linux/kernel/sched/fair.c
<<
>>
Prefs
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25#include <linux/cpumask.h>
  26#include <linux/slab.h>
  27#include <linux/profile.h>
  28#include <linux/interrupt.h>
  29#include <linux/mempolicy.h>
  30#include <linux/migrate.h>
  31#include <linux/task_work.h>
  32
  33#include <trace/events/sched.h>
  34
  35#include "sched.h"
  36
  37/*
  38 * Targeted preemption latency for CPU-bound tasks:
  39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  40 *
  41 * NOTE: this latency value is not the same as the concept of
  42 * 'timeslice length' - timeslices in CFS are of variable length
  43 * and have no persistent notion like in traditional, time-slice
  44 * based scheduling concepts.
  45 *
  46 * (to see the precise effective timeslice length of your workload,
  47 *  run vmstat and monitor the context-switches (cs) field)
  48 */
  49unsigned int sysctl_sched_latency = 6000000ULL;
  50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  51
  52/*
  53 * The initial- and re-scaling of tunables is configurable
  54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  55 *
  56 * Options are:
  57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  60 */
  61enum sched_tunable_scaling sysctl_sched_tunable_scaling
  62        = SCHED_TUNABLESCALING_LOG;
  63
  64/*
  65 * Minimal preemption granularity for CPU-bound tasks:
  66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  67 */
  68unsigned int sysctl_sched_min_granularity = 750000ULL;
  69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  70
  71/*
  72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  73 */
  74static unsigned int sched_nr_latency = 8;
  75
  76/*
  77 * After fork, child runs first. If set to 0 (default) then
  78 * parent will (try to) run first.
  79 */
  80unsigned int sysctl_sched_child_runs_first __read_mostly;
  81
  82/*
  83 * SCHED_OTHER wake-up granularity.
  84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  85 *
  86 * This option delays the preemption effects of decoupled workloads
  87 * and reduces their over-scheduling. Synchronous workloads will still
  88 * have immediate wakeup/sleep latencies.
  89 */
  90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  92
  93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  94
  95/*
  96 * The exponential sliding  window over which load is averaged for shares
  97 * distribution.
  98 * (default: 10msec)
  99 */
 100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 101
 102#ifdef CONFIG_CFS_BANDWIDTH
 103/*
 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 105 * each time a cfs_rq requests quota.
 106 *
 107 * Note: in the case that the slice exceeds the runtime remaining (either due
 108 * to consumption or the quota being specified to be smaller than the slice)
 109 * we will always only issue the remaining available time.
 110 *
 111 * default: 5 msec, units: microseconds
 112  */
 113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 114#endif
 115
 116/*
 117 * Increase the granularity value when there are more CPUs,
 118 * because with more CPUs the 'effective latency' as visible
 119 * to users decreases. But the relationship is not linear,
 120 * so pick a second-best guess by going with the log2 of the
 121 * number of CPUs.
 122 *
 123 * This idea comes from the SD scheduler of Con Kolivas:
 124 */
 125static int get_update_sysctl_factor(void)
 126{
 127        unsigned int cpus = min_t(int, num_online_cpus(), 8);
 128        unsigned int factor;
 129
 130        switch (sysctl_sched_tunable_scaling) {
 131        case SCHED_TUNABLESCALING_NONE:
 132                factor = 1;
 133                break;
 134        case SCHED_TUNABLESCALING_LINEAR:
 135                factor = cpus;
 136                break;
 137        case SCHED_TUNABLESCALING_LOG:
 138        default:
 139                factor = 1 + ilog2(cpus);
 140                break;
 141        }
 142
 143        return factor;
 144}
 145
 146static void update_sysctl(void)
 147{
 148        unsigned int factor = get_update_sysctl_factor();
 149
 150#define SET_SYSCTL(name) \
 151        (sysctl_##name = (factor) * normalized_sysctl_##name)
 152        SET_SYSCTL(sched_min_granularity);
 153        SET_SYSCTL(sched_latency);
 154        SET_SYSCTL(sched_wakeup_granularity);
 155#undef SET_SYSCTL
 156}
 157
 158void sched_init_granularity(void)
 159{
 160        update_sysctl();
 161}
 162
 163#if BITS_PER_LONG == 32
 164# define WMULT_CONST    (~0UL)
 165#else
 166# define WMULT_CONST    (1UL << 32)
 167#endif
 168
 169#define WMULT_SHIFT     32
 170
 171/*
 172 * Shift right and round:
 173 */
 174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
 175
 176/*
 177 * delta *= weight / lw
 178 */
 179static unsigned long
 180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
 181                struct load_weight *lw)
 182{
 183        u64 tmp;
 184
 185        /*
 186         * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
 187         * entities since MIN_SHARES = 2. Treat weight as 1 if less than
 188         * 2^SCHED_LOAD_RESOLUTION.
 189         */
 190        if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
 191                tmp = (u64)delta_exec * scale_load_down(weight);
 192        else
 193                tmp = (u64)delta_exec;
 194
 195        if (!lw->inv_weight) {
 196                unsigned long w = scale_load_down(lw->weight);
 197
 198                if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 199                        lw->inv_weight = 1;
 200                else if (unlikely(!w))
 201                        lw->inv_weight = WMULT_CONST;
 202                else
 203                        lw->inv_weight = WMULT_CONST / w;
 204        }
 205
 206        /*
 207         * Check whether we'd overflow the 64-bit multiplication:
 208         */
 209        if (unlikely(tmp > WMULT_CONST))
 210                tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
 211                        WMULT_SHIFT/2);
 212        else
 213                tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
 214
 215        return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
 216}
 217
 218
 219const struct sched_class fair_sched_class;
 220
 221/**************************************************************
 222 * CFS operations on generic schedulable entities:
 223 */
 224
 225#ifdef CONFIG_FAIR_GROUP_SCHED
 226
 227/* cpu runqueue to which this cfs_rq is attached */
 228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 229{
 230        return cfs_rq->rq;
 231}
 232
 233/* An entity is a task if it doesn't "own" a runqueue */
 234#define entity_is_task(se)      (!se->my_q)
 235
 236static inline struct task_struct *task_of(struct sched_entity *se)
 237{
 238#ifdef CONFIG_SCHED_DEBUG
 239        WARN_ON_ONCE(!entity_is_task(se));
 240#endif
 241        return container_of(se, struct task_struct, se);
 242}
 243
 244/* Walk up scheduling entities hierarchy */
 245#define for_each_sched_entity(se) \
 246                for (; se; se = se->parent)
 247
 248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 249{
 250        return p->se.cfs_rq;
 251}
 252
 253/* runqueue on which this entity is (to be) queued */
 254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 255{
 256        return se->cfs_rq;
 257}
 258
 259/* runqueue "owned" by this group */
 260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 261{
 262        return grp->my_q;
 263}
 264
 265static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 266                                       int force_update);
 267
 268static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 269{
 270        if (!cfs_rq->on_list) {
 271                /*
 272                 * Ensure we either appear before our parent (if already
 273                 * enqueued) or force our parent to appear after us when it is
 274                 * enqueued.  The fact that we always enqueue bottom-up
 275                 * reduces this to two cases.
 276                 */
 277                if (cfs_rq->tg->parent &&
 278                    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 279                        list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 280                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 281                } else {
 282                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 283                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 284                }
 285
 286                cfs_rq->on_list = 1;
 287                /* We should have no load, but we need to update last_decay. */
 288                update_cfs_rq_blocked_load(cfs_rq, 0);
 289        }
 290}
 291
 292static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 293{
 294        if (cfs_rq->on_list) {
 295                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 296                cfs_rq->on_list = 0;
 297        }
 298}
 299
 300/* Iterate thr' all leaf cfs_rq's on a runqueue */
 301#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 302        list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 303
 304/* Do the two (enqueued) entities belong to the same group ? */
 305static inline int
 306is_same_group(struct sched_entity *se, struct sched_entity *pse)
 307{
 308        if (se->cfs_rq == pse->cfs_rq)
 309                return 1;
 310
 311        return 0;
 312}
 313
 314static inline struct sched_entity *parent_entity(struct sched_entity *se)
 315{
 316        return se->parent;
 317}
 318
 319/* return depth at which a sched entity is present in the hierarchy */
 320static inline int depth_se(struct sched_entity *se)
 321{
 322        int depth = 0;
 323
 324        for_each_sched_entity(se)
 325                depth++;
 326
 327        return depth;
 328}
 329
 330static void
 331find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 332{
 333        int se_depth, pse_depth;
 334
 335        /*
 336         * preemption test can be made between sibling entities who are in the
 337         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 338         * both tasks until we find their ancestors who are siblings of common
 339         * parent.
 340         */
 341
 342        /* First walk up until both entities are at same depth */
 343        se_depth = depth_se(*se);
 344        pse_depth = depth_se(*pse);
 345
 346        while (se_depth > pse_depth) {
 347                se_depth--;
 348                *se = parent_entity(*se);
 349        }
 350
 351        while (pse_depth > se_depth) {
 352                pse_depth--;
 353                *pse = parent_entity(*pse);
 354        }
 355
 356        while (!is_same_group(*se, *pse)) {
 357                *se = parent_entity(*se);
 358                *pse = parent_entity(*pse);
 359        }
 360}
 361
 362#else   /* !CONFIG_FAIR_GROUP_SCHED */
 363
 364static inline struct task_struct *task_of(struct sched_entity *se)
 365{
 366        return container_of(se, struct task_struct, se);
 367}
 368
 369static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 370{
 371        return container_of(cfs_rq, struct rq, cfs);
 372}
 373
 374#define entity_is_task(se)      1
 375
 376#define for_each_sched_entity(se) \
 377                for (; se; se = NULL)
 378
 379static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 380{
 381        return &task_rq(p)->cfs;
 382}
 383
 384static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 385{
 386        struct task_struct *p = task_of(se);
 387        struct rq *rq = task_rq(p);
 388
 389        return &rq->cfs;
 390}
 391
 392/* runqueue "owned" by this group */
 393static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 394{
 395        return NULL;
 396}
 397
 398static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 399{
 400}
 401
 402static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 403{
 404}
 405
 406#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 407                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 408
 409static inline int
 410is_same_group(struct sched_entity *se, struct sched_entity *pse)
 411{
 412        return 1;
 413}
 414
 415static inline struct sched_entity *parent_entity(struct sched_entity *se)
 416{
 417        return NULL;
 418}
 419
 420static inline void
 421find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 422{
 423}
 424
 425#endif  /* CONFIG_FAIR_GROUP_SCHED */
 426
 427static __always_inline
 428void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
 429
 430/**************************************************************
 431 * Scheduling class tree data structure manipulation methods:
 432 */
 433
 434static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 435{
 436        s64 delta = (s64)(vruntime - max_vruntime);
 437        if (delta > 0)
 438                max_vruntime = vruntime;
 439
 440        return max_vruntime;
 441}
 442
 443static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 444{
 445        s64 delta = (s64)(vruntime - min_vruntime);
 446        if (delta < 0)
 447                min_vruntime = vruntime;
 448
 449        return min_vruntime;
 450}
 451
 452static inline int entity_before(struct sched_entity *a,
 453                                struct sched_entity *b)
 454{
 455        return (s64)(a->vruntime - b->vruntime) < 0;
 456}
 457
 458static void update_min_vruntime(struct cfs_rq *cfs_rq)
 459{
 460        u64 vruntime = cfs_rq->min_vruntime;
 461
 462        if (cfs_rq->curr)
 463                vruntime = cfs_rq->curr->vruntime;
 464
 465        if (cfs_rq->rb_leftmost) {
 466                struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 467                                                   struct sched_entity,
 468                                                   run_node);
 469
 470                if (!cfs_rq->curr)
 471                        vruntime = se->vruntime;
 472                else
 473                        vruntime = min_vruntime(vruntime, se->vruntime);
 474        }
 475
 476        /* ensure we never gain time by being placed backwards. */
 477        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 478#ifndef CONFIG_64BIT
 479        smp_wmb();
 480        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 481#endif
 482}
 483
 484/*
 485 * Enqueue an entity into the rb-tree:
 486 */
 487static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 488{
 489        struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 490        struct rb_node *parent = NULL;
 491        struct sched_entity *entry;
 492        int leftmost = 1;
 493
 494        /*
 495         * Find the right place in the rbtree:
 496         */
 497        while (*link) {
 498                parent = *link;
 499                entry = rb_entry(parent, struct sched_entity, run_node);
 500                /*
 501                 * We dont care about collisions. Nodes with
 502                 * the same key stay together.
 503                 */
 504                if (entity_before(se, entry)) {
 505                        link = &parent->rb_left;
 506                } else {
 507                        link = &parent->rb_right;
 508                        leftmost = 0;
 509                }
 510        }
 511
 512        /*
 513         * Maintain a cache of leftmost tree entries (it is frequently
 514         * used):
 515         */
 516        if (leftmost)
 517                cfs_rq->rb_leftmost = &se->run_node;
 518
 519        rb_link_node(&se->run_node, parent, link);
 520        rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 521}
 522
 523static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 524{
 525        if (cfs_rq->rb_leftmost == &se->run_node) {
 526                struct rb_node *next_node;
 527
 528                next_node = rb_next(&se->run_node);
 529                cfs_rq->rb_leftmost = next_node;
 530        }
 531
 532        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 533}
 534
 535struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 536{
 537        struct rb_node *left = cfs_rq->rb_leftmost;
 538
 539        if (!left)
 540                return NULL;
 541
 542        return rb_entry(left, struct sched_entity, run_node);
 543}
 544
 545static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 546{
 547        struct rb_node *next = rb_next(&se->run_node);
 548
 549        if (!next)
 550                return NULL;
 551
 552        return rb_entry(next, struct sched_entity, run_node);
 553}
 554
 555#ifdef CONFIG_SCHED_DEBUG
 556struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 557{
 558        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 559
 560        if (!last)
 561                return NULL;
 562
 563        return rb_entry(last, struct sched_entity, run_node);
 564}
 565
 566/**************************************************************
 567 * Scheduling class statistics methods:
 568 */
 569
 570int sched_proc_update_handler(struct ctl_table *table, int write,
 571                void __user *buffer, size_t *lenp,
 572                loff_t *ppos)
 573{
 574        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 575        int factor = get_update_sysctl_factor();
 576
 577        if (ret || !write)
 578                return ret;
 579
 580        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 581                                        sysctl_sched_min_granularity);
 582
 583#define WRT_SYSCTL(name) \
 584        (normalized_sysctl_##name = sysctl_##name / (factor))
 585        WRT_SYSCTL(sched_min_granularity);
 586        WRT_SYSCTL(sched_latency);
 587        WRT_SYSCTL(sched_wakeup_granularity);
 588#undef WRT_SYSCTL
 589
 590        return 0;
 591}
 592#endif
 593
 594/*
 595 * delta /= w
 596 */
 597static inline unsigned long
 598calc_delta_fair(unsigned long delta, struct sched_entity *se)
 599{
 600        if (unlikely(se->load.weight != NICE_0_LOAD))
 601                delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 602
 603        return delta;
 604}
 605
 606/*
 607 * The idea is to set a period in which each task runs once.
 608 *
 609 * When there are too many tasks (sched_nr_latency) we have to stretch
 610 * this period because otherwise the slices get too small.
 611 *
 612 * p = (nr <= nl) ? l : l*nr/nl
 613 */
 614static u64 __sched_period(unsigned long nr_running)
 615{
 616        u64 period = sysctl_sched_latency;
 617        unsigned long nr_latency = sched_nr_latency;
 618
 619        if (unlikely(nr_running > nr_latency)) {
 620                period = sysctl_sched_min_granularity;
 621                period *= nr_running;
 622        }
 623
 624        return period;
 625}
 626
 627/*
 628 * We calculate the wall-time slice from the period by taking a part
 629 * proportional to the weight.
 630 *
 631 * s = p*P[w/rw]
 632 */
 633static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 634{
 635        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 636
 637        for_each_sched_entity(se) {
 638                struct load_weight *load;
 639                struct load_weight lw;
 640
 641                cfs_rq = cfs_rq_of(se);
 642                load = &cfs_rq->load;
 643
 644                if (unlikely(!se->on_rq)) {
 645                        lw = cfs_rq->load;
 646
 647                        update_load_add(&lw, se->load.weight);
 648                        load = &lw;
 649                }
 650                slice = calc_delta_mine(slice, se->load.weight, load);
 651        }
 652        return slice;
 653}
 654
 655/*
 656 * We calculate the vruntime slice of a to-be-inserted task.
 657 *
 658 * vs = s/w
 659 */
 660static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 661{
 662        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 663}
 664
 665/*
 666 * Update the current task's runtime statistics. Skip current tasks that
 667 * are not in our scheduling class.
 668 */
 669static inline void
 670__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 671              unsigned long delta_exec)
 672{
 673        unsigned long delta_exec_weighted;
 674
 675        schedstat_set(curr->statistics.exec_max,
 676                      max((u64)delta_exec, curr->statistics.exec_max));
 677
 678        curr->sum_exec_runtime += delta_exec;
 679        schedstat_add(cfs_rq, exec_clock, delta_exec);
 680        delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 681
 682        curr->vruntime += delta_exec_weighted;
 683        update_min_vruntime(cfs_rq);
 684}
 685
 686static void update_curr(struct cfs_rq *cfs_rq)
 687{
 688        struct sched_entity *curr = cfs_rq->curr;
 689        u64 now = rq_of(cfs_rq)->clock_task;
 690        unsigned long delta_exec;
 691
 692        if (unlikely(!curr))
 693                return;
 694
 695        /*
 696         * Get the amount of time the current task was running
 697         * since the last time we changed load (this cannot
 698         * overflow on 32 bits):
 699         */
 700        delta_exec = (unsigned long)(now - curr->exec_start);
 701        if (!delta_exec)
 702                return;
 703
 704        __update_curr(cfs_rq, curr, delta_exec);
 705        curr->exec_start = now;
 706
 707        if (entity_is_task(curr)) {
 708                struct task_struct *curtask = task_of(curr);
 709
 710                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 711                cpuacct_charge(curtask, delta_exec);
 712                account_group_exec_runtime(curtask, delta_exec);
 713        }
 714
 715        account_cfs_rq_runtime(cfs_rq, delta_exec);
 716}
 717
 718static inline void
 719update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 720{
 721        schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
 722}
 723
 724/*
 725 * Task is being enqueued - update stats:
 726 */
 727static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 728{
 729        /*
 730         * Are we enqueueing a waiting task? (for current tasks
 731         * a dequeue/enqueue event is a NOP)
 732         */
 733        if (se != cfs_rq->curr)
 734                update_stats_wait_start(cfs_rq, se);
 735}
 736
 737static void
 738update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 739{
 740        schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 741                        rq_of(cfs_rq)->clock - se->statistics.wait_start));
 742        schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 743        schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 744                        rq_of(cfs_rq)->clock - se->statistics.wait_start);
 745#ifdef CONFIG_SCHEDSTATS
 746        if (entity_is_task(se)) {
 747                trace_sched_stat_wait(task_of(se),
 748                        rq_of(cfs_rq)->clock - se->statistics.wait_start);
 749        }
 750#endif
 751        schedstat_set(se->statistics.wait_start, 0);
 752}
 753
 754static inline void
 755update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 756{
 757        /*
 758         * Mark the end of the wait period if dequeueing a
 759         * waiting task:
 760         */
 761        if (se != cfs_rq->curr)
 762                update_stats_wait_end(cfs_rq, se);
 763}
 764
 765/*
 766 * We are picking a new current task - update its stats:
 767 */
 768static inline void
 769update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 770{
 771        /*
 772         * We are starting a new run period:
 773         */
 774        se->exec_start = rq_of(cfs_rq)->clock_task;
 775}
 776
 777/**************************************************
 778 * Scheduling class queueing methods:
 779 */
 780
 781#ifdef CONFIG_NUMA_BALANCING
 782/*
 783 * numa task sample period in ms
 784 */
 785unsigned int sysctl_numa_balancing_scan_period_min = 100;
 786unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
 787unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
 788
 789/* Portion of address space to scan in MB */
 790unsigned int sysctl_numa_balancing_scan_size = 256;
 791
 792/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 793unsigned int sysctl_numa_balancing_scan_delay = 1000;
 794
 795static void task_numa_placement(struct task_struct *p)
 796{
 797        int seq;
 798
 799        if (!p->mm)     /* for example, ksmd faulting in a user's mm */
 800                return;
 801        seq = ACCESS_ONCE(p->mm->numa_scan_seq);
 802        if (p->numa_scan_seq == seq)
 803                return;
 804        p->numa_scan_seq = seq;
 805
 806        /* FIXME: Scheduling placement policy hints go here */
 807}
 808
 809/*
 810 * Got a PROT_NONE fault for a page on @node.
 811 */
 812void task_numa_fault(int node, int pages, bool migrated)
 813{
 814        struct task_struct *p = current;
 815
 816        if (!sched_feat_numa(NUMA))
 817                return;
 818
 819        /* FIXME: Allocate task-specific structure for placement policy here */
 820
 821        /*
 822         * If pages are properly placed (did not migrate) then scan slower.
 823         * This is reset periodically in case of phase changes
 824         */
 825        if (!migrated)
 826                p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
 827                        p->numa_scan_period + jiffies_to_msecs(10));
 828
 829        task_numa_placement(p);
 830}
 831
 832static void reset_ptenuma_scan(struct task_struct *p)
 833{
 834        ACCESS_ONCE(p->mm->numa_scan_seq)++;
 835        p->mm->numa_scan_offset = 0;
 836}
 837
 838/*
 839 * The expensive part of numa migration is done from task_work context.
 840 * Triggered from task_tick_numa().
 841 */
 842void task_numa_work(struct callback_head *work)
 843{
 844        unsigned long migrate, next_scan, now = jiffies;
 845        struct task_struct *p = current;
 846        struct mm_struct *mm = p->mm;
 847        struct vm_area_struct *vma;
 848        unsigned long start, end;
 849        long pages;
 850
 851        WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
 852
 853        work->next = work; /* protect against double add */
 854        /*
 855         * Who cares about NUMA placement when they're dying.
 856         *
 857         * NOTE: make sure not to dereference p->mm before this check,
 858         * exit_task_work() happens _after_ exit_mm() so we could be called
 859         * without p->mm even though we still had it when we enqueued this
 860         * work.
 861         */
 862        if (p->flags & PF_EXITING)
 863                return;
 864
 865        /*
 866         * We do not care about task placement until a task runs on a node
 867         * other than the first one used by the address space. This is
 868         * largely because migrations are driven by what CPU the task
 869         * is running on. If it's never scheduled on another node, it'll
 870         * not migrate so why bother trapping the fault.
 871         */
 872        if (mm->first_nid == NUMA_PTE_SCAN_INIT)
 873                mm->first_nid = numa_node_id();
 874        if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
 875                /* Are we running on a new node yet? */
 876                if (numa_node_id() == mm->first_nid &&
 877                    !sched_feat_numa(NUMA_FORCE))
 878                        return;
 879
 880                mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
 881        }
 882
 883        /*
 884         * Reset the scan period if enough time has gone by. Objective is that
 885         * scanning will be reduced if pages are properly placed. As tasks
 886         * can enter different phases this needs to be re-examined. Lacking
 887         * proper tracking of reference behaviour, this blunt hammer is used.
 888         */
 889        migrate = mm->numa_next_reset;
 890        if (time_after(now, migrate)) {
 891                p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
 892                next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
 893                xchg(&mm->numa_next_reset, next_scan);
 894        }
 895
 896        /*
 897         * Enforce maximal scan/migration frequency..
 898         */
 899        migrate = mm->numa_next_scan;
 900        if (time_before(now, migrate))
 901                return;
 902
 903        if (p->numa_scan_period == 0)
 904                p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
 905
 906        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
 907        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
 908                return;
 909
 910        /*
 911         * Do not set pte_numa if the current running node is rate-limited.
 912         * This loses statistics on the fault but if we are unwilling to
 913         * migrate to this node, it is less likely we can do useful work
 914         */
 915        if (migrate_ratelimited(numa_node_id()))
 916                return;
 917
 918        start = mm->numa_scan_offset;
 919        pages = sysctl_numa_balancing_scan_size;
 920        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
 921        if (!pages)
 922                return;
 923
 924        down_read(&mm->mmap_sem);
 925        vma = find_vma(mm, start);
 926        if (!vma) {
 927                reset_ptenuma_scan(p);
 928                start = 0;
 929                vma = mm->mmap;
 930        }
 931        for (; vma; vma = vma->vm_next) {
 932                if (!vma_migratable(vma))
 933                        continue;
 934
 935                /* Skip small VMAs. They are not likely to be of relevance */
 936                if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
 937                        continue;
 938
 939                do {
 940                        start = max(start, vma->vm_start);
 941                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
 942                        end = min(end, vma->vm_end);
 943                        pages -= change_prot_numa(vma, start, end);
 944
 945                        start = end;
 946                        if (pages <= 0)
 947                                goto out;
 948                } while (end != vma->vm_end);
 949        }
 950
 951out:
 952        /*
 953         * It is possible to reach the end of the VMA list but the last few VMAs are
 954         * not guaranteed to the vma_migratable. If they are not, we would find the
 955         * !migratable VMA on the next scan but not reset the scanner to the start
 956         * so check it now.
 957         */
 958        if (vma)
 959                mm->numa_scan_offset = start;
 960        else
 961                reset_ptenuma_scan(p);
 962        up_read(&mm->mmap_sem);
 963}
 964
 965/*
 966 * Drive the periodic memory faults..
 967 */
 968void task_tick_numa(struct rq *rq, struct task_struct *curr)
 969{
 970        struct callback_head *work = &curr->numa_work;
 971        u64 period, now;
 972
 973        /*
 974         * We don't care about NUMA placement if we don't have memory.
 975         */
 976        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
 977                return;
 978
 979        /*
 980         * Using runtime rather than walltime has the dual advantage that
 981         * we (mostly) drive the selection from busy threads and that the
 982         * task needs to have done some actual work before we bother with
 983         * NUMA placement.
 984         */
 985        now = curr->se.sum_exec_runtime;
 986        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
 987
 988        if (now - curr->node_stamp > period) {
 989                if (!curr->node_stamp)
 990                        curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
 991                curr->node_stamp = now;
 992
 993                if (!time_before(jiffies, curr->mm->numa_next_scan)) {
 994                        init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
 995                        task_work_add(curr, work, true);
 996                }
 997        }
 998}
 999#else
1000static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1001{
1002}
1003#endif /* CONFIG_NUMA_BALANCING */
1004
1005static void
1006account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007{
1008        update_load_add(&cfs_rq->load, se->load.weight);
1009        if (!parent_entity(se))
1010                update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1011#ifdef CONFIG_SMP
1012        if (entity_is_task(se))
1013                list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1014#endif
1015        cfs_rq->nr_running++;
1016}
1017
1018static void
1019account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020{
1021        update_load_sub(&cfs_rq->load, se->load.weight);
1022        if (!parent_entity(se))
1023                update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1024        if (entity_is_task(se))
1025                list_del_init(&se->group_node);
1026        cfs_rq->nr_running--;
1027}
1028
1029#ifdef CONFIG_FAIR_GROUP_SCHED
1030# ifdef CONFIG_SMP
1031static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1032{
1033        long tg_weight;
1034
1035        /*
1036         * Use this CPU's actual weight instead of the last load_contribution
1037         * to gain a more accurate current total weight. See
1038         * update_cfs_rq_load_contribution().
1039         */
1040        tg_weight = atomic64_read(&tg->load_avg);
1041        tg_weight -= cfs_rq->tg_load_contrib;
1042        tg_weight += cfs_rq->load.weight;
1043
1044        return tg_weight;
1045}
1046
1047static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1048{
1049        long tg_weight, load, shares;
1050
1051        tg_weight = calc_tg_weight(tg, cfs_rq);
1052        load = cfs_rq->load.weight;
1053
1054        shares = (tg->shares * load);
1055        if (tg_weight)
1056                shares /= tg_weight;
1057
1058        if (shares < MIN_SHARES)
1059                shares = MIN_SHARES;
1060        if (shares > tg->shares)
1061                shares = tg->shares;
1062
1063        return shares;
1064}
1065# else /* CONFIG_SMP */
1066static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1067{
1068        return tg->shares;
1069}
1070# endif /* CONFIG_SMP */
1071static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1072                            unsigned long weight)
1073{
1074        if (se->on_rq) {
1075                /* commit outstanding execution time */
1076                if (cfs_rq->curr == se)
1077                        update_curr(cfs_rq);
1078                account_entity_dequeue(cfs_rq, se);
1079        }
1080
1081        update_load_set(&se->load, weight);
1082
1083        if (se->on_rq)
1084                account_entity_enqueue(cfs_rq, se);
1085}
1086
1087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1088
1089static void update_cfs_shares(struct cfs_rq *cfs_rq)
1090{
1091        struct task_group *tg;
1092        struct sched_entity *se;
1093        long shares;
1094
1095        tg = cfs_rq->tg;
1096        se = tg->se[cpu_of(rq_of(cfs_rq))];
1097        if (!se || throttled_hierarchy(cfs_rq))
1098                return;
1099#ifndef CONFIG_SMP
1100        if (likely(se->load.weight == tg->shares))
1101                return;
1102#endif
1103        shares = calc_cfs_shares(cfs_rq, tg);
1104
1105        reweight_entity(cfs_rq_of(se), se, shares);
1106}
1107#else /* CONFIG_FAIR_GROUP_SCHED */
1108static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1109{
1110}
1111#endif /* CONFIG_FAIR_GROUP_SCHED */
1112
1113/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1114#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1115/*
1116 * We choose a half-life close to 1 scheduling period.
1117 * Note: The tables below are dependent on this value.
1118 */
1119#define LOAD_AVG_PERIOD 32
1120#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1121#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1122
1123/* Precomputed fixed inverse multiplies for multiplication by y^n */
1124static const u32 runnable_avg_yN_inv[] = {
1125        0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1126        0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1127        0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1128        0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1129        0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1130        0x85aac367, 0x82cd8698,
1131};
1132
1133/*
1134 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
1135 * over-estimates when re-combining.
1136 */
1137static const u32 runnable_avg_yN_sum[] = {
1138            0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1139         9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1140        17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1141};
1142
1143/*
1144 * Approximate:
1145 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
1146 */
1147static __always_inline u64 decay_load(u64 val, u64 n)
1148{
1149        unsigned int local_n;
1150
1151        if (!n)
1152                return val;
1153        else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1154                return 0;
1155
1156        /* after bounds checking we can collapse to 32-bit */
1157        local_n = n;
1158
1159        /*
1160         * As y^PERIOD = 1/2, we can combine
1161         *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1162         * With a look-up table which covers k^n (n<PERIOD)
1163         *
1164         * To achieve constant time decay_load.
1165         */
1166        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1167                val >>= local_n / LOAD_AVG_PERIOD;
1168                local_n %= LOAD_AVG_PERIOD;
1169        }
1170
1171        val *= runnable_avg_yN_inv[local_n];
1172        /* We don't use SRR here since we always want to round down. */
1173        return val >> 32;
1174}
1175
1176/*
1177 * For updates fully spanning n periods, the contribution to runnable
1178 * average will be: \Sum 1024*y^n
1179 *
1180 * We can compute this reasonably efficiently by combining:
1181 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
1182 */
1183static u32 __compute_runnable_contrib(u64 n)
1184{
1185        u32 contrib = 0;
1186
1187        if (likely(n <= LOAD_AVG_PERIOD))
1188                return runnable_avg_yN_sum[n];
1189        else if (unlikely(n >= LOAD_AVG_MAX_N))
1190                return LOAD_AVG_MAX;
1191
1192        /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1193        do {
1194                contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1195                contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1196
1197                n -= LOAD_AVG_PERIOD;
1198        } while (n > LOAD_AVG_PERIOD);
1199
1200        contrib = decay_load(contrib, n);
1201        return contrib + runnable_avg_yN_sum[n];
1202}
1203
1204/*
1205 * We can represent the historical contribution to runnable average as the
1206 * coefficients of a geometric series.  To do this we sub-divide our runnable
1207 * history into segments of approximately 1ms (1024us); label the segment that
1208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1209 *
1210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1211 *      p0            p1           p2
1212 *     (now)       (~1ms ago)  (~2ms ago)
1213 *
1214 * Let u_i denote the fraction of p_i that the entity was runnable.
1215 *
1216 * We then designate the fractions u_i as our co-efficients, yielding the
1217 * following representation of historical load:
1218 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1219 *
1220 * We choose y based on the with of a reasonably scheduling period, fixing:
1221 *   y^32 = 0.5
1222 *
1223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1224 * approximately half as much as the contribution to load within the last ms
1225 * (u_0).
1226 *
1227 * When a period "rolls over" and we have new u_0`, multiplying the previous
1228 * sum again by y is sufficient to update:
1229 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1230 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1231 */
1232static __always_inline int __update_entity_runnable_avg(u64 now,
1233                                                        struct sched_avg *sa,
1234                                                        int runnable)
1235{
1236        u64 delta, periods;
1237        u32 runnable_contrib;
1238        int delta_w, decayed = 0;
1239
1240        delta = now - sa->last_runnable_update;
1241        /*
1242         * This should only happen when time goes backwards, which it
1243         * unfortunately does during sched clock init when we swap over to TSC.
1244         */
1245        if ((s64)delta < 0) {
1246                sa->last_runnable_update = now;
1247                return 0;
1248        }
1249
1250        /*
1251         * Use 1024ns as the unit of measurement since it's a reasonable
1252         * approximation of 1us and fast to compute.
1253         */
1254        delta >>= 10;
1255        if (!delta)
1256                return 0;
1257        sa->last_runnable_update = now;
1258
1259        /* delta_w is the amount already accumulated against our next period */
1260        delta_w = sa->runnable_avg_period % 1024;
1261        if (delta + delta_w >= 1024) {
1262                /* period roll-over */
1263                decayed = 1;
1264
1265                /*
1266                 * Now that we know we're crossing a period boundary, figure
1267                 * out how much from delta we need to complete the current
1268                 * period and accrue it.
1269                 */
1270                delta_w = 1024 - delta_w;
1271                if (runnable)
1272                        sa->runnable_avg_sum += delta_w;
1273                sa->runnable_avg_period += delta_w;
1274
1275                delta -= delta_w;
1276
1277                /* Figure out how many additional periods this update spans */
1278                periods = delta / 1024;
1279                delta %= 1024;
1280
1281                sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1282                                                  periods + 1);
1283                sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1284                                                     periods + 1);
1285
1286                /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1287                runnable_contrib = __compute_runnable_contrib(periods);
1288                if (runnable)
1289                        sa->runnable_avg_sum += runnable_contrib;
1290                sa->runnable_avg_period += runnable_contrib;
1291        }
1292
1293        /* Remainder of delta accrued against u_0` */
1294        if (runnable)
1295                sa->runnable_avg_sum += delta;
1296        sa->runnable_avg_period += delta;
1297
1298        return decayed;
1299}
1300
1301/* Synchronize an entity's decay with its parenting cfs_rq.*/
1302static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1303{
1304        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305        u64 decays = atomic64_read(&cfs_rq->decay_counter);
1306
1307        decays -= se->avg.decay_count;
1308        if (!decays)
1309                return 0;
1310
1311        se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1312        se->avg.decay_count = 0;
1313
1314        return decays;
1315}
1316
1317#ifdef CONFIG_FAIR_GROUP_SCHED
1318static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1319                                                 int force_update)
1320{
1321        struct task_group *tg = cfs_rq->tg;
1322        s64 tg_contrib;
1323
1324        tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1325        tg_contrib -= cfs_rq->tg_load_contrib;
1326
1327        if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1328                atomic64_add(tg_contrib, &tg->load_avg);
1329                cfs_rq->tg_load_contrib += tg_contrib;
1330        }
1331}
1332
1333/*
1334 * Aggregate cfs_rq runnable averages into an equivalent task_group
1335 * representation for computing load contributions.
1336 */
1337static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1338                                                  struct cfs_rq *cfs_rq)
1339{
1340        struct task_group *tg = cfs_rq->tg;
1341        long contrib;
1342
1343        /* The fraction of a cpu used by this cfs_rq */
1344        contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1345                          sa->runnable_avg_period + 1);
1346        contrib -= cfs_rq->tg_runnable_contrib;
1347
1348        if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1349                atomic_add(contrib, &tg->runnable_avg);
1350                cfs_rq->tg_runnable_contrib += contrib;
1351        }
1352}
1353
1354static inline void __update_group_entity_contrib(struct sched_entity *se)
1355{
1356        struct cfs_rq *cfs_rq = group_cfs_rq(se);
1357        struct task_group *tg = cfs_rq->tg;
1358        int runnable_avg;
1359
1360        u64 contrib;
1361
1362        contrib = cfs_rq->tg_load_contrib * tg->shares;
1363        se->avg.load_avg_contrib = div64_u64(contrib,
1364                                             atomic64_read(&tg->load_avg) + 1);
1365
1366        /*
1367         * For group entities we need to compute a correction term in the case
1368         * that they are consuming <1 cpu so that we would contribute the same
1369         * load as a task of equal weight.
1370         *
1371         * Explicitly co-ordinating this measurement would be expensive, but
1372         * fortunately the sum of each cpus contribution forms a usable
1373         * lower-bound on the true value.
1374         *
1375         * Consider the aggregate of 2 contributions.  Either they are disjoint
1376         * (and the sum represents true value) or they are disjoint and we are
1377         * understating by the aggregate of their overlap.
1378         *
1379         * Extending this to N cpus, for a given overlap, the maximum amount we
1380         * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1381         * cpus that overlap for this interval and w_i is the interval width.
1382         *
1383         * On a small machine; the first term is well-bounded which bounds the
1384         * total error since w_i is a subset of the period.  Whereas on a
1385         * larger machine, while this first term can be larger, if w_i is the
1386         * of consequential size guaranteed to see n_i*w_i quickly converge to
1387         * our upper bound of 1-cpu.
1388         */
1389        runnable_avg = atomic_read(&tg->runnable_avg);
1390        if (runnable_avg < NICE_0_LOAD) {
1391                se->avg.load_avg_contrib *= runnable_avg;
1392                se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1393        }
1394}
1395#else
1396static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1397                                                 int force_update) {}
1398static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1399                                                  struct cfs_rq *cfs_rq) {}
1400static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1401#endif
1402
1403static inline void __update_task_entity_contrib(struct sched_entity *se)
1404{
1405        u32 contrib;
1406
1407        /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1408        contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1409        contrib /= (se->avg.runnable_avg_period + 1);
1410        se->avg.load_avg_contrib = scale_load(contrib);
1411}
1412
1413/* Compute the current contribution to load_avg by se, return any delta */
1414static long __update_entity_load_avg_contrib(struct sched_entity *se)
1415{
1416        long old_contrib = se->avg.load_avg_contrib;
1417
1418        if (entity_is_task(se)) {
1419                __update_task_entity_contrib(se);
1420        } else {
1421                __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1422                __update_group_entity_contrib(se);
1423        }
1424
1425        return se->avg.load_avg_contrib - old_contrib;
1426}
1427
1428static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1429                                                 long load_contrib)
1430{
1431        if (likely(load_contrib < cfs_rq->blocked_load_avg))
1432                cfs_rq->blocked_load_avg -= load_contrib;
1433        else
1434                cfs_rq->blocked_load_avg = 0;
1435}
1436
1437static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1438
1439/* Update a sched_entity's runnable average */
1440static inline void update_entity_load_avg(struct sched_entity *se,
1441                                          int update_cfs_rq)
1442{
1443        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1444        long contrib_delta;
1445        u64 now;
1446
1447        /*
1448         * For a group entity we need to use their owned cfs_rq_clock_task() in
1449         * case they are the parent of a throttled hierarchy.
1450         */
1451        if (entity_is_task(se))
1452                now = cfs_rq_clock_task(cfs_rq);
1453        else
1454                now = cfs_rq_clock_task(group_cfs_rq(se));
1455
1456        if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1457                return;
1458
1459        contrib_delta = __update_entity_load_avg_contrib(se);
1460
1461        if (!update_cfs_rq)
1462                return;
1463
1464        if (se->on_rq)
1465                cfs_rq->runnable_load_avg += contrib_delta;
1466        else
1467                subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1468}
1469
1470/*
1471 * Decay the load contributed by all blocked children and account this so that
1472 * their contribution may appropriately discounted when they wake up.
1473 */
1474static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1475{
1476        u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1477        u64 decays;
1478
1479        decays = now - cfs_rq->last_decay;
1480        if (!decays && !force_update)
1481                return;
1482
1483        if (atomic64_read(&cfs_rq->removed_load)) {
1484                u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1485                subtract_blocked_load_contrib(cfs_rq, removed_load);
1486        }
1487
1488        if (decays) {
1489                cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1490                                                      decays);
1491                atomic64_add(decays, &cfs_rq->decay_counter);
1492                cfs_rq->last_decay = now;
1493        }
1494
1495        __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1496}
1497
1498static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1499{
1500        __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1501        __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1502}
1503
1504/* Add the load generated by se into cfs_rq's child load-average */
1505static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1506                                                  struct sched_entity *se,
1507                                                  int wakeup)
1508{
1509        /*
1510         * We track migrations using entity decay_count <= 0, on a wake-up
1511         * migration we use a negative decay count to track the remote decays
1512         * accumulated while sleeping.
1513         */
1514        if (unlikely(se->avg.decay_count <= 0)) {
1515                se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1516                if (se->avg.decay_count) {
1517                        /*
1518                         * In a wake-up migration we have to approximate the
1519                         * time sleeping.  This is because we can't synchronize
1520                         * clock_task between the two cpus, and it is not
1521                         * guaranteed to be read-safe.  Instead, we can
1522                         * approximate this using our carried decays, which are
1523                         * explicitly atomically readable.
1524                         */
1525                        se->avg.last_runnable_update -= (-se->avg.decay_count)
1526                                                        << 20;
1527                        update_entity_load_avg(se, 0);
1528                        /* Indicate that we're now synchronized and on-rq */
1529                        se->avg.decay_count = 0;
1530                }
1531                wakeup = 0;
1532        } else {
1533                __synchronize_entity_decay(se);
1534        }
1535
1536        /* migrated tasks did not contribute to our blocked load */
1537        if (wakeup) {
1538                subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1539                update_entity_load_avg(se, 0);
1540        }
1541
1542        cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1543        /* we force update consideration on load-balancer moves */
1544        update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1545}
1546
1547/*
1548 * Remove se's load from this cfs_rq child load-average, if the entity is
1549 * transitioning to a blocked state we track its projected decay using
1550 * blocked_load_avg.
1551 */
1552static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1553                                                  struct sched_entity *se,
1554                                                  int sleep)
1555{
1556        update_entity_load_avg(se, 1);
1557        /* we force update consideration on load-balancer moves */
1558        update_cfs_rq_blocked_load(cfs_rq, !sleep);
1559
1560        cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1561        if (sleep) {
1562                cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1563                se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1564        } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1565}
1566
1567/*
1568 * Update the rq's load with the elapsed running time before entering
1569 * idle. if the last scheduled task is not a CFS task, idle_enter will
1570 * be the only way to update the runnable statistic.
1571 */
1572void idle_enter_fair(struct rq *this_rq)
1573{
1574        update_rq_runnable_avg(this_rq, 1);
1575}
1576
1577/*
1578 * Update the rq's load with the elapsed idle time before a task is
1579 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1580 * be the only way to update the runnable statistic.
1581 */
1582void idle_exit_fair(struct rq *this_rq)
1583{
1584        update_rq_runnable_avg(this_rq, 0);
1585}
1586
1587#else
1588static inline void update_entity_load_avg(struct sched_entity *se,
1589                                          int update_cfs_rq) {}
1590static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1591static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1592                                           struct sched_entity *se,
1593                                           int wakeup) {}
1594static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1595                                           struct sched_entity *se,
1596                                           int sleep) {}
1597static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1598                                              int force_update) {}
1599#endif
1600
1601static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1602{
1603#ifdef CONFIG_SCHEDSTATS
1604        struct task_struct *tsk = NULL;
1605
1606        if (entity_is_task(se))
1607                tsk = task_of(se);
1608
1609        if (se->statistics.sleep_start) {
1610                u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1611
1612                if ((s64)delta < 0)
1613                        delta = 0;
1614
1615                if (unlikely(delta > se->statistics.sleep_max))
1616                        se->statistics.sleep_max = delta;
1617
1618                se->statistics.sleep_start = 0;
1619                se->statistics.sum_sleep_runtime += delta;
1620
1621                if (tsk) {
1622                        account_scheduler_latency(tsk, delta >> 10, 1);
1623                        trace_sched_stat_sleep(tsk, delta);
1624                }
1625        }
1626        if (se->statistics.block_start) {
1627                u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1628
1629                if ((s64)delta < 0)
1630                        delta = 0;
1631
1632                if (unlikely(delta > se->statistics.block_max))
1633                        se->statistics.block_max = delta;
1634
1635                se->statistics.block_start = 0;
1636                se->statistics.sum_sleep_runtime += delta;
1637
1638                if (tsk) {
1639                        if (tsk->in_iowait) {
1640                                se->statistics.iowait_sum += delta;
1641                                se->statistics.iowait_count++;
1642                                trace_sched_stat_iowait(tsk, delta);
1643                        }
1644
1645                        trace_sched_stat_blocked(tsk, delta);
1646
1647                        /*
1648                         * Blocking time is in units of nanosecs, so shift by
1649                         * 20 to get a milliseconds-range estimation of the
1650                         * amount of time that the task spent sleeping:
1651                         */
1652                        if (unlikely(prof_on == SLEEP_PROFILING)) {
1653                                profile_hits(SLEEP_PROFILING,
1654                                                (void *)get_wchan(tsk),
1655                                                delta >> 20);
1656                        }
1657                        account_scheduler_latency(tsk, delta >> 10, 0);
1658                }
1659        }
1660#endif
1661}
1662
1663static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1664{
1665#ifdef CONFIG_SCHED_DEBUG
1666        s64 d = se->vruntime - cfs_rq->min_vruntime;
1667
1668        if (d < 0)
1669                d = -d;
1670
1671        if (d > 3*sysctl_sched_latency)
1672                schedstat_inc(cfs_rq, nr_spread_over);
1673#endif
1674}
1675
1676static void
1677place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1678{
1679        u64 vruntime = cfs_rq->min_vruntime;
1680
1681        /*
1682         * The 'current' period is already promised to the current tasks,
1683         * however the extra weight of the new task will slow them down a
1684         * little, place the new task so that it fits in the slot that
1685         * stays open at the end.
1686         */
1687        if (initial && sched_feat(START_DEBIT))
1688                vruntime += sched_vslice(cfs_rq, se);
1689
1690        /* sleeps up to a single latency don't count. */
1691        if (!initial) {
1692                unsigned long thresh = sysctl_sched_latency;
1693
1694                /*
1695                 * Halve their sleep time's effect, to allow
1696                 * for a gentler effect of sleepers:
1697                 */
1698                if (sched_feat(GENTLE_FAIR_SLEEPERS))
1699                        thresh >>= 1;
1700
1701                vruntime -= thresh;
1702        }
1703
1704        /* ensure we never gain time by being placed backwards. */
1705        se->vruntime = max_vruntime(se->vruntime, vruntime);
1706}
1707
1708static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1709
1710static void
1711enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1712{
1713        /*
1714         * Update the normalized vruntime before updating min_vruntime
1715         * through callig update_curr().
1716         */
1717        if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1718                se->vruntime += cfs_rq->min_vruntime;
1719
1720        /*
1721         * Update run-time statistics of the 'current'.
1722         */
1723        update_curr(cfs_rq);
1724        enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1725        account_entity_enqueue(cfs_rq, se);
1726        update_cfs_shares(cfs_rq);
1727
1728        if (flags & ENQUEUE_WAKEUP) {
1729                place_entity(cfs_rq, se, 0);
1730                enqueue_sleeper(cfs_rq, se);
1731        }
1732
1733        update_stats_enqueue(cfs_rq, se);
1734        check_spread(cfs_rq, se);
1735        if (se != cfs_rq->curr)
1736                __enqueue_entity(cfs_rq, se);
1737        se->on_rq = 1;
1738
1739        if (cfs_rq->nr_running == 1) {
1740                list_add_leaf_cfs_rq(cfs_rq);
1741                check_enqueue_throttle(cfs_rq);
1742        }
1743}
1744
1745static void __clear_buddies_last(struct sched_entity *se)
1746{
1747        for_each_sched_entity(se) {
1748                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1749                if (cfs_rq->last == se)
1750                        cfs_rq->last = NULL;
1751                else
1752                        break;
1753        }
1754}
1755
1756static void __clear_buddies_next(struct sched_entity *se)
1757{
1758        for_each_sched_entity(se) {
1759                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1760                if (cfs_rq->next == se)
1761                        cfs_rq->next = NULL;
1762                else
1763                        break;
1764        }
1765}
1766
1767static void __clear_buddies_skip(struct sched_entity *se)
1768{
1769        for_each_sched_entity(se) {
1770                struct cfs_rq *cfs_rq = cfs_rq_of(se);
1771                if (cfs_rq->skip == se)
1772                        cfs_rq->skip = NULL;
1773                else
1774                        break;
1775        }
1776}
1777
1778static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1779{
1780        if (cfs_rq->last == se)
1781                __clear_buddies_last(se);
1782
1783        if (cfs_rq->next == se)
1784                __clear_buddies_next(se);
1785
1786        if (cfs_rq->skip == se)
1787                __clear_buddies_skip(se);
1788}
1789
1790static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1791
1792static void
1793dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1794{
1795        /*
1796         * Update run-time statistics of the 'current'.
1797         */
1798        update_curr(cfs_rq);
1799        dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1800
1801        update_stats_dequeue(cfs_rq, se);
1802        if (flags & DEQUEUE_SLEEP) {
1803#ifdef CONFIG_SCHEDSTATS
1804                if (entity_is_task(se)) {
1805                        struct task_struct *tsk = task_of(se);
1806
1807                        if (tsk->state & TASK_INTERRUPTIBLE)
1808                                se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1809                        if (tsk->state & TASK_UNINTERRUPTIBLE)
1810                                se->statistics.block_start = rq_of(cfs_rq)->clock;
1811                }
1812#endif
1813        }
1814
1815        clear_buddies(cfs_rq, se);
1816
1817        if (se != cfs_rq->curr)
1818                __dequeue_entity(cfs_rq, se);
1819        se->on_rq = 0;
1820        account_entity_dequeue(cfs_rq, se);
1821
1822        /*
1823         * Normalize the entity after updating the min_vruntime because the
1824         * update can refer to the ->curr item and we need to reflect this
1825         * movement in our normalized position.
1826         */
1827        if (!(flags & DEQUEUE_SLEEP))
1828                se->vruntime -= cfs_rq->min_vruntime;
1829
1830        /* return excess runtime on last dequeue */
1831        return_cfs_rq_runtime(cfs_rq);
1832
1833        update_min_vruntime(cfs_rq);
1834        update_cfs_shares(cfs_rq);
1835}
1836
1837/*
1838 * Preempt the current task with a newly woken task if needed:
1839 */
1840static void
1841check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1842{
1843        unsigned long ideal_runtime, delta_exec;
1844        struct sched_entity *se;
1845        s64 delta;
1846
1847        ideal_runtime = sched_slice(cfs_rq, curr);
1848        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1849        if (delta_exec > ideal_runtime) {
1850                resched_task(rq_of(cfs_rq)->curr);
1851                /*
1852                 * The current task ran long enough, ensure it doesn't get
1853                 * re-elected due to buddy favours.
1854                 */
1855                clear_buddies(cfs_rq, curr);
1856                return;
1857        }
1858
1859        /*
1860         * Ensure that a task that missed wakeup preemption by a
1861         * narrow margin doesn't have to wait for a full slice.
1862         * This also mitigates buddy induced latencies under load.
1863         */
1864        if (delta_exec < sysctl_sched_min_granularity)
1865                return;
1866
1867        se = __pick_first_entity(cfs_rq);
1868        delta = curr->vruntime - se->vruntime;
1869
1870        if (delta < 0)
1871                return;
1872
1873        if (delta > ideal_runtime)
1874                resched_task(rq_of(cfs_rq)->curr);
1875}
1876
1877static void
1878set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1879{
1880        /* 'current' is not kept within the tree. */
1881        if (se->on_rq) {
1882                /*
1883                 * Any task has to be enqueued before it get to execute on
1884                 * a CPU. So account for the time it spent waiting on the
1885                 * runqueue.
1886                 */
1887                update_stats_wait_end(cfs_rq, se);
1888                __dequeue_entity(cfs_rq, se);
1889        }
1890
1891        update_stats_curr_start(cfs_rq, se);
1892        cfs_rq->curr = se;
1893#ifdef CONFIG_SCHEDSTATS
1894        /*
1895         * Track our maximum slice length, if the CPU's load is at
1896         * least twice that of our own weight (i.e. dont track it
1897         * when there are only lesser-weight tasks around):
1898         */
1899        if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1900                se->statistics.slice_max = max(se->statistics.slice_max,
1901                        se->sum_exec_runtime - se->prev_sum_exec_runtime);
1902        }
1903#endif
1904        se->prev_sum_exec_runtime = se->sum_exec_runtime;
1905}
1906
1907static int
1908wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1909
1910/*
1911 * Pick the next process, keeping these things in mind, in this order:
1912 * 1) keep things fair between processes/task groups
1913 * 2) pick the "next" process, since someone really wants that to run
1914 * 3) pick the "last" process, for cache locality
1915 * 4) do not run the "skip" process, if something else is available
1916 */
1917static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1918{
1919        struct sched_entity *se = __pick_first_entity(cfs_rq);
1920        struct sched_entity *left = se;
1921
1922        /*
1923         * Avoid running the skip buddy, if running something else can
1924         * be done without getting too unfair.
1925         */
1926        if (cfs_rq->skip == se) {
1927                struct sched_entity *second = __pick_next_entity(se);
1928                if (second && wakeup_preempt_entity(second, left) < 1)
1929                        se = second;
1930        }
1931
1932        /*
1933         * Prefer last buddy, try to return the CPU to a preempted task.
1934         */
1935        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1936                se = cfs_rq->last;
1937
1938        /*
1939         * Someone really wants this to run. If it's not unfair, run it.
1940         */
1941        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1942                se = cfs_rq->next;
1943
1944        clear_buddies(cfs_rq, se);
1945
1946        return se;
1947}
1948
1949static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1950
1951static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1952{
1953        /*
1954         * If still on the runqueue then deactivate_task()
1955         * was not called and update_curr() has to be done:
1956         */
1957        if (prev->on_rq)
1958                update_curr(cfs_rq);
1959
1960        /* throttle cfs_rqs exceeding runtime */
1961        check_cfs_rq_runtime(cfs_rq);
1962
1963        check_spread(cfs_rq, prev);
1964        if (prev->on_rq) {
1965                update_stats_wait_start(cfs_rq, prev);
1966                /* Put 'current' back into the tree. */
1967                __enqueue_entity(cfs_rq, prev);
1968                /* in !on_rq case, update occurred at dequeue */
1969                update_entity_load_avg(prev, 1);
1970        }
1971        cfs_rq->curr = NULL;
1972}
1973
1974static void
1975entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1976{
1977        /*
1978         * Update run-time statistics of the 'current'.
1979         */
1980        update_curr(cfs_rq);
1981
1982        /*
1983         * Ensure that runnable average is periodically updated.
1984         */
1985        update_entity_load_avg(curr, 1);
1986        update_cfs_rq_blocked_load(cfs_rq, 1);
1987
1988#ifdef CONFIG_SCHED_HRTICK
1989        /*
1990         * queued ticks are scheduled to match the slice, so don't bother
1991         * validating it and just reschedule.
1992         */
1993        if (queued) {
1994                resched_task(rq_of(cfs_rq)->curr);
1995                return;
1996        }
1997        /*
1998         * don't let the period tick interfere with the hrtick preemption
1999         */
2000        if (!sched_feat(DOUBLE_TICK) &&
2001                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2002                return;
2003#endif
2004
2005        if (cfs_rq->nr_running > 1)
2006                check_preempt_tick(cfs_rq, curr);
2007}
2008
2009
2010/**************************************************
2011 * CFS bandwidth control machinery
2012 */
2013
2014#ifdef CONFIG_CFS_BANDWIDTH
2015
2016#ifdef HAVE_JUMP_LABEL
2017static struct static_key __cfs_bandwidth_used;
2018
2019static inline bool cfs_bandwidth_used(void)
2020{
2021        return static_key_false(&__cfs_bandwidth_used);
2022}
2023
2024void account_cfs_bandwidth_used(int enabled, int was_enabled)
2025{
2026        /* only need to count groups transitioning between enabled/!enabled */
2027        if (enabled && !was_enabled)
2028                static_key_slow_inc(&__cfs_bandwidth_used);
2029        else if (!enabled && was_enabled)
2030                static_key_slow_dec(&__cfs_bandwidth_used);
2031}
2032#else /* HAVE_JUMP_LABEL */
2033static bool cfs_bandwidth_used(void)
2034{
2035        return true;
2036}
2037
2038void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2039#endif /* HAVE_JUMP_LABEL */
2040
2041/*
2042 * default period for cfs group bandwidth.
2043 * default: 0.1s, units: nanoseconds
2044 */
2045static inline u64 default_cfs_period(void)
2046{
2047        return 100000000ULL;
2048}
2049
2050static inline u64 sched_cfs_bandwidth_slice(void)
2051{
2052        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2053}
2054
2055/*
2056 * Replenish runtime according to assigned quota and update expiration time.
2057 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2058 * additional synchronization around rq->lock.
2059 *
2060 * requires cfs_b->lock
2061 */
2062void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2063{
2064        u64 now;
2065
2066        if (cfs_b->quota == RUNTIME_INF)
2067                return;
2068
2069        now = sched_clock_cpu(smp_processor_id());
2070        cfs_b->runtime = cfs_b->quota;
2071        cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2072}
2073
2074static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2075{
2076        return &tg->cfs_bandwidth;
2077}
2078
2079/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2080static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2081{
2082        if (unlikely(cfs_rq->throttle_count))
2083                return cfs_rq->throttled_clock_task;
2084
2085        return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2086}
2087
2088/* returns 0 on failure to allocate runtime */
2089static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2090{
2091        struct task_group *tg = cfs_rq->tg;
2092        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2093        u64 amount = 0, min_amount, expires;
2094
2095        /* note: this is a positive sum as runtime_remaining <= 0 */
2096        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2097
2098        raw_spin_lock(&cfs_b->lock);
2099        if (cfs_b->quota == RUNTIME_INF)
2100                amount = min_amount;
2101        else {
2102                /*
2103                 * If the bandwidth pool has become inactive, then at least one
2104                 * period must have elapsed since the last consumption.
2105                 * Refresh the global state and ensure bandwidth timer becomes
2106                 * active.
2107                 */
2108                if (!cfs_b->timer_active) {
2109                        __refill_cfs_bandwidth_runtime(cfs_b);
2110                        __start_cfs_bandwidth(cfs_b);
2111                }
2112
2113                if (cfs_b->runtime > 0) {
2114                        amount = min(cfs_b->runtime, min_amount);
2115                        cfs_b->runtime -= amount;
2116                        cfs_b->idle = 0;
2117                }
2118        }
2119        expires = cfs_b->runtime_expires;
2120        raw_spin_unlock(&cfs_b->lock);
2121
2122        cfs_rq->runtime_remaining += amount;
2123        /*
2124         * we may have advanced our local expiration to account for allowed
2125         * spread between our sched_clock and the one on which runtime was
2126         * issued.
2127         */
2128        if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2129                cfs_rq->runtime_expires = expires;
2130
2131        return cfs_rq->runtime_remaining > 0;
2132}
2133
2134/*
2135 * Note: This depends on the synchronization provided by sched_clock and the
2136 * fact that rq->clock snapshots this value.
2137 */
2138static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2139{
2140        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2141        struct rq *rq = rq_of(cfs_rq);
2142
2143        /* if the deadline is ahead of our clock, nothing to do */
2144        if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2145                return;
2146
2147        if (cfs_rq->runtime_remaining < 0)
2148                return;
2149
2150        /*
2151         * If the local deadline has passed we have to consider the
2152         * possibility that our sched_clock is 'fast' and the global deadline
2153         * has not truly expired.
2154         *
2155         * Fortunately we can check determine whether this the case by checking
2156         * whether the global deadline has advanced.
2157         */
2158
2159        if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2160                /* extend local deadline, drift is bounded above by 2 ticks */
2161                cfs_rq->runtime_expires += TICK_NSEC;
2162        } else {
2163                /* global deadline is ahead, expiration has passed */
2164                cfs_rq->runtime_remaining = 0;
2165        }
2166}
2167
2168static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2169                                     unsigned long delta_exec)
2170{
2171        /* dock delta_exec before expiring quota (as it could span periods) */
2172        cfs_rq->runtime_remaining -= delta_exec;
2173        expire_cfs_rq_runtime(cfs_rq);
2174
2175        if (likely(cfs_rq->runtime_remaining > 0))
2176                return;
2177
2178        /*
2179         * if we're unable to extend our runtime we resched so that the active
2180         * hierarchy can be throttled
2181         */
2182        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2183                resched_task(rq_of(cfs_rq)->curr);
2184}
2185
2186static __always_inline
2187void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2188{
2189        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2190                return;
2191
2192        __account_cfs_rq_runtime(cfs_rq, delta_exec);
2193}
2194
2195static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2196{
2197        return cfs_bandwidth_used() && cfs_rq->throttled;
2198}
2199
2200/* check whether cfs_rq, or any parent, is throttled */
2201static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2202{
2203        return cfs_bandwidth_used() && cfs_rq->throttle_count;
2204}
2205
2206/*
2207 * Ensure that neither of the group entities corresponding to src_cpu or
2208 * dest_cpu are members of a throttled hierarchy when performing group
2209 * load-balance operations.
2210 */
2211static inline int throttled_lb_pair(struct task_group *tg,
2212                                    int src_cpu, int dest_cpu)
2213{
2214        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2215
2216        src_cfs_rq = tg->cfs_rq[src_cpu];
2217        dest_cfs_rq = tg->cfs_rq[dest_cpu];
2218
2219        return throttled_hierarchy(src_cfs_rq) ||
2220               throttled_hierarchy(dest_cfs_rq);
2221}
2222
2223/* updated child weight may affect parent so we have to do this bottom up */
2224static int tg_unthrottle_up(struct task_group *tg, void *data)
2225{
2226        struct rq *rq = data;
2227        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2228
2229        cfs_rq->throttle_count--;
2230#ifdef CONFIG_SMP
2231        if (!cfs_rq->throttle_count) {
2232                /* adjust cfs_rq_clock_task() */
2233                cfs_rq->throttled_clock_task_time += rq->clock_task -
2234                                             cfs_rq->throttled_clock_task;
2235        }
2236#endif
2237
2238        return 0;
2239}
2240
2241static int tg_throttle_down(struct task_group *tg, void *data)
2242{
2243        struct rq *rq = data;
2244        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2245
2246        /* group is entering throttled state, stop time */
2247        if (!cfs_rq->throttle_count)
2248                cfs_rq->throttled_clock_task = rq->clock_task;
2249        cfs_rq->throttle_count++;
2250
2251        return 0;
2252}
2253
2254static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2255{
2256        struct rq *rq = rq_of(cfs_rq);
2257        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2258        struct sched_entity *se;
2259        long task_delta, dequeue = 1;
2260
2261        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2262
2263        /* freeze hierarchy runnable averages while throttled */
2264        rcu_read_lock();
2265        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2266        rcu_read_unlock();
2267
2268        task_delta = cfs_rq->h_nr_running;
2269        for_each_sched_entity(se) {
2270                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2271                /* throttled entity or throttle-on-deactivate */
2272                if (!se->on_rq)
2273                        break;
2274
2275                if (dequeue)
2276                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2277                qcfs_rq->h_nr_running -= task_delta;
2278
2279                if (qcfs_rq->load.weight)
2280                        dequeue = 0;
2281        }
2282
2283        if (!se)
2284                rq->nr_running -= task_delta;
2285
2286        cfs_rq->throttled = 1;
2287        cfs_rq->throttled_clock = rq->clock;
2288        raw_spin_lock(&cfs_b->lock);
2289        list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2290        raw_spin_unlock(&cfs_b->lock);
2291}
2292
2293void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2294{
2295        struct rq *rq = rq_of(cfs_rq);
2296        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2297        struct sched_entity *se;
2298        int enqueue = 1;
2299        long task_delta;
2300
2301        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2302
2303        cfs_rq->throttled = 0;
2304        raw_spin_lock(&cfs_b->lock);
2305        cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2306        list_del_rcu(&cfs_rq->throttled_list);
2307        raw_spin_unlock(&cfs_b->lock);
2308
2309        update_rq_clock(rq);
2310        /* update hierarchical throttle state */
2311        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2312
2313        if (!cfs_rq->load.weight)
2314                return;
2315
2316        task_delta = cfs_rq->h_nr_running;
2317        for_each_sched_entity(se) {
2318                if (se->on_rq)
2319                        enqueue = 0;
2320
2321                cfs_rq = cfs_rq_of(se);
2322                if (enqueue)
2323                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2324                cfs_rq->h_nr_running += task_delta;
2325
2326                if (cfs_rq_throttled(cfs_rq))
2327                        break;
2328        }
2329
2330        if (!se)
2331                rq->nr_running += task_delta;
2332
2333        /* determine whether we need to wake up potentially idle cpu */
2334        if (rq->curr == rq->idle && rq->cfs.nr_running)
2335                resched_task(rq->curr);
2336}
2337
2338static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2339                u64 remaining, u64 expires)
2340{
2341        struct cfs_rq *cfs_rq;
2342        u64 runtime = remaining;
2343
2344        rcu_read_lock();
2345        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2346                                throttled_list) {
2347                struct rq *rq = rq_of(cfs_rq);
2348
2349                raw_spin_lock(&rq->lock);
2350                if (!cfs_rq_throttled(cfs_rq))
2351                        goto next;
2352
2353                runtime = -cfs_rq->runtime_remaining + 1;
2354                if (runtime > remaining)
2355                        runtime = remaining;
2356                remaining -= runtime;
2357
2358                cfs_rq->runtime_remaining += runtime;
2359                cfs_rq->runtime_expires = expires;
2360
2361                /* we check whether we're throttled above */
2362                if (cfs_rq->runtime_remaining > 0)
2363                        unthrottle_cfs_rq(cfs_rq);
2364
2365next:
2366                raw_spin_unlock(&rq->lock);
2367
2368                if (!remaining)
2369                        break;
2370        }
2371        rcu_read_unlock();
2372
2373        return remaining;
2374}
2375
2376/*
2377 * Responsible for refilling a task_group's bandwidth and unthrottling its
2378 * cfs_rqs as appropriate. If there has been no activity within the last
2379 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2380 * used to track this state.
2381 */
2382static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2383{
2384        u64 runtime, runtime_expires;
2385        int idle = 1, throttled;
2386
2387        raw_spin_lock(&cfs_b->lock);
2388        /* no need to continue the timer with no bandwidth constraint */
2389        if (cfs_b->quota == RUNTIME_INF)
2390                goto out_unlock;
2391
2392        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2393        /* idle depends on !throttled (for the case of a large deficit) */
2394        idle = cfs_b->idle && !throttled;
2395        cfs_b->nr_periods += overrun;
2396
2397        /* if we're going inactive then everything else can be deferred */
2398        if (idle)
2399                goto out_unlock;
2400
2401        __refill_cfs_bandwidth_runtime(cfs_b);
2402
2403        if (!throttled) {
2404                /* mark as potentially idle for the upcoming period */
2405                cfs_b->idle = 1;
2406                goto out_unlock;
2407        }
2408
2409        /* account preceding periods in which throttling occurred */
2410        cfs_b->nr_throttled += overrun;
2411
2412        /*
2413         * There are throttled entities so we must first use the new bandwidth
2414         * to unthrottle them before making it generally available.  This
2415         * ensures that all existing debts will be paid before a new cfs_rq is
2416         * allowed to run.
2417         */
2418        runtime = cfs_b->runtime;
2419        runtime_expires = cfs_b->runtime_expires;
2420        cfs_b->runtime = 0;
2421
2422        /*
2423         * This check is repeated as we are holding onto the new bandwidth
2424         * while we unthrottle.  This can potentially race with an unthrottled
2425         * group trying to acquire new bandwidth from the global pool.
2426         */
2427        while (throttled && runtime > 0) {
2428                raw_spin_unlock(&cfs_b->lock);
2429                /* we can't nest cfs_b->lock while distributing bandwidth */
2430                runtime = distribute_cfs_runtime(cfs_b, runtime,
2431                                                 runtime_expires);
2432                raw_spin_lock(&cfs_b->lock);
2433
2434                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2435        }
2436
2437        /* return (any) remaining runtime */
2438        cfs_b->runtime = runtime;
2439        /*
2440         * While we are ensured activity in the period following an
2441         * unthrottle, this also covers the case in which the new bandwidth is
2442         * insufficient to cover the existing bandwidth deficit.  (Forcing the
2443         * timer to remain active while there are any throttled entities.)
2444         */
2445        cfs_b->idle = 0;
2446out_unlock:
2447        if (idle)
2448                cfs_b->timer_active = 0;
2449        raw_spin_unlock(&cfs_b->lock);
2450
2451        return idle;
2452}
2453
2454/* a cfs_rq won't donate quota below this amount */
2455static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2456/* minimum remaining period time to redistribute slack quota */
2457static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2458/* how long we wait to gather additional slack before distributing */
2459static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2460
2461/* are we near the end of the current quota period? */
2462static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2463{
2464        struct hrtimer *refresh_timer = &cfs_b->period_timer;
2465        u64 remaining;
2466
2467        /* if the call-back is running a quota refresh is already occurring */
2468        if (hrtimer_callback_running(refresh_timer))
2469                return 1;
2470
2471        /* is a quota refresh about to occur? */
2472        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2473        if (remaining < min_expire)
2474                return 1;
2475
2476        return 0;
2477}
2478
2479static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2480{
2481        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2482
2483        /* if there's a quota refresh soon don't bother with slack */
2484        if (runtime_refresh_within(cfs_b, min_left))
2485                return;
2486
2487        start_bandwidth_timer(&cfs_b->slack_timer,
2488                                ns_to_ktime(cfs_bandwidth_slack_period));
2489}
2490
2491/* we know any runtime found here is valid as update_curr() precedes return */
2492static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2493{
2494        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2495        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2496
2497        if (slack_runtime <= 0)
2498                return;
2499
2500        raw_spin_lock(&cfs_b->lock);
2501        if (cfs_b->quota != RUNTIME_INF &&
2502            cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2503                cfs_b->runtime += slack_runtime;
2504
2505                /* we are under rq->lock, defer unthrottling using a timer */
2506                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2507                    !list_empty(&cfs_b->throttled_cfs_rq))
2508                        start_cfs_slack_bandwidth(cfs_b);
2509        }
2510        raw_spin_unlock(&cfs_b->lock);
2511
2512        /* even if it's not valid for return we don't want to try again */
2513        cfs_rq->runtime_remaining -= slack_runtime;
2514}
2515
2516static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2517{
2518        if (!cfs_bandwidth_used())
2519                return;
2520
2521        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2522                return;
2523
2524        __return_cfs_rq_runtime(cfs_rq);
2525}
2526
2527/*
2528 * This is done with a timer (instead of inline with bandwidth return) since
2529 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2530 */
2531static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2532{
2533        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2534        u64 expires;
2535
2536        /* confirm we're still not at a refresh boundary */
2537        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2538                return;
2539
2540        raw_spin_lock(&cfs_b->lock);
2541        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2542                runtime = cfs_b->runtime;
2543                cfs_b->runtime = 0;
2544        }
2545        expires = cfs_b->runtime_expires;
2546        raw_spin_unlock(&cfs_b->lock);
2547
2548        if (!runtime)
2549                return;
2550
2551        runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2552
2553        raw_spin_lock(&cfs_b->lock);
2554        if (expires == cfs_b->runtime_expires)
2555                cfs_b->runtime = runtime;
2556        raw_spin_unlock(&cfs_b->lock);
2557}
2558
2559/*
2560 * When a group wakes up we want to make sure that its quota is not already
2561 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2562 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2563 */
2564static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2565{
2566        if (!cfs_bandwidth_used())
2567                return;
2568
2569        /* an active group must be handled by the update_curr()->put() path */
2570        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2571                return;
2572
2573        /* ensure the group is not already throttled */
2574        if (cfs_rq_throttled(cfs_rq))
2575                return;
2576
2577        /* update runtime allocation */
2578        account_cfs_rq_runtime(cfs_rq, 0);
2579        if (cfs_rq->runtime_remaining <= 0)
2580                throttle_cfs_rq(cfs_rq);
2581}
2582
2583/* conditionally throttle active cfs_rq's from put_prev_entity() */
2584static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2585{
2586        if (!cfs_bandwidth_used())
2587                return;
2588
2589        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2590                return;
2591
2592        /*
2593         * it's possible for a throttled entity to be forced into a running
2594         * state (e.g. set_curr_task), in this case we're finished.
2595         */
2596        if (cfs_rq_throttled(cfs_rq))
2597                return;
2598
2599        throttle_cfs_rq(cfs_rq);
2600}
2601
2602static inline u64 default_cfs_period(void);
2603static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2604static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2605
2606static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2607{
2608        struct cfs_bandwidth *cfs_b =
2609                container_of(timer, struct cfs_bandwidth, slack_timer);
2610        do_sched_cfs_slack_timer(cfs_b);
2611
2612        return HRTIMER_NORESTART;
2613}
2614
2615static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2616{
2617        struct cfs_bandwidth *cfs_b =
2618                container_of(timer, struct cfs_bandwidth, period_timer);
2619        ktime_t now;
2620        int overrun;
2621        int idle = 0;
2622
2623        for (;;) {
2624                now = hrtimer_cb_get_time(timer);
2625                overrun = hrtimer_forward(timer, now, cfs_b->period);
2626
2627                if (!overrun)
2628                        break;
2629
2630                idle = do_sched_cfs_period_timer(cfs_b, overrun);
2631        }
2632
2633        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2634}
2635
2636void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2637{
2638        raw_spin_lock_init(&cfs_b->lock);
2639        cfs_b->runtime = 0;
2640        cfs_b->quota = RUNTIME_INF;
2641        cfs_b->period = ns_to_ktime(default_cfs_period());
2642
2643        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2644        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2645        cfs_b->period_timer.function = sched_cfs_period_timer;
2646        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2647        cfs_b->slack_timer.function = sched_cfs_slack_timer;
2648}
2649
2650static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2651{
2652        cfs_rq->runtime_enabled = 0;
2653        INIT_LIST_HEAD(&cfs_rq->throttled_list);
2654}
2655
2656/* requires cfs_b->lock, may release to reprogram timer */
2657void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2658{
2659        /*
2660         * The timer may be active because we're trying to set a new bandwidth
2661         * period or because we're racing with the tear-down path
2662         * (timer_active==0 becomes visible before the hrtimer call-back
2663         * terminates).  In either case we ensure that it's re-programmed
2664         */
2665        while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2666                raw_spin_unlock(&cfs_b->lock);
2667                /* ensure cfs_b->lock is available while we wait */
2668                hrtimer_cancel(&cfs_b->period_timer);
2669
2670                raw_spin_lock(&cfs_b->lock);
2671                /* if someone else restarted the timer then we're done */
2672                if (cfs_b->timer_active)
2673                        return;
2674        }
2675
2676        cfs_b->timer_active = 1;
2677        start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2678}
2679
2680static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2681{
2682        hrtimer_cancel(&cfs_b->period_timer);
2683        hrtimer_cancel(&cfs_b->slack_timer);
2684}
2685
2686static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2687{
2688        struct cfs_rq *cfs_rq;
2689
2690        for_each_leaf_cfs_rq(rq, cfs_rq) {
2691                struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2692
2693                if (!cfs_rq->runtime_enabled)
2694                        continue;
2695
2696                /*
2697                 * clock_task is not advancing so we just need to make sure
2698                 * there's some valid quota amount
2699                 */
2700                cfs_rq->runtime_remaining = cfs_b->quota;
2701                if (cfs_rq_throttled(cfs_rq))
2702                        unthrottle_cfs_rq(cfs_rq);
2703        }
2704}
2705
2706#else /* CONFIG_CFS_BANDWIDTH */
2707static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2708{
2709        return rq_of(cfs_rq)->clock_task;
2710}
2711
2712static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2713                                     unsigned long delta_exec) {}
2714static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2715static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2716static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2717
2718static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2719{
2720        return 0;
2721}
2722
2723static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2724{
2725        return 0;
2726}
2727
2728static inline int throttled_lb_pair(struct task_group *tg,
2729                                    int src_cpu, int dest_cpu)
2730{
2731        return 0;
2732}
2733
2734void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2735
2736#ifdef CONFIG_FAIR_GROUP_SCHED
2737static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2738#endif
2739
2740static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2741{
2742        return NULL;
2743}
2744static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2745static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2746
2747#endif /* CONFIG_CFS_BANDWIDTH */
2748
2749/**************************************************
2750 * CFS operations on tasks:
2751 */
2752
2753#ifdef CONFIG_SCHED_HRTICK
2754static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2755{
2756        struct sched_entity *se = &p->se;
2757        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2758
2759        WARN_ON(task_rq(p) != rq);
2760
2761        if (cfs_rq->nr_running > 1) {
2762                u64 slice = sched_slice(cfs_rq, se);
2763                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2764                s64 delta = slice - ran;
2765
2766                if (delta < 0) {
2767                        if (rq->curr == p)
2768                                resched_task(p);
2769                        return;
2770                }
2771
2772                /*
2773                 * Don't schedule slices shorter than 10000ns, that just
2774                 * doesn't make sense. Rely on vruntime for fairness.
2775                 */
2776                if (rq->curr != p)
2777                        delta = max_t(s64, 10000LL, delta);
2778
2779                hrtick_start(rq, delta);
2780        }
2781}
2782
2783/*
2784 * called from enqueue/dequeue and updates the hrtick when the
2785 * current task is from our class and nr_running is low enough
2786 * to matter.
2787 */
2788static void hrtick_update(struct rq *rq)
2789{
2790        struct task_struct *curr = rq->curr;
2791
2792        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2793                return;
2794
2795        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2796                hrtick_start_fair(rq, curr);
2797}
2798#else /* !CONFIG_SCHED_HRTICK */
2799static inline void
2800hrtick_start_fair(struct rq *rq, struct task_struct *p)
2801{
2802}
2803
2804static inline void hrtick_update(struct rq *rq)
2805{
2806}
2807#endif
2808
2809/*
2810 * The enqueue_task method is called before nr_running is
2811 * increased. Here we update the fair scheduling stats and
2812 * then put the task into the rbtree:
2813 */
2814static void
2815enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2816{
2817        struct cfs_rq *cfs_rq;
2818        struct sched_entity *se = &p->se;
2819
2820        for_each_sched_entity(se) {
2821                if (se->on_rq)
2822                        break;
2823                cfs_rq = cfs_rq_of(se);
2824                enqueue_entity(cfs_rq, se, flags);
2825
2826                /*
2827                 * end evaluation on encountering a throttled cfs_rq
2828                 *
2829                 * note: in the case of encountering a throttled cfs_rq we will
2830                 * post the final h_nr_running increment below.
2831                */
2832                if (cfs_rq_throttled(cfs_rq))
2833                        break;
2834                cfs_rq->h_nr_running++;
2835
2836                flags = ENQUEUE_WAKEUP;
2837        }
2838
2839        for_each_sched_entity(se) {
2840                cfs_rq = cfs_rq_of(se);
2841                cfs_rq->h_nr_running++;
2842
2843                if (cfs_rq_throttled(cfs_rq))
2844                        break;
2845
2846                update_cfs_shares(cfs_rq);
2847                update_entity_load_avg(se, 1);
2848        }
2849
2850        if (!se) {
2851                update_rq_runnable_avg(rq, rq->nr_running);
2852                inc_nr_running(rq);
2853        }
2854        hrtick_update(rq);
2855}
2856
2857static void set_next_buddy(struct sched_entity *se);
2858
2859/*
2860 * The dequeue_task method is called before nr_running is
2861 * decreased. We remove the task from the rbtree and
2862 * update the fair scheduling stats:
2863 */
2864static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2865{
2866        struct cfs_rq *cfs_rq;
2867        struct sched_entity *se = &p->se;
2868        int task_sleep = flags & DEQUEUE_SLEEP;
2869
2870        for_each_sched_entity(se) {
2871                cfs_rq = cfs_rq_of(se);
2872                dequeue_entity(cfs_rq, se, flags);
2873
2874                /*
2875                 * end evaluation on encountering a throttled cfs_rq
2876                 *
2877                 * note: in the case of encountering a throttled cfs_rq we will
2878                 * post the final h_nr_running decrement below.
2879                */
2880                if (cfs_rq_throttled(cfs_rq))
2881                        break;
2882                cfs_rq->h_nr_running--;
2883
2884                /* Don't dequeue parent if it has other entities besides us */
2885                if (cfs_rq->load.weight) {
2886                        /*
2887                         * Bias pick_next to pick a task from this cfs_rq, as
2888                         * p is sleeping when it is within its sched_slice.
2889                         */
2890                        if (task_sleep && parent_entity(se))
2891                                set_next_buddy(parent_entity(se));
2892
2893                        /* avoid re-evaluating load for this entity */
2894                        se = parent_entity(se);
2895                        break;
2896                }
2897                flags |= DEQUEUE_SLEEP;
2898        }
2899
2900        for_each_sched_entity(se) {
2901                cfs_rq = cfs_rq_of(se);
2902                cfs_rq->h_nr_running--;
2903
2904                if (cfs_rq_throttled(cfs_rq))
2905                        break;
2906
2907                update_cfs_shares(cfs_rq);
2908                update_entity_load_avg(se, 1);
2909        }
2910
2911        if (!se) {
2912                dec_nr_running(rq);
2913                update_rq_runnable_avg(rq, 1);
2914        }
2915        hrtick_update(rq);
2916}
2917
2918#ifdef CONFIG_SMP
2919/* Used instead of source_load when we know the type == 0 */
2920static unsigned long weighted_cpuload(const int cpu)
2921{
2922        return cpu_rq(cpu)->load.weight;
2923}
2924
2925/*
2926 * Return a low guess at the load of a migration-source cpu weighted
2927 * according to the scheduling class and "nice" value.
2928 *
2929 * We want to under-estimate the load of migration sources, to
2930 * balance conservatively.
2931 */
2932static unsigned long source_load(int cpu, int type)
2933{
2934        struct rq *rq = cpu_rq(cpu);
2935        unsigned long total = weighted_cpuload(cpu);
2936
2937        if (type == 0 || !sched_feat(LB_BIAS))
2938                return total;
2939
2940        return min(rq->cpu_load[type-1], total);
2941}
2942
2943/*
2944 * Return a high guess at the load of a migration-target cpu weighted
2945 * according to the scheduling class and "nice" value.
2946 */
2947static unsigned long target_load(int cpu, int type)
2948{
2949        struct rq *rq = cpu_rq(cpu);
2950        unsigned long total = weighted_cpuload(cpu);
2951
2952        if (type == 0 || !sched_feat(LB_BIAS))
2953                return total;
2954
2955        return max(rq->cpu_load[type-1], total);
2956}
2957
2958static unsigned long power_of(int cpu)
2959{
2960        return cpu_rq(cpu)->cpu_power;
2961}
2962
2963static unsigned long cpu_avg_load_per_task(int cpu)
2964{
2965        struct rq *rq = cpu_rq(cpu);
2966        unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2967
2968        if (nr_running)
2969                return rq->load.weight / nr_running;
2970
2971        return 0;
2972}
2973
2974
2975static void task_waking_fair(struct task_struct *p)
2976{
2977        struct sched_entity *se = &p->se;
2978        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979        u64 min_vruntime;
2980
2981#ifndef CONFIG_64BIT
2982        u64 min_vruntime_copy;
2983
2984        do {
2985                min_vruntime_copy = cfs_rq->min_vruntime_copy;
2986                smp_rmb();
2987                min_vruntime = cfs_rq->min_vruntime;
2988        } while (min_vruntime != min_vruntime_copy);
2989#else
2990        min_vruntime = cfs_rq->min_vruntime;
2991#endif
2992
2993        se->vruntime -= min_vruntime;
2994}
2995
2996#ifdef CONFIG_FAIR_GROUP_SCHED
2997/*
2998 * effective_load() calculates the load change as seen from the root_task_group
2999 *
3000 * Adding load to a group doesn't make a group heavier, but can cause movement
3001 * of group shares between cpus. Assuming the shares were perfectly aligned one
3002 * can calculate the shift in shares.
3003 *
3004 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3005 * on this @cpu and results in a total addition (subtraction) of @wg to the
3006 * total group weight.
3007 *
3008 * Given a runqueue weight distribution (rw_i) we can compute a shares
3009 * distribution (s_i) using:
3010 *
3011 *   s_i = rw_i / \Sum rw_j                                             (1)
3012 *
3013 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3014 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3015 * shares distribution (s_i):
3016 *
3017 *   rw_i = {   2,   4,   1,   0 }
3018 *   s_i  = { 2/7, 4/7, 1/7,   0 }
3019 *
3020 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3021 * task used to run on and the CPU the waker is running on), we need to
3022 * compute the effect of waking a task on either CPU and, in case of a sync
3023 * wakeup, compute the effect of the current task going to sleep.
3024 *
3025 * So for a change of @wl to the local @cpu with an overall group weight change
3026 * of @wl we can compute the new shares distribution (s'_i) using:
3027 *
3028 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                            (2)
3029 *
3030 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3031 * differences in waking a task to CPU 0. The additional task changes the
3032 * weight and shares distributions like:
3033 *
3034 *   rw'_i = {   3,   4,   1,   0 }
3035 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
3036 *
3037 * We can then compute the difference in effective weight by using:
3038 *
3039 *   dw_i = S * (s'_i - s_i)                                            (3)
3040 *
3041 * Where 'S' is the group weight as seen by its parent.
3042 *
3043 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3044 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3045 * 4/7) times the weight of the group.
3046 */
3047static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3048{
3049        struct sched_entity *se = tg->se[cpu];
3050
3051        if (!tg->parent)        /* the trivial, non-cgroup case */
3052                return wl;
3053
3054        for_each_sched_entity(se) {
3055                long w, W;
3056
3057                tg = se->my_q->tg;
3058
3059                /*
3060                 * W = @wg + \Sum rw_j
3061                 */
3062                W = wg + calc_tg_weight(tg, se->my_q);
3063
3064                /*
3065                 * w = rw_i + @wl
3066                 */
3067                w = se->my_q->load.weight + wl;
3068
3069                /*
3070                 * wl = S * s'_i; see (2)
3071                 */
3072                if (W > 0 && w < W)
3073                        wl = (w * tg->shares) / W;
3074                else
3075                        wl = tg->shares;
3076
3077                /*
3078                 * Per the above, wl is the new se->load.weight value; since
3079                 * those are clipped to [MIN_SHARES, ...) do so now. See
3080                 * calc_cfs_shares().
3081                 */
3082                if (wl < MIN_SHARES)
3083                        wl = MIN_SHARES;
3084
3085                /*
3086                 * wl = dw_i = S * (s'_i - s_i); see (3)
3087                 */
3088                wl -= se->load.weight;
3089
3090                /*
3091                 * Recursively apply this logic to all parent groups to compute
3092                 * the final effective load change on the root group. Since
3093                 * only the @tg group gets extra weight, all parent groups can
3094                 * only redistribute existing shares. @wl is the shift in shares
3095                 * resulting from this level per the above.
3096                 */
3097                wg = 0;
3098        }
3099
3100        return wl;
3101}
3102#else
3103
3104static inline unsigned long effective_load(struct task_group *tg, int cpu,
3105                unsigned long wl, unsigned long wg)
3106{
3107        return wl;
3108}
3109
3110#endif
3111
3112static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3113{
3114        s64 this_load, load;
3115        int idx, this_cpu, prev_cpu;
3116        unsigned long tl_per_task;
3117        struct task_group *tg;
3118        unsigned long weight;
3119        int balanced;
3120
3121        idx       = sd->wake_idx;
3122        this_cpu  = smp_processor_id();
3123        prev_cpu  = task_cpu(p);
3124        load      = source_load(prev_cpu, idx);
3125        this_load = target_load(this_cpu, idx);
3126
3127        /*
3128         * If sync wakeup then subtract the (maximum possible)
3129         * effect of the currently running task from the load
3130         * of the current CPU:
3131         */
3132        if (sync) {
3133                tg = task_group(current);
3134                weight = current->se.load.weight;
3135
3136                this_load += effective_load(tg, this_cpu, -weight, -weight);
3137                load += effective_load(tg, prev_cpu, 0, -weight);
3138        }
3139
3140        tg = task_group(p);
3141        weight = p->se.load.weight;
3142
3143        /*
3144         * In low-load situations, where prev_cpu is idle and this_cpu is idle
3145         * due to the sync cause above having dropped this_load to 0, we'll
3146         * always have an imbalance, but there's really nothing you can do
3147         * about that, so that's good too.
3148         *
3149         * Otherwise check if either cpus are near enough in load to allow this
3150         * task to be woken on this_cpu.
3151         */
3152        if (this_load > 0) {
3153                s64 this_eff_load, prev_eff_load;
3154
3155                this_eff_load = 100;
3156                this_eff_load *= power_of(prev_cpu);
3157                this_eff_load *= this_load +
3158                        effective_load(tg, this_cpu, weight, weight);
3159
3160                prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3161                prev_eff_load *= power_of(this_cpu);
3162                prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3163
3164                balanced = this_eff_load <= prev_eff_load;
3165        } else
3166                balanced = true;
3167
3168        /*
3169         * If the currently running task will sleep within
3170         * a reasonable amount of time then attract this newly
3171         * woken task:
3172         */
3173        if (sync && balanced)
3174                return 1;
3175
3176        schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3177        tl_per_task = cpu_avg_load_per_task(this_cpu);
3178
3179        if (balanced ||
3180            (this_load <= load &&
3181             this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3182                /*
3183                 * This domain has SD_WAKE_AFFINE and
3184                 * p is cache cold in this domain, and
3185                 * there is no bad imbalance.
3186                 */
3187                schedstat_inc(sd, ttwu_move_affine);
3188                schedstat_inc(p, se.statistics.nr_wakeups_affine);
3189
3190                return 1;
3191        }
3192        return 0;
3193}
3194
3195/*
3196 * find_idlest_group finds and returns the least busy CPU group within the
3197 * domain.
3198 */
3199static struct sched_group *
3200find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3201                  int this_cpu, int load_idx)
3202{
3203        struct sched_group *idlest = NULL, *group = sd->groups;
3204        unsigned long min_load = ULONG_MAX, this_load = 0;
3205        int imbalance = 100 + (sd->imbalance_pct-100)/2;
3206
3207        do {
3208                unsigned long load, avg_load;
3209                int local_group;
3210                int i;
3211
3212                /* Skip over this group if it has no CPUs allowed */
3213                if (!cpumask_intersects(sched_group_cpus(group),
3214                                        tsk_cpus_allowed(p)))
3215                        continue;
3216
3217                local_group = cpumask_test_cpu(this_cpu,
3218                                               sched_group_cpus(group));
3219
3220                /* Tally up the load of all CPUs in the group */
3221                avg_load = 0;
3222
3223                for_each_cpu(i, sched_group_cpus(group)) {
3224                        /* Bias balancing toward cpus of our domain */
3225                        if (local_group)
3226                                load = source_load(i, load_idx);
3227                        else
3228                                load = target_load(i, load_idx);
3229
3230                        avg_load += load;
3231                }
3232
3233                /* Adjust by relative CPU power of the group */
3234                avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3235
3236                if (local_group) {
3237                        this_load = avg_load;
3238                } else if (avg_load < min_load) {
3239                        min_load = avg_load;
3240                        idlest = group;
3241                }
3242        } while (group = group->next, group != sd->groups);
3243
3244        if (!idlest || 100*this_load < imbalance*min_load)
3245                return NULL;
3246        return idlest;
3247}
3248
3249/*
3250 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3251 */
3252static int
3253find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3254{
3255        unsigned long load, min_load = ULONG_MAX;
3256        int idlest = -1;
3257        int i;
3258
3259        /* Traverse only the allowed CPUs */
3260        for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3261                load = weighted_cpuload(i);
3262
3263                if (load < min_load || (load == min_load && i == this_cpu)) {
3264                        min_load = load;
3265                        idlest = i;
3266                }
3267        }
3268
3269        return idlest;
3270}
3271
3272/*
3273 * Try and locate an idle CPU in the sched_domain.
3274 */
3275static int select_idle_sibling(struct task_struct *p, int target)
3276{
3277        struct sched_domain *sd;
3278        struct sched_group *sg;
3279        int i = task_cpu(p);
3280
3281        if (idle_cpu(target))
3282                return target;
3283
3284        /*
3285         * If the prevous cpu is cache affine and idle, don't be stupid.
3286         */
3287        if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3288                return i;
3289
3290        /*
3291         * Otherwise, iterate the domains and find an elegible idle cpu.
3292         */
3293        sd = rcu_dereference(per_cpu(sd_llc, target));
3294        for_each_lower_domain(sd) {
3295                sg = sd->groups;
3296                do {
3297                        if (!cpumask_intersects(sched_group_cpus(sg),
3298                                                tsk_cpus_allowed(p)))
3299                                goto next;
3300
3301                        for_each_cpu(i, sched_group_cpus(sg)) {
3302                                if (i == target || !idle_cpu(i))
3303                                        goto next;
3304                        }
3305
3306                        target = cpumask_first_and(sched_group_cpus(sg),
3307                                        tsk_cpus_allowed(p));
3308                        goto done;
3309next:
3310                        sg = sg->next;
3311                } while (sg != sd->groups);
3312        }
3313done:
3314        return target;
3315}
3316
3317/*
3318 * sched_balance_self: balance the current task (running on cpu) in domains
3319 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3320 * SD_BALANCE_EXEC.
3321 *
3322 * Balance, ie. select the least loaded group.
3323 *
3324 * Returns the target CPU number, or the same CPU if no balancing is needed.
3325 *
3326 * preempt must be disabled.
3327 */
3328static int
3329select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3330{
3331        struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3332        int cpu = smp_processor_id();
3333        int prev_cpu = task_cpu(p);
3334        int new_cpu = cpu;
3335        int want_affine = 0;
3336        int sync = wake_flags & WF_SYNC;
3337
3338        if (p->nr_cpus_allowed == 1)
3339                return prev_cpu;
3340
3341        if (sd_flag & SD_BALANCE_WAKE) {
3342                if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3343                        want_affine = 1;
3344                new_cpu = prev_cpu;
3345        }
3346
3347        rcu_read_lock();
3348        for_each_domain(cpu, tmp) {
3349                if (!(tmp->flags & SD_LOAD_BALANCE))
3350                        continue;
3351
3352                /*
3353                 * If both cpu and prev_cpu are part of this domain,
3354                 * cpu is a valid SD_WAKE_AFFINE target.
3355                 */
3356                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3357                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3358                        affine_sd = tmp;
3359                        break;
3360                }
3361
3362                if (tmp->flags & sd_flag)
3363                        sd = tmp;
3364        }
3365
3366        if (affine_sd) {
3367                if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3368                        prev_cpu = cpu;
3369
3370                new_cpu = select_idle_sibling(p, prev_cpu);
3371                goto unlock;
3372        }
3373
3374        while (sd) {
3375                int load_idx = sd->forkexec_idx;
3376                struct sched_group *group;
3377                int weight;
3378
3379                if (!(sd->flags & sd_flag)) {
3380                        sd = sd->child;
3381                        continue;
3382                }
3383
3384                if (sd_flag & SD_BALANCE_WAKE)
3385                        load_idx = sd->wake_idx;
3386
3387                group = find_idlest_group(sd, p, cpu, load_idx);
3388                if (!group) {
3389                        sd = sd->child;
3390                        continue;
3391                }
3392
3393                new_cpu = find_idlest_cpu(group, p, cpu);
3394                if (new_cpu == -1 || new_cpu == cpu) {
3395                        /* Now try balancing at a lower domain level of cpu */
3396                        sd = sd->child;
3397                        continue;
3398                }
3399
3400                /* Now try balancing at a lower domain level of new_cpu */
3401                cpu = new_cpu;
3402                weight = sd->span_weight;
3403                sd = NULL;
3404                for_each_domain(cpu, tmp) {
3405                        if (weight <= tmp->span_weight)
3406                                break;
3407                        if (tmp->flags & sd_flag)
3408                                sd = tmp;
3409                }
3410                /* while loop will break here if sd == NULL */
3411        }
3412unlock:
3413        rcu_read_unlock();
3414
3415        return new_cpu;
3416}
3417
3418/*
3419 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3420 * removed when useful for applications beyond shares distribution (e.g.
3421 * load-balance).
3422 */
3423#ifdef CONFIG_FAIR_GROUP_SCHED
3424/*
3425 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3426 * cfs_rq_of(p) references at time of call are still valid and identify the
3427 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
3428 * other assumptions, including the state of rq->lock, should be made.
3429 */
3430static void
3431migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3432{
3433        struct sched_entity *se = &p->se;
3434        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3435
3436        /*
3437         * Load tracking: accumulate removed load so that it can be processed
3438         * when we next update owning cfs_rq under rq->lock.  Tasks contribute
3439         * to blocked load iff they have a positive decay-count.  It can never
3440         * be negative here since on-rq tasks have decay-count == 0.
3441         */
3442        if (se->avg.decay_count) {
3443                se->avg.decay_count = -__synchronize_entity_decay(se);
3444                atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3445        }
3446}
3447#endif
3448#endif /* CONFIG_SMP */
3449
3450static unsigned long
3451wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3452{
3453        unsigned long gran = sysctl_sched_wakeup_granularity;
3454
3455        /*
3456         * Since its curr running now, convert the gran from real-time
3457         * to virtual-time in his units.
3458         *
3459         * By using 'se' instead of 'curr' we penalize light tasks, so
3460         * they get preempted easier. That is, if 'se' < 'curr' then
3461         * the resulting gran will be larger, therefore penalizing the
3462         * lighter, if otoh 'se' > 'curr' then the resulting gran will
3463         * be smaller, again penalizing the lighter task.
3464         *
3465         * This is especially important for buddies when the leftmost
3466         * task is higher priority than the buddy.
3467         */
3468        return calc_delta_fair(gran, se);
3469}
3470
3471/*
3472 * Should 'se' preempt 'curr'.
3473 *
3474 *             |s1
3475 *        |s2
3476 *   |s3
3477 *         g
3478 *      |<--->|c
3479 *
3480 *  w(c, s1) = -1
3481 *  w(c, s2) =  0
3482 *  w(c, s3) =  1
3483 *
3484 */
3485static int
3486wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3487{
3488        s64 gran, vdiff = curr->vruntime - se->vruntime;
3489
3490        if (vdiff <= 0)
3491                return -1;
3492
3493        gran = wakeup_gran(curr, se);
3494        if (vdiff > gran)
3495                return 1;
3496
3497        return 0;
3498}
3499
3500static void set_last_buddy(struct sched_entity *se)
3501{
3502        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3503                return;
3504
3505        for_each_sched_entity(se)
3506                cfs_rq_of(se)->last = se;
3507}
3508
3509static void set_next_buddy(struct sched_entity *se)
3510{
3511        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3512                return;
3513
3514        for_each_sched_entity(se)
3515                cfs_rq_of(se)->next = se;
3516}
3517
3518static void set_skip_buddy(struct sched_entity *se)
3519{
3520        for_each_sched_entity(se)
3521                cfs_rq_of(se)->skip = se;
3522}
3523
3524/*
3525 * Preempt the current task with a newly woken task if needed:
3526 */
3527static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3528{
3529        struct task_struct *curr = rq->curr;
3530        struct sched_entity *se = &curr->se, *pse = &p->se;
3531        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3532        int scale = cfs_rq->nr_running >= sched_nr_latency;
3533        int next_buddy_marked = 0;
3534
3535        if (unlikely(se == pse))
3536                return;
3537
3538        /*
3539         * This is possible from callers such as move_task(), in which we
3540         * unconditionally check_prempt_curr() after an enqueue (which may have
3541         * lead to a throttle).  This both saves work and prevents false
3542         * next-buddy nomination below.
3543         */
3544        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3545                return;
3546
3547        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3548                set_next_buddy(pse);
3549                next_buddy_marked = 1;
3550        }
3551
3552        /*
3553         * We can come here with TIF_NEED_RESCHED already set from new task
3554         * wake up path.
3555         *
3556         * Note: this also catches the edge-case of curr being in a throttled
3557         * group (e.g. via set_curr_task), since update_curr() (in the
3558         * enqueue of curr) will have resulted in resched being set.  This
3559         * prevents us from potentially nominating it as a false LAST_BUDDY
3560         * below.
3561         */
3562        if (test_tsk_need_resched(curr))
3563                return;
3564
3565        /* Idle tasks are by definition preempted by non-idle tasks. */
3566        if (unlikely(curr->policy == SCHED_IDLE) &&
3567            likely(p->policy != SCHED_IDLE))
3568                goto preempt;
3569
3570        /*
3571         * Batch and idle tasks do not preempt non-idle tasks (their preemption
3572         * is driven by the tick):
3573         */
3574        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3575                return;
3576
3577        find_matching_se(&se, &pse);
3578        update_curr(cfs_rq_of(se));
3579        BUG_ON(!pse);
3580        if (wakeup_preempt_entity(se, pse) == 1) {
3581                /*
3582                 * Bias pick_next to pick the sched entity that is
3583                 * triggering this preemption.
3584                 */
3585                if (!next_buddy_marked)
3586                        set_next_buddy(pse);
3587                goto preempt;
3588        }
3589
3590        return;
3591
3592preempt:
3593        resched_task(curr);
3594        /*
3595         * Only set the backward buddy when the current task is still
3596         * on the rq. This can happen when a wakeup gets interleaved
3597         * with schedule on the ->pre_schedule() or idle_balance()
3598         * point, either of which can * drop the rq lock.
3599         *
3600         * Also, during early boot the idle thread is in the fair class,
3601         * for obvious reasons its a bad idea to schedule back to it.
3602         */
3603        if (unlikely(!se->on_rq || curr == rq->idle))
3604                return;
3605
3606        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3607                set_last_buddy(se);
3608}
3609
3610static struct task_struct *pick_next_task_fair(struct rq *rq)
3611{
3612        struct task_struct *p;
3613        struct cfs_rq *cfs_rq = &rq->cfs;
3614        struct sched_entity *se;
3615
3616        if (!cfs_rq->nr_running)
3617                return NULL;
3618
3619        do {
3620                se = pick_next_entity(cfs_rq);
3621                set_next_entity(cfs_rq, se);
3622                cfs_rq = group_cfs_rq(se);
3623        } while (cfs_rq);
3624
3625        p = task_of(se);
3626        if (hrtick_enabled(rq))
3627                hrtick_start_fair(rq, p);
3628
3629        return p;
3630}
3631
3632/*
3633 * Account for a descheduled task:
3634 */
3635static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3636{
3637        struct sched_entity *se = &prev->se;
3638        struct cfs_rq *cfs_rq;
3639
3640        for_each_sched_entity(se) {
3641                cfs_rq = cfs_rq_of(se);
3642                put_prev_entity(cfs_rq, se);
3643        }
3644}
3645
3646/*
3647 * sched_yield() is very simple
3648 *
3649 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3650 */
3651static void yield_task_fair(struct rq *rq)
3652{
3653        struct task_struct *curr = rq->curr;
3654        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3655        struct sched_entity *se = &curr->se;
3656
3657        /*
3658         * Are we the only task in the tree?
3659         */
3660        if (unlikely(rq->nr_running == 1))
3661                return;
3662
3663        clear_buddies(cfs_rq, se);
3664
3665        if (curr->policy != SCHED_BATCH) {
3666                update_rq_clock(rq);
3667                /*
3668                 * Update run-time statistics of the 'current'.
3669                 */
3670                update_curr(cfs_rq);
3671                /*
3672                 * Tell update_rq_clock() that we've just updated,
3673                 * so we don't do microscopic update in schedule()
3674                 * and double the fastpath cost.
3675                 */
3676                 rq->skip_clock_update = 1;
3677        }
3678
3679        set_skip_buddy(se);
3680}
3681
3682static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3683{
3684        struct sched_entity *se = &p->se;
3685
3686        /* throttled hierarchies are not runnable */
3687        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3688                return false;
3689
3690        /* Tell the scheduler that we'd really like pse to run next. */
3691        set_next_buddy(se);
3692
3693        yield_task_fair(rq);
3694
3695        return true;
3696}
3697
3698#ifdef CONFIG_SMP
3699/**************************************************
3700 * Fair scheduling class load-balancing methods.
3701 *
3702 * BASICS
3703 *
3704 * The purpose of load-balancing is to achieve the same basic fairness the
3705 * per-cpu scheduler provides, namely provide a proportional amount of compute
3706 * time to each task. This is expressed in the following equation:
3707 *
3708 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
3709 *
3710 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3711 * W_i,0 is defined as:
3712 *
3713 *   W_i,0 = \Sum_j w_i,j                                             (2)
3714 *
3715 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3716 * is derived from the nice value as per prio_to_weight[].
3717 *
3718 * The weight average is an exponential decay average of the instantaneous
3719 * weight:
3720 *
3721 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
3722 *
3723 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3724 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3725 * can also include other factors [XXX].
3726 *
3727 * To achieve this balance we define a measure of imbalance which follows
3728 * directly from (1):
3729 *
3730 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
3731 *
3732 * We them move tasks around to minimize the imbalance. In the continuous
3733 * function space it is obvious this converges, in the discrete case we get
3734 * a few fun cases generally called infeasible weight scenarios.
3735 *
3736 * [XXX expand on:
3737 *     - infeasible weights;
3738 *     - local vs global optima in the discrete case. ]
3739 *
3740 *
3741 * SCHED DOMAINS
3742 *
3743 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3744 * for all i,j solution, we create a tree of cpus that follows the hardware
3745 * topology where each level pairs two lower groups (or better). This results
3746 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3747 * tree to only the first of the previous level and we decrease the frequency
3748 * of load-balance at each level inv. proportional to the number of cpus in
3749 * the groups.
3750 *
3751 * This yields:
3752 *
3753 *     log_2 n     1     n
3754 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
3755 *     i = 0      2^i   2^i
3756 *                               `- size of each group
3757 *         |         |     `- number of cpus doing load-balance
3758 *         |         `- freq
3759 *         `- sum over all levels
3760 *
3761 * Coupled with a limit on how many tasks we can migrate every balance pass,
3762 * this makes (5) the runtime complexity of the balancer.
3763 *
3764 * An important property here is that each CPU is still (indirectly) connected
3765 * to every other cpu in at most O(log n) steps:
3766 *
3767 * The adjacency matrix of the resulting graph is given by:
3768 *
3769 *             log_2 n     
3770 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
3771 *             k = 0
3772 *
3773 * And you'll find that:
3774 *
3775 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
3776 *
3777 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3778 * The task movement gives a factor of O(m), giving a convergence complexity
3779 * of:
3780 *
3781 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
3782 *
3783 *
3784 * WORK CONSERVING
3785 *
3786 * In order to avoid CPUs going idle while there's still work to do, new idle
3787 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3788 * tree itself instead of relying on other CPUs to bring it work.
3789 *
3790 * This adds some complexity to both (5) and (8) but it reduces the total idle
3791 * time.
3792 *
3793 * [XXX more?]
3794 *
3795 *
3796 * CGROUPS
3797 *
3798 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3799 *
3800 *                                s_k,i
3801 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
3802 *                                 S_k
3803 *
3804 * Where
3805 *
3806 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
3807 *
3808 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3809 *
3810 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3811 * property.
3812 *
3813 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3814 *      rewrite all of this once again.]
3815 */ 
3816
3817static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3818
3819#define LBF_ALL_PINNED  0x01
3820#define LBF_NEED_BREAK  0x02
3821#define LBF_SOME_PINNED 0x04
3822
3823struct lb_env {
3824        struct sched_domain     *sd;
3825
3826        struct rq               *src_rq;
3827        int                     src_cpu;
3828
3829        int                     dst_cpu;
3830        struct rq               *dst_rq;
3831
3832        struct cpumask          *dst_grpmask;
3833        int                     new_dst_cpu;
3834        enum cpu_idle_type      idle;
3835        long                    imbalance;
3836        /* The set of CPUs under consideration for load-balancing */
3837        struct cpumask          *cpus;
3838
3839        unsigned int            flags;
3840
3841        unsigned int            loop;
3842        unsigned int            loop_break;
3843        unsigned int            loop_max;
3844};
3845
3846/*
3847 * move_task - move a task from one runqueue to another runqueue.
3848 * Both runqueues must be locked.
3849 */
3850static void move_task(struct task_struct *p, struct lb_env *env)
3851{
3852        deactivate_task(env->src_rq, p, 0);
3853        set_task_cpu(p, env->dst_cpu);
3854        activate_task(env->dst_rq, p, 0);
3855        check_preempt_curr(env->dst_rq, p, 0);
3856}
3857
3858/*
3859 * Is this task likely cache-hot:
3860 */
3861static int
3862task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3863{
3864        s64 delta;
3865
3866        if (p->sched_class != &fair_sched_class)
3867                return 0;
3868
3869        if (unlikely(p->policy == SCHED_IDLE))
3870                return 0;
3871
3872        /*
3873         * Buddy candidates are cache hot:
3874         */
3875        if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3876                        (&p->se == cfs_rq_of(&p->se)->next ||
3877                         &p->se == cfs_rq_of(&p->se)->last))
3878                return 1;
3879
3880        if (sysctl_sched_migration_cost == -1)
3881                return 1;
3882        if (sysctl_sched_migration_cost == 0)
3883                return 0;
3884
3885        delta = now - p->se.exec_start;
3886
3887        return delta < (s64)sysctl_sched_migration_cost;
3888}
3889
3890/*
3891 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3892 */
3893static
3894int can_migrate_task(struct task_struct *p, struct lb_env *env)
3895{
3896        int tsk_cache_hot = 0;
3897        /*
3898         * We do not migrate tasks that are:
3899         * 1) throttled_lb_pair, or
3900         * 2) cannot be migrated to this CPU due to cpus_allowed, or
3901         * 3) running (obviously), or
3902         * 4) are cache-hot on their current CPU.
3903         */
3904        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3905                return 0;
3906
3907        if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3908                int cpu;
3909
3910                schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3911
3912                /*
3913                 * Remember if this task can be migrated to any other cpu in
3914                 * our sched_group. We may want to revisit it if we couldn't
3915                 * meet load balance goals by pulling other tasks on src_cpu.
3916                 *
3917                 * Also avoid computing new_dst_cpu if we have already computed
3918                 * one in current iteration.
3919                 */
3920                if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3921                        return 0;
3922
3923                /* Prevent to re-select dst_cpu via env's cpus */
3924                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3925                        if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3926                                env->flags |= LBF_SOME_PINNED;
3927                                env->new_dst_cpu = cpu;
3928                                break;
3929                        }
3930                }
3931
3932                return 0;
3933        }
3934
3935        /* Record that we found atleast one task that could run on dst_cpu */
3936        env->flags &= ~LBF_ALL_PINNED;
3937
3938        if (task_running(env->src_rq, p)) {
3939                schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3940                return 0;
3941        }
3942
3943        /*
3944         * Aggressive migration if:
3945         * 1) task is cache cold, or
3946         * 2) too many balance attempts have failed.
3947         */
3948
3949        tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3950        if (!tsk_cache_hot ||
3951                env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3952
3953                if (tsk_cache_hot) {
3954                        schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3955                        schedstat_inc(p, se.statistics.nr_forced_migrations);
3956                }
3957
3958                return 1;
3959        }
3960
3961        schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3962        return 0;
3963}
3964
3965/*
3966 * move_one_task tries to move exactly one task from busiest to this_rq, as
3967 * part of active balancing operations within "domain".
3968 * Returns 1 if successful and 0 otherwise.
3969 *
3970 * Called with both runqueues locked.
3971 */
3972static int move_one_task(struct lb_env *env)
3973{
3974        struct task_struct *p, *n;
3975
3976        list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3977                if (!can_migrate_task(p, env))
3978                        continue;
3979
3980                move_task(p, env);
3981                /*
3982                 * Right now, this is only the second place move_task()
3983                 * is called, so we can safely collect move_task()
3984                 * stats here rather than inside move_task().
3985                 */
3986                schedstat_inc(env->sd, lb_gained[env->idle]);
3987                return 1;
3988        }
3989        return 0;
3990}
3991
3992static unsigned long task_h_load(struct task_struct *p);
3993
3994static const unsigned int sched_nr_migrate_break = 32;
3995
3996/*
3997 * move_tasks tries to move up to imbalance weighted load from busiest to
3998 * this_rq, as part of a balancing operation within domain "sd".
3999 * Returns 1 if successful and 0 otherwise.
4000 *
4001 * Called with both runqueues locked.
4002 */
4003static int move_tasks(struct lb_env *env)
4004{
4005        struct list_head *tasks = &env->src_rq->cfs_tasks;
4006        struct task_struct *p;
4007        unsigned long load;
4008        int pulled = 0;
4009
4010        if (env->imbalance <= 0)
4011                return 0;
4012
4013        while (!list_empty(tasks)) {
4014                p = list_first_entry(tasks, struct task_struct, se.group_node);
4015
4016                env->loop++;
4017                /* We've more or less seen every task there is, call it quits */
4018                if (env->loop > env->loop_max)
4019                        break;
4020
4021                /* take a breather every nr_migrate tasks */
4022                if (env->loop > env->loop_break) {
4023                        env->loop_break += sched_nr_migrate_break;
4024                        env->flags |= LBF_NEED_BREAK;
4025                        break;
4026                }
4027
4028                if (!can_migrate_task(p, env))
4029                        goto next;
4030
4031                load = task_h_load(p);
4032
4033                if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4034                        goto next;
4035
4036                if ((load / 2) > env->imbalance)
4037                        goto next;
4038
4039                move_task(p, env);
4040                pulled++;
4041                env->imbalance -= load;
4042
4043#ifdef CONFIG_PREEMPT
4044                /*
4045                 * NEWIDLE balancing is a source of latency, so preemptible
4046                 * kernels will stop after the first task is pulled to minimize
4047                 * the critical section.
4048                 */
4049                if (env->idle == CPU_NEWLY_IDLE)
4050                        break;
4051#endif
4052
4053                /*
4054                 * We only want to steal up to the prescribed amount of
4055                 * weighted load.
4056                 */
4057                if (env->imbalance <= 0)
4058                        break;
4059
4060                continue;
4061next:
4062                list_move_tail(&p->se.group_node, tasks);
4063        }
4064
4065        /*
4066         * Right now, this is one of only two places move_task() is called,
4067         * so we can safely collect move_task() stats here rather than
4068         * inside move_task().
4069         */
4070        schedstat_add(env->sd, lb_gained[env->idle], pulled);
4071
4072        return pulled;
4073}
4074
4075#ifdef CONFIG_FAIR_GROUP_SCHED
4076/*
4077 * update tg->load_weight by folding this cpu's load_avg
4078 */
4079static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4080{
4081        struct sched_entity *se = tg->se[cpu];
4082        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4083
4084        /* throttled entities do not contribute to load */
4085        if (throttled_hierarchy(cfs_rq))
4086                return;
4087
4088        update_cfs_rq_blocked_load(cfs_rq, 1);
4089
4090        if (se) {
4091                update_entity_load_avg(se, 1);
4092                /*
4093                 * We pivot on our runnable average having decayed to zero for
4094                 * list removal.  This generally implies that all our children
4095                 * have also been removed (modulo rounding error or bandwidth
4096                 * control); however, such cases are rare and we can fix these
4097                 * at enqueue.
4098                 *
4099                 * TODO: fix up out-of-order children on enqueue.
4100                 */
4101                if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4102                        list_del_leaf_cfs_rq(cfs_rq);
4103        } else {
4104                struct rq *rq = rq_of(cfs_rq);
4105                update_rq_runnable_avg(rq, rq->nr_running);
4106        }
4107}
4108
4109static void update_blocked_averages(int cpu)
4110{
4111        struct rq *rq = cpu_rq(cpu);
4112        struct cfs_rq *cfs_rq;
4113        unsigned long flags;
4114
4115        raw_spin_lock_irqsave(&rq->lock, flags);
4116        update_rq_clock(rq);
4117        /*
4118         * Iterates the task_group tree in a bottom up fashion, see
4119         * list_add_leaf_cfs_rq() for details.
4120         */
4121        for_each_leaf_cfs_rq(rq, cfs_rq) {
4122                /*
4123                 * Note: We may want to consider periodically releasing
4124                 * rq->lock about these updates so that creating many task
4125                 * groups does not result in continually extending hold time.
4126                 */
4127                __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4128        }
4129
4130        raw_spin_unlock_irqrestore(&rq->lock, flags);
4131}
4132
4133/*
4134 * Compute the cpu's hierarchical load factor for each task group.
4135 * This needs to be done in a top-down fashion because the load of a child
4136 * group is a fraction of its parents load.
4137 */
4138static int tg_load_down(struct task_group *tg, void *data)
4139{
4140        unsigned long load;
4141        long cpu = (long)data;
4142
4143        if (!tg->parent) {
4144                load = cpu_rq(cpu)->load.weight;
4145        } else {
4146                load = tg->parent->cfs_rq[cpu]->h_load;
4147                load *= tg->se[cpu]->load.weight;
4148                load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4149        }
4150
4151        tg->cfs_rq[cpu]->h_load = load;
4152
4153        return 0;
4154}
4155
4156static void update_h_load(long cpu)
4157{
4158        struct rq *rq = cpu_rq(cpu);
4159        unsigned long now = jiffies;
4160
4161        if (rq->h_load_throttle == now)
4162                return;
4163
4164        rq->h_load_throttle = now;
4165
4166        rcu_read_lock();
4167        walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4168        rcu_read_unlock();
4169}
4170
4171static unsigned long task_h_load(struct task_struct *p)
4172{
4173        struct cfs_rq *cfs_rq = task_cfs_rq(p);
4174        unsigned long load;
4175
4176        load = p->se.load.weight;
4177        load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4178
4179        return load;
4180}
4181#else
4182static inline void update_blocked_averages(int cpu)
4183{
4184}
4185
4186static inline void update_h_load(long cpu)
4187{
4188}
4189
4190static unsigned long task_h_load(struct task_struct *p)
4191{
4192        return p->se.load.weight;
4193}
4194#endif
4195
4196/********** Helpers for find_busiest_group ************************/
4197/*
4198 * sd_lb_stats - Structure to store the statistics of a sched_domain
4199 *              during load balancing.
4200 */
4201struct sd_lb_stats {
4202        struct sched_group *busiest; /* Busiest group in this sd */
4203        struct sched_group *this;  /* Local group in this sd */
4204        unsigned long total_load;  /* Total load of all groups in sd */
4205        unsigned long total_pwr;   /*   Total power of all groups in sd */
4206        unsigned long avg_load;    /* Average load across all groups in sd */
4207
4208        /** Statistics of this group */
4209        unsigned long this_load;
4210        unsigned long this_load_per_task;
4211        unsigned long this_nr_running;
4212        unsigned long this_has_capacity;
4213        unsigned int  this_idle_cpus;
4214
4215        /* Statistics of the busiest group */
4216        unsigned int  busiest_idle_cpus;
4217        unsigned long max_load;
4218        unsigned long busiest_load_per_task;
4219        unsigned long busiest_nr_running;
4220        unsigned long busiest_group_capacity;
4221        unsigned long busiest_has_capacity;
4222        unsigned int  busiest_group_weight;
4223
4224        int group_imb; /* Is there imbalance in this sd */
4225};
4226
4227/*
4228 * sg_lb_stats - stats of a sched_group required for load_balancing
4229 */
4230struct sg_lb_stats {
4231        unsigned long avg_load; /*Avg load across the CPUs of the group */
4232        unsigned long group_load; /* Total load over the CPUs of the group */
4233        unsigned long sum_nr_running; /* Nr tasks running in the group */
4234        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4235        unsigned long group_capacity;
4236        unsigned long idle_cpus;
4237        unsigned long group_weight;
4238        int group_imb; /* Is there an imbalance in the group ? */
4239        int group_has_capacity; /* Is there extra capacity in the group? */
4240};
4241
4242/**
4243 * get_sd_load_idx - Obtain the load index for a given sched domain.
4244 * @sd: The sched_domain whose load_idx is to be obtained.
4245 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4246 */
4247static inline int get_sd_load_idx(struct sched_domain *sd,
4248                                        enum cpu_idle_type idle)
4249{
4250        int load_idx;
4251
4252        switch (idle) {
4253        case CPU_NOT_IDLE:
4254                load_idx = sd->busy_idx;
4255                break;
4256
4257        case CPU_NEWLY_IDLE:
4258                load_idx = sd->newidle_idx;
4259                break;
4260        default:
4261                load_idx = sd->idle_idx;
4262                break;
4263        }
4264
4265        return load_idx;
4266}
4267
4268static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4269{
4270        return SCHED_POWER_SCALE;
4271}
4272
4273unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4274{
4275        return default_scale_freq_power(sd, cpu);
4276}
4277
4278static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4279{
4280        unsigned long weight = sd->span_weight;
4281        unsigned long smt_gain = sd->smt_gain;
4282
4283        smt_gain /= weight;
4284
4285        return smt_gain;
4286}
4287
4288unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4289{
4290        return default_scale_smt_power(sd, cpu);
4291}
4292
4293static unsigned long scale_rt_power(int cpu)
4294{
4295        struct rq *rq = cpu_rq(cpu);
4296        u64 total, available, age_stamp, avg;
4297
4298        /*
4299         * Since we're reading these variables without serialization make sure
4300         * we read them once before doing sanity checks on them.
4301         */
4302        age_stamp = ACCESS_ONCE(rq->age_stamp);
4303        avg = ACCESS_ONCE(rq->rt_avg);
4304
4305        total = sched_avg_period() + (rq->clock - age_stamp);
4306
4307        if (unlikely(total < avg)) {
4308                /* Ensures that power won't end up being negative */
4309                available = 0;
4310        } else {
4311                available = total - avg;
4312        }
4313
4314        if (unlikely((s64)total < SCHED_POWER_SCALE))
4315                total = SCHED_POWER_SCALE;
4316
4317        total >>= SCHED_POWER_SHIFT;
4318
4319        return div_u64(available, total);
4320}
4321
4322static void update_cpu_power(struct sched_domain *sd, int cpu)
4323{
4324        unsigned long weight = sd->span_weight;
4325        unsigned long power = SCHED_POWER_SCALE;
4326        struct sched_group *sdg = sd->groups;
4327
4328        if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4329                if (sched_feat(ARCH_POWER))
4330                        power *= arch_scale_smt_power(sd, cpu);
4331                else
4332                        power *= default_scale_smt_power(sd, cpu);
4333
4334                power >>= SCHED_POWER_SHIFT;
4335        }
4336
4337        sdg->sgp->power_orig = power;
4338
4339        if (sched_feat(ARCH_POWER))
4340                power *= arch_scale_freq_power(sd, cpu);
4341        else
4342                power *= default_scale_freq_power(sd, cpu);
4343
4344        power >>= SCHED_POWER_SHIFT;
4345
4346        power *= scale_rt_power(cpu);
4347        power >>= SCHED_POWER_SHIFT;
4348
4349        if (!power)
4350                power = 1;
4351
4352        cpu_rq(cpu)->cpu_power = power;
4353        sdg->sgp->power = power;
4354}
4355
4356void update_group_power(struct sched_domain *sd, int cpu)
4357{
4358        struct sched_domain *child = sd->child;
4359        struct sched_group *group, *sdg = sd->groups;
4360        unsigned long power;
4361        unsigned long interval;
4362
4363        interval = msecs_to_jiffies(sd->balance_interval);
4364        interval = clamp(interval, 1UL, max_load_balance_interval);
4365        sdg->sgp->next_update = jiffies + interval;
4366
4367        if (!child) {
4368                update_cpu_power(sd, cpu);
4369                return;
4370        }
4371
4372        power = 0;
4373
4374        if (child->flags & SD_OVERLAP) {
4375                /*
4376                 * SD_OVERLAP domains cannot assume that child groups
4377                 * span the current group.
4378                 */
4379
4380                for_each_cpu(cpu, sched_group_cpus(sdg))
4381                        power += power_of(cpu);
4382        } else  {
4383                /*
4384                 * !SD_OVERLAP domains can assume that child groups
4385                 * span the current group.
4386                 */ 
4387
4388                group = child->groups;
4389                do {
4390                        power += group->sgp->power;
4391                        group = group->next;
4392                } while (group != child->groups);
4393        }
4394
4395        sdg->sgp->power_orig = sdg->sgp->power = power;
4396}
4397
4398/*
4399 * Try and fix up capacity for tiny siblings, this is needed when
4400 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4401 * which on its own isn't powerful enough.
4402 *
4403 * See update_sd_pick_busiest() and check_asym_packing().
4404 */
4405static inline int
4406fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4407{
4408        /*
4409         * Only siblings can have significantly less than SCHED_POWER_SCALE
4410         */
4411        if (!(sd->flags & SD_SHARE_CPUPOWER))
4412                return 0;
4413
4414        /*
4415         * If ~90% of the cpu_power is still there, we're good.
4416         */
4417        if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4418                return 1;
4419
4420        return 0;
4421}
4422
4423/**
4424 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4425 * @env: The load balancing environment.
4426 * @group: sched_group whose statistics are to be updated.
4427 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4428 * @local_group: Does group contain this_cpu.
4429 * @balance: Should we balance.
4430 * @sgs: variable to hold the statistics for this group.
4431 */
4432static inline void update_sg_lb_stats(struct lb_env *env,
4433                        struct sched_group *group, int load_idx,
4434                        int local_group, int *balance, struct sg_lb_stats *sgs)
4435{
4436        unsigned long nr_running, max_nr_running, min_nr_running;
4437        unsigned long load, max_cpu_load, min_cpu_load;
4438        unsigned int balance_cpu = -1, first_idle_cpu = 0;
4439        unsigned long avg_load_per_task = 0;
4440        int i;
4441
4442        if (local_group)
4443                balance_cpu = group_balance_cpu(group);
4444
4445        /* Tally up the load of all CPUs in the group */
4446        max_cpu_load = 0;
4447        min_cpu_load = ~0UL;
4448        max_nr_running = 0;
4449        min_nr_running = ~0UL;
4450
4451        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4452                struct rq *rq = cpu_rq(i);
4453
4454                nr_running = rq->nr_running;
4455
4456                /* Bias balancing toward cpus of our domain */
4457                if (local_group) {
4458                        if (idle_cpu(i) && !first_idle_cpu &&
4459                                        cpumask_test_cpu(i, sched_group_mask(group))) {
4460                                first_idle_cpu = 1;
4461                                balance_cpu = i;
4462                        }
4463
4464                        load = target_load(i, load_idx);
4465                } else {
4466                        load = source_load(i, load_idx);
4467                        if (load > max_cpu_load)
4468                                max_cpu_load = load;
4469                        if (min_cpu_load > load)
4470                                min_cpu_load = load;
4471
4472                        if (nr_running > max_nr_running)
4473                                max_nr_running = nr_running;
4474                        if (min_nr_running > nr_running)
4475                                min_nr_running = nr_running;
4476                }
4477
4478                sgs->group_load += load;
4479                sgs->sum_nr_running += nr_running;
4480                sgs->sum_weighted_load += weighted_cpuload(i);
4481                if (idle_cpu(i))
4482                        sgs->idle_cpus++;
4483        }
4484
4485        /*
4486         * First idle cpu or the first cpu(busiest) in this sched group
4487         * is eligible for doing load balancing at this and above
4488         * domains. In the newly idle case, we will allow all the cpu's
4489         * to do the newly idle load balance.
4490         */
4491        if (local_group) {
4492                if (env->idle != CPU_NEWLY_IDLE) {
4493                        if (balance_cpu != env->dst_cpu) {
4494                                *balance = 0;
4495                                return;
4496                        }
4497                        update_group_power(env->sd, env->dst_cpu);
4498                } else if (time_after_eq(jiffies, group->sgp->next_update))
4499                        update_group_power(env->sd, env->dst_cpu);
4500        }
4501
4502        /* Adjust by relative CPU power of the group */
4503        sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4504
4505        /*
4506         * Consider the group unbalanced when the imbalance is larger
4507         * than the average weight of a task.
4508         *
4509         * APZ: with cgroup the avg task weight can vary wildly and
4510         *      might not be a suitable number - should we keep a
4511         *      normalized nr_running number somewhere that negates
4512         *      the hierarchy?
4513         */
4514        if (sgs->sum_nr_running)
4515                avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4516
4517        if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4518            (max_nr_running - min_nr_running) > 1)
4519                sgs->group_imb = 1;
4520
4521        sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4522                                                SCHED_POWER_SCALE);
4523        if (!sgs->group_capacity)
4524                sgs->group_capacity = fix_small_capacity(env->sd, group);
4525        sgs->group_weight = group->group_weight;
4526
4527        if (sgs->group_capacity > sgs->sum_nr_running)
4528                sgs->group_has_capacity = 1;
4529}
4530
4531/**
4532 * update_sd_pick_busiest - return 1 on busiest group
4533 * @env: The load balancing environment.
4534 * @sds: sched_domain statistics
4535 * @sg: sched_group candidate to be checked for being the busiest
4536 * @sgs: sched_group statistics
4537 *
4538 * Determine if @sg is a busier group than the previously selected
4539 * busiest group.
4540 */
4541static bool update_sd_pick_busiest(struct lb_env *env,
4542                                   struct sd_lb_stats *sds,
4543                                   struct sched_group *sg,
4544                                   struct sg_lb_stats *sgs)
4545{
4546        if (sgs->avg_load <= sds->max_load)
4547                return false;
4548
4549        if (sgs->sum_nr_running > sgs->group_capacity)
4550                return true;
4551
4552        if (sgs->group_imb)
4553                return true;
4554
4555        /*
4556         * ASYM_PACKING needs to move all the work to the lowest
4557         * numbered CPUs in the group, therefore mark all groups
4558         * higher than ourself as busy.
4559         */
4560        if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4561            env->dst_cpu < group_first_cpu(sg)) {
4562                if (!sds->busiest)
4563                        return true;
4564
4565                if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4566                        return true;
4567        }
4568
4569        return false;
4570}
4571
4572/**
4573 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4574 * @env: The load balancing environment.
4575 * @balance: Should we balance.
4576 * @sds: variable to hold the statistics for this sched_domain.
4577 */
4578static inline void update_sd_lb_stats(struct lb_env *env,
4579                                        int *balance, struct sd_lb_stats *sds)
4580{
4581        struct sched_domain *child = env->sd->child;
4582        struct sched_group *sg = env->sd->groups;
4583        struct sg_lb_stats sgs;
4584        int load_idx, prefer_sibling = 0;
4585
4586        if (child && child->flags & SD_PREFER_SIBLING)
4587                prefer_sibling = 1;
4588
4589        load_idx = get_sd_load_idx(env->sd, env->idle);
4590
4591        do {
4592                int local_group;
4593
4594                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4595                memset(&sgs, 0, sizeof(sgs));
4596                update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4597
4598                if (local_group && !(*balance))
4599                        return;
4600
4601                sds->total_load += sgs.group_load;
4602                sds->total_pwr += sg->sgp->power;
4603
4604                /*
4605                 * In case the child domain prefers tasks go to siblings
4606                 * first, lower the sg capacity to one so that we'll try
4607                 * and move all the excess tasks away. We lower the capacity
4608                 * of a group only if the local group has the capacity to fit
4609                 * these excess tasks, i.e. nr_running < group_capacity. The
4610                 * extra check prevents the case where you always pull from the
4611                 * heaviest group when it is already under-utilized (possible
4612                 * with a large weight task outweighs the tasks on the system).
4613                 */
4614                if (prefer_sibling && !local_group && sds->this_has_capacity)
4615                        sgs.group_capacity = min(sgs.group_capacity, 1UL);
4616
4617                if (local_group) {
4618                        sds->this_load = sgs.avg_load;
4619                        sds->this = sg;
4620                        sds->this_nr_running = sgs.sum_nr_running;
4621                        sds->this_load_per_task = sgs.sum_weighted_load;
4622                        sds->this_has_capacity = sgs.group_has_capacity;
4623                        sds->this_idle_cpus = sgs.idle_cpus;
4624                } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4625                        sds->max_load = sgs.avg_load;
4626                        sds->busiest = sg;
4627                        sds->busiest_nr_running = sgs.sum_nr_running;
4628                        sds->busiest_idle_cpus = sgs.idle_cpus;
4629                        sds->busiest_group_capacity = sgs.group_capacity;
4630                        sds->busiest_load_per_task = sgs.sum_weighted_load;
4631                        sds->busiest_has_capacity = sgs.group_has_capacity;
4632                        sds->busiest_group_weight = sgs.group_weight;
4633                        sds->group_imb = sgs.group_imb;
4634                }
4635
4636                sg = sg->next;
4637        } while (sg != env->sd->groups);
4638}
4639
4640/**
4641 * check_asym_packing - Check to see if the group is packed into the
4642 *                      sched doman.
4643 *
4644 * This is primarily intended to used at the sibling level.  Some
4645 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
4646 * case of POWER7, it can move to lower SMT modes only when higher
4647 * threads are idle.  When in lower SMT modes, the threads will
4648 * perform better since they share less core resources.  Hence when we
4649 * have idle threads, we want them to be the higher ones.
4650 *
4651 * This packing function is run on idle threads.  It checks to see if
4652 * the busiest CPU in this domain (core in the P7 case) has a higher
4653 * CPU number than the packing function is being run on.  Here we are
4654 * assuming lower CPU number will be equivalent to lower a SMT thread
4655 * number.
4656 *
4657 * Returns 1 when packing is required and a task should be moved to
4658 * this CPU.  The amount of the imbalance is returned in *imbalance.
4659 *
4660 * @env: The load balancing environment.
4661 * @sds: Statistics of the sched_domain which is to be packed
4662 */
4663static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4664{
4665        int busiest_cpu;
4666
4667        if (!(env->sd->flags & SD_ASYM_PACKING))
4668                return 0;
4669
4670        if (!sds->busiest)
4671                return 0;
4672
4673        busiest_cpu = group_first_cpu(sds->busiest);
4674        if (env->dst_cpu > busiest_cpu)
4675                return 0;
4676
4677        env->imbalance = DIV_ROUND_CLOSEST(
4678                sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4679
4680        return 1;
4681}
4682
4683/**
4684 * fix_small_imbalance - Calculate the minor imbalance that exists
4685 *                      amongst the groups of a sched_domain, during
4686 *                      load balancing.
4687 * @env: The load balancing environment.
4688 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4689 */
4690static inline
4691void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4692{
4693        unsigned long tmp, pwr_now = 0, pwr_move = 0;
4694        unsigned int imbn = 2;
4695        unsigned long scaled_busy_load_per_task;
4696
4697        if (sds->this_nr_running) {
4698                sds->this_load_per_task /= sds->this_nr_running;
4699                if (sds->busiest_load_per_task >
4700                                sds->this_load_per_task)
4701                        imbn = 1;
4702        } else {
4703                sds->this_load_per_task =
4704                        cpu_avg_load_per_task(env->dst_cpu);
4705        }
4706
4707        scaled_busy_load_per_task = sds->busiest_load_per_task
4708                                         * SCHED_POWER_SCALE;
4709        scaled_busy_load_per_task /= sds->busiest->sgp->power;
4710
4711        if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4712                        (scaled_busy_load_per_task * imbn)) {
4713                env->imbalance = sds->busiest_load_per_task;
4714                return;
4715        }
4716
4717        /*
4718         * OK, we don't have enough imbalance to justify moving tasks,
4719         * however we may be able to increase total CPU power used by
4720         * moving them.
4721         */
4722
4723        pwr_now += sds->busiest->sgp->power *
4724                        min(sds->busiest_load_per_task, sds->max_load);
4725        pwr_now += sds->this->sgp->power *
4726                        min(sds->this_load_per_task, sds->this_load);
4727        pwr_now /= SCHED_POWER_SCALE;
4728
4729        /* Amount of load we'd subtract */
4730        tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4731                sds->busiest->sgp->power;
4732        if (sds->max_load > tmp)
4733                pwr_move += sds->busiest->sgp->power *
4734                        min(sds->busiest_load_per_task, sds->max_load - tmp);
4735
4736        /* Amount of load we'd add */
4737        if (sds->max_load * sds->busiest->sgp->power <
4738                sds->busiest_load_per_task * SCHED_POWER_SCALE)
4739                tmp = (sds->max_load * sds->busiest->sgp->power) /
4740                        sds->this->sgp->power;
4741        else
4742                tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4743                        sds->this->sgp->power;
4744        pwr_move += sds->this->sgp->power *
4745                        min(sds->this_load_per_task, sds->this_load + tmp);
4746        pwr_move /= SCHED_POWER_SCALE;
4747
4748        /* Move if we gain throughput */
4749        if (pwr_move > pwr_now)
4750                env->imbalance = sds->busiest_load_per_task;
4751}
4752
4753/**
4754 * calculate_imbalance - Calculate the amount of imbalance present within the
4755 *                       groups of a given sched_domain during load balance.
4756 * @env: load balance environment
4757 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4758 */
4759static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4760{
4761        unsigned long max_pull, load_above_capacity = ~0UL;
4762
4763        sds->busiest_load_per_task /= sds->busiest_nr_running;
4764        if (sds->group_imb) {
4765                sds->busiest_load_per_task =
4766                        min(sds->busiest_load_per_task, sds->avg_load);
4767        }
4768
4769        /*
4770         * In the presence of smp nice balancing, certain scenarios can have
4771         * max load less than avg load(as we skip the groups at or below
4772         * its cpu_power, while calculating max_load..)
4773         */
4774        if (sds->max_load < sds->avg_load) {
4775                env->imbalance = 0;
4776                return fix_small_imbalance(env, sds);
4777        }
4778
4779        if (!sds->group_imb) {
4780                /*
4781                 * Don't want to pull so many tasks that a group would go idle.
4782                 */
4783                load_above_capacity = (sds->busiest_nr_running -
4784                                                sds->busiest_group_capacity);
4785
4786                load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4787
4788                load_above_capacity /= sds->busiest->sgp->power;
4789        }
4790
4791        /*
4792         * We're trying to get all the cpus to the average_load, so we don't
4793         * want to push ourselves above the average load, nor do we wish to
4794         * reduce the max loaded cpu below the average load. At the same time,
4795         * we also don't want to reduce the group load below the group capacity
4796         * (so that we can implement power-savings policies etc). Thus we look
4797         * for the minimum possible imbalance.
4798         * Be careful of negative numbers as they'll appear as very large values
4799         * with unsigned longs.
4800         */
4801        max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4802
4803        /* How much load to actually move to equalise the imbalance */
4804        env->imbalance = min(max_pull * sds->busiest->sgp->power,
4805                (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4806                        / SCHED_POWER_SCALE;
4807
4808        /*
4809         * if *imbalance is less than the average load per runnable task
4810         * there is no guarantee that any tasks will be moved so we'll have
4811         * a think about bumping its value to force at least one task to be
4812         * moved
4813         */
4814        if (env->imbalance < sds->busiest_load_per_task)
4815                return fix_small_imbalance(env, sds);
4816
4817}
4818
4819/******* find_busiest_group() helpers end here *********************/
4820
4821/**
4822 * find_busiest_group - Returns the busiest group within the sched_domain
4823 * if there is an imbalance. If there isn't an imbalance, and
4824 * the user has opted for power-savings, it returns a group whose
4825 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4826 * such a group exists.
4827 *
4828 * Also calculates the amount of weighted load which should be moved
4829 * to restore balance.
4830 *
4831 * @env: The load balancing environment.
4832 * @balance: Pointer to a variable indicating if this_cpu
4833 *      is the appropriate cpu to perform load balancing at this_level.
4834 *
4835 * Returns:     - the busiest group if imbalance exists.
4836 *              - If no imbalance and user has opted for power-savings balance,
4837 *                 return the least loaded group whose CPUs can be
4838 *                 put to idle by rebalancing its tasks onto our group.
4839 */
4840static struct sched_group *
4841find_busiest_group(struct lb_env *env, int *balance)
4842{
4843        struct sd_lb_stats sds;
4844
4845        memset(&sds, 0, sizeof(sds));
4846
4847        /*
4848         * Compute the various statistics relavent for load balancing at
4849         * this level.
4850         */
4851        update_sd_lb_stats(env, balance, &sds);
4852
4853        /*
4854         * this_cpu is not the appropriate cpu to perform load balancing at
4855         * this level.
4856         */
4857        if (!(*balance))
4858                goto ret;
4859
4860        if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4861            check_asym_packing(env, &sds))
4862                return sds.busiest;
4863
4864        /* There is no busy sibling group to pull tasks from */
4865        if (!sds.busiest || sds.busiest_nr_running == 0)
4866                goto out_balanced;
4867
4868        sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4869
4870        /*
4871         * If the busiest group is imbalanced the below checks don't
4872         * work because they assumes all things are equal, which typically
4873         * isn't true due to cpus_allowed constraints and the like.
4874         */
4875        if (sds.group_imb)
4876                goto force_balance;
4877
4878        /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4879        if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4880                        !sds.busiest_has_capacity)
4881                goto force_balance;
4882
4883        /*
4884         * If the local group is more busy than the selected busiest group
4885         * don't try and pull any tasks.
4886         */
4887        if (sds.this_load >= sds.max_load)
4888                goto out_balanced;
4889
4890        /*
4891         * Don't pull any tasks if this group is already above the domain
4892         * average load.
4893         */
4894        if (sds.this_load >= sds.avg_load)
4895                goto out_balanced;
4896
4897        if (env->idle == CPU_IDLE) {
4898                /*
4899                 * This cpu is idle. If the busiest group load doesn't
4900                 * have more tasks than the number of available cpu's and
4901                 * there is no imbalance between this and busiest group
4902                 * wrt to idle cpu's, it is balanced.
4903                 */
4904                if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4905                    sds.busiest_nr_running <= sds.busiest_group_weight)
4906                        goto out_balanced;
4907        } else {
4908                /*
4909                 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4910                 * imbalance_pct to be conservative.
4911                 */
4912                if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4913                        goto out_balanced;
4914        }
4915
4916force_balance:
4917        /* Looks like there is an imbalance. Compute it */
4918        calculate_imbalance(env, &sds);
4919        return sds.busiest;
4920
4921out_balanced:
4922ret:
4923        env->imbalance = 0;
4924        return NULL;
4925}
4926
4927/*
4928 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4929 */
4930static struct rq *find_busiest_queue(struct lb_env *env,
4931                                     struct sched_group *group)
4932{
4933        struct rq *busiest = NULL, *rq;
4934        unsigned long max_load = 0;
4935        int i;
4936
4937        for_each_cpu(i, sched_group_cpus(group)) {
4938                unsigned long power = power_of(i);
4939                unsigned long capacity = DIV_ROUND_CLOSEST(power,
4940                                                           SCHED_POWER_SCALE);
4941                unsigned long wl;
4942
4943                if (!capacity)
4944                        capacity = fix_small_capacity(env->sd, group);
4945
4946                if (!cpumask_test_cpu(i, env->cpus))
4947                        continue;
4948
4949                rq = cpu_rq(i);
4950                wl = weighted_cpuload(i);
4951
4952                /*
4953                 * When comparing with imbalance, use weighted_cpuload()
4954                 * which is not scaled with the cpu power.
4955                 */
4956                if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4957                        continue;
4958
4959                /*
4960                 * For the load comparisons with the other cpu's, consider
4961                 * the weighted_cpuload() scaled with the cpu power, so that
4962                 * the load can be moved away from the cpu that is potentially
4963                 * running at a lower capacity.
4964                 */
4965                wl = (wl * SCHED_POWER_SCALE) / power;
4966
4967                if (wl > max_load) {
4968                        max_load = wl;
4969                        busiest = rq;
4970                }
4971        }
4972
4973        return busiest;
4974}
4975
4976/*
4977 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4978 * so long as it is large enough.
4979 */
4980#define MAX_PINNED_INTERVAL     512
4981
4982/* Working cpumask for load_balance and load_balance_newidle. */
4983DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4984
4985static int need_active_balance(struct lb_env *env)
4986{
4987        struct sched_domain *sd = env->sd;
4988
4989        if (env->idle == CPU_NEWLY_IDLE) {
4990
4991                /*
4992                 * ASYM_PACKING needs to force migrate tasks from busy but
4993                 * higher numbered CPUs in order to pack all tasks in the
4994                 * lowest numbered CPUs.
4995                 */
4996                if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4997                        return 1;
4998        }
4999
5000        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5001}
5002
5003static int active_load_balance_cpu_stop(void *data);
5004
5005/*
5006 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5007 * tasks if there is an imbalance.
5008 */
5009static int load_balance(int this_cpu, struct rq *this_rq,
5010                        struct sched_domain *sd, enum cpu_idle_type idle,
5011                        int *balance)
5012{
5013        int ld_moved, cur_ld_moved, active_balance = 0;
5014        struct sched_group *group;
5015        struct rq *busiest;
5016        unsigned long flags;
5017        struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5018
5019        struct lb_env env = {
5020                .sd             = sd,
5021                .dst_cpu        = this_cpu,
5022                .dst_rq         = this_rq,
5023                .dst_grpmask    = sched_group_cpus(sd->groups),
5024                .idle           = idle,
5025                .loop_break     = sched_nr_migrate_break,
5026                .cpus           = cpus,
5027        };
5028
5029        /*
5030         * For NEWLY_IDLE load_balancing, we don't need to consider
5031         * other cpus in our group
5032         */
5033        if (idle == CPU_NEWLY_IDLE)
5034                env.dst_grpmask = NULL;
5035
5036        cpumask_copy(cpus, cpu_active_mask);
5037
5038        schedstat_inc(sd, lb_count[idle]);
5039
5040redo:
5041        group = find_busiest_group(&env, balance);
5042
5043        if (*balance == 0)
5044                goto out_balanced;
5045
5046        if (!group) {
5047                schedstat_inc(sd, lb_nobusyg[idle]);
5048                goto out_balanced;
5049        }
5050
5051        busiest = find_busiest_queue(&env, group);
5052        if (!busiest) {
5053                schedstat_inc(sd, lb_nobusyq[idle]);
5054                goto out_balanced;
5055        }
5056
5057        BUG_ON(busiest == env.dst_rq);
5058
5059        schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5060
5061        ld_moved = 0;
5062        if (busiest->nr_running > 1) {
5063                /*
5064                 * Attempt to move tasks. If find_busiest_group has found
5065                 * an imbalance but busiest->nr_running <= 1, the group is
5066                 * still unbalanced. ld_moved simply stays zero, so it is
5067                 * correctly treated as an imbalance.
5068                 */
5069                env.flags |= LBF_ALL_PINNED;
5070                env.src_cpu   = busiest->cpu;
5071                env.src_rq    = busiest;
5072                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5073
5074                update_h_load(env.src_cpu);
5075more_balance:
5076                local_irq_save(flags);
5077                double_rq_lock(env.dst_rq, busiest);
5078
5079                /*
5080                 * cur_ld_moved - load moved in current iteration
5081                 * ld_moved     - cumulative load moved across iterations
5082                 */
5083                cur_ld_moved = move_tasks(&env);
5084                ld_moved += cur_ld_moved;
5085                double_rq_unlock(env.dst_rq, busiest);
5086                local_irq_restore(flags);
5087
5088                /*
5089                 * some other cpu did the load balance for us.
5090                 */
5091                if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5092                        resched_cpu(env.dst_cpu);
5093
5094                if (env.flags & LBF_NEED_BREAK) {
5095                        env.flags &= ~LBF_NEED_BREAK;
5096                        goto more_balance;
5097                }
5098
5099                /*
5100                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5101                 * us and move them to an alternate dst_cpu in our sched_group
5102                 * where they can run. The upper limit on how many times we
5103                 * iterate on same src_cpu is dependent on number of cpus in our
5104                 * sched_group.
5105                 *
5106                 * This changes load balance semantics a bit on who can move
5107                 * load to a given_cpu. In addition to the given_cpu itself
5108                 * (or a ilb_cpu acting on its behalf where given_cpu is
5109                 * nohz-idle), we now have balance_cpu in a position to move
5110                 * load to given_cpu. In rare situations, this may cause
5111                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5112                 * _independently_ and at _same_ time to move some load to
5113                 * given_cpu) causing exceess load to be moved to given_cpu.
5114                 * This however should not happen so much in practice and
5115                 * moreover subsequent load balance cycles should correct the
5116                 * excess load moved.
5117                 */
5118                if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5119
5120                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
5121                        env.dst_cpu      = env.new_dst_cpu;
5122                        env.flags       &= ~LBF_SOME_PINNED;
5123                        env.loop         = 0;
5124                        env.loop_break   = sched_nr_migrate_break;
5125
5126                        /* Prevent to re-select dst_cpu via env's cpus */
5127                        cpumask_clear_cpu(env.dst_cpu, env.cpus);
5128
5129                        /*
5130                         * Go back to "more_balance" rather than "redo" since we
5131                         * need to continue with same src_cpu.
5132                         */
5133                        goto more_balance;
5134                }
5135
5136                /* All tasks on this runqueue were pinned by CPU affinity */
5137                if (unlikely(env.flags & LBF_ALL_PINNED)) {
5138                        cpumask_clear_cpu(cpu_of(busiest), cpus);
5139                        if (!cpumask_empty(cpus)) {
5140                                env.loop = 0;
5141                                env.loop_break = sched_nr_migrate_break;
5142                                goto redo;
5143                        }
5144                        goto out_balanced;
5145                }
5146        }
5147
5148        if (!ld_moved) {
5149                schedstat_inc(sd, lb_failed[idle]);
5150                /*
5151                 * Increment the failure counter only on periodic balance.
5152                 * We do not want newidle balance, which can be very
5153                 * frequent, pollute the failure counter causing
5154                 * excessive cache_hot migrations and active balances.
5155                 */
5156                if (idle != CPU_NEWLY_IDLE)
5157                        sd->nr_balance_failed++;
5158
5159                if (need_active_balance(&env)) {
5160                        raw_spin_lock_irqsave(&busiest->lock, flags);
5161
5162                        /* don't kick the active_load_balance_cpu_stop,
5163                         * if the curr task on busiest cpu can't be
5164                         * moved to this_cpu
5165                         */
5166                        if (!cpumask_test_cpu(this_cpu,
5167                                        tsk_cpus_allowed(busiest->curr))) {
5168                                raw_spin_unlock_irqrestore(&busiest->lock,
5169                                                            flags);
5170                                env.flags |= LBF_ALL_PINNED;
5171                                goto out_one_pinned;
5172                        }
5173
5174                        /*
5175                         * ->active_balance synchronizes accesses to
5176                         * ->active_balance_work.  Once set, it's cleared
5177                         * only after active load balance is finished.
5178                         */
5179                        if (!busiest->active_balance) {
5180                                busiest->active_balance = 1;
5181                                busiest->push_cpu = this_cpu;
5182                                active_balance = 1;
5183                        }
5184                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
5185
5186                        if (active_balance) {
5187                                stop_one_cpu_nowait(cpu_of(busiest),
5188                                        active_load_balance_cpu_stop, busiest,
5189                                        &busiest->active_balance_work);
5190                        }
5191
5192                        /*
5193                         * We've kicked active balancing, reset the failure
5194                         * counter.
5195                         */
5196                        sd->nr_balance_failed = sd->cache_nice_tries+1;
5197                }
5198        } else
5199                sd->nr_balance_failed = 0;
5200
5201        if (likely(!active_balance)) {
5202                /* We were unbalanced, so reset the balancing interval */
5203                sd->balance_interval = sd->min_interval;
5204        } else {
5205                /*
5206                 * If we've begun active balancing, start to back off. This
5207                 * case may not be covered by the all_pinned logic if there
5208                 * is only 1 task on the busy runqueue (because we don't call
5209                 * move_tasks).
5210                 */
5211                if (sd->balance_interval < sd->max_interval)
5212                        sd->balance_interval *= 2;
5213        }
5214
5215        goto out;
5216
5217out_balanced:
5218        schedstat_inc(sd, lb_balanced[idle]);
5219
5220        sd->nr_balance_failed = 0;
5221
5222out_one_pinned:
5223        /* tune up the balancing interval */
5224        if (((env.flags & LBF_ALL_PINNED) &&
5225                        sd->balance_interval < MAX_PINNED_INTERVAL) ||
5226                        (sd->balance_interval < sd->max_interval))
5227                sd->balance_interval *= 2;
5228
5229        ld_moved = 0;
5230out:
5231        return ld_moved;
5232}
5233
5234/*
5235 * idle_balance is called by schedule() if this_cpu is about to become
5236 * idle. Attempts to pull tasks from other CPUs.
5237 */
5238void idle_balance(int this_cpu, struct rq *this_rq)
5239{
5240        struct sched_domain *sd;
5241        int pulled_task = 0;
5242        unsigned long next_balance = jiffies + HZ;
5243
5244        this_rq->idle_stamp = this_rq->clock;
5245
5246        if (this_rq->avg_idle < sysctl_sched_migration_cost)
5247                return;
5248
5249        /*
5250         * Drop the rq->lock, but keep IRQ/preempt disabled.
5251         */
5252        raw_spin_unlock(&this_rq->lock);
5253
5254        update_blocked_averages(this_cpu);
5255        rcu_read_lock();
5256        for_each_domain(this_cpu, sd) {
5257                unsigned long interval;
5258                int balance = 1;
5259
5260                if (!(sd->flags & SD_LOAD_BALANCE))
5261                        continue;
5262
5263                if (sd->flags & SD_BALANCE_NEWIDLE) {
5264                        /* If we've pulled tasks over stop searching: */
5265                        pulled_task = load_balance(this_cpu, this_rq,
5266                                                   sd, CPU_NEWLY_IDLE, &balance);
5267                }
5268
5269                interval = msecs_to_jiffies(sd->balance_interval);
5270                if (time_after(next_balance, sd->last_balance + interval))
5271                        next_balance = sd->last_balance + interval;
5272                if (pulled_task) {
5273                        this_rq->idle_stamp = 0;
5274                        break;
5275                }
5276        }
5277        rcu_read_unlock();
5278
5279        raw_spin_lock(&this_rq->lock);
5280
5281        if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5282                /*
5283                 * We are going idle. next_balance may be set based on
5284                 * a busy processor. So reset next_balance.
5285                 */
5286                this_rq->next_balance = next_balance;
5287        }
5288}
5289
5290/*
5291 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5292 * running tasks off the busiest CPU onto idle CPUs. It requires at
5293 * least 1 task to be running on each physical CPU where possible, and
5294 * avoids physical / logical imbalances.
5295 */
5296static int active_load_balance_cpu_stop(void *data)
5297{
5298        struct rq *busiest_rq = data;
5299        int busiest_cpu = cpu_of(busiest_rq);
5300        int target_cpu = busiest_rq->push_cpu;
5301        struct rq *target_rq = cpu_rq(target_cpu);
5302        struct sched_domain *sd;
5303
5304        raw_spin_lock_irq(&busiest_rq->lock);
5305
5306        /* make sure the requested cpu hasn't gone down in the meantime */
5307        if (unlikely(busiest_cpu != smp_processor_id() ||
5308                     !busiest_rq->active_balance))
5309                goto out_unlock;
5310
5311        /* Is there any task to move? */
5312        if (busiest_rq->nr_running <= 1)
5313                goto out_unlock;
5314
5315        /*
5316         * This condition is "impossible", if it occurs
5317         * we need to fix it. Originally reported by
5318         * Bjorn Helgaas on a 128-cpu setup.
5319         */
5320        BUG_ON(busiest_rq == target_rq);
5321
5322        /* move a task from busiest_rq to target_rq */
5323        double_lock_balance(busiest_rq, target_rq);
5324
5325        /* Search for an sd spanning us and the target CPU. */
5326        rcu_read_lock();
5327        for_each_domain(target_cpu, sd) {
5328                if ((sd->flags & SD_LOAD_BALANCE) &&
5329                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5330                                break;
5331        }
5332
5333        if (likely(sd)) {
5334                struct lb_env env = {
5335                        .sd             = sd,
5336                        .dst_cpu        = target_cpu,
5337                        .dst_rq         = target_rq,
5338                        .src_cpu        = busiest_rq->cpu,
5339                        .src_rq         = busiest_rq,
5340                        .idle           = CPU_IDLE,
5341                };
5342
5343                schedstat_inc(sd, alb_count);
5344
5345                if (move_one_task(&env))
5346                        schedstat_inc(sd, alb_pushed);
5347                else
5348                        schedstat_inc(sd, alb_failed);
5349        }
5350        rcu_read_unlock();
5351        double_unlock_balance(busiest_rq, target_rq);
5352out_unlock:
5353        busiest_rq->active_balance = 0;
5354        raw_spin_unlock_irq(&busiest_rq->lock);
5355        return 0;
5356}
5357
5358#ifdef CONFIG_NO_HZ_COMMON
5359/*
5360 * idle load balancing details
5361 * - When one of the busy CPUs notice that there may be an idle rebalancing
5362 *   needed, they will kick the idle load balancer, which then does idle
5363 *   load balancing for all the idle CPUs.
5364 */
5365static struct {
5366        cpumask_var_t idle_cpus_mask;
5367        atomic_t nr_cpus;
5368        unsigned long next_balance;     /* in jiffy units */
5369} nohz ____cacheline_aligned;
5370
5371static inline int find_new_ilb(int call_cpu)
5372{
5373        int ilb = cpumask_first(nohz.idle_cpus_mask);
5374
5375        if (ilb < nr_cpu_ids && idle_cpu(ilb))
5376                return ilb;
5377
5378        return nr_cpu_ids;
5379}
5380
5381/*
5382 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5383 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5384 * CPU (if there is one).
5385 */
5386static void nohz_balancer_kick(int cpu)
5387{
5388        int ilb_cpu;
5389
5390        nohz.next_balance++;
5391
5392        ilb_cpu = find_new_ilb(cpu);
5393
5394        if (ilb_cpu >= nr_cpu_ids)
5395                return;
5396
5397        if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5398                return;
5399        /*
5400         * Use smp_send_reschedule() instead of resched_cpu().
5401         * This way we generate a sched IPI on the target cpu which
5402         * is idle. And the softirq performing nohz idle load balance
5403         * will be run before returning from the IPI.
5404         */
5405        smp_send_reschedule(ilb_cpu);
5406        return;
5407}
5408
5409static inline void nohz_balance_exit_idle(int cpu)
5410{
5411        if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5412                cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5413                atomic_dec(&nohz.nr_cpus);
5414                clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5415        }
5416}
5417
5418static inline void set_cpu_sd_state_busy(void)
5419{
5420        struct sched_domain *sd;
5421        int cpu = smp_processor_id();
5422
5423        rcu_read_lock();
5424        sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5425
5426        if (!sd || !sd->nohz_idle)
5427                goto unlock;
5428        sd->nohz_idle = 0;
5429
5430        for (; sd; sd = sd->parent)
5431                atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5432unlock:
5433        rcu_read_unlock();
5434}
5435
5436void set_cpu_sd_state_idle(void)
5437{
5438        struct sched_domain *sd;
5439        int cpu = smp_processor_id();
5440
5441        rcu_read_lock();
5442        sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5443
5444        if (!sd || sd->nohz_idle)
5445                goto unlock;
5446        sd->nohz_idle = 1;
5447
5448        for (; sd; sd = sd->parent)
5449                atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5450unlock:
5451        rcu_read_unlock();
5452}
5453
5454/*
5455 * This routine will record that the cpu is going idle with tick stopped.
5456 * This info will be used in performing idle load balancing in the future.
5457 */
5458void nohz_balance_enter_idle(int cpu)
5459{
5460        /*
5461         * If this cpu is going down, then nothing needs to be done.
5462         */
5463        if (!cpu_active(cpu))
5464                return;
5465
5466        if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5467                return;
5468
5469        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5470        atomic_inc(&nohz.nr_cpus);
5471        set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5472}
5473
5474static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5475                                        unsigned long action, void *hcpu)
5476{
5477        switch (action & ~CPU_TASKS_FROZEN) {
5478        case CPU_DYING:
5479                nohz_balance_exit_idle(smp_processor_id());
5480                return NOTIFY_OK;
5481        default:
5482                return NOTIFY_DONE;
5483        }
5484}
5485#endif
5486
5487static DEFINE_SPINLOCK(balancing);
5488
5489/*
5490 * Scale the max load_balance interval with the number of CPUs in the system.
5491 * This trades load-balance latency on larger machines for less cross talk.
5492 */
5493void update_max_interval(void)
5494{
5495        max_load_balance_interval = HZ*num_online_cpus()/10;
5496}
5497
5498/*
5499 * It checks each scheduling domain to see if it is due to be balanced,
5500 * and initiates a balancing operation if so.
5501 *
5502 * Balancing parameters are set up in init_sched_domains.
5503 */
5504static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5505{
5506        int balance = 1;
5507        struct rq *rq = cpu_rq(cpu);
5508        unsigned long interval;
5509        struct sched_domain *sd;
5510        /* Earliest time when we have to do rebalance again */
5511        unsigned long next_balance = jiffies + 60*HZ;
5512        int update_next_balance = 0;
5513        int need_serialize;
5514
5515        update_blocked_averages(cpu);
5516
5517        rcu_read_lock();
5518        for_each_domain(cpu, sd) {
5519                if (!(sd->flags & SD_LOAD_BALANCE))
5520                        continue;
5521
5522                interval = sd->balance_interval;
5523                if (idle != CPU_IDLE)
5524                        interval *= sd->busy_factor;
5525
5526                /* scale ms to jiffies */
5527                interval = msecs_to_jiffies(interval);
5528                interval = clamp(interval, 1UL, max_load_balance_interval);
5529
5530                need_serialize = sd->flags & SD_SERIALIZE;
5531
5532                if (need_serialize) {
5533                        if (!spin_trylock(&balancing))
5534                                goto out;
5535                }
5536
5537                if (time_after_eq(jiffies, sd->last_balance + interval)) {
5538                        if (load_balance(cpu, rq, sd, idle, &balance)) {
5539                                /*
5540                                 * The LBF_SOME_PINNED logic could have changed
5541                                 * env->dst_cpu, so we can't know our idle
5542                                 * state even if we migrated tasks. Update it.
5543                                 */
5544                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5545                        }
5546                        sd->last_balance = jiffies;
5547                }
5548                if (need_serialize)
5549                        spin_unlock(&balancing);
5550out:
5551                if (time_after(next_balance, sd->last_balance + interval)) {
5552                        next_balance = sd->last_balance + interval;
5553                        update_next_balance = 1;
5554                }
5555
5556                /*
5557                 * Stop the load balance at this level. There is another
5558                 * CPU in our sched group which is doing load balancing more
5559                 * actively.
5560                 */
5561                if (!balance)
5562                        break;
5563        }
5564        rcu_read_unlock();
5565
5566        /*
5567         * next_balance will be updated only when there is a need.
5568         * When the cpu is attached to null domain for ex, it will not be
5569         * updated.
5570         */
5571        if (likely(update_next_balance))
5572                rq->next_balance = next_balance;
5573}
5574
5575#ifdef CONFIG_NO_HZ_COMMON
5576/*
5577 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5578 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5579 */
5580static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5581{
5582        struct rq *this_rq = cpu_rq(this_cpu);
5583        struct rq *rq;
5584        int balance_cpu;
5585
5586        if (idle != CPU_IDLE ||
5587            !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5588                goto end;
5589
5590        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5591                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5592                        continue;
5593
5594                /*
5595                 * If this cpu gets work to do, stop the load balancing
5596                 * work being done for other cpus. Next load
5597                 * balancing owner will pick it up.
5598                 */
5599                if (need_resched())
5600                        break;
5601
5602                rq = cpu_rq(balance_cpu);
5603
5604                raw_spin_lock_irq(&rq->lock);
5605                update_rq_clock(rq);
5606                update_idle_cpu_load(rq);
5607                raw_spin_unlock_irq(&rq->lock);
5608
5609                rebalance_domains(balance_cpu, CPU_IDLE);
5610
5611                if (time_after(this_rq->next_balance, rq->next_balance))
5612                        this_rq->next_balance = rq->next_balance;
5613        }
5614        nohz.next_balance = this_rq->next_balance;
5615end:
5616        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5617}
5618
5619/*
5620 * Current heuristic for kicking the idle load balancer in the presence
5621 * of an idle cpu is the system.
5622 *   - This rq has more than one task.
5623 *   - At any scheduler domain level, this cpu's scheduler group has multiple
5624 *     busy cpu's exceeding the group's power.
5625 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5626 *     domain span are idle.
5627 */
5628static inline int nohz_kick_needed(struct rq *rq, int cpu)
5629{
5630        unsigned long now = jiffies;
5631        struct sched_domain *sd;
5632
5633        if (unlikely(idle_cpu(cpu)))
5634                return 0;
5635
5636       /*
5637        * We may be recently in ticked or tickless idle mode. At the first
5638        * busy tick after returning from idle, we will update the busy stats.
5639        */
5640        set_cpu_sd_state_busy();
5641        nohz_balance_exit_idle(cpu);
5642
5643        /*
5644         * None are in tickless mode and hence no need for NOHZ idle load
5645         * balancing.
5646         */
5647        if (likely(!atomic_read(&nohz.nr_cpus)))
5648                return 0;
5649
5650        if (time_before(now, nohz.next_balance))
5651                return 0;
5652
5653        if (rq->nr_running >= 2)
5654                goto need_kick;
5655
5656        rcu_read_lock();
5657        for_each_domain(cpu, sd) {
5658                struct sched_group *sg = sd->groups;
5659                struct sched_group_power *sgp = sg->sgp;
5660                int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5661
5662                if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5663                        goto need_kick_unlock;
5664
5665                if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5666                    && (cpumask_first_and(nohz.idle_cpus_mask,
5667                                          sched_domain_span(sd)) < cpu))
5668                        goto need_kick_unlock;
5669
5670                if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5671                        break;
5672        }
5673        rcu_read_unlock();
5674        return 0;
5675
5676need_kick_unlock:
5677        rcu_read_unlock();
5678need_kick:
5679        return 1;
5680}
5681#else
5682static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5683#endif
5684
5685/*
5686 * run_rebalance_domains is triggered when needed from the scheduler tick.
5687 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5688 */
5689static void run_rebalance_domains(struct softirq_action *h)
5690{
5691        int this_cpu = smp_processor_id();
5692        struct rq *this_rq = cpu_rq(this_cpu);
5693        enum cpu_idle_type idle = this_rq->idle_balance ?
5694                                                CPU_IDLE : CPU_NOT_IDLE;
5695
5696        rebalance_domains(this_cpu, idle);
5697
5698        /*
5699         * If this cpu has a pending nohz_balance_kick, then do the
5700         * balancing on behalf of the other idle cpus whose ticks are
5701         * stopped.
5702         */
5703        nohz_idle_balance(this_cpu, idle);
5704}
5705
5706static inline int on_null_domain(int cpu)
5707{
5708        return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5709}
5710
5711/*
5712 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5713 */
5714void trigger_load_balance(struct rq *rq, int cpu)
5715{
5716        /* Don't need to rebalance while attached to NULL domain */
5717        if (time_after_eq(jiffies, rq->next_balance) &&
5718            likely(!on_null_domain(cpu)))
5719                raise_softirq(SCHED_SOFTIRQ);
5720#ifdef CONFIG_NO_HZ_COMMON
5721        if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5722                nohz_balancer_kick(cpu);
5723#endif
5724}
5725
5726static void rq_online_fair(struct rq *rq)
5727{
5728        update_sysctl();
5729}
5730
5731static void rq_offline_fair(struct rq *rq)
5732{
5733        update_sysctl();
5734
5735        /* Ensure any throttled groups are reachable by pick_next_task */
5736        unthrottle_offline_cfs_rqs(rq);
5737}
5738
5739#endif /* CONFIG_SMP */
5740
5741/*
5742 * scheduler tick hitting a task of our scheduling class:
5743 */
5744static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5745{
5746        struct cfs_rq *cfs_rq;
5747        struct sched_entity *se = &curr->se;
5748
5749        for_each_sched_entity(se) {
5750                cfs_rq = cfs_rq_of(se);
5751                entity_tick(cfs_rq, se, queued);
5752        }
5753
5754        if (sched_feat_numa(NUMA))
5755                task_tick_numa(rq, curr);
5756
5757        update_rq_runnable_avg(rq, 1);
5758}
5759
5760/*
5761 * called on fork with the child task as argument from the parent's context
5762 *  - child not yet on the tasklist
5763 *  - preemption disabled
5764 */
5765static void task_fork_fair(struct task_struct *p)
5766{
5767        struct cfs_rq *cfs_rq;
5768        struct sched_entity *se = &p->se, *curr;
5769        int this_cpu = smp_processor_id();
5770        struct rq *rq = this_rq();
5771        unsigned long flags;
5772
5773        raw_spin_lock_irqsave(&rq->lock, flags);
5774
5775        update_rq_clock(rq);
5776
5777        cfs_rq = task_cfs_rq(current);
5778        curr = cfs_rq->curr;
5779
5780        if (unlikely(task_cpu(p) != this_cpu)) {
5781                rcu_read_lock();
5782                __set_task_cpu(p, this_cpu);
5783                rcu_read_unlock();
5784        }
5785
5786        update_curr(cfs_rq);
5787
5788        if (curr)
5789                se->vruntime = curr->vruntime;
5790        place_entity(cfs_rq, se, 1);
5791
5792        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5793                /*
5794                 * Upon rescheduling, sched_class::put_prev_task() will place
5795                 * 'current' within the tree based on its new key value.
5796                 */
5797                swap(curr->vruntime, se->vruntime);
5798                resched_task(rq->curr);
5799        }
5800
5801        se->vruntime -= cfs_rq->min_vruntime;
5802
5803        raw_spin_unlock_irqrestore(&rq->lock, flags);
5804}
5805
5806/*
5807 * Priority of the task has changed. Check to see if we preempt
5808 * the current task.
5809 */
5810static void
5811prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5812{
5813        if (!p->se.on_rq)
5814                return;
5815
5816        /*
5817         * Reschedule if we are currently running on this runqueue and
5818         * our priority decreased, or if we are not currently running on
5819         * this runqueue and our priority is higher than the current's
5820         */
5821        if (rq->curr == p) {
5822                if (p->prio > oldprio)
5823                        resched_task(rq->curr);
5824        } else
5825                check_preempt_curr(rq, p, 0);
5826}
5827
5828static void switched_from_fair(struct rq *rq, struct task_struct *p)
5829{
5830        struct sched_entity *se = &p->se;
5831        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5832
5833        /*
5834         * Ensure the task's vruntime is normalized, so that when its
5835         * switched back to the fair class the enqueue_entity(.flags=0) will
5836         * do the right thing.
5837         *
5838         * If it was on_rq, then the dequeue_entity(.flags=0) will already
5839         * have normalized the vruntime, if it was !on_rq, then only when
5840         * the task is sleeping will it still have non-normalized vruntime.
5841         */
5842        if (!se->on_rq && p->state != TASK_RUNNING) {
5843                /*
5844                 * Fix up our vruntime so that the current sleep doesn't
5845                 * cause 'unlimited' sleep bonus.
5846                 */
5847                place_entity(cfs_rq, se, 0);
5848                se->vruntime -= cfs_rq->min_vruntime;
5849        }
5850
5851#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5852        /*
5853        * Remove our load from contribution when we leave sched_fair
5854        * and ensure we don't carry in an old decay_count if we
5855        * switch back.
5856        */
5857        if (p->se.avg.decay_count) {
5858                struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5859                __synchronize_entity_decay(&p->se);
5860                subtract_blocked_load_contrib(cfs_rq,
5861                                p->se.avg.load_avg_contrib);
5862        }
5863#endif
5864}
5865
5866/*
5867 * We switched to the sched_fair class.
5868 */
5869static void switched_to_fair(struct rq *rq, struct task_struct *p)
5870{
5871        if (!p->se.on_rq)
5872                return;
5873
5874        /*
5875         * We were most likely switched from sched_rt, so
5876         * kick off the schedule if running, otherwise just see
5877         * if we can still preempt the current task.
5878         */
5879        if (rq->curr == p)
5880                resched_task(rq->curr);
5881        else
5882                check_preempt_curr(rq, p, 0);
5883}
5884
5885/* Account for a task changing its policy or group.
5886 *
5887 * This routine is mostly called to set cfs_rq->curr field when a task
5888 * migrates between groups/classes.
5889 */
5890static void set_curr_task_fair(struct rq *rq)
5891{
5892        struct sched_entity *se = &rq->curr->se;
5893
5894        for_each_sched_entity(se) {
5895                struct cfs_rq *cfs_rq = cfs_rq_of(se);
5896
5897                set_next_entity(cfs_rq, se);
5898                /* ensure bandwidth has been allocated on our new cfs_rq */
5899                account_cfs_rq_runtime(cfs_rq, 0);
5900        }
5901}
5902
5903void init_cfs_rq(struct cfs_rq *cfs_rq)
5904{
5905        cfs_rq->tasks_timeline = RB_ROOT;
5906        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5907#ifndef CONFIG_64BIT
5908        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5909#endif
5910#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5911        atomic64_set(&cfs_rq->decay_counter, 1);
5912        atomic64_set(&cfs_rq->removed_load, 0);
5913#endif
5914}
5915
5916#ifdef CONFIG_FAIR_GROUP_SCHED
5917static void task_move_group_fair(struct task_struct *p, int on_rq)
5918{
5919        struct cfs_rq *cfs_rq;
5920        /*
5921         * If the task was not on the rq at the time of this cgroup movement
5922         * it must have been asleep, sleeping tasks keep their ->vruntime
5923         * absolute on their old rq until wakeup (needed for the fair sleeper
5924         * bonus in place_entity()).
5925         *
5926         * If it was on the rq, we've just 'preempted' it, which does convert
5927         * ->vruntime to a relative base.
5928         *
5929         * Make sure both cases convert their relative position when migrating
5930         * to another cgroup's rq. This does somewhat interfere with the
5931         * fair sleeper stuff for the first placement, but who cares.
5932         */
5933        /*
5934         * When !on_rq, vruntime of the task has usually NOT been normalized.
5935         * But there are some cases where it has already been normalized:
5936         *
5937         * - Moving a forked child which is waiting for being woken up by
5938         *   wake_up_new_task().
5939         * - Moving a task which has been woken up by try_to_wake_up() and
5940         *   waiting for actually being woken up by sched_ttwu_pending().
5941         *
5942         * To prevent boost or penalty in the new cfs_rq caused by delta
5943         * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5944         */
5945        if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5946                on_rq = 1;
5947
5948        if (!on_rq)
5949                p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5950        set_task_rq(p, task_cpu(p));
5951        if (!on_rq) {
5952                cfs_rq = cfs_rq_of(&p->se);
5953                p->se.vruntime += cfs_rq->min_vruntime;
5954#ifdef CONFIG_SMP
5955                /*
5956                 * migrate_task_rq_fair() will have removed our previous
5957                 * contribution, but we must synchronize for ongoing future
5958                 * decay.
5959                 */
5960                p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5961                cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5962#endif
5963        }
5964}
5965
5966void free_fair_sched_group(struct task_group *tg)
5967{
5968        int i;
5969
5970        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5971
5972        for_each_possible_cpu(i) {
5973                if (tg->cfs_rq)
5974                        kfree(tg->cfs_rq[i]);
5975                if (tg->se)
5976                        kfree(tg->se[i]);
5977        }
5978
5979        kfree(tg->cfs_rq);
5980        kfree(tg->se);
5981}
5982
5983int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5984{
5985        struct cfs_rq *cfs_rq;
5986        struct sched_entity *se;
5987        int i;
5988
5989        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5990        if (!tg->cfs_rq)
5991                goto err;
5992        tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5993        if (!tg->se)
5994                goto err;
5995
5996        tg->shares = NICE_0_LOAD;
5997
5998        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5999
6000        for_each_possible_cpu(i) {
6001                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6002                                      GFP_KERNEL, cpu_to_node(i));
6003                if (!cfs_rq)
6004                        goto err;
6005
6006                se = kzalloc_node(sizeof(struct sched_entity),
6007                                  GFP_KERNEL, cpu_to_node(i));
6008                if (!se)
6009                        goto err_free_rq;
6010
6011                init_cfs_rq(cfs_rq);
6012                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6013        }
6014
6015        return 1;
6016
6017err_free_rq:
6018        kfree(cfs_rq);
6019err:
6020        return 0;
6021}
6022
6023void unregister_fair_sched_group(struct task_group *tg, int cpu)
6024{
6025        struct rq *rq = cpu_rq(cpu);
6026        unsigned long flags;
6027
6028        /*
6029        * Only empty task groups can be destroyed; so we can speculatively
6030        * check on_list without danger of it being re-added.
6031        */
6032        if (!tg->cfs_rq[cpu]->on_list)
6033                return;
6034
6035        raw_spin_lock_irqsave(&rq->lock, flags);
6036        list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6037        raw_spin_unlock_irqrestore(&rq->lock, flags);
6038}
6039
6040void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6041                        struct sched_entity *se, int cpu,
6042                        struct sched_entity *parent)
6043{
6044        struct rq *rq = cpu_rq(cpu);
6045
6046        cfs_rq->tg = tg;
6047        cfs_rq->rq = rq;
6048        init_cfs_rq_runtime(cfs_rq);
6049
6050        tg->cfs_rq[cpu] = cfs_rq;
6051        tg->se[cpu] = se;
6052
6053        /* se could be NULL for root_task_group */
6054        if (!se)
6055                return;
6056
6057        if (!parent)
6058                se->cfs_rq = &rq->cfs;
6059        else
6060                se->cfs_rq = parent->my_q;
6061
6062        se->my_q = cfs_rq;
6063        update_load_set(&se->load, 0);
6064        se->parent = parent;
6065}
6066
6067static DEFINE_MUTEX(shares_mutex);
6068
6069int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6070{
6071        int i;
6072        unsigned long flags;
6073
6074        /*
6075         * We can't change the weight of the root cgroup.
6076         */
6077        if (!tg->se[0])
6078                return -EINVAL;
6079
6080        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6081
6082        mutex_lock(&shares_mutex);
6083        if (tg->shares == shares)
6084                goto done;
6085
6086        tg->shares = shares;
6087        for_each_possible_cpu(i) {
6088                struct rq *rq = cpu_rq(i);
6089                struct sched_entity *se;
6090
6091                se = tg->se[i];
6092                /* Propagate contribution to hierarchy */
6093                raw_spin_lock_irqsave(&rq->lock, flags);
6094                for_each_sched_entity(se)
6095                        update_cfs_shares(group_cfs_rq(se));
6096                raw_spin_unlock_irqrestore(&rq->lock, flags);
6097        }
6098
6099done:
6100        mutex_unlock(&shares_mutex);
6101        return 0;
6102}
6103#else /* CONFIG_FAIR_GROUP_SCHED */
6104
6105void free_fair_sched_group(struct task_group *tg) { }
6106
6107int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6108{
6109        return 1;
6110}
6111
6112void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6113
6114#endif /* CONFIG_FAIR_GROUP_SCHED */
6115
6116
6117static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6118{
6119        struct sched_entity *se = &task->se;
6120        unsigned int rr_interval = 0;
6121
6122        /*
6123         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6124         * idle runqueue:
6125         */
6126        if (rq->cfs.load.weight)
6127                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6128
6129        return rr_interval;
6130}
6131
6132/*
6133 * All the scheduling class methods:
6134 */
6135const struct sched_class fair_sched_class = {
6136        .next                   = &idle_sched_class,
6137        .enqueue_task           = enqueue_task_fair,
6138        .dequeue_task           = dequeue_task_fair,
6139        .yield_task             = yield_task_fair,
6140        .yield_to_task          = yield_to_task_fair,
6141
6142        .check_preempt_curr     = check_preempt_wakeup,
6143
6144        .pick_next_task         = pick_next_task_fair,
6145        .put_prev_task          = put_prev_task_fair,
6146
6147#ifdef CONFIG_SMP
6148        .select_task_rq         = select_task_rq_fair,
6149#ifdef CONFIG_FAIR_GROUP_SCHED
6150        .migrate_task_rq        = migrate_task_rq_fair,
6151#endif
6152        .rq_online              = rq_online_fair,
6153        .rq_offline             = rq_offline_fair,
6154
6155        .task_waking            = task_waking_fair,
6156#endif
6157
6158        .set_curr_task          = set_curr_task_fair,
6159        .task_tick              = task_tick_fair,
6160        .task_fork              = task_fork_fair,
6161
6162        .prio_changed           = prio_changed_fair,
6163        .switched_from          = switched_from_fair,
6164        .switched_to            = switched_to_fair,
6165
6166        .get_rr_interval        = get_rr_interval_fair,
6167
6168#ifdef CONFIG_FAIR_GROUP_SCHED
6169        .task_move_group        = task_move_group_fair,
6170#endif
6171};
6172
6173#ifdef CONFIG_SCHED_DEBUG
6174void print_cfs_stats(struct seq_file *m, int cpu)
6175{
6176        struct cfs_rq *cfs_rq;
6177
6178        rcu_read_lock();
6179        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6180                print_cfs_rq(m, cpu, cfs_rq);
6181        rcu_read_unlock();
6182}
6183#endif
6184
6185__init void init_sched_fair_class(void)
6186{
6187#ifdef CONFIG_SMP
6188        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6189
6190#ifdef CONFIG_NO_HZ_COMMON
6191        nohz.next_balance = jiffies;
6192        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6193        cpu_notifier(sched_ilb_notifier, 0);
6194#endif
6195#endif /* SMP */
6196
6197}
6198