file_read() handlers only hold callback_mutex across
 257 * small pieces of code, such as when reading out possibly multi-word
 258 * cpumasks and nodemasks.
 259 *
 260 * Accessing a task's cpuset should be done in accordance with the
 261 * guidelines for accessing subsystem state in kernel/cgroup.c
 262 */
 263
 264static DEFINE_MUTEX(cpuset_mutex);
 265static DEFINE_MUTEX(callback_mutex);
 266
 267/*
 268 * CPU / memory hotplug is handled asynchronously.
 269 */
 270static struct workqueue_struct *cpuset_propagate_hotplug_wq;
 271
 272static void cpuset_hotplug_workfn(struct work_struct *work);
 273static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
 274static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
 275
 276static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 277
 278/*
 279 * This is ugly, but preserves the userspace API for existing cpuset
 280 * users. If someone tries to mount the "cpuset" filesystem, we
 281 * silently switch it to mount "cgroup" instead
 282 */
 283static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 284                         int flags, const char *unused_dev_name, void *data)
 285{
 286        struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 287        struct dentry *ret = ERR_PTR(-ENODEV);
 288        if (cgroup_fs) {
 289                char mountopts[] =
 290                        "cpuset,noprefix,"
 291                        "release_agent=/sbin/cpuset_release_agent";
 292                ret = cgroup_fs->mount(cgroup_fs, flags,
 293                                           unused_dev_name, mountopts);
 294                put_filesystem(cgroup_fs);
 295        }
 296        return ret;
 297}
 298
 299static struct file_system_type cpuset_fs_type = {
 300        .name = "cpuset",
 301        .mount = cpuset_mount,
 302};
 303
 304/*
 305 * Return in pmask the portion of a cpusets's cpus_allowed that
 306 * are online.  If none are online, walk up the cpuset hierarchy
 307 * until we find one that does have some online cpus.  If we get
 308 * all the way to the top and still haven't found any online cpus,
 309 * return cpu_online_mask.  Or if passed a NULL cs from an exit'ing
 310 * task, return cpu_online_mask.
 311 *
 312 * One way or another, we guarantee to return some non-empty subset
 313 * of cpu_online_mask.
 314 *
 315 * Call with callback_mutex held.
 316 */
 317
 318static void guarantee_online_cpus(const struct cpuset *cs,
 319                                  struct cpumask *pmask)
 320{
 321        while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
 322                cs = parent_cs(cs);
 323        if (cs)
 324                cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
 325        else
 326                cpumask_copy(pmask, cpu_online_mask);
 327        BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
 328}
 329
 330/*
 331 * Return in *pmask the portion of a cpusets's mems_allowed that
 332 * are online, with memory.  If none are online with memory, walk
 333 * up the cpuset hierarchy until we find one that does have some
 334 * online mems.  If we get all the way to the top and still haven't
 335 * found any online mems, return node_states[N_MEMORY].
 336 *
 337 * One way or another, we guarantee to return some non-empty subset
 338 * of node_states[N_MEMORY].
 339 *
 340 * Call with callback_mutex held.
 341 */
 342
 343static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
 344{
 345        while (cs && !nodes_intersects(cs->mems_allowed,
 346                                        node_states[N_MEMORY]))
 347                cs = parent_cs(cs);
 348        if (cs)
 349                nodes_and(*pmask, cs->mems_allowed,
 350                                        node_states[N_MEMORY]);
 351        else
 352                *pmask = node_states[N_MEMORY];
 353        BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
 354}
 355
 356/*
 357 * update task's spread flag if cpuset's page/slab spread flag is set
 358 *
 359 * Called with callback_mutex/cpuset_mutex held
 360 */
 361static void cpuset_update_task_spread_flag(struct cpuset *cs,
 362                                        struct task_struct *tsk)
 363{
 364        if (is_spread_page(cs))
 365                tsk->flags |= PF_SPREAD_PAGE;
 366        else
 367                tsk->flags &= ~PF_SPREAD_PAGE;
 368        if (is_spread_slab(cs))
 369                tsk->flags |= PF_SPREAD_SLAB;
 370        else
 371                tsk->flags &= ~PF_SPREAD_SLAB;
 372}
 373
 374/*
 375 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 376 *
 377 * One cpuset is a subset of another if all its allowed CPUs and
 378 * Memory Nodes are a subset of the other, and its exclusive flags
 379 * are only set if the other's are set.  Call holding cpuset_mutex.
 380 */
 381
 382static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 383{
 384        return  cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 385                nodes_subset(p->mems_allowed, q->mems_allowed) &&
 386                is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 387                is_mem_exclusive(p) <= is_mem_exclusive(q);
 388}
 389
 390/**
 391 * alloc_trial_cpuset - allocate a trial cpuset
 392 * @cs: the cpuset that the trial cpuset duplicates
 393 */
 394static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
 395{
 396        struct cpuset *trial;
 397
 398        trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 399        if (!trial)
 400                return NULL;
 401
 402        if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
 403                kfree(trial);
 404                return NULL;
 405        }
 406        cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 407
 408        return trial;
 409}
 410
 411/**
 412 * free_trial_cpuset - free the trial cpuset
 413 * @trial: the trial cpuset to be freed
 414 */
 415static void free_trial_cpuset(struct cpuset *trial)
 416{
 417        free_cpumask_var(trial->cpus_allowed);
 418        kfree(trial);
 419}
 420
 421/*
 422 * validate_change() - Used to validate that any proposed cpuset change
 423 *                     follows the structural rules for cpusets.
 424 *
 425 * If we replaced the flag and mask values of the current cpuset
 426 * (cur) with those values in the trial cpuset (trial), would
 427 * our various subset and exclusive rules still be valid?  Presumes
 428 * cpuset_mutex held.
 429 *
 430 * 'cur' is the address of an actual, in-use cpuset.  Operations
 431 * such as list traversal that depend on the actual address of the
 432 * cpuset in the list must use cur below, not trial.
 433 *
 434 * 'trial' is the address of bulk structure copy of cur, with
 435 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 436 * or flags changed to new, trial values.
 437 *
 438 * Return 0 if valid, -errno if not.
 439 */
 440
 441static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
 442{
 443        struct cgroup *cont;
 444        struct cpuset *c, *par;
 445        int ret;
 446
 447        rcu_read_lock();
 448
 449        /* Each of our child cpusets must be a subset of us */
 450        ret = -EBUSY;
 451        cpuset_for_each_child(c, cont, cur)
 452                if (!is_cpuset_subset(c, trial))
 453                        goto out;
 454
 455        /* Remaining checks don't apply to root cpuset */
 456        ret = 0;
 457        if (cur == &top_cpuset)
 458                goto out;
 459
 460        par = parent_cs(cur);
 461
 462        /* We must be a subset of our parent cpuset */
 463        ret = -EACCES;
 464        if (!is_cpuset_subset(trial, par))
 465                goto out;
 466
 467        /*
 468         * If either I or some sibling (!= me) is exclusive, we can't
 469         * overlap
 470         */
 471        ret = -EINVAL;
 472        cpuset_for_each_child(c, cont, par) {
 473                if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 474                    c != cur &&
 475                    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 476                        goto out;
 477                if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 478                    c != cur &&
 479                    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 480                        goto out;
 481        }
 482
 483        /*
 484         * Cpusets with tasks - existing or newly being attached - can't
 485         * have empty cpus_allowed or mems_allowed.
 486         */
 487        ret = -ENOSPC;
 488        if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
 489            (cpumask_empty(trial->cpus_allowed) ||
 490             nodes_empty(trial->mems_allowed)))
 491                goto out;
 492
 493        ret = 0;
 494out:
 495        rcu_read_unlock();
 496        return ret;
 497}
 498
 499#ifdef CONFIG_SMP
 500/*
 501 * Helper routine for generate_sched_domains().
 502 * Do cpusets a, b have overlapping cpus_allowed masks?
 503 */
 504static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 505{
 506        return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
 507}
 508
 509static void
 510update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 511{
 512        if (dattr->relax_domain_level < c->relax_domain_level)
 513                dattr->relax_domain_level = c->relax_domain_level;
 514        return;
 515}
 516
 517static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 518                                    struct cpuset *root_cs)
 519{
 520        struct cpuset *cp;
 521        struct cgroup *pos_cgrp;
 522
 523        rcu_read_lock();
 524        cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
 525                /* skip the whole subtree if @cp doesn't have any CPU */
 526                if (cpumask_empty(cp->cpus_allowed)) {
 527                        pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
 528                        continue;
 529                }
 530
 531                if (is_sched_load_balance(cp))
 532                        update_domain_attr(dattr, cp);
 533        }
 534        rcu_read_unlock();
 535}
 536
 537/*
 538 * generate_sched_domains()
 539 *
 540 * This function builds a partial partition of the systems CPUs
 541 * A 'partial partition' is a set of non-overlapping subsets whose
 542 * union is a subset of that set.
 543 * The output of this function needs to be passed to kernel/sched.c
 544 * partition_sched_domains() routine, which will rebuild the scheduler's
 545 * load balancing domains (sched domains) as specified by that partial
 546 * partition.
 547 *
 548 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 549 * for a background explanation of this.
 550 *
 551 * Does not return errors, on the theory that the callers of this
 552 * routine would rather not worry about failures to rebuild sched
 553 * domains when operating in the severe memory shortage situations
 554 * that could cause allocation failures below.
 555 *
 556 * Must be called with cpuset_mutex held.
 557 *
 558 * The three key local variables below are:
 559 *    q  - a linked-list queue of cpuset pointers, used to implement a
 560 *         top-down scan of all cpusets.  This scan loads a pointer
 561 *         to each cpuset marked is_sched_load_balance into the
 562 *         array 'csa'.  For our purposes, rebuilding the schedulers
 563 *         sched domains, we can ignore !is_sched_load_balance cpusets.
 564 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 565 *         that need to be load balanced, for convenient iterative
 566 *         access by the subsequent code that finds the best partition,
 567 *         i.e the set of domains (subsets) of CPUs such that the
 568 *         cpus_allowed of every cpuset marked is_sched_load_balance
 569 *         is a subset of one of these domains, while there are as
 570 *         many such domains as possible, each as small as possible.
 571 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 572 *         the kernel/sched.c routine partition_sched_domains() in a
 573 *         convenient format, that can be easily compared to the prior
 574 *         value to determine what partition elements (sched domains)
 575 *         were changed (added or removed.)
 576 *
 577 * Finding the best partition (set of domains):
 578 *      The triple nested loops below over i, j, k scan over the
 579 *      load balanced cpusets (using the array of cpuset pointers in
 580 *      csa[]) looking for pairs of cpusets that have overlapping
 581 *      cpus_allowed, but which don't have the same 'pn' partition
 582 *      number and gives them in the same partition number.  It keeps
 583 *      looping on the 'restart' label until it can no longer find
 584 *      any such pairs.
 585 *
 586 *      The union of the cpus_allowed masks from the set of
 587 *      all cpusets having the same 'pn' value then form the one
 588 *      element of the partition (one sched domain) to be passed to
 589 *      partition_sched_domains().
 590 */
 591static int generate_sched_domains(cpumask_var_t **domains,
 592                        struct sched_domain_attr **attributes)
 593{
 594        struct cpuset *cp;      /* scans q */
 595        struct cpuset **csa;    /* array of all cpuset ptrs */
 596        int csn;                /* how many cpuset ptrs in csa so far */
 597        int i, j, k;            /* indices for partition finding loops */
 598        cpumask_var_t *doms;    /* resulting partition; i.e. sched domains */
 599        struct sched_domain_attr *dattr;  /* attributes for custom domains */
 600        int ndoms = 0;          /* number of sched domains in result */
 601        int nslot;              /* next empty doms[] struct cpumask slot */
 602        struct cgroup *pos_cgrp;
 603
 604        doms = NULL;
 605        dattr = NULL;
 606        csa = NULL;
 607
 608        /* Special case for the 99% of systems with one, full, sched domain */
 609        if (is_sched_load_balance(&top_cpuset)) {
 610                ndoms = 1;
 611                doms = alloc_sched_domains(ndoms);
 612                if (!doms)
 613                        goto done;
 614
 615                dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 616                if (dattr) {
 617                        *dattr = SD_ATTR_INIT;
 618                        update_domain_attr_tree(dattr, &top_cpuset);
 619                }
 620                cpumask_copy(doms[0], top_cpuset.cpus_allowed);
 621
 622                goto done;
 623        }
 624
 625        csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
 626        if (!csa)
 627                goto done;
 628        csn = 0;
 629
 630        rcu_read_lock();
 631        cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
 632                /*
 633                 * Continue traversing beyond @cp iff @cp has some CPUs and
 634                 * isn't load balancing.  The former is obvious.  The
 635                 * latter: All child cpusets contain a subset of the
 636                 * parent's cpus, so just skip them, and then we call
 637                 * update_domain_attr_tree() to calc relax_domain_level of
 638                 * the corresponding sched domain.
 639                 */
 640                if (!cpumask_empty(cp->cpus_allowed) &&
 641                    !is_sched_load_balance(cp))
 642                        continue;
 643
 644                if (is_sched_load_balance(cp))
 645                        csa[csn++] = cp;
 646
 647                /* skip @cp's subtree */
 648                pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
 649        }
 650        rcu_read_unlock();
 651
 652        for (i = 0; i < csn; i++)
 653                csa[i]->pn = i;
 654        ndoms = csn;
 655
 656restart:
 657        /* Find the best partition (set of sched domains) */
 658        for (i = 0; i < csn; i++) {
 659                struct cpuset *a = csa[i];
 660                int apn = a->pn;
 661
 662                for (j = 0; j < csn; j++) {
 663                        struct cpuset *b = csa[j];
 664                        int bpn = b->pn;
 665
 666                        if (apn != bpn && cpusets_overlap(a, b)) {
 667                                for (k = 0; k < csn; k++) {
 668                                        struct cpuset *c = csa[k];
 669
 670                                        if (c->pn == bpn)
 671                                                c->pn = apn;
 672                                }
 673                                ndoms--;        /* one less element */
 674                                goto restart;
 675                        }
 676                }
 677        }
 678
 679        /*
 680         * Now we know how many domains to create.
 681         * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 682         */
 683        doms = alloc_sched_domains(ndoms);
 684        if (!doms)
 685                goto done;
 686
 687        /*
 688         * The rest of the code, including the scheduler, can deal with
 689         * dattr==NULL case. No need to abort if alloc fails.
 690         */
 691        dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 692
 693        for (nslot = 0, i = 0; i < csn; i++) {
 694                struct cpuset *a = csa[i];
 695                struct cpumask *dp;
 696                int apn = a->pn;
 697
 698                if (apn < 0) {
 699                        /* Skip completed partitions */
 700                        continue;
 701                }
 702
 703                dp = doms[nslot];
 704
 705                if (nslot == ndoms) {
 706                        static int warnings = 10;
 707                        if (warnings) {
 708                                printk(KERN_WARNING
 709                                 "rebuild_sched_domains confused:"
 710                                  " nslot %d, ndoms %d, csn %d, i %d,"
 711                                  " apn %d\n",
 712                                  nslot, ndoms, csn, i, apn);
 713                                warnings--;
 714                        }
 715                        continue;
 716                }
 717
 718                cpumask_clear(dp);
 719                if (dattr)
 720                        *(dattr + nslot) = SD_ATTR_INIT;
 721                for (j = i; j < csn; j++) {
 722                        struct cpuset *b = csa[j];
 723
 724                        if (apn == b->pn) {
 725                                cpumask_or(dp, dp, b->cpus_allowed);
 726                                if (dattr)
 727                                        update_domain_attr_tree(dattr + nslot, b);
 728
 729                                /* Done with this partition */
 730                                b->pn = -1;
 731                        }
 732                }
 733                nslot++;
 734        }
 735        BUG_ON(nslot != ndoms);
 736
 737done:
 738        kfree(csa);
 739
 740        /*
 741         * Fallback to the default domain if kmalloc() failed.
 742         * See comments in partition_sched_domains().
 743         */
 744        if (doms == NULL)
 745                ndoms = 1;
 746
 747        *domains    = doms;
 748        *attributes = dattr;
 749        return ndoms;
 750}
 751
 752/*
 753 * Rebuild scheduler domains.
 754 *
 755 * If the flag 'sched_load_balance' of any cpuset with non-empty
 756 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 757 * which has that flag enabled, or if any cpuset with a non-empty
 758 * 'cpus' is removed, then call this routine to rebuild the
 759 * scheduler's dynamic sched domains.
 760 *
 761 * Call with cpuset_mutex held.  Takes get_online_cpus().
 762 */
 763static void rebuild_sched_domains_locked(void)
 764{
 765        struct sched_domain_attr *attr;
 766        cpumask_var_t *doms;
 767        int ndoms;
 768
 769        lockdep_assert_held(&cpuset_mutex);
 770        get_online_cpus();
 771
 772        /*
 773         * We have raced with CPU hotplug. Don't do anything to avoid
 774         * passing doms with offlined cpu to partition_sched_domains().
 775         * Anyways, hotplug work item will rebuild sched domains.
 776         */
 777        if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
 778                goto out;
 779
 780        /* Generate domain masks and attrs */
 781        ndoms = generate_sched_domains(&doms, &attr);
 782
 783        /* Have scheduler rebuild the domains */
 784        partition_sched_domains(ndoms, doms, attr);
 785out:
 786        put_online_cpus();
 787}
 788#else /* !CONFIG_SMP */
 789static void rebuild_sched_domains_locked(void)
 790{
 791}
 792#endif /* CONFIG_SMP */
 793
 794void rebuild_sched_domains(void)
 795{
 796        mutex_lock(&cpuset_mutex);
 797        rebuild_sched_domains_locked();
 798        mutex_unlock(&cpuset_mutex);
 799}
 800
 801/**
 802 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 803 * @tsk: task to test
 804 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 805 *
 806 * Call with cpuset_mutex held.  May take callback_mutex during call.
 807 * Called for each task in a cgroup by cgroup_scan_tasks().
 808 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 809 * words, if its mask is not equal to its cpuset's mask).
 810 */
 811static int cpuset_test_cpumask(struct task_struct *tsk,
 812                               struct cgroup_scanner *scan)
 813{
 814        return !cpumask_equal(&tsk->cpus_allowed,
 815                        (cgroup_cs(scan->cg))->cpus_allowed);
 816}
 817
 818/**
 819 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 820 * @tsk: task to test
 821 * @scan: struct cgroup_scanner containing the cgroup of the task
 822 *
 823 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 824 * cpus_allowed mask needs to be changed.
 825 *
 826 * We don't need to re-check for the cgroup/cpuset membership, since we're
 827 * holding cpuset_mutex at this point.
 828 */
 829static void cpuset_change_cpumask(struct task_struct *tsk,
 830                                  struct cgroup_scanner *scan)
 831{
 832        set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
 833}
 834
 835/**
 836 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 837 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 838 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 839 *
 840 * Called with cpuset_mutex held
 841 *
 842 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 843 * calling callback functions for each.
 844 *
 845 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 846 * if @heap != NULL.
 847 */
 848static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
 849{
 850        struct cgroup_scanner scan;
 851
 852        scan.cg = cs->css.cgroup;
 853        scan.test_task = cpuset_test_cpumask;
 854        scan.process_task = cpuset_change_cpumask;
 855        scan.heap = heap;
 856        cgroup_scan_tasks(&scan);
 857}
 858
 859/**
 860 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 861 * @cs: the cpuset to consider
 862 * @buf: buffer of cpu numbers written to this cpuset
 863 */
 864static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 865                          const char *buf)
 866{
 867        struct ptr_heap heap;
 868        int retval;
 869        int is_load_balanced;
 870
 871        /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
 872        if (cs == &top_cpuset)
 873                return -EACCES;
 874
 875        /*
 876         * An empty cpus_allowed is ok only if the cpuset has no tasks.
 877         * Since cpulist_parse() fails on an empty mask, we special case
 878         * that parsing.  The validate_change() call ensures that cpusets
 879         * with tasks have cpus.
 880         */
 881        if (!*buf) {
 882                cpumask_clear(trialcs->cpus_allowed);
 883        } else {
 884                retval = cpulist_parse(buf, trialcs->cpus_allowed);
 885                if (retval < 0)
 886                        return retval;
 887
 888                if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
 889                        return -EINVAL;
 890        }
 891        retval = validate_change(cs, trialcs);
 892        if (retval < 0)
 893                return retval;
 894
 895        /* Nothing to do if the cpus didn't change */
 896        if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 897                return 0;
 898
 899        retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
 900        if (retval)
 901                return retval;
 902
 903        is_load_balanced = is_sched_load_balance(trialcs);
 904
 905        mutex_lock(&callback_mutex);
 906        cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 907        mutex_unlock(&callback_mutex);
 908
 909        /*
 910         * Scan tasks in the cpuset, and update the cpumasks of any
 911         * that need an update.
 912         */
 913        update_tasks_cpumask(cs, &heap);
 914
 915        heap_free(&heap);
 916
 917        if (is_load_balanced)
 918                rebuild_sched_domains_locked();
 919        return 0;
 920}
 921
 922/*
 923 * cpuset_migrate_mm
 924 *
 925 *    Migrate memory region from one set of nodes to another.
 926 *
 927 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 928 *    so that the migration code can allocate pages on these nodes.
 929 *
 930 *    Call holding cpuset_mutex, so current's cpuset won't change
 931 *    during this call, as manage_mutex holds off any cpuset_attach()
 932 *    calls.  Therefore we don't need to take task_lock around the
 933 *    call to guarantee_online_mems(), as we know no one is changing
 934 *    our task's cpuset.
 935 *
 936 *    While the mm_struct we are migrating is typically from some
 937 *    other task, the task_struct mems_allowed that we are hacking
 938 *    is for our current task, which must allocate new pages for that
 939 *    migrating memory region.
 940 */
 941
 942static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 943                                                        const nodemask_t *to)
 944{
 945        struct task_struct *tsk = current;
 946
 947        tsk->mems_allowed = *to;
 948
 949        do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 950
 951        guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
 952}
 953
 954/*
 955 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 956 * @tsk: the task to change
 957 * @newmems: new nodes that the task will be set
 958 *
 959 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 960 * we structure updates as setting all new allowed nodes, then clearing newly
 961 * disallowed ones.
 962 */
 963static void cpuset_change_task_nodemask(struct task_struct *tsk,
 964                                        nodemask_t *newmems)
 965{
 966        bool need_loop;
 967
 968        /*
 969         * Allow tasks that have access to memory reserves because they have
 970         * been OOM killed to get memory anywhere.
 971         */
 972        if (unlikely(test_thread_flag(TIF_MEMDIE)))
 973                return;
 974        if (current->flags & PF_EXITING) /* Let dying task have memory */
 975                return;
 976
 977        task_lock(tsk);
 978        /*
 979         * Determine if a loop is necessary if another thread is doing
 980         * get_mems_allowed().  If at least one node remains unchanged and
 981         * tsk does not have a mempolicy, then an empty nodemask will not be
 982         * possible when mems_allowed is larger than a word.
 983         */
 984        need_loop = task_has_mempolicy(tsk) ||
 985                        !nodes_intersects(*newmems, tsk->mems_allowed);
 986
 987        if (need_loop)
 988                write_seqcount_begin(&tsk->mems_allowed_seq);
 989
 990        nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
 991        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
 992
 993        mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
 994        tsk->mems_allowed = *newmems;
 995
 996        if (need_loop)
 997                write_seqcount_end(&tsk->mems_allowed_seq);
 998
 999        task_unlock(tsk);
1000}
1001
1002/*
1003 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1004 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1005 * memory_migrate flag is set. Called with cpuset_mutex held.
1006 */
1007static void cpuset_change_nodemask(struct task_struct *p,
1008                                   struct cgroup_scanner *scan)
1009{
1010        struct mm_struct *mm;
1011        struct cpuset *cs;
1012        int migrate;
1013        const nodemask_t *oldmem = scan->data;
1014        static nodemask_t newmems;      /* protected by cpuset_mutex */
1015
1016        cs = cgroup_cs(scan->cg);
1017        guarantee_online_mems(cs, &newmems);
1018
1019        cpuset_change_task_nodemask(p, &newmems);
1020
1021        mm = get_task_mm(p);
1022        if (!mm)
1023                return;
1024
1025        migrate = is_memory_migrate(cs);
1026
1027        mpol_rebind_mm(mm, &cs->mems_allowed);
1028        if (migrate)
1029                cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1030        mmput(mm);
1031}
1032
1033static void *cpuset_being_rebound;
1034
1035/**
1036 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1037 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1038 * @oldmem: old mems_allowed of cpuset cs
1039 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1040 *
1041 * Called with cpuset_mutex held
1042 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1043 * if @heap != NULL.
1044 */
1045static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1046                                 struct ptr_heap *heap)
1047{
1048        struct cgroup_scanner scan;
1049
1050        cpuset_being_rebound = cs;              /* causes mpol_dup() rebind */
1051
1052        scan.cg = cs->css.cgroup;
1053        scan.test_task = NULL;
1054        scan.process_task = cpuset_change_nodemask;
1055        scan.heap = heap;
1056        scan.data = (nodemask_t *)oldmem;
1057
1058        /*
1059         * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1060         * take while holding tasklist_lock.  Forks can happen - the
1061         * mpol_dup() cpuset_being_rebound check will catch such forks,
1062         * and rebind their vma mempolicies too.  Because we still hold
1063         * the global cpuset_mutex, we know that no other rebind effort
1064         * will be contending for the global variable cpuset_being_rebound.
1065         * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1066         * is idempotent.  Also migrate pages in each mm to new nodes.
1067         */
1068        cgroup_scan_tasks(&scan);
1069
1070        /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1071        cpuset_being_rebound = NULL;
1072}
1073
1074/*
1075 * Handle user request to change the 'mems' memory placement
1076 * of a cpuset.  Needs to validate the request, update the
1077 * cpusets mems_allowed, and for each task in the cpuset,
1078 * update mems_allowed and rebind task's mempolicy and any vma
1079 * mempolicies and if the cpuset is marked 'memory_migrate',
1080 * migrate the tasks pages to the new memory.
1081 *
1082 * Call with cpuset_mutex held.  May take callback_mutex during call.
1083 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1084 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1085 * their mempolicies to the cpusets new mems_allowed.
1086 */
1087static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1088                           const char *buf)
1089{
1090        NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1091        int retval;
1092        struct ptr_heap heap;
1093
1094        if (!oldmem)
1095                return -ENOMEM;
1096
1097        /*
1098         * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1099         * it's read-only
1100         */
1101        if (cs == &top_cpuset) {
1102                retval = -EACCES;
1103                goto done;
1104        }
1105
1106        /*
1107         * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1108         * Since nodelist_parse() fails on an empty mask, we special case
1109         * that parsing.  The validate_change() call ensures that cpusets
1110         * with tasks have memory.
1111         */
1112        if (!*buf) {
1113                nodes_clear(trialcs->mems_allowed);
1114        } else {
1115                retval = nodelist_parse(buf, trialcs->mems_allowed);
1116                if (retval < 0)
1117                        goto done;
1118
1119                if (!nodes_subset(trialcs->mems_allowed,
1120                                node_states[N_MEMORY])) {
1121                        retval =  -EINVAL;
1122                        goto done;
1123                }
1124        }
1125        *oldmem = cs->mems_allowed;
1126        if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1127                retval = 0;             /* Too easy - nothing to do */
1128                goto done;
1129        }
1130        retval = validate_change(cs, trialcs);
1131        if (retval < 0)
1132                goto done;
1133
1134        retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1135        if (retval < 0)
1136                goto done;
1137
1138        mutex_lock(&callback_mutex);
1139        cs->mems_allowed = trialcs->mems_allowed;
1140        mutex_unlock(&callback_mutex);
1141
1142        update_tasks_nodemask(cs, oldmem, &heap);
1143
1144        heap_free(&heap);
1145done:
1146        NODEMASK_FREE(oldmem);
1147        return retval;
1148}
1149
1150int current_cpuset_is_being_rebound(void)
1151{
1152        return task_cs(current) == cpuset_being_rebound;
1153}
1154
1155static int update_relax_domain_level(struct cpuset *cs, s64 val)
1156{
1157#ifdef CONFIG_SMP
1158        if (val < -1 || val >= sched_domain_level_max)
1159                return -EINVAL;
1160#endif
1161
1162        if (val != cs->relax_domain_level) {
1163                cs->relax_domain_level = val;
1164                if (!cpumask_empty(cs->cpus_allowed) &&
1165                    is_sched_load_balance(cs))
1166                        rebuild_sched_domains_locked();
1167        }
1168
1169        return 0;
1170}
1171
1172/*
1173 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1174 * @tsk: task to be updated
1175 * @scan: struct cgroup_scanner containing the cgroup of the task
1176 *
1177 * Called by cgroup_scan_tasks() for each task in a cgroup.
1178 *
1179 * We don't need to re-check for the cgroup/cpuset membership, since we're
1180 * holding cpuset_mutex at this point.
1181 */
1182static void cpuset_change_flag(struct task_struct *tsk,
1183                                struct cgroup_scanner *scan)
1184{
1185        cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1186}
1187
1188/*
1189 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1190 * @cs: the cpuset in which each task's spread flags needs to be changed
1191 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1192 *
1193 * Called with cpuset_mutex held
1194 *
1195 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1196 * calling callback functions for each.
1197 *
1198 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1199 * if @heap != NULL.
1200 */
1201static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1202{
1203        struct cgroup_scanner scan;
1204
1205        scan.cg = cs->css.cgroup;
1206        scan.test_task = NULL;
1207        scan.process_task = cpuset_change_flag;
1208        scan.heap = heap;
1209        cgroup_scan_tasks(&scan);
1210}
1211
1212/*
1213 * update_flag - read a 0 or a 1 in a file and update associated flag
1214 * bit:         the bit to update (see cpuset_flagbits_t)
1215 * cs:          the cpuset to update
1216 * turning_on:  whether the flag is being set or cleared
1217 *
1218 * Call with cpuset_mutex held.
1219 */
1220
1221static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1222                       int turning_on)
1223{
1224        struct cpuset *trialcs;
1225        int balance_flag_changed;
1226        int spread_flag_changed;
1227        struct ptr_heap heap;
1228        int err;
1229
1230        trialcs = alloc_trial_cpuset(cs);
1231        if (!trialcs)
1232                return -ENOMEM;
1233
1234        if (turning_on)
1235                set_bit(bit, &trialcs->flags);
1236        else
1237                clear_bit(bit, &trialcs->flags);
1238
1239        err = validate_change(cs, trialcs);
1240        if (err < 0)
1241                goto out;
1242
1243        err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1244        if (err < 0)
1245                goto out;
1246
1247        balance_flag_changed = (is_sched_load_balance(cs) !=
1248                                is_sched_load_balance(trialcs));
1249
1250        spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1251                        || (is_spread_page(cs) != is_spread_page(trialcs)));
1252
1253        mutex_lock(&callback_mutex);
1254        cs->flags = trialcs->flags;
1255        mutex_unlock(&callback_mutex);
1256
1257        if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1258                rebuild_sched_domains_locked();
1259
1260        if (spread_flag_changed)
1261                update_tasks_flags(cs, &heap);
1262        heap_free(&heap);
1263out:
1264        free_trial_cpuset(trialcs);
1265        return err;
1266}
1267
1268/*
1269 * Frequency meter - How fast is some event occurring?
1270 *
1271 * These routines manage a digitally filtered, constant time based,
1272 * event frequency meter.  There are four routines:
1273 *   fmeter_init() - initialize a frequency meter.
1274 *   fmeter_markevent() - called each time the event happens.
1275 *   fmeter_getrate() - returns the recent rate of such events.
1276 *   fmeter_update() - internal routine used to update fmeter.
1277 *
1278 * A common data structure is passed to each of these routines,
1279 * which is used to keep track of the state required to manage the
1280 * frequency meter and its digital filter.
1281 *
1282 * The filter works on the number of events marked per unit time.
1283 * The filter is single-pole low-pass recursive (IIR).  The time unit
1284 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1285 * simulate 3 decimal digits of precision (multiplied by 1000).
1286 *
1287 * With an FM_COEF of 933, and a time base of 1 second, the filter
1288 * has a half-life of 10 seconds, meaning that if the events quit
1289 * happening, then the rate returned from the fmeter_getrate()
1290 * will be cut in half each 10 seconds, until it converges to zero.
1291 *
1292 * It is not worth doing a real infinitely recursive filter.  If more
1293 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1294 * just compute FM_MAXTICKS ticks worth, by which point the level
1295 * will be stable.
1296 *
1297 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1298 * arithmetic overflow in the fmeter_update() routine.
1299 *
1300 * Given the simple 32 bit integer arithmetic used, this meter works
1301 * best for reporting rates between one per millisecond (msec) and
1302 * one per 32 (approx) seconds.  At constant rates faster than one
1303 * per msec it maxes out at values just under 1,000,000.  At constant
1304 * rates between one per msec, and one per second it will stabilize
1305 * to a value N*1000, where N is the rate of events per second.
1306 * At constant rates between one per second and one per 32 seconds,
1307 * it will be choppy, moving up on the seconds that have an event,
1308 * and then decaying until the next event.  At rates slower than
1309 * about one in 32 seconds, it decays all the way back to zero between
1310 * each event.
1311 */
1312
1313#define FM_COEF 933             /* coefficient for half-life of 10 secs */
1314#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1315#define FM_MAXCNT 1000000       /* limit cnt to avoid overflow */
1316#define FM_SCALE 1000           /* faux fixed point scale */
1317
1318/* Initialize a frequency meter */
1319static void fmeter_init(struct fmeter *fmp)
1320{
1321        fmp->cnt = 0;
1322        fmp->val = 0;
1323        fmp->time = 0;
1324        spin_lock_init(&fmp->lock);
1325}
1326
1327/* Internal meter update - process cnt events and update value */
1328static void fmeter_update(struct fmeter *fmp)
1329{
1330        time_t now = get_seconds();
1331        time_t ticks = now - fmp->time;
1332
1333        if (ticks == 0)
1334                return;
1335
1336        ticks = min(FM_MAXTICKS, ticks);
1337        while (ticks-- > 0)
1338                fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1339        fmp->time = now;
1340
1341        fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1342        fmp->cnt = 0;
1343}
1344
1345/* Process any previous ticks, then bump cnt by one (times scale). */
1346static void fmeter_markevent(struct fmeter *fmp)
1347{
1348        spin_lock(&fmp->lock);
1349        fmeter_update(fmp);
1350        fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1351        spin_unlock(&fmp->lock);
1352}
1353
1354/* Process any previous ticks, then return current value. */
1355static int fmeter_getrate(struct fmeter *fmp)
1356{
1357        int val;
1358
1359        spin_lock(&fmp->lock);
1360        fmeter_update(fmp);
1361        val = fmp->val;
1362        spin_unlock(&fmp->lock);
1363        return val;
1364}
1365
1366/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1367static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1368{
1369        struct cpuset *cs = cgroup_cs(cgrp);
1370        struct task_struct *task;
1371        int ret;
1372
1373        mutex_lock(&cpuset_mutex);
1374
1375        ret = -ENOSPC;
1376        if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1377                goto out_unlock;
1378
1379        cgroup_taskset_for_each(task, cgrp, tset) {
1380                /*
1381                 * Kthreads which disallow setaffinity shouldn't be moved
1382                 * to a new cpuset; we don't want to change their cpu
1383                 * affinity and isolating such threads by their set of
1384                 * allowed nodes is unnecessary.  Thus, cpusets are not
1385                 * applicable for such threads.  This prevents checking for
1386                 * success of set_cpus_allowed_ptr() on all attached tasks
1387                 * before cpus_allowed may be changed.
1388                 */
1389                ret = -EINVAL;
1390                if (task->flags & PF_NO_SETAFFINITY)
1391                        goto out_unlock;
1392                ret = security_task_setscheduler(task);
1393                if (ret)
1394                        goto out_unlock;
1395        }
1396
1397        /*
1398         * Mark attach is in progress.  This makes validate_change() fail
1399         * changes which zero cpus/mems_allowed.
1400         */
1401        cs->attach_in_progress++;
1402        ret = 0;
1403out_unlock:
1404        mutex_unlock(&cpuset_mutex);
1405        return ret;
1406}
1407
1408static void cpuset_cancel_attach(struct cgroup *cgrp,
1409                                 struct cgroup_taskset *tset)
1410{
1411        mutex_lock(&cpuset_mutex);
1412        cgroup_cs(cgrp)->attach_in_progress--;
1413        mutex_unlock(&cpuset_mutex);
1414}
1415
1416/*
1417 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1418 * but we can't allocate it dynamically there.  Define it global and
1419 * allocate from cpuset_init().
1420 */
1421static cpumask_var_t cpus_attach;
1422
1423static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1424{
1425        /* static bufs protected by cpuset_mutex */
1426        static nodemask_t cpuset_attach_nodemask_from;
1427        static nodemask_t cpuset_attach_nodemask_to;
1428        struct mm_struct *mm;
1429        struct task_struct *task;
1430        struct task_struct *leader = cgroup_taskset_first(tset);
1431        struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1432        struct cpuset *cs = cgroup_cs(cgrp);
1433        struct cpuset *oldcs = cgroup_cs(oldcgrp);
1434
1435        mutex_lock(&cpuset_mutex);
1436
1437        /* prepare for attach */
1438        if (cs == &top_cpuset)
1439                cpumask_copy(cpus_attach, cpu_possible_mask);
1440        else
1441                guarantee_online_cpus(cs, cpus_attach);
1442
1443        guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1444
1445        cgroup_taskset_for_each(task, cgrp, tset) {
1446                /*
1447                 * can_attach beforehand should guarantee that this doesn't
1448                 * fail.  TODO: have a better way to handle failure here
1449                 */
1450                WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1451
1452                cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1453                cpuset_update_task_spread_flag(cs, task);
1454        }
1455
1456        /*
1457         * Change mm, possibly for multiple threads in a threadgroup. This is
1458         * expensive and may sleep.
1459         */
1460        cpuset_attach_nodemask_from = oldcs->mems_allowed;
1461        cpuset_attach_nodemask_to = cs->mems_allowed;
1462        mm = get_task_mm(leader);
1463        if (mm) {
1464                mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1465                if (is_memory_migrate(cs))
1466                        cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1467                                          &cpuset_attach_nodemask_to);
1468                mmput(mm);
1469        }
1470
1471        cs->attach_in_progress--;
1472
1473        /*
1474         * We may have raced with CPU/memory hotunplug.  Trigger hotplug
1475         * propagation if @cs doesn't have any CPU or memory.  It will move
1476         * the newly added tasks to the nearest parent which can execute.
1477         */
1478        if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1479                schedule_cpuset_propagate_hotplug(cs);
1480
1481        mutex_unlock(&cpuset_mutex);
1482}
1483
1484/* The various types of files and directories in a cpuset file system */
1485
1486typedef enum {
1487        FILE_MEMORY_MIGRATE,
1488        FILE_CPULIST,
1489        FILE_MEMLIST,
1490        FILE_CPU_EXCLUSIVE,
1491        FILE_MEM_EXCLUSIVE,
1492        FILE_MEM_HARDWALL,
1493        FILE_SCHED_LOAD_BALANCE,
1494        FILE_SCHED_RELAX_DOMAIN_LEVEL,
1495        FILE_MEMORY_PRESSURE_ENABLED,
1496        FILE_MEMORY_PRESSURE,
1497        FILE_SPREAD_PAGE,
1498        FILE_SPREAD_SLAB,
1499} cpuset_filetype_t;
1500
1501static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1502{
1503        struct cpuset *cs = cgroup_cs(cgrp);
1504        cpuset_filetype_t type = cft->private;
1505        int retval = -ENODEV;
1506
1507        mutex_lock(&cpuset_mutex);
1508        if (!is_cpuset_online(cs))
1509                goto out_unlock;
1510
1511        switch (type) {
1512        case FILE_CPU_EXCLUSIVE:
1513                retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1514                break;
1515        case FILE_MEM_EXCLUSIVE:
1516                retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1517                break;
1518        case FILE_MEM_HARDWALL:
1519                retval = update_flag(CS_MEM_HARDWALL, cs, val);
1520                break;
1521        case FILE_SCHED_LOAD_BALANCE:
1522                retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1523                break;
1524        case FILE_MEMORY_MIGRATE:
1525                retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1526                break;
1527        case FILE_MEMORY_PRESSURE_ENABLED:
1528                cpuset_memory_pressure_enabled = !!val;
1529                break;
1530        case FILE_MEMORY_PRESSURE:
1531                retval = -EACCES;
1532                break;
1533        case FILE_SPREAD_PAGE:
1534                retval = update_flag(CS_SPREAD_PAGE, cs, val);
1535                break;
1536        case FILE_SPREAD_SLAB:
1537                retval = update_flag(CS_SPREAD_SLAB, cs, val);
1538                break;
1539        default:
1540                retval = -EINVAL;
1541                break;
1542        }
1543out_unlock:
1544        mutex_unlock(&cpuset_mutex);
1545        return retval;
1546}
1547
1548static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1549{
1550        struct cpuset *cs = cgroup_cs(cgrp);
1551        cpuset_filetype_t type = cft->private;
1552        int retval = -ENODEV;
1553
1554        mutex_lock(&cpuset_mutex);
1555        if (!is_cpuset_online(cs))
1556                goto out_unlock;
1557
1558        switch (type) {
1559        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1560                retval = update_relax_domain_level(cs, val);
1561                break;
1562        default:
1563                retval = -EINVAL;
1564                break;
1565        }
1566out_unlock:
1567        mutex_unlock(&cpuset_mutex);
1568        return retval;
1569}
1570
1571/*
1572 * Common handling for a write to a "cpus" or "mems" file.
1573 */
1574static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1575                                const char *buf)
1576{
1577        struct cpuset *cs = cgroup_cs(cgrp);
1578        struct cpuset *trialcs;
1579        int retval = -ENODEV;
1580
1581        /*
1582         * CPU or memory hotunplug may leave @cs w/o any execution
1583         * resources, in which case the hotplug code asynchronously updates
1584         * configuration and transfers all tasks to the nearest ancestor
1585         * which can execute.
1586         *
1587         * As writes to "cpus" or "mems" may restore @cs's execution
1588         * resources, wait for the previously scheduled operations before
1589         * proceeding, so that we don't end up keep removing tasks added
1590         * after execution capability is restored.
1591         *
1592         * Flushing cpuset_hotplug_work is enough to synchronize against
1593         * hotplug hanlding; however, cpuset_attach() may schedule
1594         * propagation work directly.  Flush the workqueue too.
1595         */
1596        flush_work(&cpuset_hotplug_work);
1597        flush_workqueue(cpuset_propagate_hotplug_wq);
1598
1599        mutex_lock(&cpuset_mutex);
1600        if (!is_cpuset_online(cs))
1601                goto out_unlock;
1602
1603        trialcs = alloc_trial_cpuset(cs);
1604        if (!trialcs) {
1605                retval = -ENOMEM;
1606                goto out_unlock;
1607        }
1608
1609        switch (cft->private) {
1610        case FILE_CPULIST:
1611                retval = update_cpumask(cs, trialcs, buf);
1612                break;
1613        case FILE_MEMLIST:
1614                retval = update_nodemask(cs, trialcs, buf);
1615                break;
1616        default:
1617                retval = -EINVAL;
1618                break;
1619        }
1620
1621        free_trial_cpuset(trialcs);
1622out_unlock:
1623        mutex_unlock(&cpuset_mutex);
1624        return retval;
1625}
1626
1627/*
1628 * These ascii lists should be read in a single call, by using a user
1629 * buffer large enough to hold the entire map.  If read in smaller
1630 * chunks, there is no guarantee of atomicity.  Since the display format
1631 * used, list of ranges of sequential numbers, is variable length,
1632 * and since these maps can change value dynamically, one could read
1633 * gibberish by doing partial reads while a list was changing.
1634 * A single large read to a buffer that crosses a page boundary is
1635 * ok, because the result being copied to user land is not recomputed
1636 * across a page fault.
1637 */
1638
1639static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1640{
1641        size_t count;
1642
1643        mutex_lock(&callback_mutex);
1644        count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1645        mutex_unlock(&callback_mutex);
1646
1647        return count;
1648}
1649
1650static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1651{
1652        size_t count;
1653
1654        mutex_lock(&callback_mutex);
1655        count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1656        mutex_unlock(&callback_mutex);
1657
1658        return count;
1659}
1660
1661static ssize_t cpuset_common_file_read(struct cgroup *cont,
1662                                       struct cftype *cft,
1663                                       struct file *file,
1664                                       char __user *buf,
1665                                       size_t nbytes, loff_t *ppos)
1666{
1667        struct cpuset *cs = cgroup_cs(cont);
1668        cpuset_filetype_t type = cft->private;
1669        char *page;
1670        ssize_t retval = 0;
1671        char *s;
1672
1673        if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1674                return -ENOMEM;
1675
1676        s = page;
1677
1678        switch (type) {
1679        case FILE_CPULIST:
1680                s += cpuset_sprintf_cpulist(s, cs);
1681                break;
1682        case FILE_MEMLIST:
1683                s += cpuset_sprintf_memlist(s, cs);
1684                break;
1685        default:
1686                retval = -EINVAL;
1687                goto out;
1688        }
1689        *s++ = '\n';
1690
1691        retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1692out:
1693        free_page((unsigned long)page);
1694        return retval;
1695}
1696
1697static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1698{
1699        struct cpuset *cs = cgroup_cs(cont);
1700        cpuset_filetype_t type = cft->private;
1701        switch (type) {
1702        case FILE_CPU_EXCLUSIVE:
1703                return is_cpu_exclusive(cs);
1704        case FILE_MEM_EXCLUSIVE:
1705                return is_mem_exclusive(cs);
1706        case FILE_MEM_HARDWALL:
1707                return is_mem_hardwall(cs);
1708        case FILE_SCHED_LOAD_BALANCE:
1709                return is_sched_load_balance(cs);
1710        case FILE_MEMORY_MIGRATE:
1711                return is_memory_migrate(cs);
1712        case FILE_MEMORY_PRESSURE_ENABLED:
1713                return cpuset_memory_pressure_enabled;
1714        case FILE_MEMORY_PRESSURE:
1715                return fmeter_getrate(&cs->fmeter);
1716        case FILE_SPREAD_PAGE:
1717                return is_spread_page(cs);
1718        case FILE_SPREAD_SLAB:
1719                return is_spread_slab(cs);
1720        default:
1721                BUG();
1722        }
1723
1724        /* Unreachable but makes gcc happy */
1725        return 0;
1726}
1727
1728static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1729{
1730        struct cpuset *cs = cgroup_cs(cont);
1731        cpuset_filetype_t type = cft->private;
1732        switch (type) {
1733        case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1734                return cs->relax_domain_level;
1735        default:
1736                BUG();
1737        }
1738
1739        /* Unrechable but makes gcc happy */
1740        return 0;
1741}
1742
1743
1744/*
1745 * for the common functions, 'private' gives the type of file
1746 */
1747
1748static struct cftype files[] = {
1749        {
1750                .name = "cpus",
1751                .read = cpuset_common_file_read,
1752                .write_string = cpuset_write_resmask,
1753                .max_write_len = (100U + 6 * NR_CPUS),
1754                .private = FILE_CPULIST,
1755        },
1756
1757        {
1758                .name = "mems",
1759                .read = cpuset_common_file_read,
1760                .write_string = cpuset_write_resmask,
1761                .max_write_len = (100U + 6 * MAX_NUMNODES),
1762                .private = FILE_MEMLIST,
1763        },
1764
1765        {
1766                .name = "cpu_exclusive",
1767                .read_u64 = cpuset_read_u64,
1768                .write_u64 = cpuset_write_u64,
1769                .private = FILE_CPU_EXCLUSIVE,
1770        },
1771
1772        {
1773                .name = "mem_exclusive",
1774                .read_u64 = cpuset_read_u64,
1775                .write_u64 = cpuset_write_u64,
1776                .private = FILE_MEM_EXCLUSIVE,
1777        },
1778
1779        {
1780                .name = "mem_hardwall",
1781                .read_u64 = cpuset_read_u64,
1782                .write_u64 = cpuset_write_u64,
1783                .private = FILE_MEM_HARDWALL,
1784        },
1785
1786        {
1787                .name = "sched_load_balance",
1788                .read_u64 = cpuset_read_u64,
1789                .write_u64 = cpuset_write_u64,
1790                .private = FILE_SCHED_LOAD_BALANCE,
1791        },
1792
1793        {
1794                .name = "sched_relax_domain_level",
1795                .read_s64 = cpuset_read_s64,
1796                .write_s64 = cpuset_write_s64,
1797                .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1798        },
1799
1800        {
1801                .name = "memory_migrate",
1802                .read_u64 = cpuset_read_u64,
1803                .write_u64 = cpuset_write_u64,
1804                .private = FILE_MEMORY_MIGRATE,
1805        },
1806
1807        {
1808                .name = "memory_pressure",
1809                .read_u64 = cpuset_read_u64,
1810                .write_u64 = cpuset_write_u64,
1811                .private = FILE_MEMORY_PRESSURE,
1812                .mode = S_IRUGO,
1813        },
1814
1815        {
1816                .name = "memory_spread_page",
1817                .read_u64 = cpuset_read_u64,
1818                .write_u64 = cpuset_write_u64,
1819                .private = FILE_SPREAD_PAGE,
1820        },
1821
1822        {
1823                .name = "memory_spread_slab",
1824                .read_u64 = cpuset_read_u64,
1825                .write_u64 = cpuset_write_u64,
1826                .private = FILE_SPREAD_SLAB,
1827        },
1828
1829        {
1830                .name = "memory_pressure_enabled",
1831                .flags = CFTYPE_ONLY_ON_ROOT,
1832                .read_u64 = cpuset_read_u64,
1833                .write_u64 = cpuset_write_u64,
1834                .private = FILE_MEMORY_PRESSURE_ENABLED,
1835        },
1836
1837        { }     /* terminate */
1838};
1839
1840/*
1841 *      cpuset_css_alloc - allocate a cpuset css
1842 *      cont:   control group that the new cpuset will be part of
1843 */
1844
1845static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1846{
1847        struct cpuset *cs;
1848
1849        if (!cont->parent)
1850                return &top_cpuset.css;
1851
1852        cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1853        if (!cs)
1854                return ERR_PTR(-ENOMEM);
1855        if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1856                kfree(cs);
1857                return ERR_PTR(-ENOMEM);
1858        }
1859
1860        set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1861        cpumask_clear(cs->cpus_allowed);
1862        nodes_clear(cs->mems_allowed);
1863        fmeter_init(&cs->fmeter);
1864        INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1865        cs->relax_domain_level = -1;
1866
1867        return &cs->css;
1868}
1869
1870static int cpuset_css_online(struct cgroup *cgrp)
1871{
1872        struct cpuset *cs = cgroup_cs(cgrp);
1873        struct cpuset *parent = parent_cs(cs);
1874        struct cpuset *tmp_cs;
1875        struct cgroup *pos_cg;
1876
1877        if (!parent)
1878                return 0;
1879
1880        mutex_lock(&cpuset_mutex);
1881
1882        set_bit(CS_ONLINE, &cs->flags);
1883        if (is_spread_page(parent))
1884                set_bit(CS_SPREAD_PAGE, &cs->flags);
1885        if (is_spread_slab(parent))
1886                set_bit(CS_SPREAD_SLAB, &cs->flags);
1887
1888        number_of_cpusets++;
1889
1890        if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1891                goto out_unlock;
1892
1893        /*
1894         * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1895         * set.  This flag handling is implemented in cgroup core for
1896         * histrical reasons - the flag may be specified during mount.
1897         *
1898         * Currently, if any sibling cpusets have exclusive cpus or mem, we
1899         * refuse to clone the configuration - thereby refusing the task to
1900         * be entered, and as a result refusing the sys_unshare() or
1901         * clone() which initiated it.  If this becomes a problem for some
1902         * users who wish to allow that scenario, then this could be
1903         * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1904         * (and likewise for mems) to the new cgroup.
1905         */
1906        rcu_read_lock();
1907        cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1908                if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1909                        rcu_read_unlock();
1910                        goto out_unlock;
1911                }
1912        }
1913        rcu_read_unlock();
1914
1915        mutex_lock(&callback_mutex);
1916        cs->mems_allowed = parent->mems_allowed;
1917        cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1918        mutex_unlock(&callback_mutex);
1919out_unlock:
1920        mutex_unlock(&cpuset_mutex);
1921        return 0;
1922}
1923
1924static void cpuset_css_offline(struct cgroup *cgrp)
1925{
1926        struct cpuset *cs = cgroup_cs(cgrp);
1927
1928        mutex_lock(&cpuset_mutex);
1929
1930        if (is_sched_load_balance(cs))
1931                update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1932
1933        number_of_cpusets--;
1934        clear_bit(CS_ONLINE, &cs->flags);
1935
1936        mutex_unlock(&cpuset_mutex);
1937}
1938
1939/*
1940 * If the cpuset being removed has its flag 'sched_load_balance'
1941 * enabled, then simulate turning sched_load_balance off, which
1942 * will call rebuild_sched_domains_locked().
1943 */
1944
1945static void cpuset_css_free(struct cgroup *cont)
1946{
1947        struct cpuset *cs = cgroup_cs(cont);
1948
1949        free_cpumask_var(cs->cpus_allowed);
1950        kfree(cs);
1951}
1952
1953struct cgroup_subsys cpuset_subsys = {
1954        .name = "cpuset",
1955        .css_alloc = cpuset_css_alloc,
1956        .css_online = cpuset_css_online,
1957        .css_offline = cpuset_css_offline,
1958        .css_free = cpuset_css_free,
1959        .can_attach = cpuset_can_attach,
1960        .cancel_attach = cpuset_cancel_attach,
1961        .attach = cpuset_attach,
1962        .subsys_id = cpuset_subsys_id,
1963        .base_cftypes = files,
1964        .early_init = 1,
1965};
1966
1967/**
1968 * cpuset_init - initialize cpusets at system boot
1969 *
1970 * Description: Initialize top_cpuset and the cpuset internal file system,
1971 **/
1972
1973int __init cpuset_init(void)
1974{
1975        int err = 0;
1976
1977        if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1978                BUG();
1979
1980        cpumask_setall(top_cpuset.cpus_allowed);
1981        nodes_setall(top_cpuset.mems_allowed);
1982
1983        fmeter_init(&top_cpuset.fmeter);
1984        set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1985        top_cpuset.relax_domain_level = -1;
1986
1987        err = register_filesystem(&cpuset_fs_type);
1988        if (err < 0)
1989                return err;
1990
1991        if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1992                BUG();
1993
1994        number_of_cpusets = 1;
1995        return 0;
1996}
1997
1998/*
1999 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2000 * or memory nodes, we need to walk over the cpuset hierarchy,
2001 * removing that CPU or node from all cpusets.  If this removes the
2002 * last CPU or node from a cpuset, then move the tasks in the empty
2003 * cpuset to its next-highest non-empty parent.
2004 */
2005static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2006{
2007        struct cpuset *parent;
2008
2009        /*
2010         * Find its next-highest non-empty parent, (top cpuset
2011         * has online cpus, so can't be empty).
2012         */
2013        parent = parent_cs(cs);
2014        while (cpumask_empty(parent->cpus_allowed) ||
2015                        nodes_empty(parent->mems_allowed))
2016                parent = parent_cs(parent);
2017
2018        if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2019                rcu_read_lock();
2020                printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2021                       cgroup_name(cs->css.cgroup));
2022                rcu_read_unlock();
2023        }
2024}
2025
2026/**
2027 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
2028 * @cs: cpuset in interest
2029 *
2030 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2031 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2032 * all its tasks are moved to the nearest ancestor with both resources.
2033 */
2034static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
2035{
2036        static cpumask_t off_cpus;
2037        static nodemask_t off_mems, tmp_mems;
2038        struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2039        bool is_empty;
2040
2041        mutex_lock(&cpuset_mutex);
2042
2043        cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2044        nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2045
2046        /* remove offline cpus from @cs */
2047        if (!cpumask_empty(&off_cpus)) {
2048                mutex_lock(&callback_mutex);
2049                cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2050                mutex_unlock(&callback_mutex);
2051                update_tasks_cpumask(cs, NULL);
2052        }
2053
2054        /* remove offline mems from @cs */
2055        if (!nodes_empty(off_mems)) {
2056                tmp_mems = cs->mems_allowed;
2057                mutex_lock(&callback_mutex);
2058                nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2059                mutex_unlock(&callback_mutex);
2060                update_tasks_nodemask(cs, &tmp_mems, NULL);
2061        }
2062
2063        is_empty = cpumask_empty(cs->cpus_allowed) ||
2064                nodes_empty(cs->mems_allowed);
2065
2066        mutex_unlock(&cpuset_mutex);
2067
2068        /*
2069         * If @cs became empty, move tasks to the nearest ancestor with
2070         * execution resources.  This is full cgroup operation which will
2071         * also call back into cpuset.  Should be done outside any lock.
2072         */
2073        if (is_empty)
2074                remove_tasks_in_empty_cpuset(cs);
2075
2076        /* the following may free @cs, should be the last operation */
2077        css_put(&cs->css);
2078}
2079
2080/**
2081 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2082 * @cs: cpuset of interest
2083 *
2084 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2085 * memory masks according to top_cpuset.
2086 */
2087static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2088{
2089        /*
2090         * Pin @cs.  The refcnt will be released when the work item
2091         * finishes executing.
2092         */
2093        if (!css_tryget(&cs->css))
2094                return;
2095
2096        /*
2097         * Queue @cs->hotplug_work.  If already pending, lose the css ref.
2098         * cpuset_propagate_hotplug_wq is ordered and propagation will
2099         * happen in the order this function is called.
2100         */
2101        if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2102                css_put(&cs->css);
2103}
2104
2105/**
2106 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2107 *
2108 * This function is called after either CPU or memory configuration has
2109 * changed and updates cpuset accordingly.  The top_cpuset is always
2110 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2111 * order to make cpusets transparent (of no affect) on systems that are
2112 * actively using CPU hotplug but making no active use of cpusets.
2113 *
2114 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2115 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2116 * descendants.
2117 *
2118 * Note that CPU offlining during suspend is ignored.  We don't modify
2119 * cpusets across suspend/resume cycles at all.
2120 */
2121static void cpuset_hotplug_workfn(struct work_struct *work)
2122{
2123        static cpumask_t new_cpus, tmp_cpus;
2124        static nodemask_t new_mems, tmp_mems;
2125        bool cpus_updated, mems_updated;
2126        bool cpus_offlined, mems_offlined;
2127
2128        mutex_lock(&cpuset_mutex);
2129
2130        /* fetch the available cpus/mems and find out which changed how */
2131        cpumask_copy(&new_cpus, cpu_active_mask);
2132        new_mems = node_states[N_MEMORY];
2133
2134        cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2135        cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2136                                       &new_cpus);
2137
2138        mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2139        nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2140        mems_offlined = !nodes_empty(tmp_mems);
2141
2142        /* synchronize cpus_allowed to cpu_active_mask */
2143        if (cpus_updated) {
2144                mutex_lock(&callback_mutex);
2145                cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2146                mutex_unlock(&callback_mutex);
2147                /* we don't mess with cpumasks of tasks in top_cpuset */
2148        }
2149
2150        /* synchronize mems_allowed to N_MEMORY */
2151        if (mems_updated) {
2152                tmp_mems = top_cpuset.mems_allowed;
2153                mutex_lock(&callback_mutex);
2154                top_cpuset.mems_allowed = new_mems;
2155                mutex_unlock(&callback_mutex);
2156                update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2157        }
2158
2159        /* if cpus or mems went down, we need to propagate to descendants */
2160        if (cpus_offlined || mems_offlined) {
2161                struct cpuset *cs;
2162                struct cgroup *pos_cgrp;
2163
2164                rcu_read_lock();
2165                cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2166                        schedule_cpuset_propagate_hotplug(cs);
2167                rcu_read_unlock();
2168        }
2169
2170        mutex_unlock(&cpuset_mutex);
2171
2172        /* wait for propagations to finish */
2173        flush_workqueue(cpuset_propagate_hotplug_wq);
2174
2175        /* rebuild sched domains if cpus_allowed has changed */
2176        if (cpus_updated)
2177                rebuild_sched_domains();
2178}
2179
2180void cpuset_update_active_cpus(bool cpu_online)
2181{
2182        /*
2183         * We're inside cpu hotplug critical region which usually nests
2184         * inside cgroup synchronization.  Bounce actual hotplug processing
2185         * to a work item to avoid reverse locking order.
2186         *
2187         * We still need to do partition_sched_domains() synchronously;
2188         * otherwise, the scheduler will get confused and put tasks to the
2189         * dead CPU.  Fall back to the default single domain.
2190         * cpuset_hotplug_workfn() will rebuild it as necessary.
2191         */
2192        partition_sched_domains(1, NULL, NULL);
2193        schedule_work(&cpuset_hotplug_work);
2194}
2195
2196/*
2197 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2198 * Call this routine anytime after node_states[N_MEMORY] changes.
2199 * See cpuset_update_active_cpus() for CPU hotplug handling.
2200 */
2201static int cpuset_track_online_nodes(struct notifier_block *self,
2202                                unsigned long action, void *arg)
2203{
2204        schedule_work(&cpuset_hotplug_work);
2205        return NOTIFY_OK;
2206}
2207
2208static struct notifier_block cpuset_track_online_nodes_nb = {
2209        .notifier_call = cpuset_track_online_nodes,
2210        .priority = 10,         /* ??! */
2211};
2212
2213/**
2214 * cpuset_init_smp - initialize cpus_allowed
2215 *
2216 * Description: Finish top cpuset after cpu, node maps are initialized
2217 */
2218void __init cpuset_init_smp(void)
2219{
2220        cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2221        top_cpuset.mems_allowed = node_states[N_MEMORY];
2222
2223        register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2224
2225        cpuset_propagate_hotplug_wq =
2226                alloc_ordered_workqueue("cpuset_hotplug", 0);
2227        BUG_ON(!cpuset_propagate_hotplug_wq);
2228}
2229
2230/**
2231 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2232 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2233 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2234 *
2235 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2236 * attached to the specified @tsk.  Guaranteed to return some non-empty
2237 * subset of cpu_online_mask, even if this means going outside the
2238 * tasks cpuset.
2239 **/
2240
2241void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2242{
2243        mutex_lock(&callback_mutex);
2244        task_lock(tsk);
2245        guarantee_online_cpus(task_cs(tsk), pmask);
2246        task_unlock(tsk);
2247        mutex_unlock(&callback_mutex);
2248}
2249
2250void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2251{
2252        const struct cpuset *cs;
2253
2254        rcu_read_lock();
2255        cs = task_cs(tsk);
2256        if (cs)
2257                do_set_cpus_allowed(tsk, cs->cpus_allowed);
2258        rcu_read_unlock();
2259
2260        /*
2261         * We own tsk->cpus_allowed, nobody can change it under us.
2262         *
2263         * But we used cs && cs->cpus_allowed lockless and thus can
2264         * race with cgroup_attach_task() or update_cpumask() and get
2265         * the wrong tsk->cpus_allowed. However, both cases imply the
2266         * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2267         * which takes task_rq_lock().
2268         *
2269         * If we are called after it dropped the lock we must see all
2270         * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2271         * set any mask even if it is not right from task_cs() pov,
2272         * the pending set_cpus_allowed_ptr() will fix things.
2273         *
2274         * select_fallback_rq() will fix things ups and set cpu_possible_mask
2275         * if required.
2276         */
2277}
2278
2279void cpuset_init_current_mems_allowed(void)
2280{
2281        nodes_setall(current->mems_allowed);
2282}
2283
2284/**
2285 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2286 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2287 *
2288 * Description: Returns the nodemask_t mems_allowed of the cpuset
2289 * attached to the specified @tsk.  Guaranteed to return some non-empty
2290 * subset of node_states[N_MEMORY], even if this means going outside the
2291 * tasks cpuset.
2292 **/
2293
2294nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2295{
2296        nodemask_t mask;
2297
2298        mutex_lock(&callback_mutex);
2299        task_lock(tsk);
2300        guarantee_online_mems(task_cs(tsk), &mask);
2301        task_unlock(tsk);
2302        mutex_unlock(&callback_mutex);
2303
2304        return mask;
2305}
2306
2307/**
2308 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2309 * @nodemask: the nodemask to be checked
2310 *
2311 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2312 */
2313int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2314{
2315        return nodes_intersects(*nodemask, current->mems_allowed);
2316}
2317
2318/*
2319 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2320 * mem_hardwall ancestor to the specified cpuset.  Call holding
2321 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
2322 * (an unusual configuration), then returns the root cpuset.
2323 */
2324static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2325{
2326        while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2327                cs = parent_cs(cs);
2328        return cs;
2329}
2330
2331/**
2332 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2333 * @node: is this an allowed node?
2334 * @gfp_mask: memory allocation flags
2335 *
2336 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2337 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2338 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2339 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2340 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2341 * flag, yes.
2342 * Otherwise, no.
2343 *
2344 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2345 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
2346 * might sleep, and might allow a node from an enclosing cpuset.
2347 *
2348 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2349 * cpusets, and never sleeps.
2350 *
2351 * The __GFP_THISNODE placement logic is really handled elsewhere,
2352 * by forcibly using a zonelist starting at a specified node, and by
2353 * (in get_page_from_freelist()) refusing to consider the zones for
2354 * any node on the zonelist except the first.  By the time any such
2355 * calls get to this routine, we should just shut up and say 'yes'.
2356 *
2357 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2358 * and do not allow allocations outside the current tasks cpuset
2359 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2360 * GFP_KERNEL allocations are not so marked, so can escape to the
2361 * nearest enclosing hardwalled ancestor cpuset.
2362 *
2363 * Scanning up parent cpusets requires callback_mutex.  The
2364 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2365 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2366 * current tasks mems_allowed came up empty on the first pass over
2367 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2368 * cpuset are short of memory, might require taking the callback_mutex
2369 * mutex.
2370 *
2371 * The first call here from mm/page_alloc:get_page_from_freelist()
2372 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2373 * so no allocation on a node outside the cpuset is allowed (unless
2374 * in interrupt, of course).
2375 *
2376 * The second pass through get_page_from_freelist() doesn't even call
2377 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2378 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2379 * in alloc_flags.  That logic and the checks below have the combined
2380 * affect that:
2381 *      in_interrupt - any node ok (current task context irrelevant)
2382 *      GFP_ATOMIC   - any node ok
2383 *      TIF_MEMDIE   - any node ok
2384 *      GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2385 *      GFP_USER     - only nodes in current tasks mems allowed ok.
2386 *
2387 * Rule:
2388 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2389 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2390 *    the code that might scan up ancestor cpusets and sleep.
2391 */
2392int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2393{
2394        const struct cpuset *cs;        /* current cpuset ancestors */
2395        int allowed;                    /* is allocation in zone z allowed? */
2396
2397        if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2398                return 1;
2399        might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2400        if (node_isset(node, current->mems_allowed))
2401                return 1;
2402        /*
2403         * Allow tasks that have access to memory reserves because they have
2404         * been OOM killed to get memory anywhere.
2405         */
2406        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2407                return 1;
2408        if (gfp_mask & __GFP_HARDWALL)  /* If hardwall request, stop here */
2409                return 0;
2410
2411        if (current->flags & PF_EXITING) /* Let dying task have memory */
2412                return 1;
2413
2414        /* Not hardwall and node outside mems_allowed: scan up cpusets */
2415        mutex_lock(&callback_mutex);
2416
2417        task_lock(current);
2418        cs = nearest_hardwall_ancestor(task_cs(current));
2419        task_unlock(current);
2420
2421        allowed = node_isset(node, cs->mems_allowed);
2422        mutex_unlock(&callback_mutex);
2423        return allowed;
2424}
2425
2426/*
2427 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2428 * @node: is this an allowed node?
2429 * @gfp_mask: memory allocation flags
2430 *
2431 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2432 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2433 * yes.  If the task has been OOM killed and has access to memory reserves as
2434 * specified by the TIF_MEMDIE flag, yes.
2435 * Otherwise, no.
2436 *
2437 * The __GFP_THISNODE placement logic is really handled elsewhere,
2438 * by forcibly using a zonelist starting at a specified node, and by
2439 * (in get_page_from_freelist()) refusing to consider the zones for
2440 * any node on the zonelist except the first.  By the time any such
2441 * calls get to this routine, we should just shut up and say 'yes'.
2442 *
2443 * Unlike the cpuset_node_allowed_softwall() variant, above,
2444 * this variant requires that the node be in the current task's
2445 * mems_allowed or that we're in interrupt.  It does not scan up the
2446 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2447 * It never sleeps.
2448 */
2449int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2450{
2451        if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2452                return 1;
2453        if (node_isset(node, current->mems_allowed))
2454                return 1;
2455        /*
2456         * Allow tasks that have access to memory reserves because they have
2457         * been OOM killed to get memory anywhere.
2458         */
2459        if (unlikely(test_thread_flag(TIF_MEMDIE)))
2460                return 1;
2461        return 0;
2462}
2463
2464/**
2465 * cpuset_mem_spread_node() - On which node to begin search for a file page
2466 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2467 *
2468 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2469 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2470 * and if the memory allocation used cpuset_mem_spread_node()
2471 * to determine on which node to start looking, as it will for
2472 * certain page cache or slab cache pages such as used for file
2473 * system buffers and inode caches, then instead of starting on the
2474 * local node to look for a free page, rather spread the starting
2475 * node around the tasks mems_allowed nodes.
2476 *
2477 * We don't have to worry about the returned node being offline
2478 * because "it can't happen", and even if it did, it would be ok.
2479 *
2480 * The routines calling guarantee_online_mems() are careful to
2481 * only set nodes in task->mems_allowed that are online.  So it
2482 * should not be possible for the following code to return an
2483 * offline node.  But if it did, that would be ok, as this routine
2484 * is not returning the node where the allocation must be, only
2485 * the node where the search should start.  The zonelist passed to
2486 * __alloc_pages() will include all nodes.  If the slab allocator
2487 * is passed an offline node, it will fall back to the local node.
2488 * See kmem_cache_alloc_node().
2489 */
2490
2491static int cpuset_spread_node(int *rotor)
2492{
2493        int node;
2494
2495        node = next_node(*rotor, current->mems_allowed);
2496        if (node == MAX_NUMNODES)
2497                node = first_node(current->mems_allowed);
2498        *rotor = node;
2499        return node;
2500}
2501
2502int cpuset_mem_spread_node(void)
2503{
2504        if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2505                current->cpuset_mem_spread_rotor =
2506                        node_random(&current->mems_allowed);
2507
2508        return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2509}
2510
2511int cpuset_slab_spread_node(void)
2512{
2513        if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2514                current->cpuset_slab_spread_rotor =
2515                        node_random(&current->mems_allowed);
2516
2517        return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2518}
2519
2520EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2521
2522/**
2523 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2524 * @tsk1: pointer to task_struct of some task.
2525 * @tsk2: pointer to task_struct of some other task.
2526 *
2527 * Description: Return true if @tsk1's mems_allowed intersects the
2528 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2529 * one of the task's memory usage might impact the memory available
2530 * to the other.
2531 **/
2532
2533int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2534                                   const struct task_struct *tsk2)
2535{
2536        return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2537}
2538
2539#define CPUSET_NODELIST_LEN     (256)
2540
2541/**
2542 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2543 * @task: pointer to task_struct of some task.
2544 *
2545 * Description: Prints @task's name, cpuset name, and cached copy of its
2546 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
2547 * dereferencing task_cs(task).
2548 */
2549void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2550{
2551         /* Statically allocated to prevent using excess stack. */
2552        static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2553        static DEFINE_SPINLOCK(cpuset_buffer_lock);
2554
2555        struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2556
2557        rcu_read_lock();
2558        spin_lock(&cpuset_buffer_lock);
2559
2560        nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2561                           tsk->mems_allowed);
2562        printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2563               tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2564
2565        spin_unlock(&cpuset_buffer_lock);
2566        rcu_read_unlock();
2567}
2568
2569/*
2570 * Collection of memory_pressure is suppressed unless
2571 * this flag is enabled by writing "1" to the special
2572 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2573 */
2574
2575int cpuset_memory_pressure_enabled __read_mostly;
2576
2577/**
2578 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2579 *
2580 * Keep a running average of the rate of synchronous (direct)
2581 * page reclaim efforts initiated by tasks in each cpuset.
2582 *
2583 * This represents the rate at which some task in the cpuset
2584 * ran low on memory on all nodes it was allowed to use, and
2585 * had to enter the kernels page reclaim code in an effort to
2586 * create more free memory by tossing clean pages or swapping
2587 * or writing dirty pages.
2588 *
2589 * Display to user space in the per-cpuset read-only file
2590 * "memory_pressure".  Value displayed is an integer
2591 * representing the recent rate of entry into the synchronous
2592 * (direct) page reclaim by any task attached to the cpuset.
2593 **/
2594
2595void __cpuset_memory_pressure_bump(void)
2596{
2597        task_lock(current);
2598        fmeter_markevent(&task_cs(current)->fmeter);
2599        task_unlock(current);
2600}
2601
2602#ifdef CONFIG_PROC_PID_CPUSET
2603/*
2604 * proc_cpuset_show()
2605 *  - Print tasks cpuset path into seq_file.
2606 *  - Used for /proc/<pid>/cpuset.
2607 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2608 *    doesn't really matter if tsk->cpuset changes after we read it,
2609 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2610 *    anyway.
2611 */
2612int proc_cpuset_show(struct seq_file *m, void *unused_v)
2613{
2614        struct pid *pid;
2615        struct task_struct *tsk;
2616        char *buf;
2617        struct cgroup_subsys_state *css;
2618        int retval;
2619
2620        retval = -ENOMEM;
2621        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2622        if (!buf)
2623                goto out;
2624
2625        retval = -ESRCH;
2626        pid = m->private;
2627        tsk = get_pid_task(pid, PIDTYPE_PID);
2628        if (!tsk)
2629                goto out_free;
2630
2631        rcu_read_lock();
2632        css = task_subsys_state(tsk, cpuset_subsys_id);
2633        retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2634        rcu_read_unlock();
2635        if (retval < 0)
2636                goto out_put_task;
2637        seq_puts(m, buf);
2638        seq_putc(m, '\n');
2639out_put_task:
2640        put_task_struct(tsk);
2641out_free:
2642        kfree(buf);
2643out:
2644        return retval;
2645}
2646#endif /* CONFIG_PROC_PID_CPUSET */
2647
2648/* Display task mems_allowed in /proc/<pid>/status file. */
2649void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2650{
2651        seq_printf(m, "Mems_allowed:\t");
2652        seq_nodemask(m, &task->mems_allowed);
2653        seq_printf(m, "\n");
2654        seq_printf(m, "Mems_allowed_list:\t");
2655        seq_nodemask_list(m, &task->mems_allowed);
2656        seq_printf(m, "\n");
2657}
2658