linux/mm/readahead.c
<<
>>
Prefs
   1/*
   2 * mm/readahead.c - address_space-level file readahead.
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 09Apr2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/fs.h>
  12#include <linux/gfp.h>
  13#include <linux/mm.h>
  14#include <linux/export.h>
  15#include <linux/blkdev.h>
  16#include <linux/backing-dev.h>
  17#include <linux/task_io_accounting_ops.h>
  18#include <linux/pagevec.h>
  19#include <linux/pagemap.h>
  20#include <linux/syscalls.h>
  21#include <linux/file.h>
  22
  23/*
  24 * Initialise a struct file's readahead state.  Assumes that the caller has
  25 * memset *ra to zero.
  26 */
  27void
  28file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  29{
  30        ra->ra_pages = mapping->backing_dev_info->ra_pages;
  31        ra->prev_pos = -1;
  32}
  33EXPORT_SYMBOL_GPL(file_ra_state_init);
  34
  35#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
  36
  37/*
  38 * see if a page needs releasing upon read_cache_pages() failure
  39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  40 *   before calling, such as the NFS fs marking pages that are cached locally
  41 *   on disk, thus we need to give the fs a chance to clean up in the event of
  42 *   an error
  43 */
  44static void read_cache_pages_invalidate_page(struct address_space *mapping,
  45                                             struct page *page)
  46{
  47        if (page_has_private(page)) {
  48                if (!trylock_page(page))
  49                        BUG();
  50                page->mapping = mapping;
  51                do_invalidatepage(page, 0);
  52                page->mapping = NULL;
  53                unlock_page(page);
  54        }
  55        page_cache_release(page);
  56}
  57
  58/*
  59 * release a list of pages, invalidating them first if need be
  60 */
  61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  62                                              struct list_head *pages)
  63{
  64        struct page *victim;
  65
  66        while (!list_empty(pages)) {
  67                victim = list_to_page(pages);
  68                list_del(&victim->lru);
  69                read_cache_pages_invalidate_page(mapping, victim);
  70        }
  71}
  72
  73/**
  74 * read_cache_pages - populate an address space with some pages & start reads against them
  75 * @mapping: the address_space
  76 * @pages: The address of a list_head which contains the target pages.  These
  77 *   pages have their ->index populated and are otherwise uninitialised.
  78 * @filler: callback routine for filling a single page.
  79 * @data: private data for the callback routine.
  80 *
  81 * Hides the details of the LRU cache etc from the filesystems.
  82 */
  83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  84                        int (*filler)(void *, struct page *), void *data)
  85{
  86        struct page *page;
  87        int ret = 0;
  88
  89        while (!list_empty(pages)) {
  90                page = list_to_page(pages);
  91                list_del(&page->lru);
  92                if (add_to_page_cache_lru(page, mapping,
  93                                        page->index, GFP_KERNEL)) {
  94                        read_cache_pages_invalidate_page(mapping, page);
  95                        continue;
  96                }
  97                page_cache_release(page);
  98
  99                ret = filler(data, page);
 100                if (unlikely(ret)) {
 101                        read_cache_pages_invalidate_pages(mapping, pages);
 102                        break;
 103                }
 104                task_io_account_read(PAGE_CACHE_SIZE);
 105        }
 106        return ret;
 107}
 108
 109EXPORT_SYMBOL(read_cache_pages);
 110
 111static int read_pages(struct address_space *mapping, struct file *filp,
 112                struct list_head *pages, unsigned nr_pages)
 113{
 114        struct blk_plug plug;
 115        unsigned page_idx;
 116        int ret;
 117
 118        blk_start_plug(&plug);
 119
 120        if (mapping->a_ops->readpages) {
 121                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 122                /* Clean up the remaining pages */
 123                put_pages_list(pages);
 124                goto out;
 125        }
 126
 127        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 128                struct page *page = list_to_page(pages);
 129                list_del(&page->lru);
 130                if (!add_to_page_cache_lru(page, mapping,
 131                                        page->index, GFP_KERNEL)) {
 132                        mapping->a_ops->readpage(filp, page);
 133                }
 134                page_cache_release(page);
 135        }
 136        ret = 0;
 137
 138out:
 139        blk_finish_plug(&plug);
 140
 141        return ret;
 142}
 143
 144/*
 145 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
 146 * the pages first, then submits them all for I/O. This avoids the very bad
 147 * behaviour which would occur if page allocations are causing VM writeback.
 148 * We really don't want to intermingle reads and writes like that.
 149 *
 150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 151 */
 152static int
 153__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
 154                        pgoff_t offset, unsigned long nr_to_read,
 155                        unsigned long lookahead_size)
 156{
 157        struct inode *inode = mapping->host;
 158        struct page *page;
 159        unsigned long end_index;        /* The last page we want to read */
 160        LIST_HEAD(page_pool);
 161        int page_idx;
 162        int ret = 0;
 163        loff_t isize = i_size_read(inode);
 164
 165        if (isize == 0)
 166                goto out;
 167
 168        end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
 169
 170        /*
 171         * Preallocate as many pages as we will need.
 172         */
 173        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
 174                pgoff_t page_offset = offset + page_idx;
 175
 176                if (page_offset > end_index)
 177                        break;
 178
 179                rcu_read_lock();
 180                page = radix_tree_lookup(&mapping->page_tree, page_offset);
 181                rcu_read_unlock();
 182                if (page)
 183                        continue;
 184
 185                page = page_cache_alloc_readahead(mapping);
 186                if (!page)
 187                        break;
 188                page->index = page_offset;
 189                list_add(&page->lru, &page_pool);
 190                if (page_idx == nr_to_read - lookahead_size)
 191                        SetPageReadahead(page);
 192                ret++;
 193        }
 194
 195        /*
 196         * Now start the IO.  We ignore I/O errors - if the page is not
 197         * uptodate then the caller will launch readpage again, and
 198         * will then handle the error.
 199         */
 200        if (ret)
 201                read_pages(mapping, filp, &page_pool, ret);
 202        BUG_ON(!list_empty(&page_pool));
 203out:
 204        return ret;
 205}
 206
 207/*
 208 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 209 * memory at once.
 210 */
 211int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 212                pgoff_t offset, unsigned long nr_to_read)
 213{
 214        int ret = 0;
 215
 216        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
 217                return -EINVAL;
 218
 219        nr_to_read = max_sane_readahead(nr_to_read);
 220        while (nr_to_read) {
 221                int err;
 222
 223                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
 224
 225                if (this_chunk > nr_to_read)
 226                        this_chunk = nr_to_read;
 227                err = __do_page_cache_readahead(mapping, filp,
 228                                                offset, this_chunk, 0);
 229                if (err < 0) {
 230                        ret = err;
 231                        break;
 232                }
 233                ret += err;
 234                offset += this_chunk;
 235                nr_to_read -= this_chunk;
 236        }
 237        return ret;
 238}
 239
 240/*
 241 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
 242 * sensible upper limit.
 243 */
 244unsigned long max_sane_readahead(unsigned long nr)
 245{
 246        return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
 247                + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
 248}
 249
 250/*
 251 * Submit IO for the read-ahead request in file_ra_state.
 252 */
 253unsigned long ra_submit(struct file_ra_state *ra,
 254                       struct address_space *mapping, struct file *filp)
 255{
 256        int actual;
 257
 258        actual = __do_page_cache_readahead(mapping, filp,
 259                                        ra->start, ra->size, ra->async_size);
 260
 261        return actual;
 262}
 263
 264/*
 265 * Set the initial window size, round to next power of 2 and square
 266 * for small size, x 4 for medium, and x 2 for large
 267 * for 128k (32 page) max ra
 268 * 1-8 page = 32k initial, > 8 page = 128k initial
 269 */
 270static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
 271{
 272        unsigned long newsize = roundup_pow_of_two(size);
 273
 274        if (newsize <= max / 32)
 275                newsize = newsize * 4;
 276        else if (newsize <= max / 4)
 277                newsize = newsize * 2;
 278        else
 279                newsize = max;
 280
 281        return newsize;
 282}
 283
 284/*
 285 *  Get the previous window size, ramp it up, and
 286 *  return it as the new window size.
 287 */
 288static unsigned long get_next_ra_size(struct file_ra_state *ra,
 289                                                unsigned long max)
 290{
 291        unsigned long cur = ra->size;
 292        unsigned long newsize;
 293
 294        if (cur < max / 16)
 295                newsize = 4 * cur;
 296        else
 297                newsize = 2 * cur;
 298
 299        return min(newsize, max);
 300}
 301
 302/*
 303 * On-demand readahead design.
 304 *
 305 * The fields in struct file_ra_state represent the most-recently-executed
 306 * readahead attempt:
 307 *
 308 *                        |<----- async_size ---------|
 309 *     |------------------- size -------------------->|
 310 *     |==================#===========================|
 311 *     ^start             ^page marked with PG_readahead
 312 *
 313 * To overlap application thinking time and disk I/O time, we do
 314 * `readahead pipelining': Do not wait until the application consumed all
 315 * readahead pages and stalled on the missing page at readahead_index;
 316 * Instead, submit an asynchronous readahead I/O as soon as there are
 317 * only async_size pages left in the readahead window. Normally async_size
 318 * will be equal to size, for maximum pipelining.
 319 *
 320 * In interleaved sequential reads, concurrent streams on the same fd can
 321 * be invalidating each other's readahead state. So we flag the new readahead
 322 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 323 * indicator. The flag won't be set on already cached pages, to avoid the
 324 * readahead-for-nothing fuss, saving pointless page cache lookups.
 325 *
 326 * prev_pos tracks the last visited byte in the _previous_ read request.
 327 * It should be maintained by the caller, and will be used for detecting
 328 * small random reads. Note that the readahead algorithm checks loosely
 329 * for sequential patterns. Hence interleaved reads might be served as
 330 * sequential ones.
 331 *
 332 * There is a special-case: if the first page which the application tries to
 333 * read happens to be the first page of the file, it is assumed that a linear
 334 * read is about to happen and the window is immediately set to the initial size
 335 * based on I/O request size and the max_readahead.
 336 *
 337 * The code ramps up the readahead size aggressively at first, but slow down as
 338 * it approaches max_readhead.
 339 */
 340
 341/*
 342 * Count contiguously cached pages from @offset-1 to @offset-@max,
 343 * this count is a conservative estimation of
 344 *      - length of the sequential read sequence, or
 345 *      - thrashing threshold in memory tight systems
 346 */
 347static pgoff_t count_history_pages(struct address_space *mapping,
 348                                   struct file_ra_state *ra,
 349                                   pgoff_t offset, unsigned long max)
 350{
 351        pgoff_t head;
 352
 353        rcu_read_lock();
 354        head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
 355        rcu_read_unlock();
 356
 357        return offset - 1 - head;
 358}
 359
 360/*
 361 * page cache context based read-ahead
 362 */
 363static int try_context_readahead(struct address_space *mapping,
 364                                 struct file_ra_state *ra,
 365                                 pgoff_t offset,
 366                                 unsigned long req_size,
 367                                 unsigned long max)
 368{
 369        pgoff_t size;
 370
 371        size = count_history_pages(mapping, ra, offset, max);
 372
 373        /*
 374         * no history pages:
 375         * it could be a random read
 376         */
 377        if (!size)
 378                return 0;
 379
 380        /*
 381         * starts from beginning of file:
 382         * it is a strong indication of long-run stream (or whole-file-read)
 383         */
 384        if (size >= offset)
 385                size *= 2;
 386
 387        ra->start = offset;
 388        ra->size = get_init_ra_size(size + req_size, max);
 389        ra->async_size = ra->size;
 390
 391        return 1;
 392}
 393
 394/*
 395 * A minimal readahead algorithm for trivial sequential/random reads.
 396 */
 397static unsigned long
 398ondemand_readahead(struct address_space *mapping,
 399                   struct file_ra_state *ra, struct file *filp,
 400                   bool hit_readahead_marker, pgoff_t offset,
 401                   unsigned long req_size)
 402{
 403        unsigned long max = max_sane_readahead(ra->ra_pages);
 404
 405        /*
 406         * start of file
 407         */
 408        if (!offset)
 409                goto initial_readahead;
 410
 411        /*
 412         * It's the expected callback offset, assume sequential access.
 413         * Ramp up sizes, and push forward the readahead window.
 414         */
 415        if ((offset == (ra->start + ra->size - ra->async_size) ||
 416             offset == (ra->start + ra->size))) {
 417                ra->start += ra->size;
 418                ra->size = get_next_ra_size(ra, max);
 419                ra->async_size = ra->size;
 420                goto readit;
 421        }
 422
 423        /*
 424         * Hit a marked page without valid readahead state.
 425         * E.g. interleaved reads.
 426         * Query the pagecache for async_size, which normally equals to
 427         * readahead size. Ramp it up and use it as the new readahead size.
 428         */
 429        if (hit_readahead_marker) {
 430                pgoff_t start;
 431
 432                rcu_read_lock();
 433                start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
 434                rcu_read_unlock();
 435
 436                if (!start || start - offset > max)
 437                        return 0;
 438
 439                ra->start = start;
 440                ra->size = start - offset;      /* old async_size */
 441                ra->size += req_size;
 442                ra->size = get_next_ra_size(ra, max);
 443                ra->async_size = ra->size;
 444                goto readit;
 445        }
 446
 447        /*
 448         * oversize read
 449         */
 450        if (req_size > max)
 451                goto initial_readahead;
 452
 453        /*
 454         * sequential cache miss
 455         */
 456        if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
 457                goto initial_readahead;
 458
 459        /*
 460         * Query the page cache and look for the traces(cached history pages)
 461         * that a sequential stream would leave behind.
 462         */
 463        if (try_context_readahead(mapping, ra, offset, req_size, max))
 464                goto readit;
 465
 466        /*
 467         * standalone, small random read
 468         * Read as is, and do not pollute the readahead state.
 469         */
 470        return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 471
 472initial_readahead:
 473        ra->start = offset;
 474        ra->size = get_init_ra_size(req_size, max);
 475        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 476
 477readit:
 478        /*
 479         * Will this read hit the readahead marker made by itself?
 480         * If so, trigger the readahead marker hit now, and merge
 481         * the resulted next readahead window into the current one.
 482         */
 483        if (offset == ra->start && ra->size == ra->async_size) {
 484                ra->async_size = get_next_ra_size(ra, max);
 485                ra->size += ra->async_size;
 486        }
 487
 488        return ra_submit(ra, mapping, filp);
 489}
 490
 491/**
 492 * page_cache_sync_readahead - generic file readahead
 493 * @mapping: address_space which holds the pagecache and I/O vectors
 494 * @ra: file_ra_state which holds the readahead state
 495 * @filp: passed on to ->readpage() and ->readpages()
 496 * @offset: start offset into @mapping, in pagecache page-sized units
 497 * @req_size: hint: total size of the read which the caller is performing in
 498 *            pagecache pages
 499 *
 500 * page_cache_sync_readahead() should be called when a cache miss happened:
 501 * it will submit the read.  The readahead logic may decide to piggyback more
 502 * pages onto the read request if access patterns suggest it will improve
 503 * performance.
 504 */
 505void page_cache_sync_readahead(struct address_space *mapping,
 506                               struct file_ra_state *ra, struct file *filp,
 507                               pgoff_t offset, unsigned long req_size)
 508{
 509        /* no read-ahead */
 510        if (!ra->ra_pages)
 511                return;
 512
 513        /* be dumb */
 514        if (filp && (filp->f_mode & FMODE_RANDOM)) {
 515                force_page_cache_readahead(mapping, filp, offset, req_size);
 516                return;
 517        }
 518
 519        /* do read-ahead */
 520        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
 521}
 522EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
 523
 524/**
 525 * page_cache_async_readahead - file readahead for marked pages
 526 * @mapping: address_space which holds the pagecache and I/O vectors
 527 * @ra: file_ra_state which holds the readahead state
 528 * @filp: passed on to ->readpage() and ->readpages()
 529 * @page: the page at @offset which has the PG_readahead flag set
 530 * @offset: start offset into @mapping, in pagecache page-sized units
 531 * @req_size: hint: total size of the read which the caller is performing in
 532 *            pagecache pages
 533 *
 534 * page_cache_async_readahead() should be called when a page is used which
 535 * has the PG_readahead flag; this is a marker to suggest that the application
 536 * has used up enough of the readahead window that we should start pulling in
 537 * more pages.
 538 */
 539void
 540page_cache_async_readahead(struct address_space *mapping,
 541                           struct file_ra_state *ra, struct file *filp,
 542                           struct page *page, pgoff_t offset,
 543                           unsigned long req_size)
 544{
 545        /* no read-ahead */
 546        if (!ra->ra_pages)
 547                return;
 548
 549        /*
 550         * Same bit is used for PG_readahead and PG_reclaim.
 551         */
 552        if (PageWriteback(page))
 553                return;
 554
 555        ClearPageReadahead(page);
 556
 557        /*
 558         * Defer asynchronous read-ahead on IO congestion.
 559         */
 560        if (bdi_read_congested(mapping->backing_dev_info))
 561                return;
 562
 563        /* do read-ahead */
 564        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
 565}
 566EXPORT_SYMBOL_GPL(page_cache_async_readahead);
 567
 568static ssize_t
 569do_readahead(struct address_space *mapping, struct file *filp,
 570             pgoff_t index, unsigned long nr)
 571{
 572        if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
 573                return -EINVAL;
 574
 575        force_page_cache_readahead(mapping, filp, index, nr);
 576        return 0;
 577}
 578
 579SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
 580{
 581        ssize_t ret;
 582        struct fd f;
 583
 584        ret = -EBADF;
 585        f = fdget(fd);
 586        if (f.file) {
 587                if (f.file->f_mode & FMODE_READ) {
 588                        struct address_space *mapping = f.file->f_mapping;
 589                        pgoff_t start = offset >> PAGE_CACHE_SHIFT;
 590                        pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
 591                        unsigned long len = end - start + 1;
 592                        ret = do_readahead(mapping, f.file, start, len);
 593                }
 594                fdput(f);
 595        }
 596        return ret;
 597}
 598