linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75#include <linux/context_tracking.h>
  76
  77#include <asm/switch_to.h>
  78#include <asm/tlb.h>
  79#include <asm/irq_regs.h>
  80#include <asm/mutex.h>
  81#ifdef CONFIG_PARAVIRT
  82#include <asm/paravirt.h>
  83#endif
  84
  85#include "sched.h"
  86#include "../workqueue_internal.h"
  87#include "../smpboot.h"
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/sched.h>
  91
  92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  93{
  94        unsigned long delta;
  95        ktime_t soft, hard, now;
  96
  97        for (;;) {
  98                if (hrtimer_active(period_timer))
  99                        break;
 100
 101                now = hrtimer_cb_get_time(period_timer);
 102                hrtimer_forward(period_timer, now, period);
 103
 104                soft = hrtimer_get_softexpires(period_timer);
 105                hard = hrtimer_get_expires(period_timer);
 106                delta = ktime_to_ns(ktime_sub(hard, soft));
 107                __hrtimer_start_range_ns(period_timer, soft, delta,
 108                                         HRTIMER_MODE_ABS_PINNED, 0);
 109        }
 110}
 111
 112DEFINE_MUTEX(sched_domains_mutex);
 113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 114
 115static void update_rq_clock_task(struct rq *rq, s64 delta);
 116
 117void update_rq_clock(struct rq *rq)
 118{
 119        s64 delta;
 120
 121        if (rq->skip_clock_update > 0)
 122                return;
 123
 124        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 125        rq->clock += delta;
 126        update_rq_clock_task(rq, delta);
 127}
 128
 129/*
 130 * Debugging: various feature bits
 131 */
 132
 133#define SCHED_FEAT(name, enabled)       \
 134        (1UL << __SCHED_FEAT_##name) * enabled |
 135
 136const_debug unsigned int sysctl_sched_features =
 137#include "features.h"
 138        0;
 139
 140#undef SCHED_FEAT
 141
 142#ifdef CONFIG_SCHED_DEBUG
 143#define SCHED_FEAT(name, enabled)       \
 144        #name ,
 145
 146static const char * const sched_feat_names[] = {
 147#include "features.h"
 148};
 149
 150#undef SCHED_FEAT
 151
 152static int sched_feat_show(struct seq_file *m, void *v)
 153{
 154        int i;
 155
 156        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 157                if (!(sysctl_sched_features & (1UL << i)))
 158                        seq_puts(m, "NO_");
 159                seq_printf(m, "%s ", sched_feat_names[i]);
 160        }
 161        seq_puts(m, "\n");
 162
 163        return 0;
 164}
 165
 166#ifdef HAVE_JUMP_LABEL
 167
 168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 169#define jump_label_key__false STATIC_KEY_INIT_FALSE
 170
 171#define SCHED_FEAT(name, enabled)       \
 172        jump_label_key__##enabled ,
 173
 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 175#include "features.h"
 176};
 177
 178#undef SCHED_FEAT
 179
 180static void sched_feat_disable(int i)
 181{
 182        if (static_key_enabled(&sched_feat_keys[i]))
 183                static_key_slow_dec(&sched_feat_keys[i]);
 184}
 185
 186static void sched_feat_enable(int i)
 187{
 188        if (!static_key_enabled(&sched_feat_keys[i]))
 189                static_key_slow_inc(&sched_feat_keys[i]);
 190}
 191#else
 192static void sched_feat_disable(int i) { };
 193static void sched_feat_enable(int i) { };
 194#endif /* HAVE_JUMP_LABEL */
 195
 196static int sched_feat_set(char *cmp)
 197{
 198        int i;
 199        int neg = 0;
 200
 201        if (strncmp(cmp, "NO_", 3) == 0) {
 202                neg = 1;
 203                cmp += 3;
 204        }
 205
 206        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 207                if (strcmp(cmp, sched_feat_names[i]) == 0) {
 208                        if (neg) {
 209                                sysctl_sched_features &= ~(1UL << i);
 210                                sched_feat_disable(i);
 211                        } else {
 212                                sysctl_sched_features |= (1UL << i);
 213                                sched_feat_enable(i);
 214                        }
 215                        break;
 216                }
 217        }
 218
 219        return i;
 220}
 221
 222static ssize_t
 223sched_feat_write(struct file *filp, const char __user *ubuf,
 224                size_t cnt, loff_t *ppos)
 225{
 226        char buf[64];
 227        char *cmp;
 228        int i;
 229
 230        if (cnt > 63)
 231                cnt = 63;
 232
 233        if (copy_from_user(&buf, ubuf, cnt))
 234                return -EFAULT;
 235
 236        buf[cnt] = 0;
 237        cmp = strstrip(buf);
 238
 239        i = sched_feat_set(cmp);
 240        if (i == __SCHED_FEAT_NR)
 241                return -EINVAL;
 242
 243        *ppos += cnt;
 244
 245        return cnt;
 246}
 247
 248static int sched_feat_open(struct inode *inode, struct file *filp)
 249{
 250        return single_open(filp, sched_feat_show, NULL);
 251}
 252
 253static const struct file_operations sched_feat_fops = {
 254        .open           = sched_feat_open,
 255        .write          = sched_feat_write,
 256        .read           = seq_read,
 257        .llseek         = seq_lseek,
 258        .release        = single_release,
 259};
 260
 261static __init int sched_init_debug(void)
 262{
 263        debugfs_create_file("sched_features", 0644, NULL, NULL,
 264                        &sched_feat_fops);
 265
 266        return 0;
 267}
 268late_initcall(sched_init_debug);
 269#endif /* CONFIG_SCHED_DEBUG */
 270
 271/*
 272 * Number of tasks to iterate in a single balance run.
 273 * Limited because this is done with IRQs disabled.
 274 */
 275const_debug unsigned int sysctl_sched_nr_migrate = 32;
 276
 277/*
 278 * period over which we average the RT time consumption, measured
 279 * in ms.
 280 *
 281 * default: 1s
 282 */
 283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 284
 285/*
 286 * period over which we measure -rt task cpu usage in us.
 287 * default: 1s
 288 */
 289unsigned int sysctl_sched_rt_period = 1000000;
 290
 291__read_mostly int scheduler_running;
 292
 293/*
 294 * part of the period that we allow rt tasks to run in us.
 295 * default: 0.95s
 296 */
 297int sysctl_sched_rt_runtime = 950000;
 298
 299
 300
 301/*
 302 * __task_rq_lock - lock the rq @p resides on.
 303 */
 304static inline struct rq *__task_rq_lock(struct task_struct *p)
 305        __acquires(rq->lock)
 306{
 307        struct rq *rq;
 308
 309        lockdep_assert_held(&p->pi_lock);
 310
 311        for (;;) {
 312                rq = task_rq(p);
 313                raw_spin_lock(&rq->lock);
 314                if (likely(rq == task_rq(p)))
 315                        return rq;
 316                raw_spin_unlock(&rq->lock);
 317        }
 318}
 319
 320/*
 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 322 */
 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 324        __acquires(p->pi_lock)
 325        __acquires(rq->lock)
 326{
 327        struct rq *rq;
 328
 329        for (;;) {
 330                raw_spin_lock_irqsave(&p->pi_lock, *flags);
 331                rq = task_rq(p);
 332                raw_spin_lock(&rq->lock);
 333                if (likely(rq == task_rq(p)))
 334                        return rq;
 335                raw_spin_unlock(&rq->lock);
 336                raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 337        }
 338}
 339
 340static void __task_rq_unlock(struct rq *rq)
 341        __releases(rq->lock)
 342{
 343        raw_spin_unlock(&rq->lock);
 344}
 345
 346static inline void
 347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 348        __releases(rq->lock)
 349        __releases(p->pi_lock)
 350{
 351        raw_spin_unlock(&rq->lock);
 352        raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 353}
 354
 355/*
 356 * this_rq_lock - lock this runqueue and disable interrupts.
 357 */
 358static struct rq *this_rq_lock(void)
 359        __acquires(rq->lock)
 360{
 361        struct rq *rq;
 362
 363        local_irq_disable();
 364        rq = this_rq();
 365        raw_spin_lock(&rq->lock);
 366
 367        return rq;
 368}
 369
 370#ifdef CONFIG_SCHED_HRTICK
 371/*
 372 * Use HR-timers to deliver accurate preemption points.
 373 *
 374 * Its all a bit involved since we cannot program an hrt while holding the
 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 376 * reschedule event.
 377 *
 378 * When we get rescheduled we reprogram the hrtick_timer outside of the
 379 * rq->lock.
 380 */
 381
 382static void hrtick_clear(struct rq *rq)
 383{
 384        if (hrtimer_active(&rq->hrtick_timer))
 385                hrtimer_cancel(&rq->hrtick_timer);
 386}
 387
 388/*
 389 * High-resolution timer tick.
 390 * Runs from hardirq context with interrupts disabled.
 391 */
 392static enum hrtimer_restart hrtick(struct hrtimer *timer)
 393{
 394        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 395
 396        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 397
 398        raw_spin_lock(&rq->lock);
 399        update_rq_clock(rq);
 400        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 401        raw_spin_unlock(&rq->lock);
 402
 403        return HRTIMER_NORESTART;
 404}
 405
 406#ifdef CONFIG_SMP
 407/*
 408 * called from hardirq (IPI) context
 409 */
 410static void __hrtick_start(void *arg)
 411{
 412        struct rq *rq = arg;
 413
 414        raw_spin_lock(&rq->lock);
 415        hrtimer_restart(&rq->hrtick_timer);
 416        rq->hrtick_csd_pending = 0;
 417        raw_spin_unlock(&rq->lock);
 418}
 419
 420/*
 421 * Called to set the hrtick timer state.
 422 *
 423 * called with rq->lock held and irqs disabled
 424 */
 425void hrtick_start(struct rq *rq, u64 delay)
 426{
 427        struct hrtimer *timer = &rq->hrtick_timer;
 428        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 429
 430        hrtimer_set_expires(timer, time);
 431
 432        if (rq == this_rq()) {
 433                hrtimer_restart(timer);
 434        } else if (!rq->hrtick_csd_pending) {
 435                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 436                rq->hrtick_csd_pending = 1;
 437        }
 438}
 439
 440static int
 441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 442{
 443        int cpu = (int)(long)hcpu;
 444
 445        switch (action) {
 446        case CPU_UP_CANCELED:
 447        case CPU_UP_CANCELED_FROZEN:
 448        case CPU_DOWN_PREPARE:
 449        case CPU_DOWN_PREPARE_FROZEN:
 450        case CPU_DEAD:
 451        case CPU_DEAD_FROZEN:
 452                hrtick_clear(cpu_rq(cpu));
 453                return NOTIFY_OK;
 454        }
 455
 456        return NOTIFY_DONE;
 457}
 458
 459static __init void init_hrtick(void)
 460{
 461        hotcpu_notifier(hotplug_hrtick, 0);
 462}
 463#else
 464/*
 465 * Called to set the hrtick timer state.
 466 *
 467 * called with rq->lock held and irqs disabled
 468 */
 469void hrtick_start(struct rq *rq, u64 delay)
 470{
 471        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 472                        HRTIMER_MODE_REL_PINNED, 0);
 473}
 474
 475static inline void init_hrtick(void)
 476{
 477}
 478#endif /* CONFIG_SMP */
 479
 480static void init_rq_hrtick(struct rq *rq)
 481{
 482#ifdef CONFIG_SMP
 483        rq->hrtick_csd_pending = 0;
 484
 485        rq->hrtick_csd.flags = 0;
 486        rq->hrtick_csd.func = __hrtick_start;
 487        rq->hrtick_csd.info = rq;
 488#endif
 489
 490        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 491        rq->hrtick_timer.function = hrtick;
 492}
 493#else   /* CONFIG_SCHED_HRTICK */
 494static inline void hrtick_clear(struct rq *rq)
 495{
 496}
 497
 498static inline void init_rq_hrtick(struct rq *rq)
 499{
 500}
 501
 502static inline void init_hrtick(void)
 503{
 504}
 505#endif  /* CONFIG_SCHED_HRTICK */
 506
 507/*
 508 * resched_task - mark a task 'to be rescheduled now'.
 509 *
 510 * On UP this means the setting of the need_resched flag, on SMP it
 511 * might also involve a cross-CPU call to trigger the scheduler on
 512 * the target CPU.
 513 */
 514#ifdef CONFIG_SMP
 515void resched_task(struct task_struct *p)
 516{
 517        int cpu;
 518
 519        assert_raw_spin_locked(&task_rq(p)->lock);
 520
 521        if (test_tsk_need_resched(p))
 522                return;
 523
 524        set_tsk_need_resched(p);
 525
 526        cpu = task_cpu(p);
 527        if (cpu == smp_processor_id())
 528                return;
 529
 530        /* NEED_RESCHED must be visible before we test polling */
 531        smp_mb();
 532        if (!tsk_is_polling(p))
 533                smp_send_reschedule(cpu);
 534}
 535
 536void resched_cpu(int cpu)
 537{
 538        struct rq *rq = cpu_rq(cpu);
 539        unsigned long flags;
 540
 541        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 542                return;
 543        resched_task(cpu_curr(cpu));
 544        raw_spin_unlock_irqrestore(&rq->lock, flags);
 545}
 546
 547#ifdef CONFIG_NO_HZ_COMMON
 548/*
 549 * In the semi idle case, use the nearest busy cpu for migrating timers
 550 * from an idle cpu.  This is good for power-savings.
 551 *
 552 * We don't do similar optimization for completely idle system, as
 553 * selecting an idle cpu will add more delays to the timers than intended
 554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 555 */
 556int get_nohz_timer_target(void)
 557{
 558        int cpu = smp_processor_id();
 559        int i;
 560        struct sched_domain *sd;
 561
 562        rcu_read_lock();
 563        for_each_domain(cpu, sd) {
 564                for_each_cpu(i, sched_domain_span(sd)) {
 565                        if (!idle_cpu(i)) {
 566                                cpu = i;
 567                                goto unlock;
 568                        }
 569                }
 570        }
 571unlock:
 572        rcu_read_unlock();
 573        return cpu;
 574}
 575/*
 576 * When add_timer_on() enqueues a timer into the timer wheel of an
 577 * idle CPU then this timer might expire before the next timer event
 578 * which is scheduled to wake up that CPU. In case of a completely
 579 * idle system the next event might even be infinite time into the
 580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 581 * leaves the inner idle loop so the newly added timer is taken into
 582 * account when the CPU goes back to idle and evaluates the timer
 583 * wheel for the next timer event.
 584 */
 585static void wake_up_idle_cpu(int cpu)
 586{
 587        struct rq *rq = cpu_rq(cpu);
 588
 589        if (cpu == smp_processor_id())
 590                return;
 591
 592        /*
 593         * This is safe, as this function is called with the timer
 594         * wheel base lock of (cpu) held. When the CPU is on the way
 595         * to idle and has not yet set rq->curr to idle then it will
 596         * be serialized on the timer wheel base lock and take the new
 597         * timer into account automatically.
 598         */
 599        if (rq->curr != rq->idle)
 600                return;
 601
 602        /*
 603         * We can set TIF_RESCHED on the idle task of the other CPU
 604         * lockless. The worst case is that the other CPU runs the
 605         * idle task through an additional NOOP schedule()
 606         */
 607        set_tsk_need_resched(rq->idle);
 608
 609        /* NEED_RESCHED must be visible before we test polling */
 610        smp_mb();
 611        if (!tsk_is_polling(rq->idle))
 612                smp_send_reschedule(cpu);
 613}
 614
 615static bool wake_up_full_nohz_cpu(int cpu)
 616{
 617        if (tick_nohz_full_cpu(cpu)) {
 618                if (cpu != smp_processor_id() ||
 619                    tick_nohz_tick_stopped())
 620                        smp_send_reschedule(cpu);
 621                return true;
 622        }
 623
 624        return false;
 625}
 626
 627void wake_up_nohz_cpu(int cpu)
 628{
 629        if (!wake_up_full_nohz_cpu(cpu))
 630                wake_up_idle_cpu(cpu);
 631}
 632
 633static inline bool got_nohz_idle_kick(void)
 634{
 635        int cpu = smp_processor_id();
 636
 637        if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 638                return false;
 639
 640        if (idle_cpu(cpu) && !need_resched())
 641                return true;
 642
 643        /*
 644         * We can't run Idle Load Balance on this CPU for this time so we
 645         * cancel it and clear NOHZ_BALANCE_KICK
 646         */
 647        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 648        return false;
 649}
 650
 651#else /* CONFIG_NO_HZ_COMMON */
 652
 653static inline bool got_nohz_idle_kick(void)
 654{
 655        return false;
 656}
 657
 658#endif /* CONFIG_NO_HZ_COMMON */
 659
 660#ifdef CONFIG_NO_HZ_FULL
 661bool sched_can_stop_tick(void)
 662{
 663       struct rq *rq;
 664
 665       rq = this_rq();
 666
 667       /* Make sure rq->nr_running update is visible after the IPI */
 668       smp_rmb();
 669
 670       /* More than one running task need preemption */
 671       if (rq->nr_running > 1)
 672               return false;
 673
 674       return true;
 675}
 676#endif /* CONFIG_NO_HZ_FULL */
 677
 678void sched_avg_update(struct rq *rq)
 679{
 680        s64 period = sched_avg_period();
 681
 682        while ((s64)(rq->clock - rq->age_stamp) > period) {
 683                /*
 684                 * Inline assembly required to prevent the compiler
 685                 * optimising this loop into a divmod call.
 686                 * See __iter_div_u64_rem() for another example of this.
 687                 */
 688                asm("" : "+rm" (rq->age_stamp));
 689                rq->age_stamp += period;
 690                rq->rt_avg /= 2;
 691        }
 692}
 693
 694#else /* !CONFIG_SMP */
 695void resched_task(struct task_struct *p)
 696{
 697        assert_raw_spin_locked(&task_rq(p)->lock);
 698        set_tsk_need_resched(p);
 699}
 700#endif /* CONFIG_SMP */
 701
 702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 703                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 704/*
 705 * Iterate task_group tree rooted at *from, calling @down when first entering a
 706 * node and @up when leaving it for the final time.
 707 *
 708 * Caller must hold rcu_lock or sufficient equivalent.
 709 */
 710int walk_tg_tree_from(struct task_group *from,
 711                             tg_visitor down, tg_visitor up, void *data)
 712{
 713        struct task_group *parent, *child;
 714        int ret;
 715
 716        parent = from;
 717
 718down:
 719        ret = (*down)(parent, data);
 720        if (ret)
 721                goto out;
 722        list_for_each_entry_rcu(child, &parent->children, siblings) {
 723                parent = child;
 724                goto down;
 725
 726up:
 727                continue;
 728        }
 729        ret = (*up)(parent, data);
 730        if (ret || parent == from)
 731                goto out;
 732
 733        child = parent;
 734        parent = parent->parent;
 735        if (parent)
 736                goto up;
 737out:
 738        return ret;
 739}
 740
 741int tg_nop(struct task_group *tg, void *data)
 742{
 743        return 0;
 744}
 745#endif
 746
 747static void set_load_weight(struct task_struct *p)
 748{
 749        int prio = p->static_prio - MAX_RT_PRIO;
 750        struct load_weight *load = &p->se.load;
 751
 752        /*
 753         * SCHED_IDLE tasks get minimal weight:
 754         */
 755        if (p->policy == SCHED_IDLE) {
 756                load->weight = scale_load(WEIGHT_IDLEPRIO);
 757                load->inv_weight = WMULT_IDLEPRIO;
 758                return;
 759        }
 760
 761        load->weight = scale_load(prio_to_weight[prio]);
 762        load->inv_weight = prio_to_wmult[prio];
 763}
 764
 765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 766{
 767        update_rq_clock(rq);
 768        sched_info_queued(p);
 769        p->sched_class->enqueue_task(rq, p, flags);
 770}
 771
 772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 773{
 774        update_rq_clock(rq);
 775        sched_info_dequeued(p);
 776        p->sched_class->dequeue_task(rq, p, flags);
 777}
 778
 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
 780{
 781        if (task_contributes_to_load(p))
 782                rq->nr_uninterruptible--;
 783
 784        enqueue_task(rq, p, flags);
 785}
 786
 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 788{
 789        if (task_contributes_to_load(p))
 790                rq->nr_uninterruptible++;
 791
 792        dequeue_task(rq, p, flags);
 793}
 794
 795static void update_rq_clock_task(struct rq *rq, s64 delta)
 796{
 797/*
 798 * In theory, the compile should just see 0 here, and optimize out the call
 799 * to sched_rt_avg_update. But I don't trust it...
 800 */
 801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 802        s64 steal = 0, irq_delta = 0;
 803#endif
 804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 805        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 806
 807        /*
 808         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 809         * this case when a previous update_rq_clock() happened inside a
 810         * {soft,}irq region.
 811         *
 812         * When this happens, we stop ->clock_task and only update the
 813         * prev_irq_time stamp to account for the part that fit, so that a next
 814         * update will consume the rest. This ensures ->clock_task is
 815         * monotonic.
 816         *
 817         * It does however cause some slight miss-attribution of {soft,}irq
 818         * time, a more accurate solution would be to update the irq_time using
 819         * the current rq->clock timestamp, except that would require using
 820         * atomic ops.
 821         */
 822        if (irq_delta > delta)
 823                irq_delta = delta;
 824
 825        rq->prev_irq_time += irq_delta;
 826        delta -= irq_delta;
 827#endif
 828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 829        if (static_key_false((&paravirt_steal_rq_enabled))) {
 830                u64 st;
 831
 832                steal = paravirt_steal_clock(cpu_of(rq));
 833                steal -= rq->prev_steal_time_rq;
 834
 835                if (unlikely(steal > delta))
 836                        steal = delta;
 837
 838                st = steal_ticks(steal);
 839                steal = st * TICK_NSEC;
 840
 841                rq->prev_steal_time_rq += steal;
 842
 843                delta -= steal;
 844        }
 845#endif
 846
 847        rq->clock_task += delta;
 848
 849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 850        if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 851                sched_rt_avg_update(rq, irq_delta + steal);
 852#endif
 853}
 854
 855void sched_set_stop_task(int cpu, struct task_struct *stop)
 856{
 857        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 858        struct task_struct *old_stop = cpu_rq(cpu)->stop;
 859
 860        if (stop) {
 861                /*
 862                 * Make it appear like a SCHED_FIFO task, its something
 863                 * userspace knows about and won't get confused about.
 864                 *
 865                 * Also, it will make PI more or less work without too
 866                 * much confusion -- but then, stop work should not
 867                 * rely on PI working anyway.
 868                 */
 869                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 870
 871                stop->sched_class = &stop_sched_class;
 872        }
 873
 874        cpu_rq(cpu)->stop = stop;
 875
 876        if (old_stop) {
 877                /*
 878                 * Reset it back to a normal scheduling class so that
 879                 * it can die in pieces.
 880                 */
 881                old_stop->sched_class = &rt_sched_class;
 882        }
 883}
 884
 885/*
 886 * __normal_prio - return the priority that is based on the static prio
 887 */
 888static inline int __normal_prio(struct task_struct *p)
 889{
 890        return p->static_prio;
 891}
 892
 893/*
 894 * Calculate the expected normal priority: i.e. priority
 895 * without taking RT-inheritance into account. Might be
 896 * boosted by interactivity modifiers. Changes upon fork,
 897 * setprio syscalls, and whenever the interactivity
 898 * estimator recalculates.
 899 */
 900static inline int normal_prio(struct task_struct *p)
 901{
 902        int prio;
 903
 904        if (task_has_rt_policy(p))
 905                prio = MAX_RT_PRIO-1 - p->rt_priority;
 906        else
 907                prio = __normal_prio(p);
 908        return prio;
 909}
 910
 911/*
 912 * Calculate the current priority, i.e. the priority
 913 * taken into account by the scheduler. This value might
 914 * be boosted by RT tasks, or might be boosted by
 915 * interactivity modifiers. Will be RT if the task got
 916 * RT-boosted. If not then it returns p->normal_prio.
 917 */
 918static int effective_prio(struct task_struct *p)
 919{
 920        p->normal_prio = normal_prio(p);
 921        /*
 922         * If we are RT tasks or we were boosted to RT priority,
 923         * keep the priority unchanged. Otherwise, update priority
 924         * to the normal priority:
 925         */
 926        if (!rt_prio(p->prio))
 927                return p->normal_prio;
 928        return p->prio;
 929}
 930
 931/**
 932 * task_curr - is this task currently executing on a CPU?
 933 * @p: the task in question.
 934 */
 935inline int task_curr(const struct task_struct *p)
 936{
 937        return cpu_curr(task_cpu(p)) == p;
 938}
 939
 940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 941                                       const struct sched_class *prev_class,
 942                                       int oldprio)
 943{
 944        if (prev_class != p->sched_class) {
 945                if (prev_class->switched_from)
 946                        prev_class->switched_from(rq, p);
 947                p->sched_class->switched_to(rq, p);
 948        } else if (oldprio != p->prio)
 949                p->sched_class->prio_changed(rq, p, oldprio);
 950}
 951
 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 953{
 954        const struct sched_class *class;
 955
 956        if (p->sched_class == rq->curr->sched_class) {
 957                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 958        } else {
 959                for_each_class(class) {
 960                        if (class == rq->curr->sched_class)
 961                                break;
 962                        if (class == p->sched_class) {
 963                                resched_task(rq->curr);
 964                                break;
 965                        }
 966                }
 967        }
 968
 969        /*
 970         * A queue event has occurred, and we're going to schedule.  In
 971         * this case, we can save a useless back to back clock update.
 972         */
 973        if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 974                rq->skip_clock_update = 1;
 975}
 976
 977static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
 978
 979void register_task_migration_notifier(struct notifier_block *n)
 980{
 981        atomic_notifier_chain_register(&task_migration_notifier, n);
 982}
 983
 984#ifdef CONFIG_SMP
 985void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 986{
 987#ifdef CONFIG_SCHED_DEBUG
 988        /*
 989         * We should never call set_task_cpu() on a blocked task,
 990         * ttwu() will sort out the placement.
 991         */
 992        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 993                        !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
 994
 995#ifdef CONFIG_LOCKDEP
 996        /*
 997         * The caller should hold either p->pi_lock or rq->lock, when changing
 998         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 999         *
1000         * sched_move_task() holds both and thus holding either pins the cgroup,
1001         * see task_group().
1002         *
1003         * Furthermore, all task_rq users should acquire both locks, see
1004         * task_rq_lock().
1005         */
1006        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007                                      lockdep_is_held(&task_rq(p)->lock)));
1008#endif
1009#endif
1010
1011        trace_sched_migrate_task(p, new_cpu);
1012
1013        if (task_cpu(p) != new_cpu) {
1014                struct task_migration_notifier tmn;
1015
1016                if (p->sched_class->migrate_task_rq)
1017                        p->sched_class->migrate_task_rq(p, new_cpu);
1018                p->se.nr_migrations++;
1019                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020
1021                tmn.task = p;
1022                tmn.from_cpu = task_cpu(p);
1023                tmn.to_cpu = new_cpu;
1024
1025                atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026        }
1027
1028        __set_task_cpu(p, new_cpu);
1029}
1030
1031struct migration_arg {
1032        struct task_struct *task;
1033        int dest_cpu;
1034};
1035
1036static int migration_cpu_stop(void *data);
1037
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change.  If it changes, i.e. @p might have woken up,
1043 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count).  If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055{
1056        unsigned long flags;
1057        int running, on_rq;
1058        unsigned long ncsw;
1059        struct rq *rq;
1060
1061        for (;;) {
1062                /*
1063                 * We do the initial early heuristics without holding
1064                 * any task-queue locks at all. We'll only try to get
1065                 * the runqueue lock when things look like they will
1066                 * work out!
1067                 */
1068                rq = task_rq(p);
1069
1070                /*
1071                 * If the task is actively running on another CPU
1072                 * still, just relax and busy-wait without holding
1073                 * any locks.
1074                 *
1075                 * NOTE! Since we don't hold any locks, it's not
1076                 * even sure that "rq" stays as the right runqueue!
1077                 * But we don't care, since "task_running()" will
1078                 * return false if the runqueue has changed and p
1079                 * is actually now running somewhere else!
1080                 */
1081                while (task_running(rq, p)) {
1082                        if (match_state && unlikely(p->state != match_state))
1083                                return 0;
1084                        cpu_relax();
1085                }
1086
1087                /*
1088                 * Ok, time to look more closely! We need the rq
1089                 * lock now, to be *sure*. If we're wrong, we'll
1090                 * just go back and repeat.
1091                 */
1092                rq = task_rq_lock(p, &flags);
1093                trace_sched_wait_task(p);
1094                running = task_running(rq, p);
1095                on_rq = p->on_rq;
1096                ncsw = 0;
1097                if (!match_state || p->state == match_state)
1098                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099                task_rq_unlock(rq, p, &flags);
1100
1101                /*
1102                 * If it changed from the expected state, bail out now.
1103                 */
1104                if (unlikely(!ncsw))
1105                        break;
1106
1107                /*
1108                 * Was it really running after all now that we
1109                 * checked with the proper locks actually held?
1110                 *
1111                 * Oops. Go back and try again..
1112                 */
1113                if (unlikely(running)) {
1114                        cpu_relax();
1115                        continue;
1116                }
1117
1118                /*
1119                 * It's not enough that it's not actively running,
1120                 * it must be off the runqueue _entirely_, and not
1121                 * preempted!
1122                 *
1123                 * So if it was still runnable (but just not actively
1124                 * running right now), it's preempted, and we should
1125                 * yield - it could be a while.
1126                 */
1127                if (unlikely(on_rq)) {
1128                        ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130                        set_current_state(TASK_UNINTERRUPTIBLE);
1131                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132                        continue;
1133                }
1134
1135                /*
1136                 * Ahh, all good. It wasn't running, and it wasn't
1137                 * runnable, which means that it will never become
1138                 * running in the future either. We're all done!
1139                 */
1140                break;
1141        }
1142
1143        return ncsw;
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesn't have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159void kick_process(struct task_struct *p)
1160{
1161        int cpu;
1162
1163        preempt_disable();
1164        cpu = task_cpu(p);
1165        if ((cpu != smp_processor_id()) && task_curr(p))
1166                smp_send_reschedule(cpu);
1167        preempt_enable();
1168}
1169EXPORT_SYMBOL_GPL(kick_process);
1170#endif /* CONFIG_SMP */
1171
1172#ifdef CONFIG_SMP
1173/*
1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175 */
1176static int select_fallback_rq(int cpu, struct task_struct *p)
1177{
1178        int nid = cpu_to_node(cpu);
1179        const struct cpumask *nodemask = NULL;
1180        enum { cpuset, possible, fail } state = cpuset;
1181        int dest_cpu;
1182
1183        /*
1184         * If the node that the cpu is on has been offlined, cpu_to_node()
1185         * will return -1. There is no cpu on the node, and we should
1186         * select the cpu on the other node.
1187         */
1188        if (nid != -1) {
1189                nodemask = cpumask_of_node(nid);
1190
1191                /* Look for allowed, online CPU in same node. */
1192                for_each_cpu(dest_cpu, nodemask) {
1193                        if (!cpu_online(dest_cpu))
1194                                continue;
1195                        if (!cpu_active(dest_cpu))
1196                                continue;
1197                        if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198                                return dest_cpu;
1199                }
1200        }
1201
1202        for (;;) {
1203                /* Any allowed, online CPU? */
1204                for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205                        if (!cpu_online(dest_cpu))
1206                                continue;
1207                        if (!cpu_active(dest_cpu))
1208                                continue;
1209                        goto out;
1210                }
1211
1212                switch (state) {
1213                case cpuset:
1214                        /* No more Mr. Nice Guy. */
1215                        cpuset_cpus_allowed_fallback(p);
1216                        state = possible;
1217                        break;
1218
1219                case possible:
1220                        do_set_cpus_allowed(p, cpu_possible_mask);
1221                        state = fail;
1222                        break;
1223
1224                case fail:
1225                        BUG();
1226                        break;
1227                }
1228        }
1229
1230out:
1231        if (state != cpuset) {
1232                /*
1233                 * Don't tell them about moving exiting tasks or
1234                 * kernel threads (both mm NULL), since they never
1235                 * leave kernel.
1236                 */
1237                if (p->mm && printk_ratelimit()) {
1238                        printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239                                        task_pid_nr(p), p->comm, cpu);
1240                }
1241        }
1242
1243        return dest_cpu;
1244}
1245
1246/*
1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248 */
1249static inline
1250int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251{
1252        int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253
1254        /*
1255         * In order not to call set_task_cpu() on a blocking task we need
1256         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257         * cpu.
1258         *
1259         * Since this is common to all placement strategies, this lives here.
1260         *
1261         * [ this allows ->select_task() to simply return task_cpu(p) and
1262         *   not worry about this generic constraint ]
1263         */
1264        if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265                     !cpu_online(cpu)))
1266                cpu = select_fallback_rq(task_cpu(p), p);
1267
1268        return cpu;
1269}
1270
1271static void update_avg(u64 *avg, u64 sample)
1272{
1273        s64 diff = sample - *avg;
1274        *avg += diff >> 3;
1275}
1276#endif
1277
1278static void
1279ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280{
1281#ifdef CONFIG_SCHEDSTATS
1282        struct rq *rq = this_rq();
1283
1284#ifdef CONFIG_SMP
1285        int this_cpu = smp_processor_id();
1286
1287        if (cpu == this_cpu) {
1288                schedstat_inc(rq, ttwu_local);
1289                schedstat_inc(p, se.statistics.nr_wakeups_local);
1290        } else {
1291                struct sched_domain *sd;
1292
1293                schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294                rcu_read_lock();
1295                for_each_domain(this_cpu, sd) {
1296                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297                                schedstat_inc(sd, ttwu_wake_remote);
1298                                break;
1299                        }
1300                }
1301                rcu_read_unlock();
1302        }
1303
1304        if (wake_flags & WF_MIGRATED)
1305                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
1307#endif /* CONFIG_SMP */
1308
1309        schedstat_inc(rq, ttwu_count);
1310        schedstat_inc(p, se.statistics.nr_wakeups);
1311
1312        if (wake_flags & WF_SYNC)
1313                schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314
1315#endif /* CONFIG_SCHEDSTATS */
1316}
1317
1318static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319{
1320        activate_task(rq, p, en_flags);
1321        p->on_rq = 1;
1322
1323        /* if a worker is waking up, notify workqueue */
1324        if (p->flags & PF_WQ_WORKER)
1325                wq_worker_waking_up(p, cpu_of(rq));
1326}
1327
1328/*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
1331static void
1332ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333{
1334        check_preempt_curr(rq, p, wake_flags);
1335        trace_sched_wakeup(p, true);
1336
1337        p->state = TASK_RUNNING;
1338#ifdef CONFIG_SMP
1339        if (p->sched_class->task_woken)
1340                p->sched_class->task_woken(rq, p);
1341
1342        if (rq->idle_stamp) {
1343                u64 delta = rq->clock - rq->idle_stamp;
1344                u64 max = 2*sysctl_sched_migration_cost;
1345
1346                if (delta > max)
1347                        rq->avg_idle = max;
1348                else
1349                        update_avg(&rq->avg_idle, delta);
1350                rq->idle_stamp = 0;
1351        }
1352#endif
1353}
1354
1355static void
1356ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357{
1358#ifdef CONFIG_SMP
1359        if (p->sched_contributes_to_load)
1360                rq->nr_uninterruptible--;
1361#endif
1362
1363        ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364        ttwu_do_wakeup(rq, p, wake_flags);
1365}
1366
1367/*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373static int ttwu_remote(struct task_struct *p, int wake_flags)
1374{
1375        struct rq *rq;
1376        int ret = 0;
1377
1378        rq = __task_rq_lock(p);
1379        if (p->on_rq) {
1380                ttwu_do_wakeup(rq, p, wake_flags);
1381                ret = 1;
1382        }
1383        __task_rq_unlock(rq);
1384
1385        return ret;
1386}
1387
1388#ifdef CONFIG_SMP
1389static void sched_ttwu_pending(void)
1390{
1391        struct rq *rq = this_rq();
1392        struct llist_node *llist = llist_del_all(&rq->wake_list);
1393        struct task_struct *p;
1394
1395        raw_spin_lock(&rq->lock);
1396
1397        while (llist) {
1398                p = llist_entry(llist, struct task_struct, wake_entry);
1399                llist = llist_next(llist);
1400                ttwu_do_activate(rq, p, 0);
1401        }
1402
1403        raw_spin_unlock(&rq->lock);
1404}
1405
1406void scheduler_ipi(void)
1407{
1408        if (llist_empty(&this_rq()->wake_list)
1409                        && !tick_nohz_full_cpu(smp_processor_id())
1410                        && !got_nohz_idle_kick())
1411                return;
1412
1413        /*
1414         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1415         * traditionally all their work was done from the interrupt return
1416         * path. Now that we actually do some work, we need to make sure
1417         * we do call them.
1418         *
1419         * Some archs already do call them, luckily irq_enter/exit nest
1420         * properly.
1421         *
1422         * Arguably we should visit all archs and update all handlers,
1423         * however a fair share of IPIs are still resched only so this would
1424         * somewhat pessimize the simple resched case.
1425         */
1426        irq_enter();
1427        tick_nohz_full_check();
1428        sched_ttwu_pending();
1429
1430        /*
1431         * Check if someone kicked us for doing the nohz idle load balance.
1432         */
1433        if (unlikely(got_nohz_idle_kick())) {
1434                this_rq()->idle_balance = 1;
1435                raise_softirq_irqoff(SCHED_SOFTIRQ);
1436        }
1437        irq_exit();
1438}
1439
1440static void ttwu_queue_remote(struct task_struct *p, int cpu)
1441{
1442        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1443                smp_send_reschedule(cpu);
1444}
1445
1446bool cpus_share_cache(int this_cpu, int that_cpu)
1447{
1448        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1449}
1450#endif /* CONFIG_SMP */
1451
1452static void ttwu_queue(struct task_struct *p, int cpu)
1453{
1454        struct rq *rq = cpu_rq(cpu);
1455
1456#if defined(CONFIG_SMP)
1457        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1458                sched_clock_cpu(cpu); /* sync clocks x-cpu */
1459                ttwu_queue_remote(p, cpu);
1460                return;
1461        }
1462#endif
1463
1464        raw_spin_lock(&rq->lock);
1465        ttwu_do_activate(rq, p, 0);
1466        raw_spin_unlock(&rq->lock);
1467}
1468
1469/**
1470 * try_to_wake_up - wake up a thread
1471 * @p: the thread to be awakened
1472 * @state: the mask of task states that can be woken
1473 * @wake_flags: wake modifier flags (WF_*)
1474 *
1475 * Put it on the run-queue if it's not already there. The "current"
1476 * thread is always on the run-queue (except when the actual
1477 * re-schedule is in progress), and as such you're allowed to do
1478 * the simpler "current->state = TASK_RUNNING" to mark yourself
1479 * runnable without the overhead of this.
1480 *
1481 * Returns %true if @p was woken up, %false if it was already running
1482 * or @state didn't match @p's state.
1483 */
1484static int
1485try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1486{
1487        unsigned long flags;
1488        int cpu, success = 0;
1489
1490        smp_wmb();
1491        raw_spin_lock_irqsave(&p->pi_lock, flags);
1492        if (!(p->state & state))
1493                goto out;
1494
1495        success = 1; /* we're going to change ->state */
1496        cpu = task_cpu(p);
1497
1498        if (p->on_rq && ttwu_remote(p, wake_flags))
1499                goto stat;
1500
1501#ifdef CONFIG_SMP
1502        /*
1503         * If the owning (remote) cpu is still in the middle of schedule() with
1504         * this task as prev, wait until its done referencing the task.
1505         */
1506        while (p->on_cpu)
1507                cpu_relax();
1508        /*
1509         * Pairs with the smp_wmb() in finish_lock_switch().
1510         */
1511        smp_rmb();
1512
1513        p->sched_contributes_to_load = !!task_contributes_to_load(p);
1514        p->state = TASK_WAKING;
1515
1516        if (p->sched_class->task_waking)
1517                p->sched_class->task_waking(p);
1518
1519        cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1520        if (task_cpu(p) != cpu) {
1521                wake_flags |= WF_MIGRATED;
1522                set_task_cpu(p, cpu);
1523        }
1524#endif /* CONFIG_SMP */
1525
1526        ttwu_queue(p, cpu);
1527stat:
1528        ttwu_stat(p, cpu, wake_flags);
1529out:
1530        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1531
1532        return success;
1533}
1534
1535/**
1536 * try_to_wake_up_local - try to wake up a local task with rq lock held
1537 * @p: the thread to be awakened
1538 *
1539 * Put @p on the run-queue if it's not already there. The caller must
1540 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1541 * the current task.
1542 */
1543static void try_to_wake_up_local(struct task_struct *p)
1544{
1545        struct rq *rq = task_rq(p);
1546
1547        if (WARN_ON_ONCE(rq != this_rq()) ||
1548            WARN_ON_ONCE(p == current))
1549                return;
1550
1551        lockdep_assert_held(&rq->lock);
1552
1553        if (!raw_spin_trylock(&p->pi_lock)) {
1554                raw_spin_unlock(&rq->lock);
1555                raw_spin_lock(&p->pi_lock);
1556                raw_spin_lock(&rq->lock);
1557        }
1558
1559        if (!(p->state & TASK_NORMAL))
1560                goto out;
1561
1562        if (!p->on_rq)
1563                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1564
1565        ttwu_do_wakeup(rq, p, 0);
1566        ttwu_stat(p, smp_processor_id(), 0);
1567out:
1568        raw_spin_unlock(&p->pi_lock);
1569}
1570
1571/**
1572 * wake_up_process - Wake up a specific process
1573 * @p: The process to be woken up.
1574 *
1575 * Attempt to wake up the nominated process and move it to the set of runnable
1576 * processes.  Returns 1 if the process was woken up, 0 if it was already
1577 * running.
1578 *
1579 * It may be assumed that this function implies a write memory barrier before
1580 * changing the task state if and only if any tasks are woken up.
1581 */
1582int wake_up_process(struct task_struct *p)
1583{
1584        WARN_ON(task_is_stopped_or_traced(p));
1585        return try_to_wake_up(p, TASK_NORMAL, 0);
1586}
1587EXPORT_SYMBOL(wake_up_process);
1588
1589int wake_up_state(struct task_struct *p, unsigned int state)
1590{
1591        return try_to_wake_up(p, state, 0);
1592}
1593
1594/*
1595 * Perform scheduler related setup for a newly forked process p.
1596 * p is forked by current.
1597 *
1598 * __sched_fork() is basic setup used by init_idle() too:
1599 */
1600static void __sched_fork(struct task_struct *p)
1601{
1602        p->on_rq                        = 0;
1603
1604        p->se.on_rq                     = 0;
1605        p->se.exec_start                = 0;
1606        p->se.sum_exec_runtime          = 0;
1607        p->se.prev_sum_exec_runtime     = 0;
1608        p->se.nr_migrations             = 0;
1609        p->se.vruntime                  = 0;
1610        INIT_LIST_HEAD(&p->se.group_node);
1611
1612/*
1613 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1614 * removed when useful for applications beyond shares distribution (e.g.
1615 * load-balance).
1616 */
1617#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1618        p->se.avg.runnable_avg_period = 0;
1619        p->se.avg.runnable_avg_sum = 0;
1620#endif
1621#ifdef CONFIG_SCHEDSTATS
1622        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1623#endif
1624
1625        INIT_LIST_HEAD(&p->rt.run_list);
1626
1627#ifdef CONFIG_PREEMPT_NOTIFIERS
1628        INIT_HLIST_HEAD(&p->preempt_notifiers);
1629#endif
1630
1631#ifdef CONFIG_NUMA_BALANCING
1632        if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1633                p->mm->numa_next_scan = jiffies;
1634                p->mm->numa_next_reset = jiffies;
1635                p->mm->numa_scan_seq = 0;
1636        }
1637
1638        p->node_stamp = 0ULL;
1639        p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1640        p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1641        p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1642        p->numa_work.next = &p->numa_work;
1643#endif /* CONFIG_NUMA_BALANCING */
1644}
1645
1646#ifdef CONFIG_NUMA_BALANCING
1647#ifdef CONFIG_SCHED_DEBUG
1648void set_numabalancing_state(bool enabled)
1649{
1650        if (enabled)
1651                sched_feat_set("NUMA");
1652        else
1653                sched_feat_set("NO_NUMA");
1654}
1655#else
1656__read_mostly bool numabalancing_enabled;
1657
1658void set_numabalancing_state(bool enabled)
1659{
1660        numabalancing_enabled = enabled;
1661}
1662#endif /* CONFIG_SCHED_DEBUG */
1663#endif /* CONFIG_NUMA_BALANCING */
1664
1665/*
1666 * fork()/clone()-time setup:
1667 */
1668void sched_fork(struct task_struct *p)
1669{
1670        unsigned long flags;
1671        int cpu = get_cpu();
1672
1673        __sched_fork(p);
1674        /*
1675         * We mark the process as running here. This guarantees that
1676         * nobody will actually run it, and a signal or other external
1677         * event cannot wake it up and insert it on the runqueue either.
1678         */
1679        p->state = TASK_RUNNING;
1680
1681        /*
1682         * Make sure we do not leak PI boosting priority to the child.
1683         */
1684        p->prio = current->normal_prio;
1685
1686        /*
1687         * Revert to default priority/policy on fork if requested.
1688         */
1689        if (unlikely(p->sched_reset_on_fork)) {
1690                if (task_has_rt_policy(p)) {
1691                        p->policy = SCHED_NORMAL;
1692                        p->static_prio = NICE_TO_PRIO(0);
1693                        p->rt_priority = 0;
1694                } else if (PRIO_TO_NICE(p->static_prio) < 0)
1695                        p->static_prio = NICE_TO_PRIO(0);
1696
1697                p->prio = p->normal_prio = __normal_prio(p);
1698                set_load_weight(p);
1699
1700                /*
1701                 * We don't need the reset flag anymore after the fork. It has
1702                 * fulfilled its duty:
1703                 */
1704                p->sched_reset_on_fork = 0;
1705        }
1706
1707        if (!rt_prio(p->prio))
1708                p->sched_class = &fair_sched_class;
1709
1710        if (p->sched_class->task_fork)
1711                p->sched_class->task_fork(p);
1712
1713        /*
1714         * The child is not yet in the pid-hash so no cgroup attach races,
1715         * and the cgroup is pinned to this child due to cgroup_fork()
1716         * is ran before sched_fork().
1717         *
1718         * Silence PROVE_RCU.
1719         */
1720        raw_spin_lock_irqsave(&p->pi_lock, flags);
1721        set_task_cpu(p, cpu);
1722        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1723
1724#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1725        if (likely(sched_info_on()))
1726                memset(&p->sched_info, 0, sizeof(p->sched_info));
1727#endif
1728#if defined(CONFIG_SMP)
1729        p->on_cpu = 0;
1730#endif
1731#ifdef CONFIG_PREEMPT_COUNT
1732        /* Want to start with kernel preemption disabled. */
1733        task_thread_info(p)->preempt_count = 1;
1734#endif
1735#ifdef CONFIG_SMP
1736        plist_node_init(&p->pushable_tasks, MAX_PRIO);
1737#endif
1738
1739        put_cpu();
1740}
1741
1742/*
1743 * wake_up_new_task - wake up a newly created task for the first time.
1744 *
1745 * This function will do some initial scheduler statistics housekeeping
1746 * that must be done for every newly created context, then puts the task
1747 * on the runqueue and wakes it.
1748 */
1749void wake_up_new_task(struct task_struct *p)
1750{
1751        unsigned long flags;
1752        struct rq *rq;
1753
1754        raw_spin_lock_irqsave(&p->pi_lock, flags);
1755#ifdef CONFIG_SMP
1756        /*
1757         * Fork balancing, do it here and not earlier because:
1758         *  - cpus_allowed can change in the fork path
1759         *  - any previously selected cpu might disappear through hotplug
1760         */
1761        set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1762#endif
1763
1764        rq = __task_rq_lock(p);
1765        activate_task(rq, p, 0);
1766        p->on_rq = 1;
1767        trace_sched_wakeup_new(p, true);
1768        check_preempt_curr(rq, p, WF_FORK);
1769#ifdef CONFIG_SMP
1770        if (p->sched_class->task_woken)
1771                p->sched_class->task_woken(rq, p);
1772#endif
1773        task_rq_unlock(rq, p, &flags);
1774}
1775
1776#ifdef CONFIG_PREEMPT_NOTIFIERS
1777
1778/**
1779 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1780 * @notifier: notifier struct to register
1781 */
1782void preempt_notifier_register(struct preempt_notifier *notifier)
1783{
1784        hlist_add_head(&notifier->link, &current->preempt_notifiers);
1785}
1786EXPORT_SYMBOL_GPL(preempt_notifier_register);
1787
1788/**
1789 * preempt_notifier_unregister - no longer interested in preemption notifications
1790 * @notifier: notifier struct to unregister
1791 *
1792 * This is safe to call from within a preemption notifier.
1793 */
1794void preempt_notifier_unregister(struct preempt_notifier *notifier)
1795{
1796        hlist_del(&notifier->link);
1797}
1798EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1799
1800static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1801{
1802        struct preempt_notifier *notifier;
1803
1804        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1805                notifier->ops->sched_in(notifier, raw_smp_processor_id());
1806}
1807
1808static void
1809fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810                                 struct task_struct *next)
1811{
1812        struct preempt_notifier *notifier;
1813
1814        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1815                notifier->ops->sched_out(notifier, next);
1816}
1817
1818#else /* !CONFIG_PREEMPT_NOTIFIERS */
1819
1820static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1821{
1822}
1823
1824static void
1825fire_sched_out_preempt_notifiers(struct task_struct *curr,
1826                                 struct task_struct *next)
1827{
1828}
1829
1830#endif /* CONFIG_PREEMPT_NOTIFIERS */
1831
1832/**
1833 * prepare_task_switch - prepare to switch tasks
1834 * @rq: the runqueue preparing to switch
1835 * @prev: the current task that is being switched out
1836 * @next: the task we are going to switch to.
1837 *
1838 * This is called with the rq lock held and interrupts off. It must
1839 * be paired with a subsequent finish_task_switch after the context
1840 * switch.
1841 *
1842 * prepare_task_switch sets up locking and calls architecture specific
1843 * hooks.
1844 */
1845static inline void
1846prepare_task_switch(struct rq *rq, struct task_struct *prev,
1847                    struct task_struct *next)
1848{
1849        trace_sched_switch(prev, next);
1850        sched_info_switch(prev, next);
1851        perf_event_task_sched_out(prev, next);
1852        fire_sched_out_preempt_notifiers(prev, next);
1853        prepare_lock_switch(rq, next);
1854        prepare_arch_switch(next);
1855}
1856
1857/**
1858 * finish_task_switch - clean up after a task-switch
1859 * @rq: runqueue associated with task-switch
1860 * @prev: the thread we just switched away from.
1861 *
1862 * finish_task_switch must be called after the context switch, paired
1863 * with a prepare_task_switch call before the context switch.
1864 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1865 * and do any other architecture-specific cleanup actions.
1866 *
1867 * Note that we may have delayed dropping an mm in context_switch(). If
1868 * so, we finish that here outside of the runqueue lock. (Doing it
1869 * with the lock held can cause deadlocks; see schedule() for
1870 * details.)
1871 */
1872static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1873        __releases(rq->lock)
1874{
1875        struct mm_struct *mm = rq->prev_mm;
1876        long prev_state;
1877
1878        rq->prev_mm = NULL;
1879
1880        /*
1881         * A task struct has one reference for the use as "current".
1882         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1883         * schedule one last time. The schedule call will never return, and
1884         * the scheduled task must drop that reference.
1885         * The test for TASK_DEAD must occur while the runqueue locks are
1886         * still held, otherwise prev could be scheduled on another cpu, die
1887         * there before we look at prev->state, and then the reference would
1888         * be dropped twice.
1889         *              Manfred Spraul <manfred@colorfullife.com>
1890         */
1891        prev_state = prev->state;
1892        vtime_task_switch(prev);
1893        finish_arch_switch(prev);
1894        perf_event_task_sched_in(prev, current);
1895        finish_lock_switch(rq, prev);
1896        finish_arch_post_lock_switch();
1897
1898        fire_sched_in_preempt_notifiers(current);
1899        if (mm)
1900                mmdrop(mm);
1901        if (unlikely(prev_state == TASK_DEAD)) {
1902                /*
1903                 * Remove function-return probe instances associated with this
1904                 * task and put them back on the free list.
1905                 */
1906                kprobe_flush_task(prev);
1907                put_task_struct(prev);
1908        }
1909
1910        tick_nohz_task_switch(current);
1911}
1912
1913#ifdef CONFIG_SMP
1914
1915/* assumes rq->lock is held */
1916static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1917{
1918        if (prev->sched_class->pre_schedule)
1919                prev->sched_class->pre_schedule(rq, prev);
1920}
1921
1922/* rq->lock is NOT held, but preemption is disabled */
1923static inline void post_schedule(struct rq *rq)
1924{
1925        if (rq->post_schedule) {
1926                unsigned long flags;
1927
1928                raw_spin_lock_irqsave(&rq->lock, flags);
1929                if (rq->curr->sched_class->post_schedule)
1930                        rq->curr->sched_class->post_schedule(rq);
1931                raw_spin_unlock_irqrestore(&rq->lock, flags);
1932
1933                rq->post_schedule = 0;
1934        }
1935}
1936
1937#else
1938
1939static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1940{
1941}
1942
1943static inline void post_schedule(struct rq *rq)
1944{
1945}
1946
1947#endif
1948
1949/**
1950 * schedule_tail - first thing a freshly forked thread must call.
1951 * @prev: the thread we just switched away from.
1952 */
1953asmlinkage void schedule_tail(struct task_struct *prev)
1954        __releases(rq->lock)
1955{
1956        struct rq *rq = this_rq();
1957
1958        finish_task_switch(rq, prev);
1959
1960        /*
1961         * FIXME: do we need to worry about rq being invalidated by the
1962         * task_switch?
1963         */
1964        post_schedule(rq);
1965
1966#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1967        /* In this case, finish_task_switch does not reenable preemption */
1968        preempt_enable();
1969#endif
1970        if (current->set_child_tid)
1971                put_user(task_pid_vnr(current), current->set_child_tid);
1972}
1973
1974/*
1975 * context_switch - switch to the new MM and the new
1976 * thread's register state.
1977 */
1978static inline void
1979context_switch(struct rq *rq, struct task_struct *prev,
1980               struct task_struct *next)
1981{
1982        struct mm_struct *mm, *oldmm;
1983
1984        prepare_task_switch(rq, prev, next);
1985
1986        mm = next->mm;
1987        oldmm = prev->active_mm;
1988        /*
1989         * For paravirt, this is coupled with an exit in switch_to to
1990         * combine the page table reload and the switch backend into
1991         * one hypercall.
1992         */
1993        arch_start_context_switch(prev);
1994
1995        if (!mm) {
1996                next->active_mm = oldmm;
1997                atomic_inc(&oldmm->mm_count);
1998                enter_lazy_tlb(oldmm, next);
1999        } else
2000                switch_mm(oldmm, mm, next);
2001
2002        if (!prev->mm) {
2003                prev->active_mm = NULL;
2004                rq->prev_mm = oldmm;
2005        }
2006        /*
2007         * Since the runqueue lock will be released by the next
2008         * task (which is an invalid locking op but in the case
2009         * of the scheduler it's an obvious special-case), so we
2010         * do an early lockdep release here:
2011         */
2012#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2013        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2014#endif
2015
2016        context_tracking_task_switch(prev, next);
2017        /* Here we just switch the register state and the stack. */
2018        switch_to(prev, next, prev);
2019
2020        barrier();
2021        /*
2022         * this_rq must be evaluated again because prev may have moved
2023         * CPUs since it called schedule(), thus the 'rq' on its stack
2024         * frame will be invalid.
2025         */
2026        finish_task_switch(this_rq(), prev);
2027}
2028
2029/*
2030 * nr_running and nr_context_switches:
2031 *
2032 * externally visible scheduler statistics: current number of runnable
2033 * threads, total number of context switches performed since bootup.
2034 */
2035unsigned long nr_running(void)
2036{
2037        unsigned long i, sum = 0;
2038
2039        for_each_online_cpu(i)
2040                sum += cpu_rq(i)->nr_running;
2041
2042        return sum;
2043}
2044
2045unsigned long long nr_context_switches(void)
2046{
2047        int i;
2048        unsigned long long sum = 0;
2049
2050        for_each_possible_cpu(i)
2051                sum += cpu_rq(i)->nr_switches;
2052
2053        return sum;
2054}
2055
2056unsigned long nr_iowait(void)
2057{
2058        unsigned long i, sum = 0;
2059
2060        for_each_possible_cpu(i)
2061                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2062
2063        return sum;
2064}
2065
2066unsigned long nr_iowait_cpu(int cpu)
2067{
2068        struct rq *this = cpu_rq(cpu);
2069        return atomic_read(&this->nr_iowait);
2070}
2071
2072unsigned long this_cpu_load(void)
2073{
2074        struct rq *this = this_rq();
2075        return this->cpu_load[0];
2076}
2077
2078
2079/*
2080 * Global load-average calculations
2081 *
2082 * We take a distributed and async approach to calculating the global load-avg
2083 * in order to minimize overhead.
2084 *
2085 * The global load average is an exponentially decaying average of nr_running +
2086 * nr_uninterruptible.
2087 *
2088 * Once every LOAD_FREQ:
2089 *
2090 *   nr_active = 0;
2091 *   for_each_possible_cpu(cpu)
2092 *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2093 *
2094 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2095 *
2096 * Due to a number of reasons the above turns in the mess below:
2097 *
2098 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2099 *    serious number of cpus, therefore we need to take a distributed approach
2100 *    to calculating nr_active.
2101 *
2102 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2103 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2104 *
2105 *    So assuming nr_active := 0 when we start out -- true per definition, we
2106 *    can simply take per-cpu deltas and fold those into a global accumulate
2107 *    to obtain the same result. See calc_load_fold_active().
2108 *
2109 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2110 *    across the machine, we assume 10 ticks is sufficient time for every
2111 *    cpu to have completed this task.
2112 *
2113 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2114 *    again, being late doesn't loose the delta, just wrecks the sample.
2115 *
2116 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2117 *    this would add another cross-cpu cacheline miss and atomic operation
2118 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2119 *    when it went into uninterruptible state and decrement on whatever cpu
2120 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2121 *    all cpus yields the correct result.
2122 *
2123 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2124 */
2125
2126/* Variables and functions for calc_load */
2127static atomic_long_t calc_load_tasks;
2128static unsigned long calc_load_update;
2129unsigned long avenrun[3];
2130EXPORT_SYMBOL(avenrun); /* should be removed */
2131
2132/**
2133 * get_avenrun - get the load average array
2134 * @loads:      pointer to dest load array
2135 * @offset:     offset to add
2136 * @shift:      shift count to shift the result left
2137 *
2138 * These values are estimates at best, so no need for locking.
2139 */
2140void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2141{
2142        loads[0] = (avenrun[0] + offset) << shift;
2143        loads[1] = (avenrun[1] + offset) << shift;
2144        loads[2] = (avenrun[2] + offset) << shift;
2145}
2146
2147static long calc_load_fold_active(struct rq *this_rq)
2148{
2149        long nr_active, delta = 0;
2150
2151        nr_active = this_rq->nr_running;
2152        nr_active += (long) this_rq->nr_uninterruptible;
2153
2154        if (nr_active != this_rq->calc_load_active) {
2155                delta = nr_active - this_rq->calc_load_active;
2156                this_rq->calc_load_active = nr_active;
2157        }
2158
2159        return delta;
2160}
2161
2162/*
2163 * a1 = a0 * e + a * (1 - e)
2164 */
2165static unsigned long
2166calc_load(unsigned long load, unsigned long exp, unsigned long active)
2167{
2168        load *= exp;
2169        load += active * (FIXED_1 - exp);
2170        load += 1UL << (FSHIFT - 1);
2171        return load >> FSHIFT;
2172}
2173
2174#ifdef CONFIG_NO_HZ_COMMON
2175/*
2176 * Handle NO_HZ for the global load-average.
2177 *
2178 * Since the above described distributed algorithm to compute the global
2179 * load-average relies on per-cpu sampling from the tick, it is affected by
2180 * NO_HZ.
2181 *
2182 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2183 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2184 * when we read the global state.
2185 *
2186 * Obviously reality has to ruin such a delightfully simple scheme:
2187 *
2188 *  - When we go NO_HZ idle during the window, we can negate our sample
2189 *    contribution, causing under-accounting.
2190 *
2191 *    We avoid this by keeping two idle-delta counters and flipping them
2192 *    when the window starts, thus separating old and new NO_HZ load.
2193 *
2194 *    The only trick is the slight shift in index flip for read vs write.
2195 *
2196 *        0s            5s            10s           15s
2197 *          +10           +10           +10           +10
2198 *        |-|-----------|-|-----------|-|-----------|-|
2199 *    r:0 0 1           1 0           0 1           1 0
2200 *    w:0 1 1           0 0           1 1           0 0
2201 *
2202 *    This ensures we'll fold the old idle contribution in this window while
2203 *    accumlating the new one.
2204 *
2205 *  - When we wake up from NO_HZ idle during the window, we push up our
2206 *    contribution, since we effectively move our sample point to a known
2207 *    busy state.
2208 *
2209 *    This is solved by pushing the window forward, and thus skipping the
2210 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2211 *    was in effect at the time the window opened). This also solves the issue
2212 *    of having to deal with a cpu having been in NOHZ idle for multiple
2213 *    LOAD_FREQ intervals.
2214 *
2215 * When making the ILB scale, we should try to pull this in as well.
2216 */
2217static atomic_long_t calc_load_idle[2];
2218static int calc_load_idx;
2219
2220static inline int calc_load_write_idx(void)
2221{
2222        int idx = calc_load_idx;
2223
2224        /*
2225         * See calc_global_nohz(), if we observe the new index, we also
2226         * need to observe the new update time.
2227         */
2228        smp_rmb();
2229
2230        /*
2231         * If the folding window started, make sure we start writing in the
2232         * next idle-delta.
2233         */
2234        if (!time_before(jiffies, calc_load_update))
2235                idx++;
2236
2237        return idx & 1;
2238}
2239
2240static inline int calc_load_read_idx(void)
2241{
2242        return calc_load_idx & 1;
2243}
2244
2245void calc_load_enter_idle(void)
2246{
2247        struct rq *this_rq = this_rq();
2248        long delta;
2249
2250        /*
2251         * We're going into NOHZ mode, if there's any pending delta, fold it
2252         * into the pending idle delta.
2253         */
2254        delta = calc_load_fold_active(this_rq);
2255        if (delta) {
2256                int idx = calc_load_write_idx();
2257                atomic_long_add(delta, &calc_load_idle[idx]);
2258        }
2259}
2260
2261void calc_load_exit_idle(void)
2262{
2263        struct rq *this_rq = this_rq();
2264
2265        /*
2266         * If we're still before the sample window, we're done.
2267         */
2268        if (time_before(jiffies, this_rq->calc_load_update))
2269                return;
2270
2271        /*
2272         * We woke inside or after the sample window, this means we're already
2273         * accounted through the nohz accounting, so skip the entire deal and
2274         * sync up for the next window.
2275         */
2276        this_rq->calc_load_update = calc_load_update;
2277        if (time_before(jiffies, this_rq->calc_load_update + 10))
2278                this_rq->calc_load_update += LOAD_FREQ;
2279}
2280
2281static long calc_load_fold_idle(void)
2282{
2283        int idx = calc_load_read_idx();
2284        long delta = 0;
2285
2286        if (atomic_long_read(&calc_load_idle[idx]))
2287                delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2288
2289        return delta;
2290}
2291
2292/**
2293 * fixed_power_int - compute: x^n, in O(log n) time
2294 *
2295 * @x:         base of the power
2296 * @frac_bits: fractional bits of @x
2297 * @n:         power to raise @x to.
2298 *
2299 * By exploiting the relation between the definition of the natural power
2300 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2301 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2302 * (where: n_i \elem {0, 1}, the binary vector representing n),
2303 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2304 * of course trivially computable in O(log_2 n), the length of our binary
2305 * vector.
2306 */
2307static unsigned long
2308fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2309{
2310        unsigned long result = 1UL << frac_bits;
2311
2312        if (n) for (;;) {
2313                if (n & 1) {
2314                        result *= x;
2315                        result += 1UL << (frac_bits - 1);
2316                        result >>= frac_bits;
2317                }
2318                n >>= 1;
2319                if (!n)
2320                        break;
2321                x *= x;
2322                x += 1UL << (frac_bits - 1);
2323                x >>= frac_bits;
2324        }
2325
2326        return result;
2327}
2328
2329/*
2330 * a1 = a0 * e + a * (1 - e)
2331 *
2332 * a2 = a1 * e + a * (1 - e)
2333 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2334 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2335 *
2336 * a3 = a2 * e + a * (1 - e)
2337 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2338 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2339 *
2340 *  ...
2341 *
2342 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2343 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2344 *    = a0 * e^n + a * (1 - e^n)
2345 *
2346 * [1] application of the geometric series:
2347 *
2348 *              n         1 - x^(n+1)
2349 *     S_n := \Sum x^i = -------------
2350 *             i=0          1 - x
2351 */
2352static unsigned long
2353calc_load_n(unsigned long load, unsigned long exp,
2354            unsigned long active, unsigned int n)
2355{
2356
2357        return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2358}
2359
2360/*
2361 * NO_HZ can leave us missing all per-cpu ticks calling
2362 * calc_load_account_active(), but since an idle CPU folds its delta into
2363 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2364 * in the pending idle delta if our idle period crossed a load cycle boundary.
2365 *
2366 * Once we've updated the global active value, we need to apply the exponential
2367 * weights adjusted to the number of cycles missed.
2368 */
2369static void calc_global_nohz(void)
2370{
2371        long delta, active, n;
2372
2373        if (!time_before(jiffies, calc_load_update + 10)) {
2374                /*
2375                 * Catch-up, fold however many we are behind still
2376                 */
2377                delta = jiffies - calc_load_update - 10;
2378                n = 1 + (delta / LOAD_FREQ);
2379
2380                active = atomic_long_read(&calc_load_tasks);
2381                active = active > 0 ? active * FIXED_1 : 0;
2382
2383                avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2384                avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2385                avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2386
2387                calc_load_update += n * LOAD_FREQ;
2388        }
2389
2390        /*
2391         * Flip the idle index...
2392         *
2393         * Make sure we first write the new time then flip the index, so that
2394         * calc_load_write_idx() will see the new time when it reads the new
2395         * index, this avoids a double flip messing things up.
2396         */
2397        smp_wmb();
2398        calc_load_idx++;
2399}
2400#else /* !CONFIG_NO_HZ_COMMON */
2401
2402static inline long calc_load_fold_idle(void) { return 0; }
2403static inline void calc_global_nohz(void) { }
2404
2405#endif /* CONFIG_NO_HZ_COMMON */
2406
2407/*
2408 * calc_load - update the avenrun load estimates 10 ticks after the
2409 * CPUs have updated calc_load_tasks.
2410 */
2411void calc_global_load(unsigned long ticks)
2412{
2413        long active, delta;
2414
2415        if (time_before(jiffies, calc_load_update + 10))
2416                return;
2417
2418        /*
2419         * Fold the 'old' idle-delta to include all NO_HZ cpus.
2420         */
2421        delta = calc_load_fold_idle();
2422        if (delta)
2423                atomic_long_add(delta, &calc_load_tasks);
2424
2425        active = atomic_long_read(&calc_load_tasks);
2426        active = active > 0 ? active * FIXED_1 : 0;
2427
2428        avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2429        avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2430        avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2431
2432        calc_load_update += LOAD_FREQ;
2433
2434        /*
2435         * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2436         */
2437        calc_global_nohz();
2438}
2439
2440/*
2441 * Called from update_cpu_load() to periodically update this CPU's
2442 * active count.
2443 */
2444static void calc_load_account_active(struct rq *this_rq)
2445{
2446        long delta;
2447
2448        if (time_before(jiffies, this_rq->calc_load_update))
2449                return;
2450
2451        delta  = calc_load_fold_active(this_rq);
2452        if (delta)
2453                atomic_long_add(delta, &calc_load_tasks);
2454
2455        this_rq->calc_load_update += LOAD_FREQ;
2456}
2457
2458/*
2459 * End of global load-average stuff
2460 */
2461
2462/*
2463 * The exact cpuload at various idx values, calculated at every tick would be
2464 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2465 *
2466 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2467 * on nth tick when cpu may be busy, then we have:
2468 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2469 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2470 *
2471 * decay_load_missed() below does efficient calculation of
2472 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2473 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2474 *
2475 * The calculation is approximated on a 128 point scale.
2476 * degrade_zero_ticks is the number of ticks after which load at any
2477 * particular idx is approximated to be zero.
2478 * degrade_factor is a precomputed table, a row for each load idx.
2479 * Each column corresponds to degradation factor for a power of two ticks,
2480 * based on 128 point scale.
2481 * Example:
2482 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2483 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2484 *
2485 * With this power of 2 load factors, we can degrade the load n times
2486 * by looking at 1 bits in n and doing as many mult/shift instead of
2487 * n mult/shifts needed by the exact degradation.
2488 */
2489#define DEGRADE_SHIFT           7
2490static const unsigned char
2491                degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2492static const unsigned char
2493                degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2494                                        {0, 0, 0, 0, 0, 0, 0, 0},
2495                                        {64, 32, 8, 0, 0, 0, 0, 0},
2496                                        {96, 72, 40, 12, 1, 0, 0},
2497                                        {112, 98, 75, 43, 15, 1, 0},
2498                                        {120, 112, 98, 76, 45, 16, 2} };
2499
2500/*
2501 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2502 * would be when CPU is idle and so we just decay the old load without
2503 * adding any new load.
2504 */
2505static unsigned long
2506decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2507{
2508        int j = 0;
2509
2510        if (!missed_updates)
2511                return load;
2512
2513        if (missed_updates >= degrade_zero_ticks[idx])
2514                return 0;
2515
2516        if (idx == 1)
2517                return load >> missed_updates;
2518
2519        while (missed_updates) {
2520                if (missed_updates % 2)
2521                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2522
2523                missed_updates >>= 1;
2524                j++;
2525        }
2526        return load;
2527}
2528
2529/*
2530 * Update rq->cpu_load[] statistics. This function is usually called every
2531 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2532 * every tick. We fix it up based on jiffies.
2533 */
2534static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2535                              unsigned long pending_updates)
2536{
2537        int i, scale;
2538
2539        this_rq->nr_load_updates++;
2540
2541        /* Update our load: */
2542        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2543        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2544                unsigned long old_load, new_load;
2545
2546                /* scale is effectively 1 << i now, and >> i divides by scale */
2547
2548                old_load = this_rq->cpu_load[i];
2549                old_load = decay_load_missed(old_load, pending_updates - 1, i);
2550                new_load = this_load;
2551                /*
2552                 * Round up the averaging division if load is increasing. This
2553                 * prevents us from getting stuck on 9 if the load is 10, for
2554                 * example.
2555                 */
2556                if (new_load > old_load)
2557                        new_load += scale - 1;
2558
2559                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2560        }
2561
2562        sched_avg_update(this_rq);
2563}
2564
2565#ifdef CONFIG_NO_HZ_COMMON
2566/*
2567 * There is no sane way to deal with nohz on smp when using jiffies because the
2568 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2569 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2570 *
2571 * Therefore we cannot use the delta approach from the regular tick since that
2572 * would seriously skew the load calculation. However we'll make do for those
2573 * updates happening while idle (nohz_idle_balance) or coming out of idle
2574 * (tick_nohz_idle_exit).
2575 *
2576 * This means we might still be one tick off for nohz periods.
2577 */
2578
2579/*
2580 * Called from nohz_idle_balance() to update the load ratings before doing the
2581 * idle balance.
2582 */
2583void update_idle_cpu_load(struct rq *this_rq)
2584{
2585        unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2586        unsigned long load = this_rq->load.weight;
2587        unsigned long pending_updates;
2588
2589        /*
2590         * bail if there's load or we're actually up-to-date.
2591         */
2592        if (load || curr_jiffies == this_rq->last_load_update_tick)
2593                return;
2594
2595        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2596        this_rq->last_load_update_tick = curr_jiffies;
2597
2598        __update_cpu_load(this_rq, load, pending_updates);
2599}
2600
2601/*
2602 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2603 */
2604void update_cpu_load_nohz(void)
2605{
2606        struct rq *this_rq = this_rq();
2607        unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2608        unsigned long pending_updates;
2609
2610        if (curr_jiffies == this_rq->last_load_update_tick)
2611                return;
2612
2613        raw_spin_lock(&this_rq->lock);
2614        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2615        if (pending_updates) {
2616                this_rq->last_load_update_tick = curr_jiffies;
2617                /*
2618                 * We were idle, this means load 0, the current load might be
2619                 * !0 due to remote wakeups and the sort.
2620                 */
2621                __update_cpu_load(this_rq, 0, pending_updates);
2622        }
2623        raw_spin_unlock(&this_rq->lock);
2624}
2625#endif /* CONFIG_NO_HZ_COMMON */
2626
2627/*
2628 * Called from scheduler_tick()
2629 */
2630static void update_cpu_load_active(struct rq *this_rq)
2631{
2632        /*
2633         * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2634         */
2635        this_rq->last_load_update_tick = jiffies;
2636        __update_cpu_load(this_rq, this_rq->load.weight, 1);
2637
2638        calc_load_account_active(this_rq);
2639}
2640
2641#ifdef CONFIG_SMP
2642
2643/*
2644 * sched_exec - execve() is a valuable balancing opportunity, because at
2645 * this point the task has the smallest effective memory and cache footprint.
2646 */
2647void sched_exec(void)
2648{
2649        struct task_struct *p = current;
2650        unsigned long flags;
2651        int dest_cpu;
2652
2653        raw_spin_lock_irqsave(&p->pi_lock, flags);
2654        dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2655        if (dest_cpu == smp_processor_id())
2656                goto unlock;
2657
2658        if (likely(cpu_active(dest_cpu))) {
2659                struct migration_arg arg = { p, dest_cpu };
2660
2661                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2662                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2663                return;
2664        }
2665unlock:
2666        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2667}
2668
2669#endif
2670
2671DEFINE_PER_CPU(struct kernel_stat, kstat);
2672DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2673
2674EXPORT_PER_CPU_SYMBOL(kstat);
2675EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2676
2677/*
2678 * Return any ns on the sched_clock that have not yet been accounted in
2679 * @p in case that task is currently running.
2680 *
2681 * Called with task_rq_lock() held on @rq.
2682 */
2683static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2684{
2685        u64 ns = 0;
2686
2687        if (task_current(rq, p)) {
2688                update_rq_clock(rq);
2689                ns = rq->clock_task - p->se.exec_start;
2690                if ((s64)ns < 0)
2691                        ns = 0;
2692        }
2693
2694        return ns;
2695}
2696
2697unsigned long long task_delta_exec(struct task_struct *p)
2698{
2699        unsigned long flags;
2700        struct rq *rq;
2701        u64 ns = 0;
2702
2703        rq = task_rq_lock(p, &flags);
2704        ns = do_task_delta_exec(p, rq);
2705        task_rq_unlock(rq, p, &flags);
2706
2707        return ns;
2708}
2709
2710/*
2711 * Return accounted runtime for the task.
2712 * In case the task is currently running, return the runtime plus current's
2713 * pending runtime that have not been accounted yet.
2714 */
2715unsigned long long task_sched_runtime(struct task_struct *p)
2716{
2717        unsigned long flags;
2718        struct rq *rq;
2719        u64 ns = 0;
2720
2721        rq = task_rq_lock(p, &flags);
2722        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2723        task_rq_unlock(rq, p, &flags);
2724
2725        return ns;
2726}
2727
2728/*
2729 * This function gets called by the timer code, with HZ frequency.
2730 * We call it with interrupts disabled.
2731 */
2732void scheduler_tick(void)
2733{
2734        int cpu = smp_processor_id();
2735        struct rq *rq = cpu_rq(cpu);
2736        struct task_struct *curr = rq->curr;
2737
2738        sched_clock_tick();
2739
2740        raw_spin_lock(&rq->lock);
2741        update_rq_clock(rq);
2742        update_cpu_load_active(rq);
2743        curr->sched_class->task_tick(rq, curr, 0);
2744        raw_spin_unlock(&rq->lock);
2745
2746        perf_event_task_tick();
2747
2748#ifdef CONFIG_SMP
2749        rq->idle_balance = idle_cpu(cpu);
2750        trigger_load_balance(rq, cpu);
2751#endif
2752        rq_last_tick_reset(rq);
2753}
2754
2755#ifdef CONFIG_NO_HZ_FULL
2756/**
2757 * scheduler_tick_max_deferment
2758 *
2759 * Keep at least one tick per second when a single
2760 * active task is running because the scheduler doesn't
2761 * yet completely support full dynticks environment.
2762 *
2763 * This makes sure that uptime, CFS vruntime, load
2764 * balancing, etc... continue to move forward, even
2765 * with a very low granularity.
2766 */
2767u64 scheduler_tick_max_deferment(void)
2768{
2769        struct rq *rq = this_rq();
2770        unsigned long next, now = ACCESS_ONCE(jiffies);
2771
2772        next = rq->last_sched_tick + HZ;
2773
2774        if (time_before_eq(next, now))
2775                return 0;
2776
2777        return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2778}
2779#endif
2780
2781notrace unsigned long get_parent_ip(unsigned long addr)
2782{
2783        if (in_lock_functions(addr)) {
2784                addr = CALLER_ADDR2;
2785                if (in_lock_functions(addr))
2786                        addr = CALLER_ADDR3;
2787        }
2788        return addr;
2789}
2790
2791#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2792                                defined(CONFIG_PREEMPT_TRACER))
2793
2794void __kprobes add_preempt_count(int val)
2795{
2796#ifdef CONFIG_DEBUG_PREEMPT
2797        /*
2798         * Underflow?
2799         */
2800        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2801                return;
2802#endif
2803        preempt_count() += val;
2804#ifdef CONFIG_DEBUG_PREEMPT
2805        /*
2806         * Spinlock count overflowing soon?
2807         */
2808        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2809                                PREEMPT_MASK - 10);
2810#endif
2811        if (preempt_count() == val)
2812                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2813}
2814EXPORT_SYMBOL(add_preempt_count);
2815
2816void __kprobes sub_preempt_count(int val)
2817{
2818#ifdef CONFIG_DEBUG_PREEMPT
2819        /*
2820         * Underflow?
2821         */
2822        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2823                return;
2824        /*
2825         * Is the spinlock portion underflowing?
2826         */
2827        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2828                        !(preempt_count() & PREEMPT_MASK)))
2829                return;
2830#endif
2831
2832        if (preempt_count() == val)
2833                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2834        preempt_count() -= val;
2835}
2836EXPORT_SYMBOL(sub_preempt_count);
2837
2838#endif
2839
2840/*
2841 * Print scheduling while atomic bug:
2842 */
2843static noinline void __schedule_bug(struct task_struct *prev)
2844{
2845        if (oops_in_progress)
2846                return;
2847
2848        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2849                prev->comm, prev->pid, preempt_count());
2850
2851        debug_show_held_locks(prev);
2852        print_modules();
2853        if (irqs_disabled())
2854                print_irqtrace_events(prev);
2855        dump_stack();
2856        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2857}
2858
2859/*
2860 * Various schedule()-time debugging checks and statistics:
2861 */
2862static inline void schedule_debug(struct task_struct *prev)
2863{
2864        /*
2865         * Test if we are atomic. Since do_exit() needs to call into
2866         * schedule() atomically, we ignore that path for now.
2867         * Otherwise, whine if we are scheduling when we should not be.
2868         */
2869        if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2870                __schedule_bug(prev);
2871        rcu_sleep_check();
2872
2873        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2874
2875        schedstat_inc(this_rq(), sched_count);
2876}
2877
2878static void put_prev_task(struct rq *rq, struct task_struct *prev)
2879{
2880        if (prev->on_rq || rq->skip_clock_update < 0)
2881                update_rq_clock(rq);
2882        prev->sched_class->put_prev_task(rq, prev);
2883}
2884
2885/*
2886 * Pick up the highest-prio task:
2887 */
2888static inline struct task_struct *
2889pick_next_task(struct rq *rq)
2890{
2891        const struct sched_class *class;
2892        struct task_struct *p;
2893
2894        /*
2895         * Optimization: we know that if all tasks are in
2896         * the fair class we can call that function directly:
2897         */
2898        if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2899                p = fair_sched_class.pick_next_task(rq);
2900                if (likely(p))
2901                        return p;
2902        }
2903
2904        for_each_class(class) {
2905                p = class->pick_next_task(rq);
2906                if (p)
2907                        return p;
2908        }
2909
2910        BUG(); /* the idle class will always have a runnable task */
2911}
2912
2913/*
2914 * __schedule() is the main scheduler function.
2915 *
2916 * The main means of driving the scheduler and thus entering this function are:
2917 *
2918 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2919 *
2920 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2921 *      paths. For example, see arch/x86/entry_64.S.
2922 *
2923 *      To drive preemption between tasks, the scheduler sets the flag in timer
2924 *      interrupt handler scheduler_tick().
2925 *
2926 *   3. Wakeups don't really cause entry into schedule(). They add a
2927 *      task to the run-queue and that's it.
2928 *
2929 *      Now, if the new task added to the run-queue preempts the current
2930 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2931 *      called on the nearest possible occasion:
2932 *
2933 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2934 *
2935 *         - in syscall or exception context, at the next outmost
2936 *           preempt_enable(). (this might be as soon as the wake_up()'s
2937 *           spin_unlock()!)
2938 *
2939 *         - in IRQ context, return from interrupt-handler to
2940 *           preemptible context
2941 *
2942 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2943 *         then at the next:
2944 *
2945 *          - cond_resched() call
2946 *          - explicit schedule() call
2947 *          - return from syscall or exception to user-space
2948 *          - return from interrupt-handler to user-space
2949 */
2950static void __sched __schedule(void)
2951{
2952        struct task_struct *prev, *next;
2953        unsigned long *switch_count;
2954        struct rq *rq;
2955        int cpu;
2956
2957need_resched:
2958        preempt_disable();
2959        cpu = smp_processor_id();
2960        rq = cpu_rq(cpu);
2961        rcu_note_context_switch(cpu);
2962        prev = rq->curr;
2963
2964        schedule_debug(prev);
2965
2966        if (sched_feat(HRTICK))
2967                hrtick_clear(rq);
2968
2969        raw_spin_lock_irq(&rq->lock);
2970
2971        switch_count = &prev->nivcsw;
2972        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2973                if (unlikely(signal_pending_state(prev->state, prev))) {
2974                        prev->state = TASK_RUNNING;
2975                } else {
2976                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
2977                        prev->on_rq = 0;
2978
2979                        /*
2980                         * If a worker went to sleep, notify and ask workqueue
2981                         * whether it wants to wake up a task to maintain
2982                         * concurrency.
2983                         */
2984                        if (prev->flags & PF_WQ_WORKER) {
2985                                struct task_struct *to_wakeup;
2986
2987                                to_wakeup = wq_worker_sleeping(prev, cpu);
2988                                if (to_wakeup)
2989                                        try_to_wake_up_local(to_wakeup);
2990                        }
2991                }
2992                switch_count = &prev->nvcsw;
2993        }
2994
2995        pre_schedule(rq, prev);
2996
2997        if (unlikely(!rq->nr_running))
2998                idle_balance(cpu, rq);
2999
3000        put_prev_task(rq, prev);
3001        next = pick_next_task(rq);
3002        clear_tsk_need_resched(prev);
3003        rq->skip_clock_update = 0;
3004
3005        if (likely(prev != next)) {
3006                rq->nr_switches++;
3007                rq->curr = next;
3008                ++*switch_count;
3009
3010                context_switch(rq, prev, next); /* unlocks the rq */
3011                /*
3012                 * The context switch have flipped the stack from under us
3013                 * and restored the local variables which were saved when
3014                 * this task called schedule() in the past. prev == current
3015                 * is still correct, but it can be moved to another cpu/rq.
3016                 */
3017                cpu = smp_processor_id();
3018                rq = cpu_rq(cpu);
3019        } else
3020                raw_spin_unlock_irq(&rq->lock);
3021
3022        post_schedule(rq);
3023
3024        sched_preempt_enable_no_resched();
3025        if (need_resched())
3026                goto need_resched;
3027}
3028
3029static inline void sched_submit_work(struct task_struct *tsk)
3030{
3031        if (!tsk->state || tsk_is_pi_blocked(tsk))
3032                return;
3033        /*
3034         * If we are going to sleep and we have plugged IO queued,
3035         * make sure to submit it to avoid deadlocks.
3036         */
3037        if (blk_needs_flush_plug(tsk))
3038                blk_schedule_flush_plug(tsk);
3039}
3040
3041asmlinkage void __sched schedule(void)
3042{
3043        struct task_struct *tsk = current;
3044
3045        sched_submit_work(tsk);
3046        __schedule();
3047}
3048EXPORT_SYMBOL(schedule);
3049
3050#ifdef CONFIG_CONTEXT_TRACKING
3051asmlinkage void __sched schedule_user(void)
3052{
3053        /*
3054         * If we come here after a random call to set_need_resched(),
3055         * or we have been woken up remotely but the IPI has not yet arrived,
3056         * we haven't yet exited the RCU idle mode. Do it here manually until
3057         * we find a better solution.
3058         */
3059        user_exit();
3060        schedule();
3061        user_enter();
3062}
3063#endif
3064
3065/**
3066 * schedule_preempt_disabled - called with preemption disabled
3067 *
3068 * Returns with preemption disabled. Note: preempt_count must be 1
3069 */
3070void __sched schedule_preempt_disabled(void)
3071{
3072        sched_preempt_enable_no_resched();
3073        schedule();
3074        preempt_disable();
3075}
3076
3077#ifdef CONFIG_PREEMPT
3078/*
3079 * this is the entry point to schedule() from in-kernel preemption
3080 * off of preempt_enable. Kernel preemptions off return from interrupt
3081 * occur there and call schedule directly.
3082 */
3083asmlinkage void __sched notrace preempt_schedule(void)
3084{
3085        struct thread_info *ti = current_thread_info();
3086
3087        /*
3088         * If there is a non-zero preempt_count or interrupts are disabled,
3089         * we do not want to preempt the current task. Just return..
3090         */
3091        if (likely(ti->preempt_count || irqs_disabled()))
3092                return;
3093
3094        do {
3095                add_preempt_count_notrace(PREEMPT_ACTIVE);
3096                __schedule();
3097                sub_preempt_count_notrace(PREEMPT_ACTIVE);
3098
3099                /*
3100                 * Check again in case we missed a preemption opportunity
3101                 * between schedule and now.
3102                 */
3103                barrier();
3104        } while (need_resched());
3105}
3106EXPORT_SYMBOL(preempt_schedule);
3107
3108/*
3109 * this is the entry point to schedule() from kernel preemption
3110 * off of irq context.
3111 * Note, that this is called and return with irqs disabled. This will
3112 * protect us against recursive calling from irq.
3113 */
3114asmlinkage void __sched preempt_schedule_irq(void)
3115{
3116        struct thread_info *ti = current_thread_info();
3117        enum ctx_state prev_state;
3118
3119        /* Catch callers which need to be fixed */
3120        BUG_ON(ti->preempt_count || !irqs_disabled());
3121
3122        prev_state = exception_enter();
3123
3124        do {
3125                add_preempt_count(PREEMPT_ACTIVE);
3126                local_irq_enable();
3127                __schedule();
3128                local_irq_disable();
3129                sub_preempt_count(PREEMPT_ACTIVE);
3130
3131                /*
3132                 * Check again in case we missed a preemption opportunity
3133                 * between schedule and now.
3134                 */
3135                barrier();
3136        } while (need_resched());
3137
3138        exception_exit(prev_state);
3139}
3140
3141#endif /* CONFIG_PREEMPT */
3142
3143int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3144                          void *key)
3145{
3146        return try_to_wake_up(curr->private, mode, wake_flags);
3147}
3148EXPORT_SYMBOL(default_wake_function);
3149
3150/*
3151 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3152 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3153 * number) then we wake all the non-exclusive tasks and one exclusive task.
3154 *
3155 * There are circumstances in which we can try to wake a task which has already
3156 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3157 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3158 */
3159static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3160                        int nr_exclusive, int wake_flags, void *key)
3161{
3162        wait_queue_t *curr, *next;
3163
3164        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3165                unsigned flags = curr->flags;
3166
3167                if (curr->func(curr, mode, wake_flags, key) &&
3168                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3169                        break;
3170        }
3171}
3172
3173/**
3174 * __wake_up - wake up threads blocked on a waitqueue.
3175 * @q: the waitqueue
3176 * @mode: which threads
3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3178 * @key: is directly passed to the wakeup function
3179 *
3180 * It may be assumed that this function implies a write memory barrier before
3181 * changing the task state if and only if any tasks are woken up.
3182 */
3183void __wake_up(wait_queue_head_t *q, unsigned int mode,
3184                        int nr_exclusive, void *key)
3185{
3186        unsigned long flags;
3187
3188        spin_lock_irqsave(&q->lock, flags);
3189        __wake_up_common(q, mode, nr_exclusive, 0, key);
3190        spin_unlock_irqrestore(&q->lock, flags);
3191}
3192EXPORT_SYMBOL(__wake_up);
3193
3194/*
3195 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3196 */
3197void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3198{
3199        __wake_up_common(q, mode, nr, 0, NULL);
3200}
3201EXPORT_SYMBOL_GPL(__wake_up_locked);
3202
3203void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3204{
3205        __wake_up_common(q, mode, 1, 0, key);
3206}
3207EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3208
3209/**
3210 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3211 * @q: the waitqueue
3212 * @mode: which threads
3213 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3214 * @key: opaque value to be passed to wakeup targets
3215 *
3216 * The sync wakeup differs that the waker knows that it will schedule
3217 * away soon, so while the target thread will be woken up, it will not
3218 * be migrated to another CPU - ie. the two threads are 'synchronized'
3219 * with each other. This can prevent needless bouncing between CPUs.
3220 *
3221 * On UP it can prevent extra preemption.
3222 *
3223 * It may be assumed that this function implies a write memory barrier before
3224 * changing the task state if and only if any tasks are woken up.
3225 */
3226void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3227                        int nr_exclusive, void *key)
3228{
3229        unsigned long flags;
3230        int wake_flags = WF_SYNC;
3231
3232        if (unlikely(!q))
3233                return;
3234
3235        if (unlikely(!nr_exclusive))
3236                wake_flags = 0;
3237
3238        spin_lock_irqsave(&q->lock, flags);
3239        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3240        spin_unlock_irqrestore(&q->lock, flags);
3241}
3242EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3243
3244/*
3245 * __wake_up_sync - see __wake_up_sync_key()
3246 */
3247void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3248{
3249        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3250}
3251EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3252
3253/**
3254 * complete: - signals a single thread waiting on this completion
3255 * @x:  holds the state of this particular completion
3256 *
3257 * This will wake up a single thread waiting on this completion. Threads will be
3258 * awakened in the same order in which they were queued.
3259 *
3260 * See also complete_all(), wait_for_completion() and related routines.
3261 *
3262 * It may be assumed that this function implies a write memory barrier before
3263 * changing the task state if and only if any tasks are woken up.
3264 */
3265void complete(struct completion *x)
3266{
3267        unsigned long flags;
3268
3269        spin_lock_irqsave(&x->wait.lock, flags);
3270        x->done++;
3271        __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3272        spin_unlock_irqrestore(&x->wait.lock, flags);
3273}
3274EXPORT_SYMBOL(complete);
3275
3276/**
3277 * complete_all: - signals all threads waiting on this completion
3278 * @x:  holds the state of this particular completion
3279 *
3280 * This will wake up all threads waiting on this particular completion event.
3281 *
3282 * It may be assumed that this function implies a write memory barrier before
3283 * changing the task state if and only if any tasks are woken up.
3284 */
3285void complete_all(struct completion *x)
3286{
3287        unsigned long flags;
3288
3289        spin_lock_irqsave(&x->wait.lock, flags);
3290        x->done += UINT_MAX/2;
3291        __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3292        spin_unlock_irqrestore(&x->wait.lock, flags);
3293}
3294EXPORT_SYMBOL(complete_all);
3295
3296static inline long __sched
3297do_wait_for_common(struct completion *x,
3298                   long (*action)(long), long timeout, int state)
3299{
3300        if (!x->done) {
3301                DECLARE_WAITQUEUE(wait, current);
3302
3303                __add_wait_queue_tail_exclusive(&x->wait, &wait);
3304                do {
3305                        if (signal_pending_state(state, current)) {
3306                                timeout = -ERESTARTSYS;
3307                                break;
3308                        }
3309                        __set_current_state(state);
3310                        spin_unlock_irq(&x->wait.lock);
3311                        timeout = action(timeout);
3312                        spin_lock_irq(&x->wait.lock);
3313                } while (!x->done && timeout);
3314                __remove_wait_queue(&x->wait, &wait);
3315                if (!x->done)
3316                        return timeout;
3317        }
3318        x->done--;
3319        return timeout ?: 1;
3320}
3321
3322static inline long __sched
3323__wait_for_common(struct completion *x,
3324                  long (*action)(long), long timeout, int state)
3325{
3326        might_sleep();
3327
3328        spin_lock_irq(&x->wait.lock);
3329        timeout = do_wait_for_common(x, action, timeout, state);
3330        spin_unlock_irq(&x->wait.lock);
3331        return timeout;
3332}
3333
3334static long __sched
3335wait_for_common(struct completion *x, long timeout, int state)
3336{
3337        return __wait_for_common(x, schedule_timeout, timeout, state);
3338}
3339
3340static long __sched
3341wait_for_common_io(struct completion *x, long timeout, int state)
3342{
3343        return __wait_for_common(x, io_schedule_timeout, timeout, state);
3344}
3345
3346/**
3347 * wait_for_completion: - waits for completion of a task
3348 * @x:  holds the state of this particular completion
3349 *
3350 * This waits to be signaled for completion of a specific task. It is NOT
3351 * interruptible and there is no timeout.
3352 *
3353 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3354 * and interrupt capability. Also see complete().
3355 */
3356void __sched wait_for_completion(struct completion *x)
3357{
3358        wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3359}
3360EXPORT_SYMBOL(wait_for_completion);
3361
3362/**
3363 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3364 * @x:  holds the state of this particular completion
3365 * @timeout:  timeout value in jiffies
3366 *
3367 * This waits for either a completion of a specific task to be signaled or for a
3368 * specified timeout to expire. The timeout is in jiffies. It is not
3369 * interruptible.
3370 *
3371 * The return value is 0 if timed out, and positive (at least 1, or number of
3372 * jiffies left till timeout) if completed.
3373 */
3374unsigned long __sched
3375wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3376{
3377        return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3378}
3379EXPORT_SYMBOL(wait_for_completion_timeout);
3380
3381/**
3382 * wait_for_completion_io: - waits for completion of a task
3383 * @x:  holds the state of this particular completion
3384 *
3385 * This waits to be signaled for completion of a specific task. It is NOT
3386 * interruptible and there is no timeout. The caller is accounted as waiting
3387 * for IO.
3388 */
3389void __sched wait_for_completion_io(struct completion *x)
3390{
3391        wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3392}
3393EXPORT_SYMBOL(wait_for_completion_io);
3394
3395/**
3396 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3397 * @x:  holds the state of this particular completion
3398 * @timeout:  timeout value in jiffies
3399 *
3400 * This waits for either a completion of a specific task to be signaled or for a
3401 * specified timeout to expire. The timeout is in jiffies. It is not
3402 * interruptible. The caller is accounted as waiting for IO.
3403 *
3404 * The return value is 0 if timed out, and positive (at least 1, or number of
3405 * jiffies left till timeout) if completed.
3406 */
3407unsigned long __sched
3408wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3409{
3410        return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3411}
3412EXPORT_SYMBOL(wait_for_completion_io_timeout);
3413
3414/**
3415 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3416 * @x:  holds the state of this particular completion
3417 *
3418 * This waits for completion of a specific task to be signaled. It is
3419 * interruptible.
3420 *
3421 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3422 */
3423int __sched wait_for_completion_interruptible(struct completion *x)
3424{
3425        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3426        if (t == -ERESTARTSYS)
3427                return t;
3428        return 0;
3429}
3430EXPORT_SYMBOL(wait_for_completion_interruptible);
3431
3432/**
3433 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3434 * @x:  holds the state of this particular completion
3435 * @timeout:  timeout value in jiffies
3436 *
3437 * This waits for either a completion of a specific task to be signaled or for a
3438 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3439 *
3440 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3441 * positive (at least 1, or number of jiffies left till timeout) if completed.
3442 */
3443long __sched
3444wait_for_completion_interruptible_timeout(struct completion *x,
3445                                          unsigned long timeout)
3446{
3447        return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3448}
3449EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3450
3451/**
3452 * wait_for_completion_killable: - waits for completion of a task (killable)
3453 * @x:  holds the state of this particular completion
3454 *
3455 * This waits to be signaled for completion of a specific task. It can be
3456 * interrupted by a kill signal.
3457 *
3458 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3459 */
3460int __sched wait_for_completion_killable(struct completion *x)
3461{
3462        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3463        if (t == -ERESTARTSYS)
3464                return t;
3465        return 0;
3466}
3467EXPORT_SYMBOL(wait_for_completion_killable);
3468
3469/**
3470 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3471 * @x:  holds the state of this particular completion
3472 * @timeout:  timeout value in jiffies
3473 *
3474 * This waits for either a completion of a specific task to be
3475 * signaled or for a specified timeout to expire. It can be
3476 * interrupted by a kill signal. The timeout is in jiffies.
3477 *
3478 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3479 * positive (at least 1, or number of jiffies left till timeout) if completed.
3480 */
3481long __sched
3482wait_for_completion_killable_timeout(struct completion *x,
3483                                     unsigned long timeout)
3484{
3485        return wait_for_common(x, timeout, TASK_KILLABLE);
3486}
3487EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3488
3489/**
3490 *      try_wait_for_completion - try to decrement a completion without blocking
3491 *      @x:     completion structure
3492 *
3493 *      Returns: 0 if a decrement cannot be done without blocking
3494 *               1 if a decrement succeeded.
3495 *
3496 *      If a completion is being used as a counting completion,
3497 *      attempt to decrement the counter without blocking. This
3498 *      enables us to avoid waiting if the resource the completion
3499 *      is protecting is not available.
3500 */
3501bool try_wait_for_completion(struct completion *x)
3502{
3503        unsigned long flags;
3504        int ret = 1;
3505
3506        spin_lock_irqsave(&x->wait.lock, flags);
3507        if (!x->done)
3508                ret = 0;
3509        else
3510                x->done--;
3511        spin_unlock_irqrestore(&x->wait.lock, flags);
3512        return ret;
3513}
3514EXPORT_SYMBOL(try_wait_for_completion);
3515
3516/**
3517 *      completion_done - Test to see if a completion has any waiters
3518 *      @x:     completion structure
3519 *
3520 *      Returns: 0 if there are waiters (wait_for_completion() in progress)
3521 *               1 if there are no waiters.
3522 *
3523 */
3524bool completion_done(struct completion *x)
3525{
3526        unsigned long flags;
3527        int ret = 1;
3528
3529        spin_lock_irqsave(&x->wait.lock, flags);
3530        if (!x->done)
3531                ret = 0;
3532        spin_unlock_irqrestore(&x->wait.lock, flags);
3533        return ret;
3534}
3535EXPORT_SYMBOL(completion_done);
3536
3537static long __sched
3538sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3539{
3540        unsigned long flags;
3541        wait_queue_t wait;
3542
3543        init_waitqueue_entry(&wait, current);
3544
3545        __set_current_state(state);
3546
3547        spin_lock_irqsave(&q->lock, flags);
3548        __add_wait_queue(q, &wait);
3549        spin_unlock(&q->lock);
3550        timeout = schedule_timeout(timeout);
3551        spin_lock_irq(&q->lock);
3552        __remove_wait_queue(q, &wait);
3553        spin_unlock_irqrestore(&q->lock, flags);
3554
3555        return timeout;
3556}
3557
3558void __sched interruptible_sleep_on(wait_queue_head_t *q)
3559{
3560        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3561}
3562EXPORT_SYMBOL(interruptible_sleep_on);
3563
3564long __sched
3565interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3566{
3567        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3568}
3569EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3570
3571void __sched sleep_on(wait_queue_head_t *q)
3572{
3573        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3574}
3575EXPORT_SYMBOL(sleep_on);
3576
3577long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3578{
3579        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3580}
3581EXPORT_SYMBOL(sleep_on_timeout);
3582
3583#ifdef CONFIG_RT_MUTEXES
3584
3585/*
3586 * rt_mutex_setprio - set the current priority of a task
3587 * @p: task
3588 * @prio: prio value (kernel-internal form)
3589 *
3590 * This function changes the 'effective' priority of a task. It does
3591 * not touch ->normal_prio like __setscheduler().
3592 *
3593 * Used by the rt_mutex code to implement priority inheritance logic.
3594 */
3595void rt_mutex_setprio(struct task_struct *p, int prio)
3596{
3597        int oldprio, on_rq, running;
3598        struct rq *rq;
3599        const struct sched_class *prev_class;
3600
3601        BUG_ON(prio < 0 || prio > MAX_PRIO);
3602
3603        rq = __task_rq_lock(p);
3604
3605        /*
3606         * Idle task boosting is a nono in general. There is one
3607         * exception, when PREEMPT_RT and NOHZ is active:
3608         *
3609         * The idle task calls get_next_timer_interrupt() and holds
3610         * the timer wheel base->lock on the CPU and another CPU wants
3611         * to access the timer (probably to cancel it). We can safely
3612         * ignore the boosting request, as the idle CPU runs this code
3613         * with interrupts disabled and will complete the lock
3614         * protected section without being interrupted. So there is no
3615         * real need to boost.
3616         */
3617        if (unlikely(p == rq->idle)) {
3618                WARN_ON(p != rq->curr);
3619                WARN_ON(p->pi_blocked_on);
3620                goto out_unlock;
3621        }
3622
3623        trace_sched_pi_setprio(p, prio);
3624        oldprio = p->prio;
3625        prev_class = p->sched_class;
3626        on_rq = p->on_rq;
3627        running = task_current(rq, p);
3628        if (on_rq)
3629                dequeue_task(rq, p, 0);
3630        if (running)
3631                p->sched_class->put_prev_task(rq, p);
3632
3633        if (rt_prio(prio))
3634                p->sched_class = &rt_sched_class;
3635        else
3636                p->sched_class = &fair_sched_class;
3637
3638        p->prio = prio;
3639
3640        if (running)
3641                p->sched_class->set_curr_task(rq);
3642        if (on_rq)
3643                enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3644
3645        check_class_changed(rq, p, prev_class, oldprio);
3646out_unlock:
3647        __task_rq_unlock(rq);
3648}
3649#endif
3650void set_user_nice(struct task_struct *p, long nice)
3651{
3652        int old_prio, delta, on_rq;
3653        unsigned long flags;
3654        struct rq *rq;
3655
3656        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3657                return;
3658        /*
3659         * We have to be careful, if called from sys_setpriority(),
3660         * the task might be in the middle of scheduling on another CPU.
3661         */
3662        rq = task_rq_lock(p, &flags);
3663        /*
3664         * The RT priorities are set via sched_setscheduler(), but we still
3665         * allow the 'normal' nice value to be set - but as expected
3666         * it wont have any effect on scheduling until the task is
3667         * SCHED_FIFO/SCHED_RR:
3668         */
3669        if (task_has_rt_policy(p)) {
3670                p->static_prio = NICE_TO_PRIO(nice);
3671                goto out_unlock;
3672        }
3673        on_rq = p->on_rq;
3674        if (on_rq)
3675                dequeue_task(rq, p, 0);
3676
3677        p->static_prio = NICE_TO_PRIO(nice);
3678        set_load_weight(p);
3679        old_prio = p->prio;
3680        p->prio = effective_prio(p);
3681        delta = p->prio - old_prio;
3682
3683        if (on_rq) {
3684                enqueue_task(rq, p, 0);
3685                /*
3686                 * If the task increased its priority or is running and
3687                 * lowered its priority, then reschedule its CPU:
3688                 */
3689                if (delta < 0 || (delta > 0 && task_running(rq, p)))
3690                        resched_task(rq->curr);
3691        }
3692out_unlock:
3693        task_rq_unlock(rq, p, &flags);
3694}
3695EXPORT_SYMBOL(set_user_nice);
3696
3697/*
3698 * can_nice - check if a task can reduce its nice value
3699 * @p: task
3700 * @nice: nice value
3701 */
3702int can_nice(const struct task_struct *p, const int nice)
3703{
3704        /* convert nice value [19,-20] to rlimit style value [1,40] */
3705        int nice_rlim = 20 - nice;
3706
3707        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3708                capable(CAP_SYS_NICE));
3709}
3710
3711#ifdef __ARCH_WANT_SYS_NICE
3712
3713/*
3714 * sys_nice - change the priority of the current process.
3715 * @increment: priority increment
3716 *
3717 * sys_setpriority is a more generic, but much slower function that
3718 * does similar things.
3719 */
3720SYSCALL_DEFINE1(nice, int, increment)
3721{
3722        long nice, retval;
3723
3724        /*
3725         * Setpriority might change our priority at the same moment.
3726         * We don't have to worry. Conceptually one call occurs first
3727         * and we have a single winner.
3728         */
3729        if (increment < -40)
3730                increment = -40;
3731        if (increment > 40)
3732                increment = 40;
3733
3734        nice = TASK_NICE(current) + increment;
3735        if (nice < -20)
3736                nice = -20;
3737        if (nice > 19)
3738                nice = 19;
3739
3740        if (increment < 0 && !can_nice(current, nice))
3741                return -EPERM;
3742
3743        retval = security_task_setnice(current, nice);
3744        if (retval)
3745                return retval;
3746
3747        set_user_nice(current, nice);
3748        return 0;
3749}
3750
3751#endif
3752
3753/**
3754 * task_prio - return the priority value of a given task.
3755 * @p: the task in question.
3756 *
3757 * This is the priority value as seen by users in /proc.
3758 * RT tasks are offset by -200. Normal tasks are centered
3759 * around 0, value goes from -16 to +15.
3760 */
3761int task_prio(const struct task_struct *p)
3762{
3763        return p->prio - MAX_RT_PRIO;
3764}
3765
3766/**
3767 * task_nice - return the nice value of a given task.
3768 * @p: the task in question.
3769 */
3770int task_nice(const struct task_struct *p)
3771{
3772        return TASK_NICE(p);
3773}
3774EXPORT_SYMBOL(task_nice);
3775
3776/**
3777 * idle_cpu - is a given cpu idle currently?
3778 * @cpu: the processor in question.
3779 */
3780int idle_cpu(int cpu)
3781{
3782        struct rq *rq = cpu_rq(cpu);
3783
3784        if (rq->curr != rq->idle)
3785                return 0;
3786
3787        if (rq->nr_running)
3788                return 0;
3789
3790#ifdef CONFIG_SMP
3791        if (!llist_empty(&rq->wake_list))
3792                return 0;
3793#endif
3794
3795        return 1;
3796}
3797
3798/**
3799 * idle_task - return the idle task for a given cpu.
3800 * @cpu: the processor in question.
3801 */
3802struct task_struct *idle_task(int cpu)
3803{
3804        return cpu_rq(cpu)->idle;
3805}
3806
3807/**
3808 * find_process_by_pid - find a process with a matching PID value.
3809 * @pid: the pid in question.
3810 */
3811static struct task_struct *find_process_by_pid(pid_t pid)
3812{
3813        return pid ? find_task_by_vpid(pid) : current;
3814}
3815
3816/* Actually do priority change: must hold rq lock. */
3817static void
3818__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3819{
3820        p->policy = policy;
3821        p->rt_priority = prio;
3822        p->normal_prio = normal_prio(p);
3823        /* we are holding p->pi_lock already */
3824        p->prio = rt_mutex_getprio(p);
3825        if (rt_prio(p->prio))
3826                p->sched_class = &rt_sched_class;
3827        else
3828                p->sched_class = &fair_sched_class;
3829        set_load_weight(p);
3830}
3831
3832/*
3833 * check the target process has a UID that matches the current process's
3834 */
3835static bool check_same_owner(struct task_struct *p)
3836{
3837        const struct cred *cred = current_cred(), *pcred;
3838        bool match;
3839
3840        rcu_read_lock();
3841        pcred = __task_cred(p);
3842        match = (uid_eq(cred->euid, pcred->euid) ||
3843                 uid_eq(cred->euid, pcred->uid));
3844        rcu_read_unlock();
3845        return match;
3846}
3847
3848static int __sched_setscheduler(struct task_struct *p, int policy,
3849                                const struct sched_param *param, bool user)
3850{
3851        int retval, oldprio, oldpolicy = -1, on_rq, running;
3852        unsigned long flags;
3853        const struct sched_class *prev_class;
3854        struct rq *rq;
3855        int reset_on_fork;
3856
3857        /* may grab non-irq protected spin_locks */
3858        BUG_ON(in_interrupt());
3859recheck:
3860        /* double check policy once rq lock held */
3861        if (policy < 0) {
3862                reset_on_fork = p->sched_reset_on_fork;
3863                policy = oldpolicy = p->policy;
3864        } else {
3865                reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3866                policy &= ~SCHED_RESET_ON_FORK;
3867
3868                if (policy != SCHED_FIFO && policy != SCHED_RR &&
3869                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3870                                policy != SCHED_IDLE)
3871                        return -EINVAL;
3872        }
3873
3874        /*
3875         * Valid priorities for SCHED_FIFO and SCHED_RR are
3876         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3877         * SCHED_BATCH and SCHED_IDLE is 0.
3878         */
3879        if (param->sched_priority < 0 ||
3880            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3881            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3882                return -EINVAL;
3883        if (rt_policy(policy) != (param->sched_priority != 0))
3884                return -EINVAL;
3885
3886        /*
3887         * Allow unprivileged RT tasks to decrease priority:
3888         */
3889        if (user && !capable(CAP_SYS_NICE)) {
3890                if (rt_policy(policy)) {
3891                        unsigned long rlim_rtprio =
3892                                        task_rlimit(p, RLIMIT_RTPRIO);
3893
3894                        /* can't set/change the rt policy */
3895                        if (policy != p->policy && !rlim_rtprio)
3896                                return -EPERM;
3897
3898                        /* can't increase priority */
3899                        if (param->sched_priority > p->rt_priority &&
3900                            param->sched_priority > rlim_rtprio)
3901                                return -EPERM;
3902                }
3903
3904                /*
3905                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3906                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3907                 */
3908                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3909                        if (!can_nice(p, TASK_NICE(p)))
3910                                return -EPERM;
3911                }
3912
3913                /* can't change other user's priorities */
3914                if (!check_same_owner(p))
3915                        return -EPERM;
3916
3917                /* Normal users shall not reset the sched_reset_on_fork flag */
3918                if (p->sched_reset_on_fork && !reset_on_fork)
3919                        return -EPERM;
3920        }
3921
3922        if (user) {
3923                retval = security_task_setscheduler(p);
3924                if (retval)
3925                        return retval;
3926        }
3927
3928        /*
3929         * make sure no PI-waiters arrive (or leave) while we are
3930         * changing the priority of the task:
3931         *
3932         * To be able to change p->policy safely, the appropriate
3933         * runqueue lock must be held.
3934         */
3935        rq = task_rq_lock(p, &flags);
3936
3937        /*
3938         * Changing the policy of the stop threads its a very bad idea
3939         */
3940        if (p == rq->stop) {
3941                task_rq_unlock(rq, p, &flags);
3942                return -EINVAL;
3943        }
3944
3945        /*
3946         * If not changing anything there's no need to proceed further:
3947         */
3948        if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3949                        param->sched_priority == p->rt_priority))) {
3950                task_rq_unlock(rq, p, &flags);
3951                return 0;
3952        }
3953
3954#ifdef CONFIG_RT_GROUP_SCHED
3955        if (user) {
3956                /*
3957                 * Do not allow realtime tasks into groups that have no runtime
3958                 * assigned.
3959                 */
3960                if (rt_bandwidth_enabled() && rt_policy(policy) &&
3961                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3962                                !task_group_is_autogroup(task_group(p))) {
3963                        task_rq_unlock(rq, p, &flags);
3964                        return -EPERM;
3965                }
3966        }
3967#endif
3968
3969        /* recheck policy now with rq lock held */
3970        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3971                policy = oldpolicy = -1;
3972                task_rq_unlock(rq, p, &flags);
3973                goto recheck;
3974        }
3975        on_rq = p->on_rq;
3976        running = task_current(rq, p);
3977        if (on_rq)
3978                dequeue_task(rq, p, 0);
3979        if (running)
3980                p->sched_class->put_prev_task(rq, p);
3981
3982        p->sched_reset_on_fork = reset_on_fork;
3983
3984        oldprio = p->prio;
3985        prev_class = p->sched_class;
3986        __setscheduler(rq, p, policy, param->sched_priority);
3987
3988        if (running)
3989                p->sched_class->set_curr_task(rq);
3990        if (on_rq)
3991                enqueue_task(rq, p, 0);
3992
3993        check_class_changed(rq, p, prev_class, oldprio);
3994        task_rq_unlock(rq, p, &flags);
3995
3996        rt_mutex_adjust_pi(p);
3997
3998        return 0;
3999}
4000
4001/**
4002 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4003 * @p: the task in question.
4004 * @policy: new policy.
4005 * @param: structure containing the new RT priority.
4006 *
4007 * NOTE that the task may be already dead.
4008 */
4009int sched_setscheduler(struct task_struct *p, int policy,
4010                       const struct sched_param *param)
4011{
4012        return __sched_setscheduler(p, policy, param, true);
4013}
4014EXPORT_SYMBOL_GPL(sched_setscheduler);
4015
4016/**
4017 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4018 * @p: the task in question.
4019 * @policy: new policy.
4020 * @param: structure containing the new RT priority.
4021 *
4022 * Just like sched_setscheduler, only don't bother checking if the
4023 * current context has permission.  For example, this is needed in
4024 * stop_machine(): we create temporary high priority worker threads,
4025 * but our caller might not have that capability.
4026 */
4027int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4028                               const struct sched_param *param)
4029{
4030        return __sched_setscheduler(p, policy, param, false);
4031}
4032
4033static int
4034do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4035{
4036        struct sched_param lparam;
4037        struct task_struct *p;
4038        int retval;
4039
4040        if (!param || pid < 0)
4041                return -EINVAL;
4042        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4043                return -EFAULT;
4044
4045        rcu_read_lock();
4046        retval = -ESRCH;
4047        p = find_process_by_pid(pid);
4048        if (p != NULL)
4049                retval = sched_setscheduler(p, policy, &lparam);
4050        rcu_read_unlock();
4051
4052        return retval;
4053}
4054
4055/**
4056 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4057 * @pid: the pid in question.
4058 * @policy: new policy.
4059 * @param: structure containing the new RT priority.
4060 */
4061SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4062                struct sched_param __user *, param)
4063{
4064        /* negative values for policy are not valid */
4065        if (policy < 0)
4066                return -EINVAL;
4067
4068        return do_sched_setscheduler(pid, policy, param);
4069}
4070
4071/**
4072 * sys_sched_setparam - set/change the RT priority of a thread
4073 * @pid: the pid in question.
4074 * @param: structure containing the new RT priority.
4075 */
4076SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4077{
4078        return do_sched_setscheduler(pid, -1, param);
4079}
4080
4081/**
4082 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4083 * @pid: the pid in question.
4084 */
4085SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4086{
4087        struct task_struct *p;
4088        int retval;
4089
4090        if (pid < 0)
4091                return -EINVAL;
4092
4093        retval = -ESRCH;
4094        rcu_read_lock();
4095        p = find_process_by_pid(pid);
4096        if (p) {
4097                retval = security_task_getscheduler(p);
4098                if (!retval)
4099                        retval = p->policy
4100                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4101        }
4102        rcu_read_unlock();
4103        return retval;
4104}
4105
4106/**
4107 * sys_sched_getparam - get the RT priority of a thread
4108 * @pid: the pid in question.
4109 * @param: structure containing the RT priority.
4110 */
4111SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4112{
4113        struct sched_param lp;
4114        struct task_struct *p;
4115        int retval;
4116
4117        if (!param || pid < 0)
4118                return -EINVAL;
4119
4120        rcu_read_lock();
4121        p = find_process_by_pid(pid);
4122        retval = -ESRCH;
4123        if (!p)
4124                goto out_unlock;
4125
4126        retval = security_task_getscheduler(p);
4127        if (retval)
4128                goto out_unlock;
4129
4130        lp.sched_priority = p->rt_priority;
4131        rcu_read_unlock();
4132
4133        /*
4134         * This one might sleep, we cannot do it with a spinlock held ...
4135         */
4136        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4137
4138        return retval;
4139
4140out_unlock:
4141        rcu_read_unlock();
4142        return retval;
4143}
4144
4145long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4146{
4147        cpumask_var_t cpus_allowed, new_mask;
4148        struct task_struct *p;
4149        int retval;
4150
4151        get_online_cpus();
4152        rcu_read_lock();
4153
4154        p = find_process_by_pid(pid);
4155        if (!p) {
4156                rcu_read_unlock();
4157                put_online_cpus();
4158                return -ESRCH;
4159        }
4160
4161        /* Prevent p going away */
4162        get_task_struct(p);
4163        rcu_read_unlock();
4164
4165        if (p->flags & PF_NO_SETAFFINITY) {
4166                retval = -EINVAL;
4167                goto out_put_task;
4168        }
4169        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4170                retval = -ENOMEM;
4171                goto out_put_task;
4172        }
4173        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4174                retval = -ENOMEM;
4175                goto out_free_cpus_allowed;
4176        }
4177        retval = -EPERM;
4178        if (!check_same_owner(p)) {
4179                rcu_read_lock();
4180                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4181                        rcu_read_unlock();
4182                        goto out_unlock;
4183                }
4184                rcu_read_unlock();
4185        }
4186
4187        retval = security_task_setscheduler(p);
4188        if (retval)
4189                goto out_unlock;
4190
4191        cpuset_cpus_allowed(p, cpus_allowed);
4192        cpumask_and(new_mask, in_mask, cpus_allowed);
4193again:
4194        retval = set_cpus_allowed_ptr(p, new_mask);
4195
4196        if (!retval) {
4197                cpuset_cpus_allowed(p, cpus_allowed);
4198                if (!cpumask_subset(new_mask, cpus_allowed)) {
4199                        /*
4200                         * We must have raced with a concurrent cpuset
4201                         * update. Just reset the cpus_allowed to the
4202                         * cpuset's cpus_allowed
4203                         */
4204                        cpumask_copy(new_mask, cpus_allowed);
4205                        goto again;
4206                }
4207        }
4208out_unlock:
4209        free_cpumask_var(new_mask);
4210out_free_cpus_allowed:
4211        free_cpumask_var(cpus_allowed);
4212out_put_task:
4213        put_task_struct(p);
4214        put_online_cpus();
4215        return retval;
4216}
4217
4218static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4219                             struct cpumask *new_mask)
4220{
4221        if (len < cpumask_size())
4222                cpumask_clear(new_mask);
4223        else if (len > cpumask_size())
4224                len = cpumask_size();
4225
4226        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4227}
4228
4229/**
4230 * sys_sched_setaffinity - set the cpu affinity of a process
4231 * @pid: pid of the process
4232 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4233 * @user_mask_ptr: user-space pointer to the new cpu mask
4234 */
4235SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4236                unsigned long __user *, user_mask_ptr)
4237{
4238        cpumask_var_t new_mask;
4239        int retval;
4240
4241        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4242                return -ENOMEM;
4243
4244        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4245        if (retval == 0)
4246                retval = sched_setaffinity(pid, new_mask);
4247        free_cpumask_var(new_mask);
4248        return retval;
4249}
4250
4251long sched_getaffinity(pid_t pid, struct cpumask *mask)
4252{
4253        struct task_struct *p;
4254        unsigned long flags;
4255        int retval;
4256
4257        get_online_cpus();
4258        rcu_read_lock();
4259
4260        retval = -ESRCH;
4261        p = find_process_by_pid(pid);
4262        if (!p)
4263                goto out_unlock;
4264
4265        retval = security_task_getscheduler(p);
4266        if (retval)
4267                goto out_unlock;
4268
4269        raw_spin_lock_irqsave(&p->pi_lock, flags);
4270        cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4271        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4272
4273out_unlock:
4274        rcu_read_unlock();
4275        put_online_cpus();
4276
4277        return retval;
4278}
4279
4280/**
4281 * sys_sched_getaffinity - get the cpu affinity of a process
4282 * @pid: pid of the process
4283 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4284 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4285 */
4286SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4287                unsigned long __user *, user_mask_ptr)
4288{
4289        int ret;
4290        cpumask_var_t mask;
4291
4292        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4293                return -EINVAL;
4294        if (len & (sizeof(unsigned long)-1))
4295                return -EINVAL;
4296
4297        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4298                return -ENOMEM;
4299
4300        ret = sched_getaffinity(pid, mask);
4301        if (ret == 0) {
4302                size_t retlen = min_t(size_t, len, cpumask_size());
4303
4304                if (copy_to_user(user_mask_ptr, mask, retlen))
4305                        ret = -EFAULT;
4306                else
4307                        ret = retlen;
4308        }
4309        free_cpumask_var(mask);
4310
4311        return ret;
4312}
4313
4314/**
4315 * sys_sched_yield - yield the current processor to other threads.
4316 *
4317 * This function yields the current CPU to other tasks. If there are no
4318 * other threads running on this CPU then this function will return.
4319 */
4320SYSCALL_DEFINE0(sched_yield)
4321{
4322        struct rq *rq = this_rq_lock();
4323
4324        schedstat_inc(rq, yld_count);
4325        current->sched_class->yield_task(rq);
4326
4327        /*
4328         * Since we are going to call schedule() anyway, there's
4329         * no need to preempt or enable interrupts:
4330         */
4331        __release(rq->lock);
4332        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4333        do_raw_spin_unlock(&rq->lock);
4334        sched_preempt_enable_no_resched();
4335
4336        schedule();
4337
4338        return 0;
4339}
4340
4341static inline int should_resched(void)
4342{
4343        return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4344}
4345
4346static void __cond_resched(void)
4347{
4348        add_preempt_count(PREEMPT_ACTIVE);
4349        __schedule();
4350        sub_preempt_count(PREEMPT_ACTIVE);
4351}
4352
4353int __sched _cond_resched(void)
4354{
4355        if (should_resched()) {
4356                __cond_resched();
4357                return 1;
4358        }
4359        return 0;
4360}
4361EXPORT_SYMBOL(_cond_resched);
4362
4363/*
4364 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4365 * call schedule, and on return reacquire the lock.
4366 *
4367 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4368 * operations here to prevent schedule() from being called twice (once via
4369 * spin_unlock(), once by hand).
4370 */
4371int __cond_resched_lock(spinlock_t *lock)
4372{
4373        int resched = should_resched();
4374        int ret = 0;
4375
4376        lockdep_assert_held(lock);
4377
4378        if (spin_needbreak(lock) || resched) {
4379                spin_unlock(lock);
4380                if (resched)
4381                        __cond_resched();
4382                else
4383                        cpu_relax();
4384                ret = 1;
4385                spin_lock(lock);
4386        }
4387        return ret;
4388}
4389EXPORT_SYMBOL(__cond_resched_lock);
4390
4391int __sched __cond_resched_softirq(void)
4392{
4393        BUG_ON(!in_softirq());
4394
4395        if (should_resched()) {
4396                local_bh_enable();
4397                __cond_resched();
4398                local_bh_disable();
4399                return 1;
4400        }
4401        return 0;
4402}
4403EXPORT_SYMBOL(__cond_resched_softirq);
4404
4405/**
4406 * yield - yield the current processor to other threads.
4407 *
4408 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4409 *
4410 * The scheduler is at all times free to pick the calling task as the most
4411 * eligible task to run, if removing the yield() call from your code breaks
4412 * it, its already broken.
4413 *
4414 * Typical broken usage is:
4415 *
4416 * while (!event)
4417 *      yield();
4418 *
4419 * where one assumes that yield() will let 'the other' process run that will
4420 * make event true. If the current task is a SCHED_FIFO task that will never
4421 * happen. Never use yield() as a progress guarantee!!
4422 *
4423 * If you want to use yield() to wait for something, use wait_event().
4424 * If you want to use yield() to be 'nice' for others, use cond_resched().
4425 * If you still want to use yield(), do not!
4426 */
4427void __sched yield(void)
4428{
4429        set_current_state(TASK_RUNNING);
4430        sys_sched_yield();
4431}
4432EXPORT_SYMBOL(yield);
4433
4434/**
4435 * yield_to - yield the current processor to another thread in
4436 * your thread group, or accelerate that thread toward the
4437 * processor it's on.
4438 * @p: target task
4439 * @preempt: whether task preemption is allowed or not
4440 *
4441 * It's the caller's job to ensure that the target task struct
4442 * can't go away on us before we can do any checks.
4443 *
4444 * Returns:
4445 *      true (>0) if we indeed boosted the target task.
4446 *      false (0) if we failed to boost the target.
4447 *      -ESRCH if there's no task to yield to.
4448 */
4449bool __sched yield_to(struct task_struct *p, bool preempt)
4450{
4451        struct task_struct *curr = current;
4452        struct rq *rq, *p_rq;
4453        unsigned long flags;
4454        int yielded = 0;
4455
4456        local_irq_save(flags);
4457        rq = this_rq();
4458
4459again:
4460        p_rq = task_rq(p);
4461        /*
4462         * If we're the only runnable task on the rq and target rq also
4463         * has only one task, there's absolutely no point in yielding.
4464         */
4465        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4466                yielded = -ESRCH;
4467                goto out_irq;
4468        }
4469
4470        double_rq_lock(rq, p_rq);
4471        while (task_rq(p) != p_rq) {
4472                double_rq_unlock(rq, p_rq);
4473                goto again;
4474        }
4475
4476        if (!curr->sched_class->yield_to_task)
4477                goto out_unlock;
4478
4479        if (curr->sched_class != p->sched_class)
4480                goto out_unlock;
4481
4482        if (task_running(p_rq, p) || p->state)
4483                goto out_unlock;
4484
4485        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4486        if (yielded) {
4487                schedstat_inc(rq, yld_count);
4488                /*
4489                 * Make p's CPU reschedule; pick_next_entity takes care of
4490                 * fairness.
4491                 */
4492                if (preempt && rq != p_rq)
4493                        resched_task(p_rq->curr);
4494        }
4495
4496out_unlock:
4497        double_rq_unlock(rq, p_rq);
4498out_irq:
4499        local_irq_restore(flags);
4500
4501        if (yielded > 0)
4502                schedule();
4503
4504        return yielded;
4505}
4506EXPORT_SYMBOL_GPL(yield_to);
4507
4508/*
4509 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4510 * that process accounting knows that this is a task in IO wait state.
4511 */
4512void __sched io_schedule(void)
4513{
4514        struct rq *rq = raw_rq();
4515
4516        delayacct_blkio_start();
4517        atomic_inc(&rq->nr_iowait);
4518        blk_flush_plug(current);
4519        current->in_iowait = 1;
4520        schedule();
4521        current->in_iowait = 0;
4522        atomic_dec(&rq->nr_iowait);
4523        delayacct_blkio_end();
4524}
4525EXPORT_SYMBOL(io_schedule);
4526
4527long __sched io_schedule_timeout(long timeout)
4528{
4529        struct rq *rq = raw_rq();
4530        long ret;
4531
4532        delayacct_blkio_start();
4533        atomic_inc(&rq->nr_iowait);
4534        blk_flush_plug(current);
4535        current->in_iowait = 1;
4536        ret = schedule_timeout(timeout);
4537        current->in_iowait = 0;
4538        atomic_dec(&rq->nr_iowait);
4539        delayacct_blkio_end();
4540        return ret;
4541}
4542
4543/**
4544 * sys_sched_get_priority_max - return maximum RT priority.
4545 * @policy: scheduling class.
4546 *
4547 * this syscall returns the maximum rt_priority that can be used
4548 * by a given scheduling class.
4549 */
4550SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4551{
4552        int ret = -EINVAL;
4553
4554        switch (policy) {
4555        case SCHED_FIFO:
4556        case SCHED_RR:
4557                ret = MAX_USER_RT_PRIO-1;
4558                break;
4559        case SCHED_NORMAL:
4560        case SCHED_BATCH:
4561        case SCHED_IDLE:
4562                ret = 0;
4563                break;
4564        }
4565        return ret;
4566}
4567
4568/**
4569 * sys_sched_get_priority_min - return minimum RT priority.
4570 * @policy: scheduling class.
4571 *
4572 * this syscall returns the minimum rt_priority that can be used
4573 * by a given scheduling class.
4574 */
4575SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4576{
4577        int ret = -EINVAL;
4578
4579        switch (policy) {
4580        case SCHED_FIFO:
4581        case SCHED_RR:
4582                ret = 1;
4583                break;
4584        case SCHED_NORMAL:
4585        case SCHED_BATCH:
4586        case SCHED_IDLE:
4587                ret = 0;
4588        }
4589        return ret;
4590}
4591
4592/**
4593 * sys_sched_rr_get_interval - return the default timeslice of a process.
4594 * @pid: pid of the process.
4595 * @interval: userspace pointer to the timeslice value.
4596 *
4597 * this syscall writes the default timeslice value of a given process
4598 * into the user-space timespec buffer. A value of '0' means infinity.
4599 */
4600SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4601                struct timespec __user *, interval)
4602{
4603        struct task_struct *p;
4604        unsigned int time_slice;
4605        unsigned long flags;
4606        struct rq *rq;
4607        int retval;
4608        struct timespec t;
4609
4610        if (pid < 0)
4611                return -EINVAL;
4612
4613        retval = -ESRCH;
4614        rcu_read_lock();
4615        p = find_process_by_pid(pid);
4616        if (!p)
4617                goto out_unlock;
4618
4619        retval = security_task_getscheduler(p);
4620        if (retval)
4621                goto out_unlock;
4622
4623        rq = task_rq_lock(p, &flags);
4624        time_slice = p->sched_class->get_rr_interval(rq, p);
4625        task_rq_unlock(rq, p, &flags);
4626
4627        rcu_read_unlock();
4628        jiffies_to_timespec(time_slice, &t);
4629        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4630        return retval;
4631
4632out_unlock:
4633        rcu_read_unlock();
4634        return retval;
4635}
4636
4637static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4638
4639void sched_show_task(struct task_struct *p)
4640{
4641        unsigned long free = 0;
4642        int ppid;
4643        unsigned state;
4644
4645        state = p->state ? __ffs(p->state) + 1 : 0;
4646        printk(KERN_INFO "%-15.15s %c", p->comm,
4647                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4648#if BITS_PER_LONG == 32
4649        if (state == TASK_RUNNING)
4650                printk(KERN_CONT " running  ");
4651        else
4652                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4653#else
4654        if (state == TASK_RUNNING)
4655                printk(KERN_CONT "  running task    ");
4656        else
4657                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4658#endif
4659#ifdef CONFIG_DEBUG_STACK_USAGE
4660        free = stack_not_used(p);
4661#endif
4662        rcu_read_lock();
4663        ppid = task_pid_nr(rcu_dereference(p->real_parent));
4664        rcu_read_unlock();
4665        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4666                task_pid_nr(p), ppid,
4667                (unsigned long)task_thread_info(p)->flags);
4668
4669        print_worker_info(KERN_INFO, p);
4670        show_stack(p, NULL);
4671}
4672
4673void show_state_filter(unsigned long state_filter)
4674{
4675        struct task_struct *g, *p;
4676
4677#if BITS_PER_LONG == 32
4678        printk(KERN_INFO
4679                "  task                PC stack   pid father\n");
4680#else
4681        printk(KERN_INFO
4682                "  task                        PC stack   pid father\n");
4683#endif
4684        rcu_read_lock();
4685        do_each_thread(g, p) {
4686                /*
4687                 * reset the NMI-timeout, listing all files on a slow
4688                 * console might take a lot of time:
4689                 */
4690                touch_nmi_watchdog();
4691                if (!state_filter || (p->state & state_filter))
4692                        sched_show_task(p);
4693        } while_each_thread(g, p);
4694
4695        touch_all_softlockup_watchdogs();
4696
4697#ifdef CONFIG_SCHED_DEBUG
4698        sysrq_sched_debug_show();
4699#endif
4700        rcu_read_unlock();
4701        /*
4702         * Only show locks if all tasks are dumped:
4703         */
4704        if (!state_filter)
4705                debug_show_all_locks();
4706}
4707
4708void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4709{
4710        idle->sched_class = &idle_sched_class;
4711}
4712
4713/**
4714 * init_idle - set up an idle thread for a given CPU
4715 * @idle: task in question
4716 * @cpu: cpu the idle task belongs to
4717 *
4718 * NOTE: this function does not set the idle thread's NEED_RESCHED
4719 * flag, to make booting more robust.
4720 */
4721void __cpuinit init_idle(struct task_struct *idle, int cpu)
4722{
4723        struct rq *rq = cpu_rq(cpu);
4724        unsigned long flags;
4725
4726        raw_spin_lock_irqsave(&rq->lock, flags);
4727
4728        __sched_fork(idle);
4729        idle->state = TASK_RUNNING;
4730        idle->se.exec_start = sched_clock();
4731
4732        do_set_cpus_allowed(idle, cpumask_of(cpu));
4733        /*
4734         * We're having a chicken and egg problem, even though we are
4735         * holding rq->lock, the cpu isn't yet set to this cpu so the
4736         * lockdep check in task_group() will fail.
4737         *
4738         * Similar case to sched_fork(). / Alternatively we could
4739         * use task_rq_lock() here and obtain the other rq->lock.
4740         *
4741         * Silence PROVE_RCU
4742         */
4743        rcu_read_lock();
4744        __set_task_cpu(idle, cpu);
4745        rcu_read_unlock();
4746
4747        rq->curr = rq->idle = idle;
4748#if defined(CONFIG_SMP)
4749        idle->on_cpu = 1;
4750#endif
4751        raw_spin_unlock_irqrestore(&rq->lock, flags);
4752
4753        /* Set the preempt count _outside_ the spinlocks! */
4754        task_thread_info(idle)->preempt_count = 0;
4755
4756        /*
4757         * The idle tasks have their own, simple scheduling class:
4758         */
4759        idle->sched_class = &idle_sched_class;
4760        ftrace_graph_init_idle_task(idle, cpu);
4761        vtime_init_idle(idle, cpu);
4762#if defined(CONFIG_SMP)
4763        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4764#endif
4765}
4766
4767#ifdef CONFIG_SMP
4768void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4769{
4770        if (p->sched_class && p->sched_class->set_cpus_allowed)
4771                p->sched_class->set_cpus_allowed(p, new_mask);
4772
4773        cpumask_copy(&p->cpus_allowed, new_mask);
4774        p->nr_cpus_allowed = cpumask_weight(new_mask);
4775}
4776
4777/*
4778 * This is how migration works:
4779 *
4780 * 1) we invoke migration_cpu_stop() on the target CPU using
4781 *    stop_one_cpu().
4782 * 2) stopper starts to run (implicitly forcing the migrated thread
4783 *    off the CPU)
4784 * 3) it checks whether the migrated task is still in the wrong runqueue.
4785 * 4) if it's in the wrong runqueue then the migration thread removes
4786 *    it and puts it into the right queue.
4787 * 5) stopper completes and stop_one_cpu() returns and the migration
4788 *    is done.
4789 */
4790
4791/*
4792 * Change a given task's CPU affinity. Migrate the thread to a
4793 * proper CPU and schedule it away if the CPU it's executing on
4794 * is removed from the allowed bitmask.
4795 *
4796 * NOTE: the caller must have a valid reference to the task, the
4797 * task must not exit() & deallocate itself prematurely. The
4798 * call is not atomic; no spinlocks may be held.
4799 */
4800int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4801{
4802        unsigned long flags;
4803        struct rq *rq;
4804        unsigned int dest_cpu;
4805        int ret = 0;
4806
4807        rq = task_rq_lock(p, &flags);
4808
4809        if (cpumask_equal(&p->cpus_allowed, new_mask))
4810                goto out;
4811
4812        if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4813                ret = -EINVAL;
4814                goto out;
4815        }
4816
4817        do_set_cpus_allowed(p, new_mask);
4818
4819        /* Can the task run on the task's current CPU? If so, we're done */
4820        if (cpumask_test_cpu(task_cpu(p), new_mask))
4821                goto out;
4822
4823        dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4824        if (p->on_rq) {
4825                struct migration_arg arg = { p, dest_cpu };
4826                /* Need help from migration thread: drop lock and wait. */
4827                task_rq_unlock(rq, p, &flags);
4828                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4829                tlb_migrate_finish(p->mm);
4830                return 0;
4831        }
4832out:
4833        task_rq_unlock(rq, p, &flags);
4834
4835        return ret;
4836}
4837EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4838
4839/*
4840 * Move (not current) task off this cpu, onto dest cpu. We're doing
4841 * this because either it can't run here any more (set_cpus_allowed()
4842 * away from this CPU, or CPU going down), or because we're
4843 * attempting to rebalance this task on exec (sched_exec).
4844 *
4845 * So we race with normal scheduler movements, but that's OK, as long
4846 * as the task is no longer on this CPU.
4847 *
4848 * Returns non-zero if task was successfully migrated.
4849 */
4850static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4851{
4852        struct rq *rq_dest, *rq_src;
4853        int ret = 0;
4854
4855        if (unlikely(!cpu_active(dest_cpu)))
4856                return ret;
4857
4858        rq_src = cpu_rq(src_cpu);
4859        rq_dest = cpu_rq(dest_cpu);
4860
4861        raw_spin_lock(&p->pi_lock);
4862        double_rq_lock(rq_src, rq_dest);
4863        /* Already moved. */
4864        if (task_cpu(p) != src_cpu)
4865                goto done;
4866        /* Affinity changed (again). */
4867        if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4868                goto fail;
4869
4870        /*
4871         * If we're not on a rq, the next wake-up will ensure we're
4872         * placed properly.
4873         */
4874        if (p->on_rq) {
4875                dequeue_task(rq_src, p, 0);
4876                set_task_cpu(p, dest_cpu);
4877                enqueue_task(rq_dest, p, 0);
4878                check_preempt_curr(rq_dest, p, 0);
4879        }
4880done:
4881        ret = 1;
4882fail:
4883        double_rq_unlock(rq_src, rq_dest);
4884        raw_spin_unlock(&p->pi_lock);
4885        return ret;
4886}
4887
4888/*
4889 * migration_cpu_stop - this will be executed by a highprio stopper thread
4890 * and performs thread migration by bumping thread off CPU then
4891 * 'pushing' onto another runqueue.
4892 */
4893static int migration_cpu_stop(void *data)
4894{
4895        struct migration_arg *arg = data;
4896
4897        /*
4898         * The original target cpu might have gone down and we might
4899         * be on another cpu but it doesn't matter.
4900         */
4901        local_irq_disable();
4902        __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4903        local_irq_enable();
4904        return 0;
4905}
4906
4907#ifdef CONFIG_HOTPLUG_CPU
4908
4909/*
4910 * Ensures that the idle task is using init_mm right before its cpu goes
4911 * offline.
4912 */
4913void idle_task_exit(void)
4914{
4915        struct mm_struct *mm = current->active_mm;
4916
4917        BUG_ON(cpu_online(smp_processor_id()));
4918
4919        if (mm != &init_mm)
4920                switch_mm(mm, &init_mm, current);
4921        mmdrop(mm);
4922}
4923
4924/*
4925 * Since this CPU is going 'away' for a while, fold any nr_active delta
4926 * we might have. Assumes we're called after migrate_tasks() so that the
4927 * nr_active count is stable.
4928 *
4929 * Also see the comment "Global load-average calculations".
4930 */
4931static void calc_load_migrate(struct rq *rq)
4932{
4933        long delta = calc_load_fold_active(rq);
4934        if (delta)
4935                atomic_long_add(delta, &calc_load_tasks);
4936}
4937
4938/*
4939 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4940 * try_to_wake_up()->select_task_rq().
4941 *
4942 * Called with rq->lock held even though we'er in stop_machine() and
4943 * there's no concurrency possible, we hold the required locks anyway
4944 * because of lock validation efforts.
4945 */
4946static void migrate_tasks(unsigned int dead_cpu)
4947{
4948        struct rq *rq = cpu_rq(dead_cpu);
4949        struct task_struct *next, *stop = rq->stop;
4950        int dest_cpu;
4951
4952        /*
4953         * Fudge the rq selection such that the below task selection loop
4954         * doesn't get stuck on the currently eligible stop task.
4955         *
4956         * We're currently inside stop_machine() and the rq is either stuck
4957         * in the stop_machine_cpu_stop() loop, or we're executing this code,
4958         * either way we should never end up calling schedule() until we're
4959         * done here.
4960         */
4961        rq->stop = NULL;
4962
4963        for ( ; ; ) {
4964                /*
4965                 * There's this thread running, bail when that's the only
4966                 * remaining thread.
4967                 */
4968                if (rq->nr_running == 1)
4969                        break;
4970
4971                next = pick_next_task(rq);
4972                BUG_ON(!next);
4973                next->sched_class->put_prev_task(rq, next);
4974
4975                /* Find suitable destination for @next, with force if needed. */
4976                dest_cpu = select_fallback_rq(dead_cpu, next);
4977                raw_spin_unlock(&rq->lock);
4978
4979                __migrate_task(next, dead_cpu, dest_cpu);
4980
4981                raw_spin_lock(&rq->lock);
4982        }
4983
4984        rq->stop = stop;
4985}
4986
4987#endif /* CONFIG_HOTPLUG_CPU */
4988
4989#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4990
4991static struct ctl_table sd_ctl_dir[] = {
4992        {
4993                .procname       = "sched_domain",
4994                .mode           = 0555,
4995        },
4996        {}
4997};
4998
4999static struct ctl_table sd_ctl_root[] = {
5000        {
5001                .procname       = "kernel",
5002                .mode           = 0555,
5003                .child          = sd_ctl_dir,
5004        },
5005        {}
5006};
5007
5008static struct ctl_table *sd_alloc_ctl_entry(int n)
5009{
5010        struct ctl_table *entry =
5011                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5012
5013        return entry;
5014}
5015
5016static void sd_free_ctl_entry(struct ctl_table **tablep)
5017{
5018        struct ctl_table *entry;
5019
5020        /*
5021         * In the intermediate directories, both the child directory and
5022         * procname are dynamically allocated and could fail but the mode
5023         * will always be set. In the lowest directory the names are
5024         * static strings and all have proc handlers.
5025         */
5026        for (entry = *tablep; entry->mode; entry++) {
5027                if (entry->child)
5028                        sd_free_ctl_entry(&entry->child);
5029                if (entry->proc_handler == NULL)
5030                        kfree(entry->procname);
5031        }
5032
5033        kfree(*tablep);
5034        *tablep = NULL;
5035}
5036
5037static int min_load_idx = 0;
5038static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5039
5040static void
5041set_table_entry(struct ctl_table *entry,
5042                const char *procname, void *data, int maxlen,
5043                umode_t mode, proc_handler *proc_handler,
5044                bool load_idx)
5045{
5046        entry->procname = procname;
5047        entry->data = data;
5048        entry->maxlen = maxlen;
5049        entry->mode = mode;
5050        entry->proc_handler = proc_handler;
5051
5052        if (load_idx) {
5053                entry->extra1 = &min_load_idx;
5054                entry->extra2 = &max_load_idx;
5055        }
5056}
5057
5058static struct ctl_table *
5059sd_alloc_ctl_domain_table(struct sched_domain *sd)
5060{
5061        struct ctl_table *table = sd_alloc_ctl_entry(13);
5062
5063        if (table == NULL)
5064                return NULL;
5065
5066        set_table_entry(&table[0], "min_interval", &sd->min_interval,
5067                sizeof(long), 0644, proc_doulongvec_minmax, false);
5068        set_table_entry(&table[1], "max_interval", &sd->max_interval,
5069                sizeof(long), 0644, proc_doulongvec_minmax, false);
5070        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5071                sizeof(int), 0644, proc_dointvec_minmax, true);
5072        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5073                sizeof(int), 0644, proc_dointvec_minmax, true);
5074        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5075                sizeof(int), 0644, proc_dointvec_minmax, true);
5076        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5077                sizeof(int), 0644, proc_dointvec_minmax, true);
5078        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5079                sizeof(int), 0644, proc_dointvec_minmax, true);
5080        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5081                sizeof(int), 0644, proc_dointvec_minmax, false);
5082        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5083                sizeof(int), 0644, proc_dointvec_minmax, false);
5084        set_table_entry(&table[9], "cache_nice_tries",
5085                &sd->cache_nice_tries,
5086                sizeof(int), 0644, proc_dointvec_minmax, false);
5087        set_table_entry(&table[10], "flags", &sd->flags,
5088                sizeof(int), 0644, proc_dointvec_minmax, false);
5089        set_table_entry(&table[11], "name", sd->name,
5090                CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5091        /* &table[12] is terminator */
5092
5093        return table;
5094}
5095
5096static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5097{
5098        struct ctl_table *entry, *table;
5099        struct sched_domain *sd;
5100        int domain_num = 0, i;
5101        char buf[32];
5102
5103        for_each_domain(cpu, sd)
5104                domain_num++;
5105        entry = table = sd_alloc_ctl_entry(domain_num + 1);
5106        if (table == NULL)
5107                return NULL;
5108
5109        i = 0;
5110        for_each_domain(cpu, sd) {
5111                snprintf(buf, 32, "domain%d", i);
5112                entry->procname = kstrdup(buf, GFP_KERNEL);
5113                entry->mode = 0555;
5114                entry->child = sd_alloc_ctl_domain_table(sd);
5115                entry++;
5116                i++;
5117        }
5118        return table;
5119}
5120
5121static struct ctl_table_header *sd_sysctl_header;
5122static void register_sched_domain_sysctl(void)
5123{
5124        int i, cpu_num = num_possible_cpus();
5125        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5126        char buf[32];
5127
5128        WARN_ON(sd_ctl_dir[0].child);
5129        sd_ctl_dir[0].child = entry;
5130
5131        if (entry == NULL)
5132                return;
5133
5134        for_each_possible_cpu(i) {
5135                snprintf(buf, 32, "cpu%d", i);
5136                entry->procname = kstrdup(buf, GFP_KERNEL);
5137                entry->mode = 0555;
5138                entry->child = sd_alloc_ctl_cpu_table(i);
5139                entry++;
5140        }
5141
5142        WARN_ON(sd_sysctl_header);
5143        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5144}
5145
5146/* may be called multiple times per register */
5147static void unregister_sched_domain_sysctl(void)
5148{
5149        if (sd_sysctl_header)
5150                unregister_sysctl_table(sd_sysctl_header);
5151        sd_sysctl_header = NULL;
5152        if (sd_ctl_dir[0].child)
5153                sd_free_ctl_entry(&sd_ctl_dir[0].child);
5154}
5155#else
5156static void register_sched_domain_sysctl(void)
5157{
5158}
5159static void unregister_sched_domain_sysctl(void)
5160{
5161}
5162#endif
5163
5164static void set_rq_online(struct rq *rq)
5165{
5166        if (!rq->online) {
5167                const struct sched_class *class;
5168
5169                cpumask_set_cpu(rq->cpu, rq->rd->online);
5170                rq->online = 1;
5171
5172                for_each_class(class) {
5173                        if (class->rq_online)
5174                                class->rq_online(rq);
5175                }
5176        }
5177}
5178
5179static void set_rq_offline(struct rq *rq)
5180{
5181        if (rq->online) {
5182                const struct sched_class *class;
5183
5184                for_each_class(class) {
5185                        if (class->rq_offline)
5186                                class->rq_offline(rq);
5187                }
5188
5189                cpumask_clear_cpu(rq->cpu, rq->rd->online);
5190                rq->online = 0;
5191        }
5192}
5193
5194/*
5195 * migration_call - callback that gets triggered when a CPU is added.
5196 * Here we can start up the necessary migration thread for the new CPU.
5197 */
5198static int __cpuinit
5199migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5200{
5201        int cpu = (long)hcpu;
5202        unsigned long flags;
5203        struct rq *rq = cpu_rq(cpu);
5204
5205        switch (action & ~CPU_TASKS_FROZEN) {
5206
5207        case CPU_UP_PREPARE:
5208                rq->calc_load_update = calc_load_update;
5209                break;
5210
5211        case CPU_ONLINE:
5212                /* Update our root-domain */
5213                raw_spin_lock_irqsave(&rq->lock, flags);
5214                if (rq->rd) {
5215                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5216
5217                        set_rq_online(rq);
5218                }
5219                raw_spin_unlock_irqrestore(&rq->lock, flags);
5220                break;
5221
5222#ifdef CONFIG_HOTPLUG_CPU
5223        case CPU_DYING:
5224                sched_ttwu_pending();
5225                /* Update our root-domain */
5226                raw_spin_lock_irqsave(&rq->lock, flags);
5227                if (rq->rd) {
5228                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5229                        set_rq_offline(rq);
5230                }
5231                migrate_tasks(cpu);
5232                BUG_ON(rq->nr_running != 1); /* the migration thread */
5233                raw_spin_unlock_irqrestore(&rq->lock, flags);
5234                break;
5235
5236        case CPU_DEAD:
5237                calc_load_migrate(rq);
5238                break;
5239#endif
5240        }
5241
5242        update_max_interval();
5243
5244        return NOTIFY_OK;
5245}
5246
5247/*
5248 * Register at high priority so that task migration (migrate_all_tasks)
5249 * happens before everything else.  This has to be lower priority than
5250 * the notifier in the perf_event subsystem, though.
5251 */
5252static struct notifier_block __cpuinitdata migration_notifier = {
5253        .notifier_call = migration_call,
5254        .priority = CPU_PRI_MIGRATION,
5255};
5256
5257static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5258                                      unsigned long action, void *hcpu)
5259{
5260        switch (action & ~CPU_TASKS_FROZEN) {
5261        case CPU_STARTING:
5262        case CPU_DOWN_FAILED:
5263                set_cpu_active((long)hcpu, true);
5264                return NOTIFY_OK;
5265        default:
5266                return NOTIFY_DONE;
5267        }
5268}
5269
5270static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5271                                        unsigned long action, void *hcpu)
5272{
5273        switch (action & ~CPU_TASKS_FROZEN) {
5274        case CPU_DOWN_PREPARE:
5275                set_cpu_active((long)hcpu, false);
5276                return NOTIFY_OK;
5277        default:
5278                return NOTIFY_DONE;
5279        }
5280}
5281
5282static int __init migration_init(void)
5283{
5284        void *cpu = (void *)(long)smp_processor_id();
5285        int err;
5286
5287        /* Initialize migration for the boot CPU */
5288        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5289        BUG_ON(err == NOTIFY_BAD);
5290        migration_call(&migration_notifier, CPU_ONLINE, cpu);
5291        register_cpu_notifier(&migration_notifier);
5292
5293        /* Register cpu active notifiers */
5294        cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5295        cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5296
5297        return 0;
5298}
5299early_initcall(migration_init);
5300#endif
5301
5302#ifdef CONFIG_SMP
5303
5304static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5305
5306#ifdef CONFIG_SCHED_DEBUG
5307
5308static __read_mostly int sched_debug_enabled;
5309
5310static int __init sched_debug_setup(char *str)
5311{
5312        sched_debug_enabled = 1;
5313
5314        return 0;
5315}
5316early_param("sched_debug", sched_debug_setup);
5317
5318static inline bool sched_debug(void)
5319{
5320        return sched_debug_enabled;
5321}
5322
5323static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5324                                  struct cpumask *groupmask)
5325{
5326        struct sched_group *group = sd->groups;
5327        char str[256];
5328
5329        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5330        cpumask_clear(groupmask);
5331
5332        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5333
5334        if (!(sd->flags & SD_LOAD_BALANCE)) {
5335                printk("does not load-balance\n");
5336                if (sd->parent)
5337                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5338                                        " has parent");
5339                return -1;
5340        }
5341
5342        printk(KERN_CONT "span %s level %s\n", str, sd->name);
5343
5344        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5345                printk(KERN_ERR "ERROR: domain->span does not contain "
5346                                "CPU%d\n", cpu);
5347        }
5348        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5349                printk(KERN_ERR "ERROR: domain->groups does not contain"
5350                                " CPU%d\n", cpu);
5351        }
5352
5353        printk(KERN_DEBUG "%*s groups:", level + 1, "");
5354        do {
5355                if (!group) {
5356                        printk("\n");
5357                        printk(KERN_ERR "ERROR: group is NULL\n");
5358                        break;
5359                }
5360
5361                /*
5362                 * Even though we initialize ->power to something semi-sane,
5363                 * we leave power_orig unset. This allows us to detect if
5364                 * domain iteration is still funny without causing /0 traps.
5365                 */
5366                if (!group->sgp->power_orig) {
5367                        printk(KERN_CONT "\n");
5368                        printk(KERN_ERR "ERROR: domain->cpu_power not "
5369                                        "set\n");
5370                        break;
5371                }
5372
5373                if (!cpumask_weight(sched_group_cpus(group))) {
5374                        printk(KERN_CONT "\n");
5375                        printk(KERN_ERR "ERROR: empty group\n");
5376                        break;
5377                }
5378
5379                if (!(sd->flags & SD_OVERLAP) &&
5380                    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5381                        printk(KERN_CONT "\n");
5382                        printk(KERN_ERR "ERROR: repeated CPUs\n");
5383                        break;
5384                }
5385
5386                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5387
5388                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5389
5390                printk(KERN_CONT " %s", str);
5391                if (group->sgp->power != SCHED_POWER_SCALE) {
5392                        printk(KERN_CONT " (cpu_power = %d)",
5393                                group->sgp->power);
5394                }
5395
5396                group = group->next;
5397        } while (group != sd->groups);
5398        printk(KERN_CONT "\n");
5399
5400        if (!cpumask_equal(sched_domain_span(sd), groupmask))
5401                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5402
5403        if (sd->parent &&
5404            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5405                printk(KERN_ERR "ERROR: parent span is not a superset "
5406                        "of domain->span\n");
5407        return 0;
5408}
5409
5410static void sched_domain_debug(struct sched_domain *sd, int cpu)
5411{
5412        int level = 0;
5413
5414        if (!sched_debug_enabled)
5415                return;
5416
5417        if (!sd) {
5418                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5419                return;
5420        }
5421
5422        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5423
5424        for (;;) {
5425                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5426                        break;
5427                level++;
5428                sd = sd->parent;
5429                if (!sd)
5430                        break;
5431        }
5432}
5433#else /* !CONFIG_SCHED_DEBUG */
5434# define sched_domain_debug(sd, cpu) do { } while (0)
5435static inline bool sched_debug(void)
5436{
5437        return false;
5438}
5439#endif /* CONFIG_SCHED_DEBUG */
5440
5441static int sd_degenerate(struct sched_domain *sd)
5442{
5443        if (cpumask_weight(sched_domain_span(sd)) == 1)
5444                return 1;
5445
5446        /* Following flags need at least 2 groups */
5447        if (sd->flags & (SD_LOAD_BALANCE |
5448                         SD_BALANCE_NEWIDLE |
5449                         SD_BALANCE_FORK |
5450                         SD_BALANCE_EXEC |
5451                         SD_SHARE_CPUPOWER |
5452                         SD_SHARE_PKG_RESOURCES)) {
5453                if (sd->groups != sd->groups->next)
5454                        return 0;
5455        }
5456
5457        /* Following flags don't use groups */
5458        if (sd->flags & (SD_WAKE_AFFINE))
5459                return 0;
5460
5461        return 1;
5462}
5463
5464static int
5465sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5466{
5467        unsigned long cflags = sd->flags, pflags = parent->flags;
5468
5469        if (sd_degenerate(parent))
5470                return 1;
5471
5472        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5473                return 0;
5474
5475        /* Flags needing groups don't count if only 1 group in parent */
5476        if (parent->groups == parent->groups->next) {
5477                pflags &= ~(SD_LOAD_BALANCE |
5478                                SD_BALANCE_NEWIDLE |
5479                                SD_BALANCE_FORK |
5480                                SD_BALANCE_EXEC |
5481                                SD_SHARE_CPUPOWER |
5482                                SD_SHARE_PKG_RESOURCES);
5483                if (nr_node_ids == 1)
5484                        pflags &= ~SD_SERIALIZE;
5485        }
5486        if (~cflags & pflags)
5487                return 0;
5488
5489        return 1;
5490}
5491
5492static void free_rootdomain(struct rcu_head *rcu)
5493{
5494        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5495
5496        cpupri_cleanup(&rd->cpupri);
5497        free_cpumask_var(rd->rto_mask);
5498        free_cpumask_var(rd->online);
5499        free_cpumask_var(rd->span);
5500        kfree(rd);
5501}
5502
5503static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5504{
5505        struct root_domain *old_rd = NULL;
5506        unsigned long flags;
5507
5508        raw_spin_lock_irqsave(&rq->lock, flags);
5509
5510        if (rq->rd) {
5511                old_rd = rq->rd;
5512
5513                if (cpumask_test_cpu(rq->cpu, old_rd->online))
5514                        set_rq_offline(rq);
5515
5516                cpumask_clear_cpu(rq->cpu, old_rd->span);
5517
5518                /*
5519                 * If we dont want to free the old_rt yet then
5520                 * set old_rd to NULL to skip the freeing later
5521                 * in this function:
5522                 */
5523                if (!atomic_dec_and_test(&old_rd->refcount))
5524                        old_rd = NULL;
5525        }
5526
5527        atomic_inc(&rd->refcount);
5528        rq->rd = rd;
5529
5530        cpumask_set_cpu(rq->cpu, rd->span);
5531        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5532                set_rq_online(rq);
5533
5534        raw_spin_unlock_irqrestore(&rq->lock, flags);
5535
5536        if (old_rd)
5537                call_rcu_sched(&old_rd->rcu, free_rootdomain);
5538}
5539
5540static int init_rootdomain(struct root_domain *rd)
5541{
5542        memset(rd, 0, sizeof(*rd));
5543
5544        if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5545                goto out;
5546        if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5547                goto free_span;
5548        if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5549                goto free_online;
5550
5551        if (cpupri_init(&rd->cpupri) != 0)
5552                goto free_rto_mask;
5553        return 0;
5554
5555free_rto_mask:
5556        free_cpumask_var(rd->rto_mask);
5557free_online:
5558        free_cpumask_var(rd->online);
5559free_span:
5560        free_cpumask_var(rd->span);
5561out:
5562        return -ENOMEM;
5563}
5564
5565/*
5566 * By default the system creates a single root-domain with all cpus as
5567 * members (mimicking the global state we have today).
5568 */
5569struct root_domain def_root_domain;
5570
5571static void init_defrootdomain(void)
5572{
5573        init_rootdomain(&def_root_domain);
5574
5575        atomic_set(&def_root_domain.refcount, 1);
5576}
5577
5578static struct root_domain *alloc_rootdomain(void)
5579{
5580        struct root_domain *rd;
5581
5582        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5583        if (!rd)
5584                return NULL;
5585
5586        if (init_rootdomain(rd) != 0) {
5587                kfree(rd);
5588                return NULL;
5589        }
5590
5591        return rd;
5592}
5593
5594static void free_sched_groups(struct sched_group *sg, int free_sgp)
5595{
5596        struct sched_group *tmp, *first;
5597
5598        if (!sg)
5599                return;
5600
5601        first = sg;
5602        do {
5603                tmp = sg->next;
5604
5605                if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5606                        kfree(sg->sgp);
5607
5608                kfree(sg);
5609                sg = tmp;
5610        } while (sg != first);
5611}
5612
5613static void free_sched_domain(struct rcu_head *rcu)
5614{
5615        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5616
5617        /*
5618         * If its an overlapping domain it has private groups, iterate and
5619         * nuke them all.
5620         */
5621        if (sd->flags & SD_OVERLAP) {
5622                free_sched_groups(sd->groups, 1);
5623        } else if (atomic_dec_and_test(&sd->groups->ref)) {
5624                kfree(sd->groups->sgp);
5625                kfree(sd->groups);
5626        }
5627        kfree(sd);
5628}
5629
5630static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5631{
5632        call_rcu(&sd->rcu, free_sched_domain);
5633}
5634
5635static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5636{
5637        for (; sd; sd = sd->parent)
5638                destroy_sched_domain(sd, cpu);
5639}
5640
5641/*
5642 * Keep a special pointer to the highest sched_domain that has
5643 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5644 * allows us to avoid some pointer chasing select_idle_sibling().
5645 *
5646 * Also keep a unique ID per domain (we use the first cpu number in
5647 * the cpumask of the domain), this allows us to quickly tell if
5648 * two cpus are in the same cache domain, see cpus_share_cache().
5649 */
5650DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5651DEFINE_PER_CPU(int, sd_llc_id);
5652
5653static void update_top_cache_domain(int cpu)
5654{
5655        struct sched_domain *sd;
5656        int id = cpu;
5657
5658        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5659        if (sd)
5660                id = cpumask_first(sched_domain_span(sd));
5661
5662        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5663        per_cpu(sd_llc_id, cpu) = id;
5664}
5665
5666/*
5667 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5668 * hold the hotplug lock.
5669 */
5670static void
5671cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5672{
5673        struct rq *rq = cpu_rq(cpu);
5674        struct sched_domain *tmp;
5675
5676        /* Remove the sched domains which do not contribute to scheduling. */
5677        for (tmp = sd; tmp; ) {
5678                struct sched_domain *parent = tmp->parent;
5679                if (!parent)
5680                        break;
5681
5682                if (sd_parent_degenerate(tmp, parent)) {
5683                        tmp->parent = parent->parent;
5684                        if (parent->parent)
5685                                parent->parent->child = tmp;
5686                        destroy_sched_domain(parent, cpu);
5687                } else
5688                        tmp = tmp->parent;
5689        }
5690
5691        if (sd && sd_degenerate(sd)) {
5692                tmp = sd;
5693                sd = sd->parent;
5694                destroy_sched_domain(tmp, cpu);
5695                if (sd)
5696                        sd->child = NULL;
5697        }
5698
5699        sched_domain_debug(sd, cpu);
5700
5701        rq_attach_root(rq, rd);
5702        tmp = rq->sd;
5703        rcu_assign_pointer(rq->sd, sd);
5704        destroy_sched_domains(tmp, cpu);
5705
5706        update_top_cache_domain(cpu);
5707}
5708
5709/* cpus with isolated domains */
5710static cpumask_var_t cpu_isolated_map;
5711
5712/* Setup the mask of cpus configured for isolated domains */
5713static int __init isolated_cpu_setup(char *str)
5714{
5715        alloc_bootmem_cpumask_var(&cpu_isolated_map);
5716        cpulist_parse(str, cpu_isolated_map);
5717        return 1;
5718}
5719
5720__setup("isolcpus=", isolated_cpu_setup);
5721
5722static const struct cpumask *cpu_cpu_mask(int cpu)
5723{
5724        return cpumask_of_node(cpu_to_node(cpu));
5725}
5726
5727struct sd_data {
5728        struct sched_domain **__percpu sd;
5729        struct sched_group **__percpu sg;
5730        struct sched_group_power **__percpu sgp;
5731};
5732
5733struct s_data {
5734        struct sched_domain ** __percpu sd;
5735        struct root_domain      *rd;
5736};
5737
5738enum s_alloc {
5739        sa_rootdomain,
5740        sa_sd,
5741        sa_sd_storage,
5742        sa_none,
5743};
5744
5745struct sched_domain_topology_level;
5746
5747typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5748typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5749
5750#define SDTL_OVERLAP    0x01
5751
5752struct sched_domain_topology_level {
5753        sched_domain_init_f init;
5754        sched_domain_mask_f mask;
5755        int                 flags;
5756        int                 numa_level;
5757        struct sd_data      data;
5758};
5759
5760/*
5761 * Build an iteration mask that can exclude certain CPUs from the upwards
5762 * domain traversal.
5763 *
5764 * Asymmetric node setups can result in situations where the domain tree is of
5765 * unequal depth, make sure to skip domains that already cover the entire
5766 * range.
5767 *
5768 * In that case build_sched_domains() will have terminated the iteration early
5769 * and our sibling sd spans will be empty. Domains should always include the
5770 * cpu they're built on, so check that.
5771 *
5772 */
5773static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5774{
5775        const struct cpumask *span = sched_domain_span(sd);
5776        struct sd_data *sdd = sd->private;
5777        struct sched_domain *sibling;
5778        int i;
5779
5780        for_each_cpu(i, span) {
5781                sibling = *per_cpu_ptr(sdd->sd, i);
5782                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5783                        continue;
5784
5785                cpumask_set_cpu(i, sched_group_mask(sg));
5786        }
5787}
5788
5789/*
5790 * Return the canonical balance cpu for this group, this is the first cpu
5791 * of this group that's also in the iteration mask.
5792 */
5793int group_balance_cpu(struct sched_group *sg)
5794{
5795        return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5796}
5797
5798static int
5799build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5800{
5801        struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5802        const struct cpumask *span = sched_domain_span(sd);
5803        struct cpumask *covered = sched_domains_tmpmask;
5804        struct sd_data *sdd = sd->private;
5805        struct sched_domain *child;
5806        int i;
5807
5808        cpumask_clear(covered);
5809
5810        for_each_cpu(i, span) {
5811                struct cpumask *sg_span;
5812
5813                if (cpumask_test_cpu(i, covered))
5814                        continue;
5815
5816                child = *per_cpu_ptr(sdd->sd, i);
5817
5818                /* See the comment near build_group_mask(). */
5819                if (!cpumask_test_cpu(i, sched_domain_span(child)))
5820                        continue;
5821
5822                sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5823                                GFP_KERNEL, cpu_to_node(cpu));
5824
5825                if (!sg)
5826                        goto fail;
5827
5828                sg_span = sched_group_cpus(sg);
5829                if (child->child) {
5830                        child = child->child;
5831                        cpumask_copy(sg_span, sched_domain_span(child));
5832                } else
5833                        cpumask_set_cpu(i, sg_span);
5834
5835                cpumask_or(covered, covered, sg_span);
5836
5837                sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5838                if (atomic_inc_return(&sg->sgp->ref) == 1)
5839                        build_group_mask(sd, sg);
5840
5841                /*
5842                 * Initialize sgp->power such that even if we mess up the
5843                 * domains and no possible iteration will get us here, we won't
5844                 * die on a /0 trap.
5845                 */
5846                sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5847
5848                /*
5849                 * Make sure the first group of this domain contains the
5850                 * canonical balance cpu. Otherwise the sched_domain iteration
5851                 * breaks. See update_sg_lb_stats().
5852                 */
5853                if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5854                    group_balance_cpu(sg) == cpu)
5855                        groups = sg;
5856
5857                if (!first)
5858                        first = sg;
5859                if (last)
5860                        last->next = sg;
5861                last = sg;
5862                last->next = first;
5863        }
5864        sd->groups = groups;
5865
5866        return 0;
5867
5868fail:
5869        free_sched_groups(first, 0);
5870
5871        return -ENOMEM;
5872}
5873
5874static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5875{
5876        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5877        struct sched_domain *child = sd->child;
5878
5879        if (child)
5880                cpu = cpumask_first(sched_domain_span(child));
5881
5882        if (sg) {
5883                *sg = *per_cpu_ptr(sdd->sg, cpu);
5884                (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5885                atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5886        }
5887
5888        return cpu;
5889}
5890
5891/*
5892 * build_sched_groups will build a circular linked list of the groups
5893 * covered by the given span, and will set each group's ->cpumask correctly,
5894 * and ->cpu_power to 0.
5895 *
5896 * Assumes the sched_domain tree is fully constructed
5897 */
5898static int
5899build_sched_groups(struct sched_domain *sd, int cpu)
5900{
5901        struct sched_group *first = NULL, *last = NULL;
5902        struct sd_data *sdd = sd->private;
5903        const struct cpumask *span = sched_domain_span(sd);
5904        struct cpumask *covered;
5905        int i;
5906
5907        get_group(cpu, sdd, &sd->groups);
5908        atomic_inc(&sd->groups->ref);
5909
5910        if (cpu != cpumask_first(sched_domain_span(sd)))
5911                return 0;
5912
5913        lockdep_assert_held(&sched_domains_mutex);
5914        covered = sched_domains_tmpmask;
5915
5916        cpumask_clear(covered);
5917
5918        for_each_cpu(i, span) {
5919                struct sched_group *sg;
5920                int group = get_group(i, sdd, &sg);
5921                int j;
5922
5923                if (cpumask_test_cpu(i, covered))
5924                        continue;
5925
5926                cpumask_clear(sched_group_cpus(sg));
5927                sg->sgp->power = 0;
5928                cpumask_setall(sched_group_mask(sg));
5929
5930                for_each_cpu(j, span) {
5931                        if (get_group(j, sdd, NULL) != group)
5932                                continue;
5933
5934                        cpumask_set_cpu(j, covered);
5935                        cpumask_set_cpu(j, sched_group_cpus(sg));
5936                }
5937
5938                if (!first)
5939                        first = sg;
5940                if (last)
5941                        last->next = sg;
5942                last = sg;
5943        }
5944        last->next = first;
5945
5946        return 0;
5947}
5948
5949/*
5950 * Initialize sched groups cpu_power.
5951 *
5952 * cpu_power indicates the capacity of sched group, which is used while
5953 * distributing the load between different sched groups in a sched domain.
5954 * Typically cpu_power for all the groups in a sched domain will be same unless
5955 * there are asymmetries in the topology. If there are asymmetries, group
5956 * having more cpu_power will pickup more load compared to the group having
5957 * less cpu_power.
5958 */
5959static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5960{
5961        struct sched_group *sg = sd->groups;
5962
5963        WARN_ON(!sd || !sg);
5964
5965        do {
5966                sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5967                sg = sg->next;
5968        } while (sg != sd->groups);
5969
5970        if (cpu != group_balance_cpu(sg))
5971                return;
5972
5973        update_group_power(sd, cpu);
5974        atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5975}
5976
5977int __weak arch_sd_sibling_asym_packing(void)
5978{
5979       return 0*SD_ASYM_PACKING;
5980}
5981
5982/*
5983 * Initializers for schedule domains
5984 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5985 */
5986
5987#ifdef CONFIG_SCHED_DEBUG
5988# define SD_INIT_NAME(sd, type)         sd->name = #type
5989#else
5990# define SD_INIT_NAME(sd, type)         do { } while (0)
5991#endif
5992
5993#define SD_INIT_FUNC(type)                                              \
5994static noinline struct sched_domain *                                   \
5995sd_init_##type(struct sched_domain_topology_level *tl, int cpu)         \
5996{                                                                       \
5997        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
5998        *sd = SD_##type##_INIT;                                         \
5999        SD_INIT_NAME(sd, type);                                         \
6000        sd->private = &tl->data;                                        \
6001        return sd;                                                      \
6002}
6003
6004SD_INIT_FUNC(CPU)
6005#ifdef CONFIG_SCHED_SMT
6006 SD_INIT_FUNC(SIBLING)
6007#endif
6008#ifdef CONFIG_SCHED_MC
6009 SD_INIT_FUNC(MC)
6010#endif
6011#ifdef CONFIG_SCHED_BOOK
6012 SD_INIT_FUNC(BOOK)
6013#endif
6014
6015static int default_relax_domain_level = -1;
6016int sched_domain_level_max;
6017
6018static int __init setup_relax_domain_level(char *str)
6019{
6020        if (kstrtoint(str, 0, &default_relax_domain_level))
6021                pr_warn("Unable to set relax_domain_level\n");
6022
6023        return 1;
6024}
6025__setup("relax_domain_level=", setup_relax_domain_level);
6026
6027static void set_domain_attribute(struct sched_domain *sd,
6028                                 struct sched_domain_attr *attr)
6029{
6030        int request;
6031
6032        if (!attr || attr->relax_domain_level < 0) {
6033                if (default_relax_domain_level < 0)
6034                        return;
6035                else
6036                        request = default_relax_domain_level;
6037        } else
6038                request = attr->relax_domain_level;
6039        if (request < sd->level) {
6040                /* turn off idle balance on this domain */
6041                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6042        } else {
6043                /* turn on idle balance on this domain */
6044                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6045        }
6046}
6047
6048static void __sdt_free(const struct cpumask *cpu_map);
6049static int __sdt_alloc(const struct cpumask *cpu_map);
6050
6051static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6052                                 const struct cpumask *cpu_map)
6053{
6054        switch (what) {
6055        case sa_rootdomain:
6056                if (!atomic_read(&d->rd->refcount))
6057                        free_rootdomain(&d->rd->rcu); /* fall through */
6058        case sa_sd:
6059                free_percpu(d->sd); /* fall through */
6060        case sa_sd_storage:
6061                __sdt_free(cpu_map); /* fall through */
6062        case sa_none:
6063                break;
6064        }
6065}
6066
6067static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6068                                                   const struct cpumask *cpu_map)
6069{
6070        memset(d, 0, sizeof(*d));
6071
6072        if (__sdt_alloc(cpu_map))
6073                return sa_sd_storage;
6074        d->sd = alloc_percpu(struct sched_domain *);
6075        if (!d->sd)
6076                return sa_sd_storage;
6077        d->rd = alloc_rootdomain();
6078        if (!d->rd)
6079                return sa_sd;
6080        return sa_rootdomain;
6081}
6082
6083/*
6084 * NULL the sd_data elements we've used to build the sched_domain and
6085 * sched_group structure so that the subsequent __free_domain_allocs()
6086 * will not free the data we're using.
6087 */
6088static void claim_allocations(int cpu, struct sched_domain *sd)
6089{
6090        struct sd_data *sdd = sd->private;
6091
6092        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6093        *per_cpu_ptr(sdd->sd, cpu) = NULL;
6094
6095        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6096                *per_cpu_ptr(sdd->sg, cpu) = NULL;
6097
6098        if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6099                *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6100}
6101
6102#ifdef CONFIG_SCHED_SMT
6103static const struct cpumask *cpu_smt_mask(int cpu)
6104{
6105        return topology_thread_cpumask(cpu);
6106}
6107#endif
6108
6109/*
6110 * Topology list, bottom-up.
6111 */
6112static struct sched_domain_topology_level default_topology[] = {
6113#ifdef CONFIG_SCHED_SMT
6114        { sd_init_SIBLING, cpu_smt_mask, },
6115#endif
6116#ifdef CONFIG_SCHED_MC
6117        { sd_init_MC, cpu_coregroup_mask, },
6118#endif
6119#ifdef CONFIG_SCHED_BOOK
6120        { sd_init_BOOK, cpu_book_mask, },
6121#endif
6122        { sd_init_CPU, cpu_cpu_mask, },
6123        { NULL, },
6124};
6125
6126static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6127
6128#ifdef CONFIG_NUMA
6129
6130static int sched_domains_numa_levels;
6131static int *sched_domains_numa_distance;
6132static struct cpumask ***sched_domains_numa_masks;
6133static int sched_domains_curr_level;
6134
6135static inline int sd_local_flags(int level)
6136{
6137        if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6138                return 0;
6139
6140        return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6141}
6142
6143static struct sched_domain *
6144sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6145{
6146        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6147        int level = tl->numa_level;
6148        int sd_weight = cpumask_weight(
6149                        sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6150
6151        *sd = (struct sched_domain){
6152                .min_interval           = sd_weight,
6153                .max_interval           = 2*sd_weight,
6154                .busy_factor            = 32,
6155                .imbalance_pct          = 125,
6156                .cache_nice_tries       = 2,
6157                .busy_idx               = 3,
6158                .idle_idx               = 2,
6159                .newidle_idx            = 0,
6160                .wake_idx               = 0,
6161                .forkexec_idx           = 0,
6162
6163                .flags                  = 1*SD_LOAD_BALANCE
6164                                        | 1*SD_BALANCE_NEWIDLE
6165                                        | 0*SD_BALANCE_EXEC
6166                                        | 0*SD_BALANCE_FORK
6167                                        | 0*SD_BALANCE_WAKE
6168                                        | 0*SD_WAKE_AFFINE
6169                                        | 0*SD_SHARE_CPUPOWER
6170                                        | 0*SD_SHARE_PKG_RESOURCES
6171                                        | 1*SD_SERIALIZE
6172                                        | 0*SD_PREFER_SIBLING
6173                                        | sd_local_flags(level)
6174                                        ,
6175                .last_balance           = jiffies,
6176                .balance_interval       = sd_weight,
6177        };
6178        SD_INIT_NAME(sd, NUMA);
6179        sd->private = &tl->data;
6180
6181        /*
6182         * Ugly hack to pass state to sd_numa_mask()...
6183         */
6184        sched_domains_curr_level = tl->numa_level;
6185
6186        return sd;
6187}
6188
6189static const struct cpumask *sd_numa_mask(int cpu)
6190{
6191        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6192}
6193
6194static void sched_numa_warn(const char *str)
6195{
6196        static int done = false;
6197        int i,j;
6198
6199        if (done)
6200                return;
6201
6202        done = true;
6203
6204        printk(KERN_WARNING "ERROR: %s\n\n", str);
6205
6206        for (i = 0; i < nr_node_ids; i++) {
6207                printk(KERN_WARNING "  ");
6208                for (j = 0; j < nr_node_ids; j++)
6209                        printk(KERN_CONT "%02d ", node_distance(i,j));
6210                printk(KERN_CONT "\n");
6211        }
6212        printk(KERN_WARNING "\n");
6213}
6214
6215static bool find_numa_distance(int distance)
6216{
6217        int i;
6218
6219        if (distance == node_distance(0, 0))
6220                return true;
6221
6222        for (i = 0; i < sched_domains_numa_levels; i++) {
6223                if (sched_domains_numa_distance[i] == distance)
6224                        return true;
6225        }
6226
6227        return false;
6228}
6229
6230static void sched_init_numa(void)
6231{
6232        int next_distance, curr_distance = node_distance(0, 0);
6233        struct sched_domain_topology_level *tl;
6234        int level = 0;
6235        int i, j, k;
6236
6237        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6238        if (!sched_domains_numa_distance)
6239                return;
6240
6241        /*
6242         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6243         * unique distances in the node_distance() table.
6244         *
6245         * Assumes node_distance(0,j) includes all distances in
6246         * node_distance(i,j) in order to avoid cubic time.
6247         */
6248        next_distance = curr_distance;
6249        for (i = 0; i < nr_node_ids; i++) {
6250                for (j = 0; j < nr_node_ids; j++) {
6251                        for (k = 0; k < nr_node_ids; k++) {
6252                                int distance = node_distance(i, k);
6253
6254                                if (distance > curr_distance &&
6255                                    (distance < next_distance ||
6256                                     next_distance == curr_distance))
6257                                        next_distance = distance;
6258
6259                                /*
6260                                 * While not a strong assumption it would be nice to know
6261                                 * about cases where if node A is connected to B, B is not
6262                                 * equally connected to A.
6263                                 */
6264                                if (sched_debug() && node_distance(k, i) != distance)
6265                                        sched_numa_warn("Node-distance not symmetric");
6266
6267                                if (sched_debug() && i && !find_numa_distance(distance))
6268                                        sched_numa_warn("Node-0 not representative");
6269                        }
6270                        if (next_distance != curr_distance) {
6271                                sched_domains_numa_distance[level++] = next_distance;
6272                                sched_domains_numa_levels = level;
6273                                curr_distance = next_distance;
6274                        } else break;
6275                }
6276
6277                /*
6278                 * In case of sched_debug() we verify the above assumption.
6279                 */
6280                if (!sched_debug())
6281                        break;
6282        }
6283        /*
6284         * 'level' contains the number of unique distances, excluding the
6285         * identity distance node_distance(i,i).
6286         *
6287         * The sched_domains_numa_distance[] array includes the actual distance
6288         * numbers.
6289         */
6290
6291        /*
6292         * Here, we should temporarily reset sched_domains_numa_levels to 0.
6293         * If it fails to allocate memory for array sched_domains_numa_masks[][],
6294         * the array will contain less then 'level' members. This could be
6295         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6296         * in other functions.
6297         *
6298         * We reset it to 'level' at the end of this function.
6299         */
6300        sched_domains_numa_levels = 0;
6301
6302        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6303        if (!sched_domains_numa_masks)
6304                return;
6305
6306        /*
6307         * Now for each level, construct a mask per node which contains all
6308         * cpus of nodes that are that many hops away from us.
6309         */
6310        for (i = 0; i < level; i++) {
6311                sched_domains_numa_masks[i] =
6312                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6313                if (!sched_domains_numa_masks[i])
6314                        return;
6315
6316                for (j = 0; j < nr_node_ids; j++) {
6317                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6318                        if (!mask)
6319                                return;
6320
6321                        sched_domains_numa_masks[i][j] = mask;
6322
6323                        for (k = 0; k < nr_node_ids; k++) {
6324                                if (node_distance(j, k) > sched_domains_numa_distance[i])
6325                                        continue;
6326
6327                                cpumask_or(mask, mask, cpumask_of_node(k));
6328                        }
6329                }
6330        }
6331
6332        tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6333                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6334        if (!tl)
6335                return;
6336
6337        /*
6338         * Copy the default topology bits..
6339         */
6340        for (i = 0; default_topology[i].init; i++)
6341                tl[i] = default_topology[i];
6342
6343        /*
6344         * .. and append 'j' levels of NUMA goodness.
6345         */
6346        for (j = 0; j < level; i++, j++) {
6347                tl[i] = (struct sched_domain_topology_level){
6348                        .init = sd_numa_init,
6349                        .mask = sd_numa_mask,
6350                        .flags = SDTL_OVERLAP,
6351                        .numa_level = j,
6352                };
6353        }
6354
6355        sched_domain_topology = tl;
6356
6357        sched_domains_numa_levels = level;
6358}
6359
6360static void sched_domains_numa_masks_set(int cpu)
6361{
6362        int i, j;
6363        int node = cpu_to_node(cpu);
6364
6365        for (i = 0; i < sched_domains_numa_levels; i++) {
6366                for (j = 0; j < nr_node_ids; j++) {
6367                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
6368                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6369                }
6370        }
6371}
6372
6373static void sched_domains_numa_masks_clear(int cpu)
6374{
6375        int i, j;
6376        for (i = 0; i < sched_domains_numa_levels; i++) {
6377                for (j = 0; j < nr_node_ids; j++)
6378                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6379        }
6380}
6381
6382/*
6383 * Update sched_domains_numa_masks[level][node] array when new cpus
6384 * are onlined.
6385 */
6386static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6387                                           unsigned long action,
6388                                           void *hcpu)
6389{
6390        int cpu = (long)hcpu;
6391
6392        switch (action & ~CPU_TASKS_FROZEN) {
6393        case CPU_ONLINE:
6394                sched_domains_numa_masks_set(cpu);
6395                break;
6396
6397        case CPU_DEAD:
6398                sched_domains_numa_masks_clear(cpu);
6399                break;
6400
6401        default:
6402                return NOTIFY_DONE;
6403        }
6404
6405        return NOTIFY_OK;
6406}
6407#else
6408static inline void sched_init_numa(void)
6409{
6410}
6411
6412static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6413                                           unsigned long action,
6414                                           void *hcpu)
6415{
6416        return 0;
6417}
6418#endif /* CONFIG_NUMA */
6419
6420static int __sdt_alloc(const struct cpumask *cpu_map)
6421{
6422        struct sched_domain_topology_level *tl;
6423        int j;
6424
6425        for (tl = sched_domain_topology; tl->init; tl++) {
6426                struct sd_data *sdd = &tl->data;
6427
6428                sdd->sd = alloc_percpu(struct sched_domain *);
6429                if (!sdd->sd)
6430                        return -ENOMEM;
6431
6432                sdd->sg = alloc_percpu(struct sched_group *);
6433                if (!sdd->sg)
6434                        return -ENOMEM;
6435
6436                sdd->sgp = alloc_percpu(struct sched_group_power *);
6437                if (!sdd->sgp)
6438                        return -ENOMEM;
6439
6440                for_each_cpu(j, cpu_map) {
6441                        struct sched_domain *sd;
6442                        struct sched_group *sg;
6443                        struct sched_group_power *sgp;
6444
6445                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6446                                        GFP_KERNEL, cpu_to_node(j));
6447                        if (!sd)
6448                                return -ENOMEM;
6449
6450                        *per_cpu_ptr(sdd->sd, j) = sd;
6451
6452                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6453                                        GFP_KERNEL, cpu_to_node(j));
6454                        if (!sg)
6455                                return -ENOMEM;
6456
6457                        sg->next = sg;
6458
6459                        *per_cpu_ptr(sdd->sg, j) = sg;
6460
6461                        sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6462                                        GFP_KERNEL, cpu_to_node(j));
6463                        if (!sgp)
6464                                return -ENOMEM;
6465
6466                        *per_cpu_ptr(sdd->sgp, j) = sgp;
6467                }
6468        }
6469
6470        return 0;
6471}
6472
6473static void __sdt_free(const struct cpumask *cpu_map)
6474{
6475        struct sched_domain_topology_level *tl;
6476        int j;
6477
6478        for (tl = sched_domain_topology; tl->init; tl++) {
6479                struct sd_data *sdd = &tl->data;
6480
6481                for_each_cpu(j, cpu_map) {
6482                        struct sched_domain *sd;
6483
6484                        if (sdd->sd) {
6485                                sd = *per_cpu_ptr(sdd->sd, j);
6486                                if (sd && (sd->flags & SD_OVERLAP))
6487                                        free_sched_groups(sd->groups, 0);
6488                                kfree(*per_cpu_ptr(sdd->sd, j));
6489                        }
6490
6491                        if (sdd->sg)
6492                                kfree(*per_cpu_ptr(sdd->sg, j));
6493                        if (sdd->sgp)
6494                                kfree(*per_cpu_ptr(sdd->sgp, j));
6495                }
6496                free_percpu(sdd->sd);
6497                sdd->sd = NULL;
6498                free_percpu(sdd->sg);
6499                sdd->sg = NULL;
6500                free_percpu(sdd->sgp);
6501                sdd->sgp = NULL;
6502        }
6503}
6504
6505struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6506                struct s_data *d, const struct cpumask *cpu_map,
6507                struct sched_domain_attr *attr, struct sched_domain *child,
6508                int cpu)
6509{
6510        struct sched_domain *sd = tl->init(tl, cpu);
6511        if (!sd)
6512                return child;
6513
6514        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6515        if (child) {
6516                sd->level = child->level + 1;
6517                sched_domain_level_max = max(sched_domain_level_max, sd->level);
6518                child->parent = sd;
6519        }
6520        sd->child = child;
6521        set_domain_attribute(sd, attr);
6522
6523        return sd;
6524}
6525
6526/*
6527 * Build sched domains for a given set of cpus and attach the sched domains
6528 * to the individual cpus
6529 */
6530static int build_sched_domains(const struct cpumask *cpu_map,
6531                               struct sched_domain_attr *attr)
6532{
6533        enum s_alloc alloc_state = sa_none;
6534        struct sched_domain *sd;
6535        struct s_data d;
6536        int i, ret = -ENOMEM;
6537
6538        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6539        if (alloc_state != sa_rootdomain)
6540                goto error;
6541
6542        /* Set up domains for cpus specified by the cpu_map. */
6543        for_each_cpu(i, cpu_map) {
6544                struct sched_domain_topology_level *tl;
6545
6546                sd = NULL;
6547                for (tl = sched_domain_topology; tl->init; tl++) {
6548                        sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6549                        if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6550                                sd->flags |= SD_OVERLAP;
6551                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6552                                break;
6553                }
6554
6555                while (sd->child)
6556                        sd = sd->child;
6557
6558                *per_cpu_ptr(d.sd, i) = sd;
6559        }
6560
6561        /* Build the groups for the domains */
6562        for_each_cpu(i, cpu_map) {
6563                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6564                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
6565                        if (sd->flags & SD_OVERLAP) {
6566                                if (build_overlap_sched_groups(sd, i))
6567                                        goto error;
6568                        } else {
6569                                if (build_sched_groups(sd, i))
6570                                        goto error;
6571                        }
6572                }
6573        }
6574
6575        /* Calculate CPU power for physical packages and nodes */
6576        for (i = nr_cpumask_bits-1; i >= 0; i--) {
6577                if (!cpumask_test_cpu(i, cpu_map))
6578                        continue;
6579
6580                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6581                        claim_allocations(i, sd);
6582                        init_sched_groups_power(i, sd);
6583                }
6584        }
6585
6586        /* Attach the domains */
6587        rcu_read_lock();
6588        for_each_cpu(i, cpu_map) {
6589                sd = *per_cpu_ptr(d.sd, i);
6590                cpu_attach_domain(sd, d.rd, i);
6591        }
6592        rcu_read_unlock();
6593
6594        ret = 0;
6595error:
6596        __free_domain_allocs(&d, alloc_state, cpu_map);
6597        return ret;
6598}
6599
6600static cpumask_var_t *doms_cur; /* current sched domains */
6601static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6602static struct sched_domain_attr *dattr_cur;
6603                                /* attribues of custom domains in 'doms_cur' */
6604
6605/*
6606 * Special case: If a kmalloc of a doms_cur partition (array of
6607 * cpumask) fails, then fallback to a single sched domain,
6608 * as determined by the single cpumask fallback_doms.
6609 */
6610static cpumask_var_t fallback_doms;
6611
6612/*
6613 * arch_update_cpu_topology lets virtualized architectures update the
6614 * cpu core maps. It is supposed to return 1 if the topology changed
6615 * or 0 if it stayed the same.
6616 */
6617int __attribute__((weak)) arch_update_cpu_topology(void)
6618{
6619        return 0;
6620}
6621
6622cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6623{
6624        int i;
6625        cpumask_var_t *doms;
6626
6627        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6628        if (!doms)
6629                return NULL;
6630        for (i = 0; i < ndoms; i++) {
6631                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6632                        free_sched_domains(doms, i);
6633                        return NULL;
6634                }
6635        }
6636        return doms;
6637}
6638
6639void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6640{
6641        unsigned int i;
6642        for (i = 0; i < ndoms; i++)
6643                free_cpumask_var(doms[i]);
6644        kfree(doms);
6645}
6646
6647/*
6648 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6649 * For now this just excludes isolated cpus, but could be used to
6650 * exclude other special cases in the future.
6651 */
6652static int init_sched_domains(const struct cpumask *cpu_map)
6653{
6654        int err;
6655
6656        arch_update_cpu_topology();
6657        ndoms_cur = 1;
6658        doms_cur = alloc_sched_domains(ndoms_cur);
6659        if (!doms_cur)
6660                doms_cur = &fallback_doms;
6661        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6662        err = build_sched_domains(doms_cur[0], NULL);
6663        register_sched_domain_sysctl();
6664
6665        return err;
6666}
6667
6668/*
6669 * Detach sched domains from a group of cpus specified in cpu_map
6670 * These cpus will now be attached to the NULL domain
6671 */
6672static void detach_destroy_domains(const struct cpumask *cpu_map)
6673{
6674        int i;
6675
6676        rcu_read_lock();
6677        for_each_cpu(i, cpu_map)
6678                cpu_attach_domain(NULL, &def_root_domain, i);
6679        rcu_read_unlock();
6680}
6681
6682/* handle null as "default" */
6683static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6684                        struct sched_domain_attr *new, int idx_new)
6685{
6686        struct sched_domain_attr tmp;
6687
6688        /* fast path */
6689        if (!new && !cur)
6690                return 1;
6691
6692        tmp = SD_ATTR_INIT;
6693        return !memcmp(cur ? (cur + idx_cur) : &tmp,
6694                        new ? (new + idx_new) : &tmp,
6695                        sizeof(struct sched_domain_attr));
6696}
6697
6698/*
6699 * Partition sched domains as specified by the 'ndoms_new'
6700 * cpumasks in the array doms_new[] of cpumasks. This compares
6701 * doms_new[] to the current sched domain partitioning, doms_cur[].
6702 * It destroys each deleted domain and builds each new domain.
6703 *
6704 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6705 * The masks don't intersect (don't overlap.) We should setup one
6706 * sched domain for each mask. CPUs not in any of the cpumasks will
6707 * not be load balanced. If the same cpumask appears both in the
6708 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6709 * it as it is.
6710 *
6711 * The passed in 'doms_new' should be allocated using
6712 * alloc_sched_domains.  This routine takes ownership of it and will
6713 * free_sched_domains it when done with it. If the caller failed the
6714 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6715 * and partition_sched_domains() will fallback to the single partition
6716 * 'fallback_doms', it also forces the domains to be rebuilt.
6717 *
6718 * If doms_new == NULL it will be replaced with cpu_online_mask.
6719 * ndoms_new == 0 is a special case for destroying existing domains,
6720 * and it will not create the default domain.
6721 *
6722 * Call with hotplug lock held
6723 */
6724void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6725                             struct sched_domain_attr *dattr_new)
6726{
6727        int i, j, n;
6728        int new_topology;
6729
6730        mutex_lock(&sched_domains_mutex);
6731
6732        /* always unregister in case we don't destroy any domains */
6733        unregister_sched_domain_sysctl();
6734
6735        /* Let architecture update cpu core mappings. */
6736        new_topology = arch_update_cpu_topology();
6737
6738        n = doms_new ? ndoms_new : 0;
6739
6740        /* Destroy deleted domains */
6741        for (i = 0; i < ndoms_cur; i++) {
6742                for (j = 0; j < n && !new_topology; j++) {
6743                        if (cpumask_equal(doms_cur[i], doms_new[j])
6744                            && dattrs_equal(dattr_cur, i, dattr_new, j))
6745                                goto match1;
6746                }
6747                /* no match - a current sched domain not in new doms_new[] */
6748                detach_destroy_domains(doms_cur[i]);
6749match1:
6750                ;
6751        }
6752
6753        if (doms_new == NULL) {
6754                ndoms_cur = 0;
6755                doms_new = &fallback_doms;
6756                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6757                WARN_ON_ONCE(dattr_new);
6758        }
6759
6760        /* Build new domains */
6761        for (i = 0; i < ndoms_new; i++) {
6762                for (j = 0; j < ndoms_cur && !new_topology; j++) {
6763                        if (cpumask_equal(doms_new[i], doms_cur[j])
6764                            && dattrs_equal(dattr_new, i, dattr_cur, j))
6765                                goto match2;
6766                }
6767                /* no match - add a new doms_new */
6768                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6769match2:
6770                ;
6771        }
6772
6773        /* Remember the new sched domains */
6774        if (doms_cur != &fallback_doms)
6775                free_sched_domains(doms_cur, ndoms_cur);
6776        kfree(dattr_cur);       /* kfree(NULL) is safe */
6777        doms_cur = doms_new;
6778        dattr_cur = dattr_new;
6779        ndoms_cur = ndoms_new;
6780
6781        register_sched_domain_sysctl();
6782
6783        mutex_unlock(&sched_domains_mutex);
6784}
6785
6786static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
6787
6788/*
6789 * Update cpusets according to cpu_active mask.  If cpusets are
6790 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6791 * around partition_sched_domains().
6792 *
6793 * If we come here as part of a suspend/resume, don't touch cpusets because we
6794 * want to restore it back to its original state upon resume anyway.
6795 */
6796static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6797                             void *hcpu)
6798{
6799        switch (action) {
6800        case CPU_ONLINE_FROZEN:
6801        case CPU_DOWN_FAILED_FROZEN:
6802
6803                /*
6804                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6805                 * resume sequence. As long as this is not the last online
6806                 * operation in the resume sequence, just build a single sched
6807                 * domain, ignoring cpusets.
6808                 */
6809                num_cpus_frozen--;
6810                if (likely(num_cpus_frozen)) {
6811                        partition_sched_domains(1, NULL, NULL);
6812                        break;
6813                }
6814
6815                /*
6816                 * This is the last CPU online operation. So fall through and
6817                 * restore the original sched domains by considering the
6818                 * cpuset configurations.
6819                 */
6820
6821        case CPU_ONLINE:
6822        case CPU_DOWN_FAILED:
6823                cpuset_update_active_cpus(true);
6824                break;
6825        default:
6826                return NOTIFY_DONE;
6827        }
6828        return NOTIFY_OK;
6829}
6830
6831static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6832                               void *hcpu)
6833{
6834        switch (action) {
6835        case CPU_DOWN_PREPARE:
6836                cpuset_update_active_cpus(false);
6837                break;
6838        case CPU_DOWN_PREPARE_FROZEN:
6839                num_cpus_frozen++;
6840                partition_sched_domains(1, NULL, NULL);
6841                break;
6842        default:
6843                return NOTIFY_DONE;
6844        }
6845        return NOTIFY_OK;
6846}
6847
6848void __init sched_init_smp(void)
6849{
6850        cpumask_var_t non_isolated_cpus;
6851
6852        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6853        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6854
6855        sched_init_numa();
6856
6857        get_online_cpus();
6858        mutex_lock(&sched_domains_mutex);
6859        init_sched_domains(cpu_active_mask);
6860        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6861        if (cpumask_empty(non_isolated_cpus))
6862                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6863        mutex_unlock(&sched_domains_mutex);
6864        put_online_cpus();
6865
6866        hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6867        hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6868        hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6869
6870        /* RT runtime code needs to handle some hotplug events */
6871        hotcpu_notifier(update_runtime, 0);
6872
6873        init_hrtick();
6874
6875        /* Move init over to a non-isolated CPU */
6876        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6877                BUG();
6878        sched_init_granularity();
6879        free_cpumask_var(non_isolated_cpus);
6880
6881        init_sched_rt_class();
6882}
6883#else
6884void __init sched_init_smp(void)
6885{
6886        sched_init_granularity();
6887}
6888#endif /* CONFIG_SMP */
6889
6890const_debug unsigned int sysctl_timer_migration = 1;
6891
6892int in_sched_functions(unsigned long addr)
6893{
6894        return in_lock_functions(addr) ||
6895                (addr >= (unsigned long)__sched_text_start
6896                && addr < (unsigned long)__sched_text_end);
6897}
6898
6899#ifdef CONFIG_CGROUP_SCHED
6900/*
6901 * Default task group.
6902 * Every task in system belongs to this group at bootup.
6903 */
6904struct task_group root_task_group;
6905LIST_HEAD(task_groups);
6906#endif
6907
6908DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6909
6910void __init sched_init(void)
6911{
6912        int i, j;
6913        unsigned long alloc_size = 0, ptr;
6914
6915#ifdef CONFIG_FAIR_GROUP_SCHED
6916        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6917#endif
6918#ifdef CONFIG_RT_GROUP_SCHED
6919        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6920#endif
6921#ifdef CONFIG_CPUMASK_OFFSTACK
6922        alloc_size += num_possible_cpus() * cpumask_size();
6923#endif
6924        if (alloc_size) {
6925                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6926
6927#ifdef CONFIG_FAIR_GROUP_SCHED
6928                root_task_group.se = (struct sched_entity **)ptr;
6929                ptr += nr_cpu_ids * sizeof(void **);
6930
6931                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6932                ptr += nr_cpu_ids * sizeof(void **);
6933
6934#endif /* CONFIG_FAIR_GROUP_SCHED */
6935#ifdef CONFIG_RT_GROUP_SCHED
6936                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6937                ptr += nr_cpu_ids * sizeof(void **);
6938
6939                root_task_group.rt_rq = (struct rt_rq **)ptr;
6940                ptr += nr_cpu_ids * sizeof(void **);
6941
6942#endif /* CONFIG_RT_GROUP_SCHED */
6943#ifdef CONFIG_CPUMASK_OFFSTACK
6944                for_each_possible_cpu(i) {
6945                        per_cpu(load_balance_mask, i) = (void *)ptr;
6946                        ptr += cpumask_size();
6947                }
6948#endif /* CONFIG_CPUMASK_OFFSTACK */
6949        }
6950
6951#ifdef CONFIG_SMP
6952        init_defrootdomain();
6953#endif
6954
6955        init_rt_bandwidth(&def_rt_bandwidth,
6956                        global_rt_period(), global_rt_runtime());
6957
6958#ifdef CONFIG_RT_GROUP_SCHED
6959        init_rt_bandwidth(&root_task_group.rt_bandwidth,
6960                        global_rt_period(), global_rt_runtime());
6961#endif /* CONFIG_RT_GROUP_SCHED */
6962
6963#ifdef CONFIG_CGROUP_SCHED
6964        list_add(&root_task_group.list, &task_groups);
6965        INIT_LIST_HEAD(&root_task_group.children);
6966        INIT_LIST_HEAD(&root_task_group.siblings);
6967        autogroup_init(&init_task);
6968
6969#endif /* CONFIG_CGROUP_SCHED */
6970
6971        for_each_possible_cpu(i) {
6972                struct rq *rq;
6973
6974                rq = cpu_rq(i);
6975                raw_spin_lock_init(&rq->lock);
6976                rq->nr_running = 0;
6977                rq->calc_load_active = 0;
6978                rq->calc_load_update = jiffies + LOAD_FREQ;
6979                init_cfs_rq(&rq->cfs);
6980                init_rt_rq(&rq->rt, rq);
6981#ifdef CONFIG_FAIR_GROUP_SCHED
6982                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6983                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6984                /*
6985                 * How much cpu bandwidth does root_task_group get?
6986                 *
6987                 * In case of task-groups formed thr' the cgroup filesystem, it
6988                 * gets 100% of the cpu resources in the system. This overall
6989                 * system cpu resource is divided among the tasks of
6990                 * root_task_group and its child task-groups in a fair manner,
6991                 * based on each entity's (task or task-group's) weight
6992                 * (se->load.weight).
6993                 *
6994                 * In other words, if root_task_group has 10 tasks of weight
6995                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6996                 * then A0's share of the cpu resource is:
6997                 *
6998                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6999                 *
7000                 * We achieve this by letting root_task_group's tasks sit
7001                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7002                 */
7003                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7004                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7005#endif /* CONFIG_FAIR_GROUP_SCHED */
7006
7007                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7008#ifdef CONFIG_RT_GROUP_SCHED
7009                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7010                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7011#endif
7012
7013                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7014                        rq->cpu_load[j] = 0;
7015
7016                rq->last_load_update_tick = jiffies;
7017
7018#ifdef CONFIG_SMP
7019                rq->sd = NULL;
7020                rq->rd = NULL;
7021                rq->cpu_power = SCHED_POWER_SCALE;
7022                rq->post_schedule = 0;
7023                rq->active_balance = 0;
7024                rq->next_balance = jiffies;
7025                rq->push_cpu = 0;
7026                rq->cpu = i;
7027                rq->online = 0;
7028                rq->idle_stamp = 0;
7029                rq->avg_idle = 2*sysctl_sched_migration_cost;
7030
7031                INIT_LIST_HEAD(&rq->cfs_tasks);
7032
7033                rq_attach_root(rq, &def_root_domain);
7034#ifdef CONFIG_NO_HZ_COMMON
7035                rq->nohz_flags = 0;
7036#endif
7037#ifdef CONFIG_NO_HZ_FULL
7038                rq->last_sched_tick = 0;
7039#endif
7040#endif
7041                init_rq_hrtick(rq);
7042                atomic_set(&rq->nr_iowait, 0);
7043        }
7044
7045        set_load_weight(&init_task);
7046
7047#ifdef CONFIG_PREEMPT_NOTIFIERS
7048        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7049#endif
7050
7051#ifdef CONFIG_RT_MUTEXES
7052        plist_head_init(&init_task.pi_waiters);
7053#endif
7054
7055        /*
7056         * The boot idle thread does lazy MMU switching as well:
7057         */
7058        atomic_inc(&init_mm.mm_count);
7059        enter_lazy_tlb(&init_mm, current);
7060
7061        /*
7062         * Make us the idle thread. Technically, schedule() should not be
7063         * called from this thread, however somewhere below it might be,
7064         * but because we are the idle thread, we just pick up running again
7065         * when this runqueue becomes "idle".
7066         */
7067        init_idle(current, smp_processor_id());
7068
7069        calc_load_update = jiffies + LOAD_FREQ;
7070
7071        /*
7072         * During early bootup we pretend to be a normal task:
7073         */
7074        current->sched_class = &fair_sched_class;
7075
7076#ifdef CONFIG_SMP
7077        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7078        /* May be allocated at isolcpus cmdline parse time */
7079        if (cpu_isolated_map == NULL)
7080                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7081        idle_thread_set_boot_cpu();
7082#endif
7083        init_sched_fair_class();
7084
7085        scheduler_running = 1;
7086}
7087
7088#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7089static inline int preempt_count_equals(int preempt_offset)
7090{
7091        int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7092
7093        return (nested == preempt_offset);
7094}
7095
7096void __might_sleep(const char *file, int line, int preempt_offset)
7097{
7098        static unsigned long prev_jiffy;        /* ratelimiting */
7099
7100        rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7101        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7102            system_state != SYSTEM_RUNNING || oops_in_progress)
7103                return;
7104        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7105                return;
7106        prev_jiffy = jiffies;
7107
7108        printk(KERN_ERR
7109                "BUG: sleeping function called from invalid context at %s:%d\n",
7110                        file, line);
7111        printk(KERN_ERR
7112                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7113                        in_atomic(), irqs_disabled(),
7114                        current->pid, current->comm);
7115
7116        debug_show_held_locks(current);
7117        if (irqs_disabled())
7118                print_irqtrace_events(current);
7119        dump_stack();
7120}
7121EXPORT_SYMBOL(__might_sleep);
7122#endif
7123
7124#ifdef CONFIG_MAGIC_SYSRQ
7125static void normalize_task(struct rq *rq, struct task_struct *p)
7126{
7127        const struct sched_class *prev_class = p->sched_class;
7128        int old_prio = p->prio;
7129        int on_rq;
7130
7131        on_rq = p->on_rq;
7132        if (on_rq)
7133                dequeue_task(rq, p, 0);
7134        __setscheduler(rq, p, SCHED_NORMAL, 0);
7135        if (on_rq) {
7136                enqueue_task(rq, p, 0);
7137                resched_task(rq->curr);
7138        }
7139
7140        check_class_changed(rq, p, prev_class, old_prio);
7141}
7142
7143void normalize_rt_tasks(void)
7144{
7145        struct task_struct *g, *p;
7146        unsigned long flags;
7147        struct rq *rq;
7148
7149        read_lock_irqsave(&tasklist_lock, flags);
7150        do_each_thread(g, p) {
7151                /*
7152                 * Only normalize user tasks:
7153                 */
7154                if (!p->mm)
7155                        continue;
7156
7157                p->se.exec_start                = 0;
7158#ifdef CONFIG_SCHEDSTATS
7159                p->se.statistics.wait_start     = 0;
7160                p->se.statistics.sleep_start    = 0;
7161                p->se.statistics.block_start    = 0;
7162#endif
7163
7164                if (!rt_task(p)) {
7165                        /*
7166                         * Renice negative nice level userspace
7167                         * tasks back to 0:
7168                         */
7169                        if (TASK_NICE(p) < 0 && p->mm)
7170                                set_user_nice(p, 0);
7171                        continue;
7172                }
7173
7174                raw_spin_lock(&p->pi_lock);
7175                rq = __task_rq_lock(p);
7176
7177                normalize_task(rq, p);
7178
7179                __task_rq_unlock(rq);
7180                raw_spin_unlock(&p->pi_lock);
7181        } while_each_thread(g, p);
7182
7183        read_unlock_irqrestore(&tasklist_lock, flags);
7184}
7185
7186#endif /* CONFIG_MAGIC_SYSRQ */
7187
7188#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7189/*
7190 * These functions are only useful for the IA64 MCA handling, or kdb.
7191 *
7192 * They can only be called when the whole system has been
7193 * stopped - every CPU needs to be quiescent, and no scheduling
7194 * activity can take place. Using them for anything else would
7195 * be a serious bug, and as a result, they aren't even visible
7196 * under any other configuration.
7197 */
7198
7199/**
7200 * curr_task - return the current task for a given cpu.
7201 * @cpu: the processor in question.
7202 *
7203 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7204 */
7205struct task_struct *curr_task(int cpu)
7206{
7207        return cpu_curr(cpu);
7208}
7209
7210#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7211
7212#ifdef CONFIG_IA64
7213/**
7214 * set_curr_task - set the current task for a given cpu.
7215 * @cpu: the processor in question.
7216 * @p: the task pointer to set.
7217 *
7218 * Description: This function must only be used when non-maskable interrupts
7219 * are serviced on a separate stack. It allows the architecture to switch the
7220 * notion of the current task on a cpu in a non-blocking manner. This function
7221 * must be called with all CPU's synchronized, and interrupts disabled, the
7222 * and caller must save the original value of the current task (see
7223 * curr_task() above) and restore that value before reenabling interrupts and
7224 * re-starting the system.
7225 *
7226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7227 */
7228void set_curr_task(int cpu, struct task_struct *p)
7229{
7230        cpu_curr(cpu) = p;
7231}
7232
7233#endif
7234
7235#ifdef CONFIG_CGROUP_SCHED
7236/* task_group_lock serializes the addition/removal of task groups */
7237static DEFINE_SPINLOCK(task_group_lock);
7238
7239static void free_sched_group(struct task_group *tg)
7240{
7241        free_fair_sched_group(tg);
7242        free_rt_sched_group(tg);
7243        autogroup_free(tg);
7244        kfree(tg);
7245}
7246
7247/* allocate runqueue etc for a new task group */
7248struct task_group *sched_create_group(struct task_group *parent)
7249{
7250        struct task_group *tg;
7251
7252        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7253        if (!tg)
7254                return ERR_PTR(-ENOMEM);
7255
7256        if (!alloc_fair_sched_group(tg, parent))
7257                goto err;
7258
7259        if (!alloc_rt_sched_group(tg, parent))
7260                goto err;
7261
7262        return tg;
7263
7264err:
7265        free_sched_group(tg);
7266        return ERR_PTR(-ENOMEM);
7267}
7268
7269void sched_online_group(struct task_group *tg, struct task_group *parent)
7270{
7271        unsigned long flags;
7272
7273        spin_lock_irqsave(&task_group_lock, flags);
7274        list_add_rcu(&tg->list, &task_groups);
7275
7276        WARN_ON(!parent); /* root should already exist */
7277
7278        tg->parent = parent;
7279        INIT_LIST_HEAD(&tg->children);
7280        list_add_rcu(&tg->siblings, &parent->children);
7281        spin_unlock_irqrestore(&task_group_lock, flags);
7282}
7283
7284/* rcu callback to free various structures associated with a task group */
7285static void free_sched_group_rcu(struct rcu_head *rhp)
7286{
7287        /* now it should be safe to free those cfs_rqs */
7288        free_sched_group(container_of(rhp, struct task_group, rcu));
7289}
7290
7291/* Destroy runqueue etc associated with a task group */
7292void sched_destroy_group(struct task_group *tg)
7293{
7294        /* wait for possible concurrent references to cfs_rqs complete */
7295        call_rcu(&tg->rcu, free_sched_group_rcu);
7296}
7297
7298void sched_offline_group(struct task_group *tg)
7299{
7300        unsigned long flags;
7301        int i;
7302
7303        /* end participation in shares distribution */
7304        for_each_possible_cpu(i)
7305                unregister_fair_sched_group(tg, i);
7306
7307        spin_lock_irqsave(&task_group_lock, flags);
7308        list_del_rcu(&tg->list);
7309        list_del_rcu(&tg->siblings);
7310        spin_unlock_irqrestore(&task_group_lock, flags);
7311}
7312
7313/* change task's runqueue when it moves between groups.
7314 *      The caller of this function should have put the task in its new group
7315 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7316 *      reflect its new group.
7317 */
7318void sched_move_task(struct task_struct *tsk)
7319{
7320        struct task_group *tg;
7321        int on_rq, running;
7322        unsigned long flags;
7323        struct rq *rq;
7324
7325        rq = task_rq_lock(tsk, &flags);
7326
7327        running = task_current(rq, tsk);
7328        on_rq = tsk->on_rq;
7329
7330        if (on_rq)
7331                dequeue_task(rq, tsk, 0);
7332        if (unlikely(running))
7333                tsk->sched_class->put_prev_task(rq, tsk);
7334
7335        tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7336                                lockdep_is_held(&tsk->sighand->siglock)),
7337                          struct task_group, css);
7338        tg = autogroup_task_group(tsk, tg);
7339        tsk->sched_task_group = tg;
7340
7341#ifdef CONFIG_FAIR_GROUP_SCHED
7342        if (tsk->sched_class->task_move_group)
7343                tsk->sched_class->task_move_group(tsk, on_rq);
7344        else
7345#endif
7346                set_task_rq(tsk, task_cpu(tsk));
7347
7348        if (unlikely(running))
7349                tsk->sched_class->set_curr_task(rq);
7350        if (on_rq)
7351                enqueue_task(rq, tsk, 0);
7352
7353        task_rq_unlock(rq, tsk, &flags);
7354}
7355#endif /* CONFIG_CGROUP_SCHED */
7356
7357#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7358static unsigned long to_ratio(u64 period, u64 runtime)
7359{
7360        if (runtime == RUNTIME_INF)
7361                return 1ULL << 20;
7362
7363        return div64_u64(runtime << 20, period);
7364}
7365#endif
7366
7367#ifdef CONFIG_RT_GROUP_SCHED
7368/*
7369 * Ensure that the real time constraints are schedulable.
7370 */
7371static DEFINE_MUTEX(rt_constraints_mutex);
7372
7373/* Must be called with tasklist_lock held */
7374static inline int tg_has_rt_tasks(struct task_group *tg)
7375{
7376        struct task_struct *g, *p;
7377
7378        do_each_thread(g, p) {
7379                if (rt_task(p) && task_rq(p)->rt.tg == tg)
7380                        return 1;
7381        } while_each_thread(g, p);
7382
7383        return 0;
7384}
7385
7386struct rt_schedulable_data {
7387        struct task_group *tg;
7388        u64 rt_period;
7389        u64 rt_runtime;
7390};
7391
7392static int tg_rt_schedulable(struct task_group *tg, void *data)
7393{
7394        struct rt_schedulable_data *d = data;
7395        struct task_group *child;
7396        unsigned long total, sum = 0;
7397        u64 period, runtime;
7398
7399        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7400        runtime = tg->rt_bandwidth.rt_runtime;
7401
7402        if (tg == d->tg) {
7403                period = d->rt_period;
7404                runtime = d->rt_runtime;
7405        }
7406
7407        /*
7408         * Cannot have more runtime than the period.
7409         */
7410        if (runtime > period && runtime != RUNTIME_INF)
7411                return -EINVAL;
7412
7413        /*
7414         * Ensure we don't starve existing RT tasks.
7415         */
7416        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7417                return -EBUSY;
7418
7419        total = to_ratio(period, runtime);
7420
7421        /*
7422         * Nobody can have more than the global setting allows.
7423         */
7424        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7425                return -EINVAL;
7426
7427        /*
7428         * The sum of our children's runtime should not exceed our own.
7429         */
7430        list_for_each_entry_rcu(child, &tg->children, siblings) {
7431                period = ktime_to_ns(child->rt_bandwidth.rt_period);
7432                runtime = child->rt_bandwidth.rt_runtime;
7433
7434                if (child == d->tg) {
7435                        period = d->rt_period;
7436                        runtime = d->rt_runtime;
7437                }
7438
7439                sum += to_ratio(period, runtime);
7440        }
7441
7442        if (sum > total)
7443                return -EINVAL;
7444
7445        return 0;
7446}
7447
7448static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7449{
7450        int ret;
7451
7452        struct rt_schedulable_data data = {
7453                .tg = tg,
7454                .rt_period = period,
7455                .rt_runtime = runtime,
7456        };
7457
7458        rcu_read_lock();
7459        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7460        rcu_read_unlock();
7461
7462        return ret;
7463}
7464
7465static int tg_set_rt_bandwidth(struct task_group *tg,
7466                u64 rt_period, u64 rt_runtime)
7467{
7468        int i, err = 0;
7469
7470        mutex_lock(&rt_constraints_mutex);
7471        read_lock(&tasklist_lock);
7472        err = __rt_schedulable(tg, rt_period, rt_runtime);
7473        if (err)
7474                goto unlock;
7475
7476        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7477        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7478        tg->rt_bandwidth.rt_runtime = rt_runtime;
7479
7480        for_each_possible_cpu(i) {
7481                struct rt_rq *rt_rq = tg->rt_rq[i];
7482
7483                raw_spin_lock(&rt_rq->rt_runtime_lock);
7484                rt_rq->rt_runtime = rt_runtime;
7485                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7486        }
7487        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7488unlock:
7489        read_unlock(&tasklist_lock);
7490        mutex_unlock(&rt_constraints_mutex);
7491
7492        return err;
7493}
7494
7495static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7496{
7497        u64 rt_runtime, rt_period;
7498
7499        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7500        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7501        if (rt_runtime_us < 0)
7502                rt_runtime = RUNTIME_INF;
7503
7504        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7505}
7506
7507static long sched_group_rt_runtime(struct task_group *tg)
7508{
7509        u64 rt_runtime_us;
7510
7511        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7512                return -1;
7513
7514        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7515        do_div(rt_runtime_us, NSEC_PER_USEC);
7516        return rt_runtime_us;
7517}
7518
7519static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7520{
7521        u64 rt_runtime, rt_period;
7522
7523        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7524        rt_runtime = tg->rt_bandwidth.rt_runtime;
7525
7526        if (rt_period == 0)
7527                return -EINVAL;
7528
7529        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7530}
7531
7532static long sched_group_rt_period(struct task_group *tg)
7533{
7534        u64 rt_period_us;
7535
7536        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7537        do_div(rt_period_us, NSEC_PER_USEC);
7538        return rt_period_us;
7539}
7540
7541static int sched_rt_global_constraints(void)
7542{
7543        u64 runtime, period;
7544        int ret = 0;
7545
7546        if (sysctl_sched_rt_period <= 0)
7547                return -EINVAL;
7548
7549        runtime = global_rt_runtime();
7550        period = global_rt_period();
7551
7552        /*
7553         * Sanity check on the sysctl variables.
7554         */
7555        if (runtime > period && runtime != RUNTIME_INF)
7556                return -EINVAL;
7557
7558        mutex_lock(&rt_constraints_mutex);
7559        read_lock(&tasklist_lock);
7560        ret = __rt_schedulable(NULL, 0, 0);
7561        read_unlock(&tasklist_lock);
7562        mutex_unlock(&rt_constraints_mutex);
7563
7564        return ret;
7565}
7566
7567static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7568{
7569        /* Don't accept realtime tasks when there is no way for them to run */
7570        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7571                return 0;
7572
7573        return 1;
7574}
7575
7576#else /* !CONFIG_RT_GROUP_SCHED */
7577static int sched_rt_global_constraints(void)
7578{
7579        unsigned long flags;
7580        int i;
7581
7582        if (sysctl_sched_rt_period <= 0)
7583                return -EINVAL;
7584
7585        /*
7586         * There's always some RT tasks in the root group
7587         * -- migration, kstopmachine etc..
7588         */
7589        if (sysctl_sched_rt_runtime == 0)
7590                return -EBUSY;
7591
7592        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7593        for_each_possible_cpu(i) {
7594                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7595
7596                raw_spin_lock(&rt_rq->rt_runtime_lock);
7597                rt_rq->rt_runtime = global_rt_runtime();
7598                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7599        }
7600        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7601
7602        return 0;
7603}
7604#endif /* CONFIG_RT_GROUP_SCHED */
7605
7606int sched_rr_handler(struct ctl_table *table, int write,
7607                void __user *buffer, size_t *lenp,
7608                loff_t *ppos)
7609{
7610        int ret;
7611        static DEFINE_MUTEX(mutex);
7612
7613        mutex_lock(&mutex);
7614        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7615        /* make sure that internally we keep jiffies */
7616        /* also, writing zero resets timeslice to default */
7617        if (!ret && write) {
7618                sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7619                        RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7620        }
7621        mutex_unlock(&mutex);
7622        return ret;
7623}
7624
7625int sched_rt_handler(struct ctl_table *table, int write,
7626                void __user *buffer, size_t *lenp,
7627                loff_t *ppos)
7628{
7629        int ret;
7630        int old_period, old_runtime;
7631        static DEFINE_MUTEX(mutex);
7632
7633        mutex_lock(&mutex);
7634        old_period = sysctl_sched_rt_period;
7635        old_runtime = sysctl_sched_rt_runtime;
7636
7637        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7638
7639        if (!ret && write) {
7640                ret = sched_rt_global_constraints();
7641                if (ret) {
7642                        sysctl_sched_rt_period = old_period;
7643                        sysctl_sched_rt_runtime = old_runtime;
7644                } else {
7645                        def_rt_bandwidth.rt_runtime = global_rt_runtime();
7646                        def_rt_bandwidth.rt_period =
7647                                ns_to_ktime(global_rt_period());
7648                }
7649        }
7650        mutex_unlock(&mutex);
7651
7652        return ret;
7653}
7654
7655#ifdef CONFIG_CGROUP_SCHED
7656
7657/* return corresponding task_group object of a cgroup */
7658static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7659{
7660        return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7661                            struct task_group, css);
7662}
7663
7664static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7665{
7666        struct task_group *tg, *parent;
7667
7668        if (!cgrp->parent) {
7669                /* This is early initialization for the top cgroup */
7670                return &root_task_group.css;
7671        }
7672
7673        parent = cgroup_tg(cgrp->parent);
7674        tg = sched_create_group(parent);
7675        if (IS_ERR(tg))
7676                return ERR_PTR(-ENOMEM);
7677
7678        return &tg->css;
7679}
7680
7681static int cpu_cgroup_css_online(struct cgroup *cgrp)
7682{
7683        struct task_group *tg = cgroup_tg(cgrp);
7684        struct task_group *parent;
7685
7686        if (!cgrp->parent)
7687                return 0;
7688
7689        parent = cgroup_tg(cgrp->parent);
7690        sched_online_group(tg, parent);
7691        return 0;
7692}
7693
7694static void cpu_cgroup_css_free(struct cgroup *cgrp)
7695{
7696        struct task_group *tg = cgroup_tg(cgrp);
7697
7698        sched_destroy_group(tg);
7699}
7700
7701static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7702{
7703        struct task_group *tg = cgroup_tg(cgrp);
7704
7705        sched_offline_group(tg);
7706}
7707
7708static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7709                                 struct cgroup_taskset *tset)
7710{
7711        struct task_struct *task;
7712
7713        cgroup_taskset_for_each(task, cgrp, tset) {
7714#ifdef CONFIG_RT_GROUP_SCHED
7715                if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7716                        return -EINVAL;
7717#else
7718                /* We don't support RT-tasks being in separate groups */
7719                if (task->sched_class != &fair_sched_class)
7720                        return -EINVAL;
7721#endif
7722        }
7723        return 0;
7724}
7725
7726static void cpu_cgroup_attach(struct cgroup *cgrp,
7727                              struct cgroup_taskset *tset)
7728{
7729        struct task_struct *task;
7730
7731        cgroup_taskset_for_each(task, cgrp, tset)
7732                sched_move_task(task);
7733}
7734
7735static void
7736cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7737                struct task_struct *task)
7738{
7739        /*
7740         * cgroup_exit() is called in the copy_process() failure path.
7741         * Ignore this case since the task hasn't ran yet, this avoids
7742         * trying to poke a half freed task state from generic code.
7743         */
7744        if (!(task->flags & PF_EXITING))
7745                return;
7746
7747        sched_move_task(task);
7748}
7749
7750#ifdef CONFIG_FAIR_GROUP_SCHED
7751static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7752                                u64 shareval)
7753{
7754        return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7755}
7756
7757static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7758{
7759        struct task_group *tg = cgroup_tg(cgrp);
7760
7761        return (u64) scale_load_down(tg->shares);
7762}
7763
7764#ifdef CONFIG_CFS_BANDWIDTH
7765static DEFINE_MUTEX(cfs_constraints_mutex);
7766
7767const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7768const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7769
7770static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7771
7772static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7773{
7774        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7775        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7776
7777        if (tg == &root_task_group)
7778                return -EINVAL;
7779
7780        /*
7781         * Ensure we have at some amount of bandwidth every period.  This is
7782         * to prevent reaching a state of large arrears when throttled via
7783         * entity_tick() resulting in prolonged exit starvation.
7784         */
7785        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7786                return -EINVAL;
7787
7788        /*
7789         * Likewise, bound things on the otherside by preventing insane quota
7790         * periods.  This also allows us to normalize in computing quota
7791         * feasibility.
7792         */
7793        if (period > max_cfs_quota_period)
7794                return -EINVAL;
7795
7796        mutex_lock(&cfs_constraints_mutex);
7797        ret = __cfs_schedulable(tg, period, quota);
7798        if (ret)
7799                goto out_unlock;
7800
7801        runtime_enabled = quota != RUNTIME_INF;
7802        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7803        account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7804        raw_spin_lock_irq(&cfs_b->lock);
7805        cfs_b->period = ns_to_ktime(period);
7806        cfs_b->quota = quota;
7807
7808        __refill_cfs_bandwidth_runtime(cfs_b);
7809        /* restart the period timer (if active) to handle new period expiry */
7810        if (runtime_enabled && cfs_b->timer_active) {
7811                /* force a reprogram */
7812                cfs_b->timer_active = 0;
7813                __start_cfs_bandwidth(cfs_b);
7814        }
7815        raw_spin_unlock_irq(&cfs_b->lock);
7816
7817        for_each_possible_cpu(i) {
7818                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7819                struct rq *rq = cfs_rq->rq;
7820
7821                raw_spin_lock_irq(&rq->lock);
7822                cfs_rq->runtime_enabled = runtime_enabled;
7823                cfs_rq->runtime_remaining = 0;
7824
7825                if (cfs_rq->throttled)
7826                        unthrottle_cfs_rq(cfs_rq);
7827                raw_spin_unlock_irq(&rq->lock);
7828        }
7829out_unlock:
7830        mutex_unlock(&cfs_constraints_mutex);
7831
7832        return ret;
7833}
7834
7835int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7836{
7837        u64 quota, period;
7838
7839        period = ktime_to_ns(tg->cfs_bandwidth.period);
7840        if (cfs_quota_us < 0)
7841                quota = RUNTIME_INF;
7842        else
7843                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7844
7845        return tg_set_cfs_bandwidth(tg, period, quota);
7846}
7847
7848long tg_get_cfs_quota(struct task_group *tg)
7849{
7850        u64 quota_us;
7851
7852        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7853                return -1;
7854
7855        quota_us = tg->cfs_bandwidth.quota;
7856        do_div(quota_us, NSEC_PER_USEC);
7857
7858        return quota_us;
7859}
7860
7861int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7862{
7863        u64 quota, period;
7864
7865        period = (u64)cfs_period_us * NSEC_PER_USEC;
7866        quota = tg->cfs_bandwidth.quota;
7867
7868        return tg_set_cfs_bandwidth(tg, period, quota);
7869}
7870
7871long tg_get_cfs_period(struct task_group *tg)
7872{
7873        u64 cfs_period_us;
7874
7875        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7876        do_div(cfs_period_us, NSEC_PER_USEC);
7877
7878        return cfs_period_us;
7879}
7880
7881static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7882{
7883        return tg_get_cfs_quota(cgroup_tg(cgrp));
7884}
7885
7886static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7887                                s64 cfs_quota_us)
7888{
7889        return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7890}
7891
7892static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7893{
7894        return tg_get_cfs_period(cgroup_tg(cgrp));
7895}
7896
7897static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7898                                u64 cfs_period_us)
7899{
7900        return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7901}
7902
7903struct cfs_schedulable_data {
7904        struct task_group *tg;
7905        u64 period, quota;
7906};
7907
7908/*
7909 * normalize group quota/period to be quota/max_period
7910 * note: units are usecs
7911 */
7912static u64 normalize_cfs_quota(struct task_group *tg,
7913                               struct cfs_schedulable_data *d)
7914{
7915        u64 quota, period;
7916
7917        if (tg == d->tg) {
7918                period = d->period;
7919                quota = d->quota;
7920        } else {
7921                period = tg_get_cfs_period(tg);
7922                quota = tg_get_cfs_quota(tg);
7923        }
7924
7925        /* note: these should typically be equivalent */
7926        if (quota == RUNTIME_INF || quota == -1)
7927                return RUNTIME_INF;
7928
7929        return to_ratio(period, quota);
7930}
7931
7932static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7933{
7934        struct cfs_schedulable_data *d = data;
7935        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7936        s64 quota = 0, parent_quota = -1;
7937
7938        if (!tg->parent) {
7939                quota = RUNTIME_INF;
7940        } else {
7941                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7942
7943                quota = normalize_cfs_quota(tg, d);
7944                parent_quota = parent_b->hierarchal_quota;
7945
7946                /*
7947                 * ensure max(child_quota) <= parent_quota, inherit when no
7948                 * limit is set
7949                 */
7950                if (quota == RUNTIME_INF)
7951                        quota = parent_quota;
7952                else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7953                        return -EINVAL;
7954        }
7955        cfs_b->hierarchal_quota = quota;
7956
7957        return 0;
7958}
7959
7960static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7961{
7962        int ret;
7963        struct cfs_schedulable_data data = {
7964                .tg = tg,
7965                .period = period,
7966                .quota = quota,
7967        };
7968
7969        if (quota != RUNTIME_INF) {
7970                do_div(data.period, NSEC_PER_USEC);
7971                do_div(data.quota, NSEC_PER_USEC);
7972        }
7973
7974        rcu_read_lock();
7975        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7976        rcu_read_unlock();
7977
7978        return ret;
7979}
7980
7981static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7982                struct cgroup_map_cb *cb)
7983{
7984        struct task_group *tg = cgroup_tg(cgrp);
7985        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7986
7987        cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7988        cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7989        cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7990
7991        return 0;
7992}
7993#endif /* CONFIG_CFS_BANDWIDTH */
7994#endif /* CONFIG_FAIR_GROUP_SCHED */
7995
7996#ifdef CONFIG_RT_GROUP_SCHED
7997static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7998                                s64 val)
7999{
8000        return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8001}
8002
8003static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8004{
8005        return sched_group_rt_runtime(cgroup_tg(cgrp));
8006}
8007
8008static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8009                u64 rt_period_us)
8010{
8011        return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8012}
8013
8014static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8015{
8016        return sched_group_rt_period(cgroup_tg(cgrp));
8017}
8018#endif /* CONFIG_RT_GROUP_SCHED */
8019
8020static struct cftype cpu_files[] = {
8021#ifdef CONFIG_FAIR_GROUP_SCHED
8022        {
8023                .name = "shares",
8024                .read_u64 = cpu_shares_read_u64,
8025                .write_u64 = cpu_shares_write_u64,
8026        },
8027#endif
8028#ifdef CONFIG_CFS_BANDWIDTH
8029        {
8030                .name = "cfs_quota_us",
8031                .read_s64 = cpu_cfs_quota_read_s64,
8032                .write_s64 = cpu_cfs_quota_write_s64,
8033        },
8034        {
8035                .name = "cfs_period_us",
8036                .read_u64 = cpu_cfs_period_read_u64,
8037                .write_u64 = cpu_cfs_period_write_u64,
8038        },
8039        {
8040                .name = "stat",
8041                .read_map = cpu_stats_show,
8042        },
8043#endif
8044#ifdef CONFIG_RT_GROUP_SCHED
8045        {
8046                .name = "rt_runtime_us",
8047                .read_s64 = cpu_rt_runtime_read,
8048                .write_s64 = cpu_rt_runtime_write,
8049        },
8050        {
8051                .name = "rt_period_us",
8052                .read_u64 = cpu_rt_period_read_uint,
8053                .write_u64 = cpu_rt_period_write_uint,
8054        },
8055#endif
8056        { }     /* terminate */
8057};
8058
8059struct cgroup_subsys cpu_cgroup_subsys = {
8060        .name           = "cpu",
8061        .css_alloc      = cpu_cgroup_css_alloc,
8062        .css_free       = cpu_cgroup_css_free,
8063        .css_online     = cpu_cgroup_css_online,
8064        .css_offline    = cpu_cgroup_css_offline,
8065        .can_attach     = cpu_cgroup_can_attach,
8066        .attach         = cpu_cgroup_attach,
8067        .exit           = cpu_cgroup_exit,
8068        .subsys_id      = cpu_cgroup_subsys_id,
8069        .base_cftypes   = cpu_files,
8070        .early_init     = 1,
8071};
8072
8073#endif  /* CONFIG_CGROUP_SCHED */
8074
8075void dump_cpu_task(int cpu)
8076{
8077        pr_info("Task dump for CPU %d:\n", cpu);
8078        sched_show_task(cpu_curr(cpu));
8079}
8080