linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/netdevice.h>
  51#ifdef CONFIG_NET_CLS_ACT
  52#include <net/pkt_sched.h>
  53#endif
  54#include <linux/string.h>
  55#include <linux/skbuff.h>
  56#include <linux/splice.h>
  57#include <linux/cache.h>
  58#include <linux/rtnetlink.h>
  59#include <linux/init.h>
  60#include <linux/scatterlist.h>
  61#include <linux/errqueue.h>
  62#include <linux/prefetch.h>
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
  68#include <net/xfrm.h>
  69
  70#include <asm/uaccess.h>
  71#include <trace/events/skb.h>
  72#include <linux/highmem.h>
  73
  74struct kmem_cache *skbuff_head_cache __read_mostly;
  75static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  76
  77static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  78                                  struct pipe_buffer *buf)
  79{
  80        put_page(buf->page);
  81}
  82
  83static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  84                                struct pipe_buffer *buf)
  85{
  86        get_page(buf->page);
  87}
  88
  89static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  90                               struct pipe_buffer *buf)
  91{
  92        return 1;
  93}
  94
  95
  96/* Pipe buffer operations for a socket. */
  97static const struct pipe_buf_operations sock_pipe_buf_ops = {
  98        .can_merge = 0,
  99        .map = generic_pipe_buf_map,
 100        .unmap = generic_pipe_buf_unmap,
 101        .confirm = generic_pipe_buf_confirm,
 102        .release = sock_pipe_buf_release,
 103        .steal = sock_pipe_buf_steal,
 104        .get = sock_pipe_buf_get,
 105};
 106
 107/**
 108 *      skb_panic - private function for out-of-line support
 109 *      @skb:   buffer
 110 *      @sz:    size
 111 *      @addr:  address
 112 *      @msg:   skb_over_panic or skb_under_panic
 113 *
 114 *      Out-of-line support for skb_put() and skb_push().
 115 *      Called via the wrapper skb_over_panic() or skb_under_panic().
 116 *      Keep out of line to prevent kernel bloat.
 117 *      __builtin_return_address is not used because it is not always reliable.
 118 */
 119static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 120                      const char msg[])
 121{
 122        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 123                 msg, addr, skb->len, sz, skb->head, skb->data,
 124                 (unsigned long)skb->tail, (unsigned long)skb->end,
 125                 skb->dev ? skb->dev->name : "<NULL>");
 126        BUG();
 127}
 128
 129static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 130{
 131        skb_panic(skb, sz, addr, __func__);
 132}
 133
 134static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 135{
 136        skb_panic(skb, sz, addr, __func__);
 137}
 138
 139/*
 140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 141 * the caller if emergency pfmemalloc reserves are being used. If it is and
 142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 143 * may be used. Otherwise, the packet data may be discarded until enough
 144 * memory is free
 145 */
 146#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 147         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 148
 149static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 150                               unsigned long ip, bool *pfmemalloc)
 151{
 152        void *obj;
 153        bool ret_pfmemalloc = false;
 154
 155        /*
 156         * Try a regular allocation, when that fails and we're not entitled
 157         * to the reserves, fail.
 158         */
 159        obj = kmalloc_node_track_caller(size,
 160                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 161                                        node);
 162        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 163                goto out;
 164
 165        /* Try again but now we are using pfmemalloc reserves */
 166        ret_pfmemalloc = true;
 167        obj = kmalloc_node_track_caller(size, flags, node);
 168
 169out:
 170        if (pfmemalloc)
 171                *pfmemalloc = ret_pfmemalloc;
 172
 173        return obj;
 174}
 175
 176/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 177 *      'private' fields and also do memory statistics to find all the
 178 *      [BEEP] leaks.
 179 *
 180 */
 181
 182struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 183{
 184        struct sk_buff *skb;
 185
 186        /* Get the HEAD */
 187        skb = kmem_cache_alloc_node(skbuff_head_cache,
 188                                    gfp_mask & ~__GFP_DMA, node);
 189        if (!skb)
 190                goto out;
 191
 192        /*
 193         * Only clear those fields we need to clear, not those that we will
 194         * actually initialise below. Hence, don't put any more fields after
 195         * the tail pointer in struct sk_buff!
 196         */
 197        memset(skb, 0, offsetof(struct sk_buff, tail));
 198        skb->head = NULL;
 199        skb->truesize = sizeof(struct sk_buff);
 200        atomic_set(&skb->users, 1);
 201
 202#ifdef NET_SKBUFF_DATA_USES_OFFSET
 203        skb->mac_header = ~0U;
 204#endif
 205out:
 206        return skb;
 207}
 208
 209/**
 210 *      __alloc_skb     -       allocate a network buffer
 211 *      @size: size to allocate
 212 *      @gfp_mask: allocation mask
 213 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 214 *              instead of head cache and allocate a cloned (child) skb.
 215 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 216 *              allocations in case the data is required for writeback
 217 *      @node: numa node to allocate memory on
 218 *
 219 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 220 *      tail room of at least size bytes. The object has a reference count
 221 *      of one. The return is the buffer. On a failure the return is %NULL.
 222 *
 223 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 224 *      %GFP_ATOMIC.
 225 */
 226struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 227                            int flags, int node)
 228{
 229        struct kmem_cache *cache;
 230        struct skb_shared_info *shinfo;
 231        struct sk_buff *skb;
 232        u8 *data;
 233        bool pfmemalloc;
 234
 235        cache = (flags & SKB_ALLOC_FCLONE)
 236                ? skbuff_fclone_cache : skbuff_head_cache;
 237
 238        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 239                gfp_mask |= __GFP_MEMALLOC;
 240
 241        /* Get the HEAD */
 242        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 243        if (!skb)
 244                goto out;
 245        prefetchw(skb);
 246
 247        /* We do our best to align skb_shared_info on a separate cache
 248         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 249         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 250         * Both skb->head and skb_shared_info are cache line aligned.
 251         */
 252        size = SKB_DATA_ALIGN(size);
 253        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 254        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 255        if (!data)
 256                goto nodata;
 257        /* kmalloc(size) might give us more room than requested.
 258         * Put skb_shared_info exactly at the end of allocated zone,
 259         * to allow max possible filling before reallocation.
 260         */
 261        size = SKB_WITH_OVERHEAD(ksize(data));
 262        prefetchw(data + size);
 263
 264        /*
 265         * Only clear those fields we need to clear, not those that we will
 266         * actually initialise below. Hence, don't put any more fields after
 267         * the tail pointer in struct sk_buff!
 268         */
 269        memset(skb, 0, offsetof(struct sk_buff, tail));
 270        /* Account for allocated memory : skb + skb->head */
 271        skb->truesize = SKB_TRUESIZE(size);
 272        skb->pfmemalloc = pfmemalloc;
 273        atomic_set(&skb->users, 1);
 274        skb->head = data;
 275        skb->data = data;
 276        skb_reset_tail_pointer(skb);
 277        skb->end = skb->tail + size;
 278#ifdef NET_SKBUFF_DATA_USES_OFFSET
 279        skb->mac_header = ~0U;
 280        skb->transport_header = ~0U;
 281#endif
 282
 283        /* make sure we initialize shinfo sequentially */
 284        shinfo = skb_shinfo(skb);
 285        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 286        atomic_set(&shinfo->dataref, 1);
 287        kmemcheck_annotate_variable(shinfo->destructor_arg);
 288
 289        if (flags & SKB_ALLOC_FCLONE) {
 290                struct sk_buff *child = skb + 1;
 291                atomic_t *fclone_ref = (atomic_t *) (child + 1);
 292
 293                kmemcheck_annotate_bitfield(child, flags1);
 294                kmemcheck_annotate_bitfield(child, flags2);
 295                skb->fclone = SKB_FCLONE_ORIG;
 296                atomic_set(fclone_ref, 1);
 297
 298                child->fclone = SKB_FCLONE_UNAVAILABLE;
 299                child->pfmemalloc = pfmemalloc;
 300        }
 301out:
 302        return skb;
 303nodata:
 304        kmem_cache_free(cache, skb);
 305        skb = NULL;
 306        goto out;
 307}
 308EXPORT_SYMBOL(__alloc_skb);
 309
 310/**
 311 * build_skb - build a network buffer
 312 * @data: data buffer provided by caller
 313 * @frag_size: size of fragment, or 0 if head was kmalloced
 314 *
 315 * Allocate a new &sk_buff. Caller provides space holding head and
 316 * skb_shared_info. @data must have been allocated by kmalloc()
 317 * The return is the new skb buffer.
 318 * On a failure the return is %NULL, and @data is not freed.
 319 * Notes :
 320 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 321 *  Driver should add room at head (NET_SKB_PAD) and
 322 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 323 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 324 *  before giving packet to stack.
 325 *  RX rings only contains data buffers, not full skbs.
 326 */
 327struct sk_buff *build_skb(void *data, unsigned int frag_size)
 328{
 329        struct skb_shared_info *shinfo;
 330        struct sk_buff *skb;
 331        unsigned int size = frag_size ? : ksize(data);
 332
 333        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 334        if (!skb)
 335                return NULL;
 336
 337        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 338
 339        memset(skb, 0, offsetof(struct sk_buff, tail));
 340        skb->truesize = SKB_TRUESIZE(size);
 341        skb->head_frag = frag_size != 0;
 342        atomic_set(&skb->users, 1);
 343        skb->head = data;
 344        skb->data = data;
 345        skb_reset_tail_pointer(skb);
 346        skb->end = skb->tail + size;
 347#ifdef NET_SKBUFF_DATA_USES_OFFSET
 348        skb->mac_header = ~0U;
 349        skb->transport_header = ~0U;
 350#endif
 351
 352        /* make sure we initialize shinfo sequentially */
 353        shinfo = skb_shinfo(skb);
 354        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 355        atomic_set(&shinfo->dataref, 1);
 356        kmemcheck_annotate_variable(shinfo->destructor_arg);
 357
 358        return skb;
 359}
 360EXPORT_SYMBOL(build_skb);
 361
 362struct netdev_alloc_cache {
 363        struct page_frag        frag;
 364        /* we maintain a pagecount bias, so that we dont dirty cache line
 365         * containing page->_count every time we allocate a fragment.
 366         */
 367        unsigned int            pagecnt_bias;
 368};
 369static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
 370
 371static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 372{
 373        struct netdev_alloc_cache *nc;
 374        void *data = NULL;
 375        int order;
 376        unsigned long flags;
 377
 378        local_irq_save(flags);
 379        nc = &__get_cpu_var(netdev_alloc_cache);
 380        if (unlikely(!nc->frag.page)) {
 381refill:
 382                for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
 383                        gfp_t gfp = gfp_mask;
 384
 385                        if (order)
 386                                gfp |= __GFP_COMP | __GFP_NOWARN;
 387                        nc->frag.page = alloc_pages(gfp, order);
 388                        if (likely(nc->frag.page))
 389                                break;
 390                        if (--order < 0)
 391                                goto end;
 392                }
 393                nc->frag.size = PAGE_SIZE << order;
 394recycle:
 395                atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
 396                nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
 397                nc->frag.offset = 0;
 398        }
 399
 400        if (nc->frag.offset + fragsz > nc->frag.size) {
 401                /* avoid unnecessary locked operations if possible */
 402                if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
 403                    atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
 404                        goto recycle;
 405                goto refill;
 406        }
 407
 408        data = page_address(nc->frag.page) + nc->frag.offset;
 409        nc->frag.offset += fragsz;
 410        nc->pagecnt_bias--;
 411end:
 412        local_irq_restore(flags);
 413        return data;
 414}
 415
 416/**
 417 * netdev_alloc_frag - allocate a page fragment
 418 * @fragsz: fragment size
 419 *
 420 * Allocates a frag from a page for receive buffer.
 421 * Uses GFP_ATOMIC allocations.
 422 */
 423void *netdev_alloc_frag(unsigned int fragsz)
 424{
 425        return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 426}
 427EXPORT_SYMBOL(netdev_alloc_frag);
 428
 429/**
 430 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 431 *      @dev: network device to receive on
 432 *      @length: length to allocate
 433 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 434 *
 435 *      Allocate a new &sk_buff and assign it a usage count of one. The
 436 *      buffer has unspecified headroom built in. Users should allocate
 437 *      the headroom they think they need without accounting for the
 438 *      built in space. The built in space is used for optimisations.
 439 *
 440 *      %NULL is returned if there is no free memory.
 441 */
 442struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
 443                                   unsigned int length, gfp_t gfp_mask)
 444{
 445        struct sk_buff *skb = NULL;
 446        unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
 447                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 448
 449        if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
 450                void *data;
 451
 452                if (sk_memalloc_socks())
 453                        gfp_mask |= __GFP_MEMALLOC;
 454
 455                data = __netdev_alloc_frag(fragsz, gfp_mask);
 456
 457                if (likely(data)) {
 458                        skb = build_skb(data, fragsz);
 459                        if (unlikely(!skb))
 460                                put_page(virt_to_head_page(data));
 461                }
 462        } else {
 463                skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
 464                                  SKB_ALLOC_RX, NUMA_NO_NODE);
 465        }
 466        if (likely(skb)) {
 467                skb_reserve(skb, NET_SKB_PAD);
 468                skb->dev = dev;
 469        }
 470        return skb;
 471}
 472EXPORT_SYMBOL(__netdev_alloc_skb);
 473
 474void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 475                     int size, unsigned int truesize)
 476{
 477        skb_fill_page_desc(skb, i, page, off, size);
 478        skb->len += size;
 479        skb->data_len += size;
 480        skb->truesize += truesize;
 481}
 482EXPORT_SYMBOL(skb_add_rx_frag);
 483
 484static void skb_drop_list(struct sk_buff **listp)
 485{
 486        kfree_skb_list(*listp);
 487        *listp = NULL;
 488}
 489
 490static inline void skb_drop_fraglist(struct sk_buff *skb)
 491{
 492        skb_drop_list(&skb_shinfo(skb)->frag_list);
 493}
 494
 495static void skb_clone_fraglist(struct sk_buff *skb)
 496{
 497        struct sk_buff *list;
 498
 499        skb_walk_frags(skb, list)
 500                skb_get(list);
 501}
 502
 503static void skb_free_head(struct sk_buff *skb)
 504{
 505        if (skb->head_frag)
 506                put_page(virt_to_head_page(skb->head));
 507        else
 508                kfree(skb->head);
 509}
 510
 511static void skb_release_data(struct sk_buff *skb)
 512{
 513        if (!skb->cloned ||
 514            !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 515                               &skb_shinfo(skb)->dataref)) {
 516                if (skb_shinfo(skb)->nr_frags) {
 517                        int i;
 518                        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
 519                                skb_frag_unref(skb, i);
 520                }
 521
 522                /*
 523                 * If skb buf is from userspace, we need to notify the caller
 524                 * the lower device DMA has done;
 525                 */
 526                if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 527                        struct ubuf_info *uarg;
 528
 529                        uarg = skb_shinfo(skb)->destructor_arg;
 530                        if (uarg->callback)
 531                                uarg->callback(uarg, true);
 532                }
 533
 534                if (skb_has_frag_list(skb))
 535                        skb_drop_fraglist(skb);
 536
 537                skb_free_head(skb);
 538        }
 539}
 540
 541/*
 542 *      Free an skbuff by memory without cleaning the state.
 543 */
 544static void kfree_skbmem(struct sk_buff *skb)
 545{
 546        struct sk_buff *other;
 547        atomic_t *fclone_ref;
 548
 549        switch (skb->fclone) {
 550        case SKB_FCLONE_UNAVAILABLE:
 551                kmem_cache_free(skbuff_head_cache, skb);
 552                break;
 553
 554        case SKB_FCLONE_ORIG:
 555                fclone_ref = (atomic_t *) (skb + 2);
 556                if (atomic_dec_and_test(fclone_ref))
 557                        kmem_cache_free(skbuff_fclone_cache, skb);
 558                break;
 559
 560        case SKB_FCLONE_CLONE:
 561                fclone_ref = (atomic_t *) (skb + 1);
 562                other = skb - 1;
 563
 564                /* The clone portion is available for
 565                 * fast-cloning again.
 566                 */
 567                skb->fclone = SKB_FCLONE_UNAVAILABLE;
 568
 569                if (atomic_dec_and_test(fclone_ref))
 570                        kmem_cache_free(skbuff_fclone_cache, other);
 571                break;
 572        }
 573}
 574
 575static void skb_release_head_state(struct sk_buff *skb)
 576{
 577        skb_dst_drop(skb);
 578#ifdef CONFIG_XFRM
 579        secpath_put(skb->sp);
 580#endif
 581        if (skb->destructor) {
 582                WARN_ON(in_irq());
 583                skb->destructor(skb);
 584        }
 585#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 586        nf_conntrack_put(skb->nfct);
 587#endif
 588#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 589        nf_conntrack_put_reasm(skb->nfct_reasm);
 590#endif
 591#ifdef CONFIG_BRIDGE_NETFILTER
 592        nf_bridge_put(skb->nf_bridge);
 593#endif
 594/* XXX: IS this still necessary? - JHS */
 595#ifdef CONFIG_NET_SCHED
 596        skb->tc_index = 0;
 597#ifdef CONFIG_NET_CLS_ACT
 598        skb->tc_verd = 0;
 599#endif
 600#endif
 601}
 602
 603/* Free everything but the sk_buff shell. */
 604static void skb_release_all(struct sk_buff *skb)
 605{
 606        skb_release_head_state(skb);
 607        if (likely(skb->head))
 608                skb_release_data(skb);
 609}
 610
 611/**
 612 *      __kfree_skb - private function
 613 *      @skb: buffer
 614 *
 615 *      Free an sk_buff. Release anything attached to the buffer.
 616 *      Clean the state. This is an internal helper function. Users should
 617 *      always call kfree_skb
 618 */
 619
 620void __kfree_skb(struct sk_buff *skb)
 621{
 622        skb_release_all(skb);
 623        kfree_skbmem(skb);
 624}
 625EXPORT_SYMBOL(__kfree_skb);
 626
 627/**
 628 *      kfree_skb - free an sk_buff
 629 *      @skb: buffer to free
 630 *
 631 *      Drop a reference to the buffer and free it if the usage count has
 632 *      hit zero.
 633 */
 634void kfree_skb(struct sk_buff *skb)
 635{
 636        if (unlikely(!skb))
 637                return;
 638        if (likely(atomic_read(&skb->users) == 1))
 639                smp_rmb();
 640        else if (likely(!atomic_dec_and_test(&skb->users)))
 641                return;
 642        trace_kfree_skb(skb, __builtin_return_address(0));
 643        __kfree_skb(skb);
 644}
 645EXPORT_SYMBOL(kfree_skb);
 646
 647void kfree_skb_list(struct sk_buff *segs)
 648{
 649        while (segs) {
 650                struct sk_buff *next = segs->next;
 651
 652                kfree_skb(segs);
 653                segs = next;
 654        }
 655}
 656EXPORT_SYMBOL(kfree_skb_list);
 657
 658/**
 659 *      skb_tx_error - report an sk_buff xmit error
 660 *      @skb: buffer that triggered an error
 661 *
 662 *      Report xmit error if a device callback is tracking this skb.
 663 *      skb must be freed afterwards.
 664 */
 665void skb_tx_error(struct sk_buff *skb)
 666{
 667        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 668                struct ubuf_info *uarg;
 669
 670                uarg = skb_shinfo(skb)->destructor_arg;
 671                if (uarg->callback)
 672                        uarg->callback(uarg, false);
 673                skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 674        }
 675}
 676EXPORT_SYMBOL(skb_tx_error);
 677
 678/**
 679 *      consume_skb - free an skbuff
 680 *      @skb: buffer to free
 681 *
 682 *      Drop a ref to the buffer and free it if the usage count has hit zero
 683 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 684 *      is being dropped after a failure and notes that
 685 */
 686void consume_skb(struct sk_buff *skb)
 687{
 688        if (unlikely(!skb))
 689                return;
 690        if (likely(atomic_read(&skb->users) == 1))
 691                smp_rmb();
 692        else if (likely(!atomic_dec_and_test(&skb->users)))
 693                return;
 694        trace_consume_skb(skb);
 695        __kfree_skb(skb);
 696}
 697EXPORT_SYMBOL(consume_skb);
 698
 699static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 700{
 701        new->tstamp             = old->tstamp;
 702        new->dev                = old->dev;
 703        new->transport_header   = old->transport_header;
 704        new->network_header     = old->network_header;
 705        new->mac_header         = old->mac_header;
 706        new->inner_transport_header = old->inner_transport_header;
 707        new->inner_network_header = old->inner_network_header;
 708        new->inner_mac_header = old->inner_mac_header;
 709        skb_dst_copy(new, old);
 710        new->rxhash             = old->rxhash;
 711        new->ooo_okay           = old->ooo_okay;
 712        new->l4_rxhash          = old->l4_rxhash;
 713        new->no_fcs             = old->no_fcs;
 714        new->encapsulation      = old->encapsulation;
 715#ifdef CONFIG_XFRM
 716        new->sp                 = secpath_get(old->sp);
 717#endif
 718        memcpy(new->cb, old->cb, sizeof(old->cb));
 719        new->csum               = old->csum;
 720        new->local_df           = old->local_df;
 721        new->pkt_type           = old->pkt_type;
 722        new->ip_summed          = old->ip_summed;
 723        skb_copy_queue_mapping(new, old);
 724        new->priority           = old->priority;
 725#if IS_ENABLED(CONFIG_IP_VS)
 726        new->ipvs_property      = old->ipvs_property;
 727#endif
 728        new->pfmemalloc         = old->pfmemalloc;
 729        new->protocol           = old->protocol;
 730        new->mark               = old->mark;
 731        new->skb_iif            = old->skb_iif;
 732        __nf_copy(new, old);
 733#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
 734        new->nf_trace           = old->nf_trace;
 735#endif
 736#ifdef CONFIG_NET_SCHED
 737        new->tc_index           = old->tc_index;
 738#ifdef CONFIG_NET_CLS_ACT
 739        new->tc_verd            = old->tc_verd;
 740#endif
 741#endif
 742        new->vlan_proto         = old->vlan_proto;
 743        new->vlan_tci           = old->vlan_tci;
 744
 745        skb_copy_secmark(new, old);
 746}
 747
 748/*
 749 * You should not add any new code to this function.  Add it to
 750 * __copy_skb_header above instead.
 751 */
 752static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 753{
 754#define C(x) n->x = skb->x
 755
 756        n->next = n->prev = NULL;
 757        n->sk = NULL;
 758        __copy_skb_header(n, skb);
 759
 760        C(len);
 761        C(data_len);
 762        C(mac_len);
 763        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 764        n->cloned = 1;
 765        n->nohdr = 0;
 766        n->destructor = NULL;
 767        C(tail);
 768        C(end);
 769        C(head);
 770        C(head_frag);
 771        C(data);
 772        C(truesize);
 773        atomic_set(&n->users, 1);
 774
 775        atomic_inc(&(skb_shinfo(skb)->dataref));
 776        skb->cloned = 1;
 777
 778        return n;
 779#undef C
 780}
 781
 782/**
 783 *      skb_morph       -       morph one skb into another
 784 *      @dst: the skb to receive the contents
 785 *      @src: the skb to supply the contents
 786 *
 787 *      This is identical to skb_clone except that the target skb is
 788 *      supplied by the user.
 789 *
 790 *      The target skb is returned upon exit.
 791 */
 792struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 793{
 794        skb_release_all(dst);
 795        return __skb_clone(dst, src);
 796}
 797EXPORT_SYMBOL_GPL(skb_morph);
 798
 799/**
 800 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
 801 *      @skb: the skb to modify
 802 *      @gfp_mask: allocation priority
 803 *
 804 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
 805 *      It will copy all frags into kernel and drop the reference
 806 *      to userspace pages.
 807 *
 808 *      If this function is called from an interrupt gfp_mask() must be
 809 *      %GFP_ATOMIC.
 810 *
 811 *      Returns 0 on success or a negative error code on failure
 812 *      to allocate kernel memory to copy to.
 813 */
 814int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 815{
 816        int i;
 817        int num_frags = skb_shinfo(skb)->nr_frags;
 818        struct page *page, *head = NULL;
 819        struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 820
 821        for (i = 0; i < num_frags; i++) {
 822                u8 *vaddr;
 823                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 824
 825                page = alloc_page(gfp_mask);
 826                if (!page) {
 827                        while (head) {
 828                                struct page *next = (struct page *)head->private;
 829                                put_page(head);
 830                                head = next;
 831                        }
 832                        return -ENOMEM;
 833                }
 834                vaddr = kmap_atomic(skb_frag_page(f));
 835                memcpy(page_address(page),
 836                       vaddr + f->page_offset, skb_frag_size(f));
 837                kunmap_atomic(vaddr);
 838                page->private = (unsigned long)head;
 839                head = page;
 840        }
 841
 842        /* skb frags release userspace buffers */
 843        for (i = 0; i < num_frags; i++)
 844                skb_frag_unref(skb, i);
 845
 846        uarg->callback(uarg, false);
 847
 848        /* skb frags point to kernel buffers */
 849        for (i = num_frags - 1; i >= 0; i--) {
 850                __skb_fill_page_desc(skb, i, head, 0,
 851                                     skb_shinfo(skb)->frags[i].size);
 852                head = (struct page *)head->private;
 853        }
 854
 855        skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 856        return 0;
 857}
 858EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 859
 860/**
 861 *      skb_clone       -       duplicate an sk_buff
 862 *      @skb: buffer to clone
 863 *      @gfp_mask: allocation priority
 864 *
 865 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
 866 *      copies share the same packet data but not structure. The new
 867 *      buffer has a reference count of 1. If the allocation fails the
 868 *      function returns %NULL otherwise the new buffer is returned.
 869 *
 870 *      If this function is called from an interrupt gfp_mask() must be
 871 *      %GFP_ATOMIC.
 872 */
 873
 874struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
 875{
 876        struct sk_buff *n;
 877
 878        if (skb_orphan_frags(skb, gfp_mask))
 879                return NULL;
 880
 881        n = skb + 1;
 882        if (skb->fclone == SKB_FCLONE_ORIG &&
 883            n->fclone == SKB_FCLONE_UNAVAILABLE) {
 884                atomic_t *fclone_ref = (atomic_t *) (n + 1);
 885                n->fclone = SKB_FCLONE_CLONE;
 886                atomic_inc(fclone_ref);
 887        } else {
 888                if (skb_pfmemalloc(skb))
 889                        gfp_mask |= __GFP_MEMALLOC;
 890
 891                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
 892                if (!n)
 893                        return NULL;
 894
 895                kmemcheck_annotate_bitfield(n, flags1);
 896                kmemcheck_annotate_bitfield(n, flags2);
 897                n->fclone = SKB_FCLONE_UNAVAILABLE;
 898        }
 899
 900        return __skb_clone(n, skb);
 901}
 902EXPORT_SYMBOL(skb_clone);
 903
 904static void skb_headers_offset_update(struct sk_buff *skb, int off)
 905{
 906        /* {transport,network,mac}_header and tail are relative to skb->head */
 907        skb->transport_header += off;
 908        skb->network_header   += off;
 909        if (skb_mac_header_was_set(skb))
 910                skb->mac_header += off;
 911        skb->inner_transport_header += off;
 912        skb->inner_network_header += off;
 913        skb->inner_mac_header += off;
 914}
 915
 916static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 917{
 918#ifndef NET_SKBUFF_DATA_USES_OFFSET
 919        /*
 920         *      Shift between the two data areas in bytes
 921         */
 922        unsigned long offset = new->data - old->data;
 923#endif
 924
 925        __copy_skb_header(new, old);
 926
 927#ifndef NET_SKBUFF_DATA_USES_OFFSET
 928        skb_headers_offset_update(new, offset);
 929#endif
 930        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
 931        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
 932        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
 933}
 934
 935static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
 936{
 937        if (skb_pfmemalloc(skb))
 938                return SKB_ALLOC_RX;
 939        return 0;
 940}
 941
 942/**
 943 *      skb_copy        -       create private copy of an sk_buff
 944 *      @skb: buffer to copy
 945 *      @gfp_mask: allocation priority
 946 *
 947 *      Make a copy of both an &sk_buff and its data. This is used when the
 948 *      caller wishes to modify the data and needs a private copy of the
 949 *      data to alter. Returns %NULL on failure or the pointer to the buffer
 950 *      on success. The returned buffer has a reference count of 1.
 951 *
 952 *      As by-product this function converts non-linear &sk_buff to linear
 953 *      one, so that &sk_buff becomes completely private and caller is allowed
 954 *      to modify all the data of returned buffer. This means that this
 955 *      function is not recommended for use in circumstances when only
 956 *      header is going to be modified. Use pskb_copy() instead.
 957 */
 958
 959struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
 960{
 961        int headerlen = skb_headroom(skb);
 962        unsigned int size = skb_end_offset(skb) + skb->data_len;
 963        struct sk_buff *n = __alloc_skb(size, gfp_mask,
 964                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
 965
 966        if (!n)
 967                return NULL;
 968
 969        /* Set the data pointer */
 970        skb_reserve(n, headerlen);
 971        /* Set the tail pointer and length */
 972        skb_put(n, skb->len);
 973
 974        if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
 975                BUG();
 976
 977        copy_skb_header(n, skb);
 978        return n;
 979}
 980EXPORT_SYMBOL(skb_copy);
 981
 982/**
 983 *      __pskb_copy     -       create copy of an sk_buff with private head.
 984 *      @skb: buffer to copy
 985 *      @headroom: headroom of new skb
 986 *      @gfp_mask: allocation priority
 987 *
 988 *      Make a copy of both an &sk_buff and part of its data, located
 989 *      in header. Fragmented data remain shared. This is used when
 990 *      the caller wishes to modify only header of &sk_buff and needs
 991 *      private copy of the header to alter. Returns %NULL on failure
 992 *      or the pointer to the buffer on success.
 993 *      The returned buffer has a reference count of 1.
 994 */
 995
 996struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
 997{
 998        unsigned int size = skb_headlen(skb) + headroom;
 999        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1000                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1001
1002        if (!n)
1003                goto out;
1004
1005        /* Set the data pointer */
1006        skb_reserve(n, headroom);
1007        /* Set the tail pointer and length */
1008        skb_put(n, skb_headlen(skb));
1009        /* Copy the bytes */
1010        skb_copy_from_linear_data(skb, n->data, n->len);
1011
1012        n->truesize += skb->data_len;
1013        n->data_len  = skb->data_len;
1014        n->len       = skb->len;
1015
1016        if (skb_shinfo(skb)->nr_frags) {
1017                int i;
1018
1019                if (skb_orphan_frags(skb, gfp_mask)) {
1020                        kfree_skb(n);
1021                        n = NULL;
1022                        goto out;
1023                }
1024                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1025                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1026                        skb_frag_ref(skb, i);
1027                }
1028                skb_shinfo(n)->nr_frags = i;
1029        }
1030
1031        if (skb_has_frag_list(skb)) {
1032                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1033                skb_clone_fraglist(n);
1034        }
1035
1036        copy_skb_header(n, skb);
1037out:
1038        return n;
1039}
1040EXPORT_SYMBOL(__pskb_copy);
1041
1042/**
1043 *      pskb_expand_head - reallocate header of &sk_buff
1044 *      @skb: buffer to reallocate
1045 *      @nhead: room to add at head
1046 *      @ntail: room to add at tail
1047 *      @gfp_mask: allocation priority
1048 *
1049 *      Expands (or creates identical copy, if &nhead and &ntail are zero)
1050 *      header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1051 *      reference count of 1. Returns zero in the case of success or error,
1052 *      if expansion failed. In the last case, &sk_buff is not changed.
1053 *
1054 *      All the pointers pointing into skb header may change and must be
1055 *      reloaded after call to this function.
1056 */
1057
1058int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1059                     gfp_t gfp_mask)
1060{
1061        int i;
1062        u8 *data;
1063        int size = nhead + skb_end_offset(skb) + ntail;
1064        long off;
1065
1066        BUG_ON(nhead < 0);
1067
1068        if (skb_shared(skb))
1069                BUG();
1070
1071        size = SKB_DATA_ALIGN(size);
1072
1073        if (skb_pfmemalloc(skb))
1074                gfp_mask |= __GFP_MEMALLOC;
1075        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1076                               gfp_mask, NUMA_NO_NODE, NULL);
1077        if (!data)
1078                goto nodata;
1079        size = SKB_WITH_OVERHEAD(ksize(data));
1080
1081        /* Copy only real data... and, alas, header. This should be
1082         * optimized for the cases when header is void.
1083         */
1084        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1085
1086        memcpy((struct skb_shared_info *)(data + size),
1087               skb_shinfo(skb),
1088               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1089
1090        /*
1091         * if shinfo is shared we must drop the old head gracefully, but if it
1092         * is not we can just drop the old head and let the existing refcount
1093         * be since all we did is relocate the values
1094         */
1095        if (skb_cloned(skb)) {
1096                /* copy this zero copy skb frags */
1097                if (skb_orphan_frags(skb, gfp_mask))
1098                        goto nofrags;
1099                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1100                        skb_frag_ref(skb, i);
1101
1102                if (skb_has_frag_list(skb))
1103                        skb_clone_fraglist(skb);
1104
1105                skb_release_data(skb);
1106        } else {
1107                skb_free_head(skb);
1108        }
1109        off = (data + nhead) - skb->head;
1110
1111        skb->head     = data;
1112        skb->head_frag = 0;
1113        skb->data    += off;
1114#ifdef NET_SKBUFF_DATA_USES_OFFSET
1115        skb->end      = size;
1116        off           = nhead;
1117#else
1118        skb->end      = skb->head + size;
1119#endif
1120        skb->tail             += off;
1121        skb_headers_offset_update(skb, off);
1122        /* Only adjust this if it actually is csum_start rather than csum */
1123        if (skb->ip_summed == CHECKSUM_PARTIAL)
1124                skb->csum_start += nhead;
1125        skb->cloned   = 0;
1126        skb->hdr_len  = 0;
1127        skb->nohdr    = 0;
1128        atomic_set(&skb_shinfo(skb)->dataref, 1);
1129        return 0;
1130
1131nofrags:
1132        kfree(data);
1133nodata:
1134        return -ENOMEM;
1135}
1136EXPORT_SYMBOL(pskb_expand_head);
1137
1138/* Make private copy of skb with writable head and some headroom */
1139
1140struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1141{
1142        struct sk_buff *skb2;
1143        int delta = headroom - skb_headroom(skb);
1144
1145        if (delta <= 0)
1146                skb2 = pskb_copy(skb, GFP_ATOMIC);
1147        else {
1148                skb2 = skb_clone(skb, GFP_ATOMIC);
1149                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1150                                             GFP_ATOMIC)) {
1151                        kfree_skb(skb2);
1152                        skb2 = NULL;
1153                }
1154        }
1155        return skb2;
1156}
1157EXPORT_SYMBOL(skb_realloc_headroom);
1158
1159/**
1160 *      skb_copy_expand -       copy and expand sk_buff
1161 *      @skb: buffer to copy
1162 *      @newheadroom: new free bytes at head
1163 *      @newtailroom: new free bytes at tail
1164 *      @gfp_mask: allocation priority
1165 *
1166 *      Make a copy of both an &sk_buff and its data and while doing so
1167 *      allocate additional space.
1168 *
1169 *      This is used when the caller wishes to modify the data and needs a
1170 *      private copy of the data to alter as well as more space for new fields.
1171 *      Returns %NULL on failure or the pointer to the buffer
1172 *      on success. The returned buffer has a reference count of 1.
1173 *
1174 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1175 *      is called from an interrupt.
1176 */
1177struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1178                                int newheadroom, int newtailroom,
1179                                gfp_t gfp_mask)
1180{
1181        /*
1182         *      Allocate the copy buffer
1183         */
1184        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1185                                        gfp_mask, skb_alloc_rx_flag(skb),
1186                                        NUMA_NO_NODE);
1187        int oldheadroom = skb_headroom(skb);
1188        int head_copy_len, head_copy_off;
1189        int off;
1190
1191        if (!n)
1192                return NULL;
1193
1194        skb_reserve(n, newheadroom);
1195
1196        /* Set the tail pointer and length */
1197        skb_put(n, skb->len);
1198
1199        head_copy_len = oldheadroom;
1200        head_copy_off = 0;
1201        if (newheadroom <= head_copy_len)
1202                head_copy_len = newheadroom;
1203        else
1204                head_copy_off = newheadroom - head_copy_len;
1205
1206        /* Copy the linear header and data. */
1207        if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1208                          skb->len + head_copy_len))
1209                BUG();
1210
1211        copy_skb_header(n, skb);
1212
1213        off                  = newheadroom - oldheadroom;
1214        if (n->ip_summed == CHECKSUM_PARTIAL)
1215                n->csum_start += off;
1216#ifdef NET_SKBUFF_DATA_USES_OFFSET
1217        skb_headers_offset_update(n, off);
1218#endif
1219
1220        return n;
1221}
1222EXPORT_SYMBOL(skb_copy_expand);
1223
1224/**
1225 *      skb_pad                 -       zero pad the tail of an skb
1226 *      @skb: buffer to pad
1227 *      @pad: space to pad
1228 *
1229 *      Ensure that a buffer is followed by a padding area that is zero
1230 *      filled. Used by network drivers which may DMA or transfer data
1231 *      beyond the buffer end onto the wire.
1232 *
1233 *      May return error in out of memory cases. The skb is freed on error.
1234 */
1235
1236int skb_pad(struct sk_buff *skb, int pad)
1237{
1238        int err;
1239        int ntail;
1240
1241        /* If the skbuff is non linear tailroom is always zero.. */
1242        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1243                memset(skb->data+skb->len, 0, pad);
1244                return 0;
1245        }
1246
1247        ntail = skb->data_len + pad - (skb->end - skb->tail);
1248        if (likely(skb_cloned(skb) || ntail > 0)) {
1249                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1250                if (unlikely(err))
1251                        goto free_skb;
1252        }
1253
1254        /* FIXME: The use of this function with non-linear skb's really needs
1255         * to be audited.
1256         */
1257        err = skb_linearize(skb);
1258        if (unlikely(err))
1259                goto free_skb;
1260
1261        memset(skb->data + skb->len, 0, pad);
1262        return 0;
1263
1264free_skb:
1265        kfree_skb(skb);
1266        return err;
1267}
1268EXPORT_SYMBOL(skb_pad);
1269
1270/**
1271 *      skb_put - add data to a buffer
1272 *      @skb: buffer to use
1273 *      @len: amount of data to add
1274 *
1275 *      This function extends the used data area of the buffer. If this would
1276 *      exceed the total buffer size the kernel will panic. A pointer to the
1277 *      first byte of the extra data is returned.
1278 */
1279unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1280{
1281        unsigned char *tmp = skb_tail_pointer(skb);
1282        SKB_LINEAR_ASSERT(skb);
1283        skb->tail += len;
1284        skb->len  += len;
1285        if (unlikely(skb->tail > skb->end))
1286                skb_over_panic(skb, len, __builtin_return_address(0));
1287        return tmp;
1288}
1289EXPORT_SYMBOL(skb_put);
1290
1291/**
1292 *      skb_push - add data to the start of a buffer
1293 *      @skb: buffer to use
1294 *      @len: amount of data to add
1295 *
1296 *      This function extends the used data area of the buffer at the buffer
1297 *      start. If this would exceed the total buffer headroom the kernel will
1298 *      panic. A pointer to the first byte of the extra data is returned.
1299 */
1300unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1301{
1302        skb->data -= len;
1303        skb->len  += len;
1304        if (unlikely(skb->data<skb->head))
1305                skb_under_panic(skb, len, __builtin_return_address(0));
1306        return skb->data;
1307}
1308EXPORT_SYMBOL(skb_push);
1309
1310/**
1311 *      skb_pull - remove data from the start of a buffer
1312 *      @skb: buffer to use
1313 *      @len: amount of data to remove
1314 *
1315 *      This function removes data from the start of a buffer, returning
1316 *      the memory to the headroom. A pointer to the next data in the buffer
1317 *      is returned. Once the data has been pulled future pushes will overwrite
1318 *      the old data.
1319 */
1320unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1321{
1322        return skb_pull_inline(skb, len);
1323}
1324EXPORT_SYMBOL(skb_pull);
1325
1326/**
1327 *      skb_trim - remove end from a buffer
1328 *      @skb: buffer to alter
1329 *      @len: new length
1330 *
1331 *      Cut the length of a buffer down by removing data from the tail. If
1332 *      the buffer is already under the length specified it is not modified.
1333 *      The skb must be linear.
1334 */
1335void skb_trim(struct sk_buff *skb, unsigned int len)
1336{
1337        if (skb->len > len)
1338                __skb_trim(skb, len);
1339}
1340EXPORT_SYMBOL(skb_trim);
1341
1342/* Trims skb to length len. It can change skb pointers.
1343 */
1344
1345int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1346{
1347        struct sk_buff **fragp;
1348        struct sk_buff *frag;
1349        int offset = skb_headlen(skb);
1350        int nfrags = skb_shinfo(skb)->nr_frags;
1351        int i;
1352        int err;
1353
1354        if (skb_cloned(skb) &&
1355            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1356                return err;
1357
1358        i = 0;
1359        if (offset >= len)
1360                goto drop_pages;
1361
1362        for (; i < nfrags; i++) {
1363                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1364
1365                if (end < len) {
1366                        offset = end;
1367                        continue;
1368                }
1369
1370                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1371
1372drop_pages:
1373                skb_shinfo(skb)->nr_frags = i;
1374
1375                for (; i < nfrags; i++)
1376                        skb_frag_unref(skb, i);
1377
1378                if (skb_has_frag_list(skb))
1379                        skb_drop_fraglist(skb);
1380                goto done;
1381        }
1382
1383        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1384             fragp = &frag->next) {
1385                int end = offset + frag->len;
1386
1387                if (skb_shared(frag)) {
1388                        struct sk_buff *nfrag;
1389
1390                        nfrag = skb_clone(frag, GFP_ATOMIC);
1391                        if (unlikely(!nfrag))
1392                                return -ENOMEM;
1393
1394                        nfrag->next = frag->next;
1395                        consume_skb(frag);
1396                        frag = nfrag;
1397                        *fragp = frag;
1398                }
1399
1400                if (end < len) {
1401                        offset = end;
1402                        continue;
1403                }
1404
1405                if (end > len &&
1406                    unlikely((err = pskb_trim(frag, len - offset))))
1407                        return err;
1408
1409                if (frag->next)
1410                        skb_drop_list(&frag->next);
1411                break;
1412        }
1413
1414done:
1415        if (len > skb_headlen(skb)) {
1416                skb->data_len -= skb->len - len;
1417                skb->len       = len;
1418        } else {
1419                skb->len       = len;
1420                skb->data_len  = 0;
1421                skb_set_tail_pointer(skb, len);
1422        }
1423
1424        return 0;
1425}
1426EXPORT_SYMBOL(___pskb_trim);
1427
1428/**
1429 *      __pskb_pull_tail - advance tail of skb header
1430 *      @skb: buffer to reallocate
1431 *      @delta: number of bytes to advance tail
1432 *
1433 *      The function makes a sense only on a fragmented &sk_buff,
1434 *      it expands header moving its tail forward and copying necessary
1435 *      data from fragmented part.
1436 *
1437 *      &sk_buff MUST have reference count of 1.
1438 *
1439 *      Returns %NULL (and &sk_buff does not change) if pull failed
1440 *      or value of new tail of skb in the case of success.
1441 *
1442 *      All the pointers pointing into skb header may change and must be
1443 *      reloaded after call to this function.
1444 */
1445
1446/* Moves tail of skb head forward, copying data from fragmented part,
1447 * when it is necessary.
1448 * 1. It may fail due to malloc failure.
1449 * 2. It may change skb pointers.
1450 *
1451 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1452 */
1453unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1454{
1455        /* If skb has not enough free space at tail, get new one
1456         * plus 128 bytes for future expansions. If we have enough
1457         * room at tail, reallocate without expansion only if skb is cloned.
1458         */
1459        int i, k, eat = (skb->tail + delta) - skb->end;
1460
1461        if (eat > 0 || skb_cloned(skb)) {
1462                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1463                                     GFP_ATOMIC))
1464                        return NULL;
1465        }
1466
1467        if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1468                BUG();
1469
1470        /* Optimization: no fragments, no reasons to preestimate
1471         * size of pulled pages. Superb.
1472         */
1473        if (!skb_has_frag_list(skb))
1474                goto pull_pages;
1475
1476        /* Estimate size of pulled pages. */
1477        eat = delta;
1478        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1479                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1480
1481                if (size >= eat)
1482                        goto pull_pages;
1483                eat -= size;
1484        }
1485
1486        /* If we need update frag list, we are in troubles.
1487         * Certainly, it possible to add an offset to skb data,
1488         * but taking into account that pulling is expected to
1489         * be very rare operation, it is worth to fight against
1490         * further bloating skb head and crucify ourselves here instead.
1491         * Pure masohism, indeed. 8)8)
1492         */
1493        if (eat) {
1494                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1495                struct sk_buff *clone = NULL;
1496                struct sk_buff *insp = NULL;
1497
1498                do {
1499                        BUG_ON(!list);
1500
1501                        if (list->len <= eat) {
1502                                /* Eaten as whole. */
1503                                eat -= list->len;
1504                                list = list->next;
1505                                insp = list;
1506                        } else {
1507                                /* Eaten partially. */
1508
1509                                if (skb_shared(list)) {
1510                                        /* Sucks! We need to fork list. :-( */
1511                                        clone = skb_clone(list, GFP_ATOMIC);
1512                                        if (!clone)
1513                                                return NULL;
1514                                        insp = list->next;
1515                                        list = clone;
1516                                } else {
1517                                        /* This may be pulled without
1518                                         * problems. */
1519                                        insp = list;
1520                                }
1521                                if (!pskb_pull(list, eat)) {
1522                                        kfree_skb(clone);
1523                                        return NULL;
1524                                }
1525                                break;
1526                        }
1527                } while (eat);
1528
1529                /* Free pulled out fragments. */
1530                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1531                        skb_shinfo(skb)->frag_list = list->next;
1532                        kfree_skb(list);
1533                }
1534                /* And insert new clone at head. */
1535                if (clone) {
1536                        clone->next = list;
1537                        skb_shinfo(skb)->frag_list = clone;
1538                }
1539        }
1540        /* Success! Now we may commit changes to skb data. */
1541
1542pull_pages:
1543        eat = delta;
1544        k = 0;
1545        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1546                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1547
1548                if (size <= eat) {
1549                        skb_frag_unref(skb, i);
1550                        eat -= size;
1551                } else {
1552                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1553                        if (eat) {
1554                                skb_shinfo(skb)->frags[k].page_offset += eat;
1555                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1556                                eat = 0;
1557                        }
1558                        k++;
1559                }
1560        }
1561        skb_shinfo(skb)->nr_frags = k;
1562
1563        skb->tail     += delta;
1564        skb->data_len -= delta;
1565
1566        return skb_tail_pointer(skb);
1567}
1568EXPORT_SYMBOL(__pskb_pull_tail);
1569
1570/**
1571 *      skb_copy_bits - copy bits from skb to kernel buffer
1572 *      @skb: source skb
1573 *      @offset: offset in source
1574 *      @to: destination buffer
1575 *      @len: number of bytes to copy
1576 *
1577 *      Copy the specified number of bytes from the source skb to the
1578 *      destination buffer.
1579 *
1580 *      CAUTION ! :
1581 *              If its prototype is ever changed,
1582 *              check arch/{*}/net/{*}.S files,
1583 *              since it is called from BPF assembly code.
1584 */
1585int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1586{
1587        int start = skb_headlen(skb);
1588        struct sk_buff *frag_iter;
1589        int i, copy;
1590
1591        if (offset > (int)skb->len - len)
1592                goto fault;
1593
1594        /* Copy header. */
1595        if ((copy = start - offset) > 0) {
1596                if (copy > len)
1597                        copy = len;
1598                skb_copy_from_linear_data_offset(skb, offset, to, copy);
1599                if ((len -= copy) == 0)
1600                        return 0;
1601                offset += copy;
1602                to     += copy;
1603        }
1604
1605        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1606                int end;
1607                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1608
1609                WARN_ON(start > offset + len);
1610
1611                end = start + skb_frag_size(f);
1612                if ((copy = end - offset) > 0) {
1613                        u8 *vaddr;
1614
1615                        if (copy > len)
1616                                copy = len;
1617
1618                        vaddr = kmap_atomic(skb_frag_page(f));
1619                        memcpy(to,
1620                               vaddr + f->page_offset + offset - start,
1621                               copy);
1622                        kunmap_atomic(vaddr);
1623
1624                        if ((len -= copy) == 0)
1625                                return 0;
1626                        offset += copy;
1627                        to     += copy;
1628                }
1629                start = end;
1630        }
1631
1632        skb_walk_frags(skb, frag_iter) {
1633                int end;
1634
1635                WARN_ON(start > offset + len);
1636
1637                end = start + frag_iter->len;
1638                if ((copy = end - offset) > 0) {
1639                        if (copy > len)
1640                                copy = len;
1641                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
1642                                goto fault;
1643                        if ((len -= copy) == 0)
1644                                return 0;
1645                        offset += copy;
1646                        to     += copy;
1647                }
1648                start = end;
1649        }
1650
1651        if (!len)
1652                return 0;
1653
1654fault:
1655        return -EFAULT;
1656}
1657EXPORT_SYMBOL(skb_copy_bits);
1658
1659/*
1660 * Callback from splice_to_pipe(), if we need to release some pages
1661 * at the end of the spd in case we error'ed out in filling the pipe.
1662 */
1663static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1664{
1665        put_page(spd->pages[i]);
1666}
1667
1668static struct page *linear_to_page(struct page *page, unsigned int *len,
1669                                   unsigned int *offset,
1670                                   struct sock *sk)
1671{
1672        struct page_frag *pfrag = sk_page_frag(sk);
1673
1674        if (!sk_page_frag_refill(sk, pfrag))
1675                return NULL;
1676
1677        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1678
1679        memcpy(page_address(pfrag->page) + pfrag->offset,
1680               page_address(page) + *offset, *len);
1681        *offset = pfrag->offset;
1682        pfrag->offset += *len;
1683
1684        return pfrag->page;
1685}
1686
1687static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1688                             struct page *page,
1689                             unsigned int offset)
1690{
1691        return  spd->nr_pages &&
1692                spd->pages[spd->nr_pages - 1] == page &&
1693                (spd->partial[spd->nr_pages - 1].offset +
1694                 spd->partial[spd->nr_pages - 1].len == offset);
1695}
1696
1697/*
1698 * Fill page/offset/length into spd, if it can hold more pages.
1699 */
1700static bool spd_fill_page(struct splice_pipe_desc *spd,
1701                          struct pipe_inode_info *pipe, struct page *page,
1702                          unsigned int *len, unsigned int offset,
1703                          bool linear,
1704                          struct sock *sk)
1705{
1706        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1707                return true;
1708
1709        if (linear) {
1710                page = linear_to_page(page, len, &offset, sk);
1711                if (!page)
1712                        return true;
1713        }
1714        if (spd_can_coalesce(spd, page, offset)) {
1715                spd->partial[spd->nr_pages - 1].len += *len;
1716                return false;
1717        }
1718        get_page(page);
1719        spd->pages[spd->nr_pages] = page;
1720        spd->partial[spd->nr_pages].len = *len;
1721        spd->partial[spd->nr_pages].offset = offset;
1722        spd->nr_pages++;
1723
1724        return false;
1725}
1726
1727static bool __splice_segment(struct page *page, unsigned int poff,
1728                             unsigned int plen, unsigned int *off,
1729                             unsigned int *len,
1730                             struct splice_pipe_desc *spd, bool linear,
1731                             struct sock *sk,
1732                             struct pipe_inode_info *pipe)
1733{
1734        if (!*len)
1735                return true;
1736
1737        /* skip this segment if already processed */
1738        if (*off >= plen) {
1739                *off -= plen;
1740                return false;
1741        }
1742
1743        /* ignore any bits we already processed */
1744        poff += *off;
1745        plen -= *off;
1746        *off = 0;
1747
1748        do {
1749                unsigned int flen = min(*len, plen);
1750
1751                if (spd_fill_page(spd, pipe, page, &flen, poff,
1752                                  linear, sk))
1753                        return true;
1754                poff += flen;
1755                plen -= flen;
1756                *len -= flen;
1757        } while (*len && plen);
1758
1759        return false;
1760}
1761
1762/*
1763 * Map linear and fragment data from the skb to spd. It reports true if the
1764 * pipe is full or if we already spliced the requested length.
1765 */
1766static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1767                              unsigned int *offset, unsigned int *len,
1768                              struct splice_pipe_desc *spd, struct sock *sk)
1769{
1770        int seg;
1771
1772        /* map the linear part :
1773         * If skb->head_frag is set, this 'linear' part is backed by a
1774         * fragment, and if the head is not shared with any clones then
1775         * we can avoid a copy since we own the head portion of this page.
1776         */
1777        if (__splice_segment(virt_to_page(skb->data),
1778                             (unsigned long) skb->data & (PAGE_SIZE - 1),
1779                             skb_headlen(skb),
1780                             offset, len, spd,
1781                             skb_head_is_locked(skb),
1782                             sk, pipe))
1783                return true;
1784
1785        /*
1786         * then map the fragments
1787         */
1788        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1789                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1790
1791                if (__splice_segment(skb_frag_page(f),
1792                                     f->page_offset, skb_frag_size(f),
1793                                     offset, len, spd, false, sk, pipe))
1794                        return true;
1795        }
1796
1797        return false;
1798}
1799
1800/*
1801 * Map data from the skb to a pipe. Should handle both the linear part,
1802 * the fragments, and the frag list. It does NOT handle frag lists within
1803 * the frag list, if such a thing exists. We'd probably need to recurse to
1804 * handle that cleanly.
1805 */
1806int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1807                    struct pipe_inode_info *pipe, unsigned int tlen,
1808                    unsigned int flags)
1809{
1810        struct partial_page partial[MAX_SKB_FRAGS];
1811        struct page *pages[MAX_SKB_FRAGS];
1812        struct splice_pipe_desc spd = {
1813                .pages = pages,
1814                .partial = partial,
1815                .nr_pages_max = MAX_SKB_FRAGS,
1816                .flags = flags,
1817                .ops = &sock_pipe_buf_ops,
1818                .spd_release = sock_spd_release,
1819        };
1820        struct sk_buff *frag_iter;
1821        struct sock *sk = skb->sk;
1822        int ret = 0;
1823
1824        /*
1825         * __skb_splice_bits() only fails if the output has no room left,
1826         * so no point in going over the frag_list for the error case.
1827         */
1828        if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1829                goto done;
1830        else if (!tlen)
1831                goto done;
1832
1833        /*
1834         * now see if we have a frag_list to map
1835         */
1836        skb_walk_frags(skb, frag_iter) {
1837                if (!tlen)
1838                        break;
1839                if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1840                        break;
1841        }
1842
1843done:
1844        if (spd.nr_pages) {
1845                /*
1846                 * Drop the socket lock, otherwise we have reverse
1847                 * locking dependencies between sk_lock and i_mutex
1848                 * here as compared to sendfile(). We enter here
1849                 * with the socket lock held, and splice_to_pipe() will
1850                 * grab the pipe inode lock. For sendfile() emulation,
1851                 * we call into ->sendpage() with the i_mutex lock held
1852                 * and networking will grab the socket lock.
1853                 */
1854                release_sock(sk);
1855                ret = splice_to_pipe(pipe, &spd);
1856                lock_sock(sk);
1857        }
1858
1859        return ret;
1860}
1861
1862/**
1863 *      skb_store_bits - store bits from kernel buffer to skb
1864 *      @skb: destination buffer
1865 *      @offset: offset in destination
1866 *      @from: source buffer
1867 *      @len: number of bytes to copy
1868 *
1869 *      Copy the specified number of bytes from the source buffer to the
1870 *      destination skb.  This function handles all the messy bits of
1871 *      traversing fragment lists and such.
1872 */
1873
1874int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1875{
1876        int start = skb_headlen(skb);
1877        struct sk_buff *frag_iter;
1878        int i, copy;
1879
1880        if (offset > (int)skb->len - len)
1881                goto fault;
1882
1883        if ((copy = start - offset) > 0) {
1884                if (copy > len)
1885                        copy = len;
1886                skb_copy_to_linear_data_offset(skb, offset, from, copy);
1887                if ((len -= copy) == 0)
1888                        return 0;
1889                offset += copy;
1890                from += copy;
1891        }
1892
1893        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1894                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1895                int end;
1896
1897                WARN_ON(start > offset + len);
1898
1899                end = start + skb_frag_size(frag);
1900                if ((copy = end - offset) > 0) {
1901                        u8 *vaddr;
1902
1903                        if (copy > len)
1904                                copy = len;
1905
1906                        vaddr = kmap_atomic(skb_frag_page(frag));
1907                        memcpy(vaddr + frag->page_offset + offset - start,
1908                               from, copy);
1909                        kunmap_atomic(vaddr);
1910
1911                        if ((len -= copy) == 0)
1912                                return 0;
1913                        offset += copy;
1914                        from += copy;
1915                }
1916                start = end;
1917        }
1918
1919        skb_walk_frags(skb, frag_iter) {
1920                int end;
1921
1922                WARN_ON(start > offset + len);
1923
1924                end = start + frag_iter->len;
1925                if ((copy = end - offset) > 0) {
1926                        if (copy > len)
1927                                copy = len;
1928                        if (skb_store_bits(frag_iter, offset - start,
1929                                           from, copy))
1930                                goto fault;
1931                        if ((len -= copy) == 0)
1932                                return 0;
1933                        offset += copy;
1934                        from += copy;
1935                }
1936                start = end;
1937        }
1938        if (!len)
1939                return 0;
1940
1941fault:
1942        return -EFAULT;
1943}
1944EXPORT_SYMBOL(skb_store_bits);
1945
1946/* Checksum skb data. */
1947
1948__wsum skb_checksum(const struct sk_buff *skb, int offset,
1949                          int len, __wsum csum)
1950{
1951        int start = skb_headlen(skb);
1952        int i, copy = start - offset;
1953        struct sk_buff *frag_iter;
1954        int pos = 0;
1955
1956        /* Checksum header. */
1957        if (copy > 0) {
1958                if (copy > len)
1959                        copy = len;
1960                csum = csum_partial(skb->data + offset, copy, csum);
1961                if ((len -= copy) == 0)
1962                        return csum;
1963                offset += copy;
1964                pos     = copy;
1965        }
1966
1967        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1968                int end;
1969                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1970
1971                WARN_ON(start > offset + len);
1972
1973                end = start + skb_frag_size(frag);
1974                if ((copy = end - offset) > 0) {
1975                        __wsum csum2;
1976                        u8 *vaddr;
1977
1978                        if (copy > len)
1979                                copy = len;
1980                        vaddr = kmap_atomic(skb_frag_page(frag));
1981                        csum2 = csum_partial(vaddr + frag->page_offset +
1982                                             offset - start, copy, 0);
1983                        kunmap_atomic(vaddr);
1984                        csum = csum_block_add(csum, csum2, pos);
1985                        if (!(len -= copy))
1986                                return csum;
1987                        offset += copy;
1988                        pos    += copy;
1989                }
1990                start = end;
1991        }
1992
1993        skb_walk_frags(skb, frag_iter) {
1994                int end;
1995
1996                WARN_ON(start > offset + len);
1997
1998                end = start + frag_iter->len;
1999                if ((copy = end - offset) > 0) {
2000                        __wsum csum2;
2001                        if (copy > len)
2002                                copy = len;
2003                        csum2 = skb_checksum(frag_iter, offset - start,
2004                                             copy, 0);
2005                        csum = csum_block_add(csum, csum2, pos);
2006                        if ((len -= copy) == 0)
2007                                return csum;
2008                        offset += copy;
2009                        pos    += copy;
2010                }
2011                start = end;
2012        }
2013        BUG_ON(len);
2014
2015        return csum;
2016}
2017EXPORT_SYMBOL(skb_checksum);
2018
2019/* Both of above in one bottle. */
2020
2021__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2022                                    u8 *to, int len, __wsum csum)
2023{
2024        int start = skb_headlen(skb);
2025        int i, copy = start - offset;
2026        struct sk_buff *frag_iter;
2027        int pos = 0;
2028
2029        /* Copy header. */
2030        if (copy > 0) {
2031                if (copy > len)
2032                        copy = len;
2033                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2034                                                 copy, csum);
2035                if ((len -= copy) == 0)
2036                        return csum;
2037                offset += copy;
2038                to     += copy;
2039                pos     = copy;
2040        }
2041
2042        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043                int end;
2044
2045                WARN_ON(start > offset + len);
2046
2047                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2048                if ((copy = end - offset) > 0) {
2049                        __wsum csum2;
2050                        u8 *vaddr;
2051                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2052
2053                        if (copy > len)
2054                                copy = len;
2055                        vaddr = kmap_atomic(skb_frag_page(frag));
2056                        csum2 = csum_partial_copy_nocheck(vaddr +
2057                                                          frag->page_offset +
2058                                                          offset - start, to,
2059                                                          copy, 0);
2060                        kunmap_atomic(vaddr);
2061                        csum = csum_block_add(csum, csum2, pos);
2062                        if (!(len -= copy))
2063                                return csum;
2064                        offset += copy;
2065                        to     += copy;
2066                        pos    += copy;
2067                }
2068                start = end;
2069        }
2070
2071        skb_walk_frags(skb, frag_iter) {
2072                __wsum csum2;
2073                int end;
2074
2075                WARN_ON(start > offset + len);
2076
2077                end = start + frag_iter->len;
2078                if ((copy = end - offset) > 0) {
2079                        if (copy > len)
2080                                copy = len;
2081                        csum2 = skb_copy_and_csum_bits(frag_iter,
2082                                                       offset - start,
2083                                                       to, copy, 0);
2084                        csum = csum_block_add(csum, csum2, pos);
2085                        if ((len -= copy) == 0)
2086                                return csum;
2087                        offset += copy;
2088                        to     += copy;
2089                        pos    += copy;
2090                }
2091                start = end;
2092        }
2093        BUG_ON(len);
2094        return csum;
2095}
2096EXPORT_SYMBOL(skb_copy_and_csum_bits);
2097
2098void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2099{
2100        __wsum csum;
2101        long csstart;
2102
2103        if (skb->ip_summed == CHECKSUM_PARTIAL)
2104                csstart = skb_checksum_start_offset(skb);
2105        else
2106                csstart = skb_headlen(skb);
2107
2108        BUG_ON(csstart > skb_headlen(skb));
2109
2110        skb_copy_from_linear_data(skb, to, csstart);
2111
2112        csum = 0;
2113        if (csstart != skb->len)
2114                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2115                                              skb->len - csstart, 0);
2116
2117        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2118                long csstuff = csstart + skb->csum_offset;
2119
2120                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2121        }
2122}
2123EXPORT_SYMBOL(skb_copy_and_csum_dev);
2124
2125/**
2126 *      skb_dequeue - remove from the head of the queue
2127 *      @list: list to dequeue from
2128 *
2129 *      Remove the head of the list. The list lock is taken so the function
2130 *      may be used safely with other locking list functions. The head item is
2131 *      returned or %NULL if the list is empty.
2132 */
2133
2134struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2135{
2136        unsigned long flags;
2137        struct sk_buff *result;
2138
2139        spin_lock_irqsave(&list->lock, flags);
2140        result = __skb_dequeue(list);
2141        spin_unlock_irqrestore(&list->lock, flags);
2142        return result;
2143}
2144EXPORT_SYMBOL(skb_dequeue);
2145
2146/**
2147 *      skb_dequeue_tail - remove from the tail of the queue
2148 *      @list: list to dequeue from
2149 *
2150 *      Remove the tail of the list. The list lock is taken so the function
2151 *      may be used safely with other locking list functions. The tail item is
2152 *      returned or %NULL if the list is empty.
2153 */
2154struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2155{
2156        unsigned long flags;
2157        struct sk_buff *result;
2158
2159        spin_lock_irqsave(&list->lock, flags);
2160        result = __skb_dequeue_tail(list);
2161        spin_unlock_irqrestore(&list->lock, flags);
2162        return result;
2163}
2164EXPORT_SYMBOL(skb_dequeue_tail);
2165
2166/**
2167 *      skb_queue_purge - empty a list
2168 *      @list: list to empty
2169 *
2170 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2171 *      the list and one reference dropped. This function takes the list
2172 *      lock and is atomic with respect to other list locking functions.
2173 */
2174void skb_queue_purge(struct sk_buff_head *list)
2175{
2176        struct sk_buff *skb;
2177        while ((skb = skb_dequeue(list)) != NULL)
2178                kfree_skb(skb);
2179}
2180EXPORT_SYMBOL(skb_queue_purge);
2181
2182/**
2183 *      skb_queue_head - queue a buffer at the list head
2184 *      @list: list to use
2185 *      @newsk: buffer to queue
2186 *
2187 *      Queue a buffer at the start of the list. This function takes the
2188 *      list lock and can be used safely with other locking &sk_buff functions
2189 *      safely.
2190 *
2191 *      A buffer cannot be placed on two lists at the same time.
2192 */
2193void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2194{
2195        unsigned long flags;
2196
2197        spin_lock_irqsave(&list->lock, flags);
2198        __skb_queue_head(list, newsk);
2199        spin_unlock_irqrestore(&list->lock, flags);
2200}
2201EXPORT_SYMBOL(skb_queue_head);
2202
2203/**
2204 *      skb_queue_tail - queue a buffer at the list tail
2205 *      @list: list to use
2206 *      @newsk: buffer to queue
2207 *
2208 *      Queue a buffer at the tail of the list. This function takes the
2209 *      list lock and can be used safely with other locking &sk_buff functions
2210 *      safely.
2211 *
2212 *      A buffer cannot be placed on two lists at the same time.
2213 */
2214void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2215{
2216        unsigned long flags;
2217
2218        spin_lock_irqsave(&list->lock, flags);
2219        __skb_queue_tail(list, newsk);
2220        spin_unlock_irqrestore(&list->lock, flags);
2221}
2222EXPORT_SYMBOL(skb_queue_tail);
2223
2224/**
2225 *      skb_unlink      -       remove a buffer from a list
2226 *      @skb: buffer to remove
2227 *      @list: list to use
2228 *
2229 *      Remove a packet from a list. The list locks are taken and this
2230 *      function is atomic with respect to other list locked calls
2231 *
2232 *      You must know what list the SKB is on.
2233 */
2234void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2235{
2236        unsigned long flags;
2237
2238        spin_lock_irqsave(&list->lock, flags);
2239        __skb_unlink(skb, list);
2240        spin_unlock_irqrestore(&list->lock, flags);
2241}
2242EXPORT_SYMBOL(skb_unlink);
2243
2244/**
2245 *      skb_append      -       append a buffer
2246 *      @old: buffer to insert after
2247 *      @newsk: buffer to insert
2248 *      @list: list to use
2249 *
2250 *      Place a packet after a given packet in a list. The list locks are taken
2251 *      and this function is atomic with respect to other list locked calls.
2252 *      A buffer cannot be placed on two lists at the same time.
2253 */
2254void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2255{
2256        unsigned long flags;
2257
2258        spin_lock_irqsave(&list->lock, flags);
2259        __skb_queue_after(list, old, newsk);
2260        spin_unlock_irqrestore(&list->lock, flags);
2261}
2262EXPORT_SYMBOL(skb_append);
2263
2264/**
2265 *      skb_insert      -       insert a buffer
2266 *      @old: buffer to insert before
2267 *      @newsk: buffer to insert
2268 *      @list: list to use
2269 *
2270 *      Place a packet before a given packet in a list. The list locks are
2271 *      taken and this function is atomic with respect to other list locked
2272 *      calls.
2273 *
2274 *      A buffer cannot be placed on two lists at the same time.
2275 */
2276void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2277{
2278        unsigned long flags;
2279
2280        spin_lock_irqsave(&list->lock, flags);
2281        __skb_insert(newsk, old->prev, old, list);
2282        spin_unlock_irqrestore(&list->lock, flags);
2283}
2284EXPORT_SYMBOL(skb_insert);
2285
2286static inline void skb_split_inside_header(struct sk_buff *skb,
2287                                           struct sk_buff* skb1,
2288                                           const u32 len, const int pos)
2289{
2290        int i;
2291
2292        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2293                                         pos - len);
2294        /* And move data appendix as is. */
2295        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2296                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2297
2298        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2299        skb_shinfo(skb)->nr_frags  = 0;
2300        skb1->data_len             = skb->data_len;
2301        skb1->len                  += skb1->data_len;
2302        skb->data_len              = 0;
2303        skb->len                   = len;
2304        skb_set_tail_pointer(skb, len);
2305}
2306
2307static inline void skb_split_no_header(struct sk_buff *skb,
2308                                       struct sk_buff* skb1,
2309                                       const u32 len, int pos)
2310{
2311        int i, k = 0;
2312        const int nfrags = skb_shinfo(skb)->nr_frags;
2313
2314        skb_shinfo(skb)->nr_frags = 0;
2315        skb1->len                 = skb1->data_len = skb->len - len;
2316        skb->len                  = len;
2317        skb->data_len             = len - pos;
2318
2319        for (i = 0; i < nfrags; i++) {
2320                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2321
2322                if (pos + size > len) {
2323                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2324
2325                        if (pos < len) {
2326                                /* Split frag.
2327                                 * We have two variants in this case:
2328                                 * 1. Move all the frag to the second
2329                                 *    part, if it is possible. F.e.
2330                                 *    this approach is mandatory for TUX,
2331                                 *    where splitting is expensive.
2332                                 * 2. Split is accurately. We make this.
2333                                 */
2334                                skb_frag_ref(skb, i);
2335                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2336                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2337                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2338                                skb_shinfo(skb)->nr_frags++;
2339                        }
2340                        k++;
2341                } else
2342                        skb_shinfo(skb)->nr_frags++;
2343                pos += size;
2344        }
2345        skb_shinfo(skb1)->nr_frags = k;
2346}
2347
2348/**
2349 * skb_split - Split fragmented skb to two parts at length len.
2350 * @skb: the buffer to split
2351 * @skb1: the buffer to receive the second part
2352 * @len: new length for skb
2353 */
2354void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2355{
2356        int pos = skb_headlen(skb);
2357
2358        skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2359        if (len < pos)  /* Split line is inside header. */
2360                skb_split_inside_header(skb, skb1, len, pos);
2361        else            /* Second chunk has no header, nothing to copy. */
2362                skb_split_no_header(skb, skb1, len, pos);
2363}
2364EXPORT_SYMBOL(skb_split);
2365
2366/* Shifting from/to a cloned skb is a no-go.
2367 *
2368 * Caller cannot keep skb_shinfo related pointers past calling here!
2369 */
2370static int skb_prepare_for_shift(struct sk_buff *skb)
2371{
2372        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2373}
2374
2375/**
2376 * skb_shift - Shifts paged data partially from skb to another
2377 * @tgt: buffer into which tail data gets added
2378 * @skb: buffer from which the paged data comes from
2379 * @shiftlen: shift up to this many bytes
2380 *
2381 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2382 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2383 * It's up to caller to free skb if everything was shifted.
2384 *
2385 * If @tgt runs out of frags, the whole operation is aborted.
2386 *
2387 * Skb cannot include anything else but paged data while tgt is allowed
2388 * to have non-paged data as well.
2389 *
2390 * TODO: full sized shift could be optimized but that would need
2391 * specialized skb free'er to handle frags without up-to-date nr_frags.
2392 */
2393int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2394{
2395        int from, to, merge, todo;
2396        struct skb_frag_struct *fragfrom, *fragto;
2397
2398        BUG_ON(shiftlen > skb->len);
2399        BUG_ON(skb_headlen(skb));       /* Would corrupt stream */
2400
2401        todo = shiftlen;
2402        from = 0;
2403        to = skb_shinfo(tgt)->nr_frags;
2404        fragfrom = &skb_shinfo(skb)->frags[from];
2405
2406        /* Actual merge is delayed until the point when we know we can
2407         * commit all, so that we don't have to undo partial changes
2408         */
2409        if (!to ||
2410            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2411                              fragfrom->page_offset)) {
2412                merge = -1;
2413        } else {
2414                merge = to - 1;
2415
2416                todo -= skb_frag_size(fragfrom);
2417                if (todo < 0) {
2418                        if (skb_prepare_for_shift(skb) ||
2419                            skb_prepare_for_shift(tgt))
2420                                return 0;
2421
2422                        /* All previous frag pointers might be stale! */
2423                        fragfrom = &skb_shinfo(skb)->frags[from];
2424                        fragto = &skb_shinfo(tgt)->frags[merge];
2425
2426                        skb_frag_size_add(fragto, shiftlen);
2427                        skb_frag_size_sub(fragfrom, shiftlen);
2428                        fragfrom->page_offset += shiftlen;
2429
2430                        goto onlymerged;
2431                }
2432
2433                from++;
2434        }
2435
2436        /* Skip full, not-fitting skb to avoid expensive operations */
2437        if ((shiftlen == skb->len) &&
2438            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2439                return 0;
2440
2441        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2442                return 0;
2443
2444        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2445                if (to == MAX_SKB_FRAGS)
2446                        return 0;
2447
2448                fragfrom = &skb_shinfo(skb)->frags[from];
2449                fragto = &skb_shinfo(tgt)->frags[to];
2450
2451                if (todo >= skb_frag_size(fragfrom)) {
2452                        *fragto = *fragfrom;
2453                        todo -= skb_frag_size(fragfrom);
2454                        from++;
2455                        to++;
2456
2457                } else {
2458                        __skb_frag_ref(fragfrom);
2459                        fragto->page = fragfrom->page;
2460                        fragto->page_offset = fragfrom->page_offset;
2461                        skb_frag_size_set(fragto, todo);
2462
2463                        fragfrom->page_offset += todo;
2464                        skb_frag_size_sub(fragfrom, todo);
2465                        todo = 0;
2466
2467                        to++;
2468                        break;
2469                }
2470        }
2471
2472        /* Ready to "commit" this state change to tgt */
2473        skb_shinfo(tgt)->nr_frags = to;
2474
2475        if (merge >= 0) {
2476                fragfrom = &skb_shinfo(skb)->frags[0];
2477                fragto = &skb_shinfo(tgt)->frags[merge];
2478
2479                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2480                __skb_frag_unref(fragfrom);
2481        }
2482
2483        /* Reposition in the original skb */
2484        to = 0;
2485        while (from < skb_shinfo(skb)->nr_frags)
2486                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2487        skb_shinfo(skb)->nr_frags = to;
2488
2489        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2490
2491onlymerged:
2492        /* Most likely the tgt won't ever need its checksum anymore, skb on
2493         * the other hand might need it if it needs to be resent
2494         */
2495        tgt->ip_summed = CHECKSUM_PARTIAL;
2496        skb->ip_summed = CHECKSUM_PARTIAL;
2497
2498        /* Yak, is it really working this way? Some helper please? */
2499        skb->len -= shiftlen;
2500        skb->data_len -= shiftlen;
2501        skb->truesize -= shiftlen;
2502        tgt->len += shiftlen;
2503        tgt->data_len += shiftlen;
2504        tgt->truesize += shiftlen;
2505
2506        return shiftlen;
2507}
2508
2509/**
2510 * skb_prepare_seq_read - Prepare a sequential read of skb data
2511 * @skb: the buffer to read
2512 * @from: lower offset of data to be read
2513 * @to: upper offset of data to be read
2514 * @st: state variable
2515 *
2516 * Initializes the specified state variable. Must be called before
2517 * invoking skb_seq_read() for the first time.
2518 */
2519void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2520                          unsigned int to, struct skb_seq_state *st)
2521{
2522        st->lower_offset = from;
2523        st->upper_offset = to;
2524        st->root_skb = st->cur_skb = skb;
2525        st->frag_idx = st->stepped_offset = 0;
2526        st->frag_data = NULL;
2527}
2528EXPORT_SYMBOL(skb_prepare_seq_read);
2529
2530/**
2531 * skb_seq_read - Sequentially read skb data
2532 * @consumed: number of bytes consumed by the caller so far
2533 * @data: destination pointer for data to be returned
2534 * @st: state variable
2535 *
2536 * Reads a block of skb data at &consumed relative to the
2537 * lower offset specified to skb_prepare_seq_read(). Assigns
2538 * the head of the data block to &data and returns the length
2539 * of the block or 0 if the end of the skb data or the upper
2540 * offset has been reached.
2541 *
2542 * The caller is not required to consume all of the data
2543 * returned, i.e. &consumed is typically set to the number
2544 * of bytes already consumed and the next call to
2545 * skb_seq_read() will return the remaining part of the block.
2546 *
2547 * Note 1: The size of each block of data returned can be arbitrary,
2548 *       this limitation is the cost for zerocopy seqeuental
2549 *       reads of potentially non linear data.
2550 *
2551 * Note 2: Fragment lists within fragments are not implemented
2552 *       at the moment, state->root_skb could be replaced with
2553 *       a stack for this purpose.
2554 */
2555unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2556                          struct skb_seq_state *st)
2557{
2558        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2559        skb_frag_t *frag;
2560
2561        if (unlikely(abs_offset >= st->upper_offset))
2562                return 0;
2563
2564next_skb:
2565        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2566
2567        if (abs_offset < block_limit && !st->frag_data) {
2568                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2569                return block_limit - abs_offset;
2570        }
2571
2572        if (st->frag_idx == 0 && !st->frag_data)
2573                st->stepped_offset += skb_headlen(st->cur_skb);
2574
2575        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2576                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2577                block_limit = skb_frag_size(frag) + st->stepped_offset;
2578
2579                if (abs_offset < block_limit) {
2580                        if (!st->frag_data)
2581                                st->frag_data = kmap_atomic(skb_frag_page(frag));
2582
2583                        *data = (u8 *) st->frag_data + frag->page_offset +
2584                                (abs_offset - st->stepped_offset);
2585
2586                        return block_limit - abs_offset;
2587                }
2588
2589                if (st->frag_data) {
2590                        kunmap_atomic(st->frag_data);
2591                        st->frag_data = NULL;
2592                }
2593
2594                st->frag_idx++;
2595                st->stepped_offset += skb_frag_size(frag);
2596        }
2597
2598        if (st->frag_data) {
2599                kunmap_atomic(st->frag_data);
2600                st->frag_data = NULL;
2601        }
2602
2603        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2604                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2605                st->frag_idx = 0;
2606                goto next_skb;
2607        } else if (st->cur_skb->next) {
2608                st->cur_skb = st->cur_skb->next;
2609                st->frag_idx = 0;
2610                goto next_skb;
2611        }
2612
2613        return 0;
2614}
2615EXPORT_SYMBOL(skb_seq_read);
2616
2617/**
2618 * skb_abort_seq_read - Abort a sequential read of skb data
2619 * @st: state variable
2620 *
2621 * Must be called if skb_seq_read() was not called until it
2622 * returned 0.
2623 */
2624void skb_abort_seq_read(struct skb_seq_state *st)
2625{
2626        if (st->frag_data)
2627                kunmap_atomic(st->frag_data);
2628}
2629EXPORT_SYMBOL(skb_abort_seq_read);
2630
2631#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
2632
2633static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2634                                          struct ts_config *conf,
2635                                          struct ts_state *state)
2636{
2637        return skb_seq_read(offset, text, TS_SKB_CB(state));
2638}
2639
2640static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2641{
2642        skb_abort_seq_read(TS_SKB_CB(state));
2643}
2644
2645/**
2646 * skb_find_text - Find a text pattern in skb data
2647 * @skb: the buffer to look in
2648 * @from: search offset
2649 * @to: search limit
2650 * @config: textsearch configuration
2651 * @state: uninitialized textsearch state variable
2652 *
2653 * Finds a pattern in the skb data according to the specified
2654 * textsearch configuration. Use textsearch_next() to retrieve
2655 * subsequent occurrences of the pattern. Returns the offset
2656 * to the first occurrence or UINT_MAX if no match was found.
2657 */
2658unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2659                           unsigned int to, struct ts_config *config,
2660                           struct ts_state *state)
2661{
2662        unsigned int ret;
2663
2664        config->get_next_block = skb_ts_get_next_block;
2665        config->finish = skb_ts_finish;
2666
2667        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2668
2669        ret = textsearch_find(config, state);
2670        return (ret <= to - from ? ret : UINT_MAX);
2671}
2672EXPORT_SYMBOL(skb_find_text);
2673
2674/**
2675 * skb_append_datato_frags - append the user data to a skb
2676 * @sk: sock  structure
2677 * @skb: skb structure to be appened with user data.
2678 * @getfrag: call back function to be used for getting the user data
2679 * @from: pointer to user message iov
2680 * @length: length of the iov message
2681 *
2682 * Description: This procedure append the user data in the fragment part
2683 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2684 */
2685int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2686                        int (*getfrag)(void *from, char *to, int offset,
2687                                        int len, int odd, struct sk_buff *skb),
2688                        void *from, int length)
2689{
2690        int frg_cnt = skb_shinfo(skb)->nr_frags;
2691        int copy;
2692        int offset = 0;
2693        int ret;
2694        struct page_frag *pfrag = &current->task_frag;
2695
2696        do {
2697                /* Return error if we don't have space for new frag */
2698                if (frg_cnt >= MAX_SKB_FRAGS)
2699                        return -EMSGSIZE;
2700
2701                if (!sk_page_frag_refill(sk, pfrag))
2702                        return -ENOMEM;
2703
2704                /* copy the user data to page */
2705                copy = min_t(int, length, pfrag->size - pfrag->offset);
2706
2707                ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2708                              offset, copy, 0, skb);
2709                if (ret < 0)
2710                        return -EFAULT;
2711
2712                /* copy was successful so update the size parameters */
2713                skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2714                                   copy);
2715                frg_cnt++;
2716                pfrag->offset += copy;
2717                get_page(pfrag->page);
2718
2719                skb->truesize += copy;
2720                atomic_add(copy, &sk->sk_wmem_alloc);
2721                skb->len += copy;
2722                skb->data_len += copy;
2723                offset += copy;
2724                length -= copy;
2725
2726        } while (length > 0);
2727
2728        return 0;
2729}
2730EXPORT_SYMBOL(skb_append_datato_frags);
2731
2732/**
2733 *      skb_pull_rcsum - pull skb and update receive checksum
2734 *      @skb: buffer to update
2735 *      @len: length of data pulled
2736 *
2737 *      This function performs an skb_pull on the packet and updates
2738 *      the CHECKSUM_COMPLETE checksum.  It should be used on
2739 *      receive path processing instead of skb_pull unless you know
2740 *      that the checksum difference is zero (e.g., a valid IP header)
2741 *      or you are setting ip_summed to CHECKSUM_NONE.
2742 */
2743unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2744{
2745        BUG_ON(len > skb->len);
2746        skb->len -= len;
2747        BUG_ON(skb->len < skb->data_len);
2748        skb_postpull_rcsum(skb, skb->data, len);
2749        return skb->data += len;
2750}
2751EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2752
2753/**
2754 *      skb_segment - Perform protocol segmentation on skb.
2755 *      @skb: buffer to segment
2756 *      @features: features for the output path (see dev->features)
2757 *
2758 *      This function performs segmentation on the given skb.  It returns
2759 *      a pointer to the first in a list of new skbs for the segments.
2760 *      In case of error it returns ERR_PTR(err).
2761 */
2762struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2763{
2764        struct sk_buff *segs = NULL;
2765        struct sk_buff *tail = NULL;
2766        struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2767        unsigned int mss = skb_shinfo(skb)->gso_size;
2768        unsigned int doffset = skb->data - skb_mac_header(skb);
2769        unsigned int offset = doffset;
2770        unsigned int tnl_hlen = skb_tnl_header_len(skb);
2771        unsigned int headroom;
2772        unsigned int len;
2773        __be16 proto;
2774        bool csum;
2775        int sg = !!(features & NETIF_F_SG);
2776        int nfrags = skb_shinfo(skb)->nr_frags;
2777        int err = -ENOMEM;
2778        int i = 0;
2779        int pos;
2780
2781        proto = skb_network_protocol(skb);
2782        if (unlikely(!proto))
2783                return ERR_PTR(-EINVAL);
2784
2785        csum = !!can_checksum_protocol(features, proto);
2786        __skb_push(skb, doffset);
2787        headroom = skb_headroom(skb);
2788        pos = skb_headlen(skb);
2789
2790        do {
2791                struct sk_buff *nskb;
2792                skb_frag_t *frag;
2793                int hsize;
2794                int size;
2795
2796                len = skb->len - offset;
2797                if (len > mss)
2798                        len = mss;
2799
2800                hsize = skb_headlen(skb) - offset;
2801                if (hsize < 0)
2802                        hsize = 0;
2803                if (hsize > len || !sg)
2804                        hsize = len;
2805
2806                if (!hsize && i >= nfrags) {
2807                        BUG_ON(fskb->len != len);
2808
2809                        pos += len;
2810                        nskb = skb_clone(fskb, GFP_ATOMIC);
2811                        fskb = fskb->next;
2812
2813                        if (unlikely(!nskb))
2814                                goto err;
2815
2816                        hsize = skb_end_offset(nskb);
2817                        if (skb_cow_head(nskb, doffset + headroom)) {
2818                                kfree_skb(nskb);
2819                                goto err;
2820                        }
2821
2822                        nskb->truesize += skb_end_offset(nskb) - hsize;
2823                        skb_release_head_state(nskb);
2824                        __skb_push(nskb, doffset);
2825                } else {
2826                        nskb = __alloc_skb(hsize + doffset + headroom,
2827                                           GFP_ATOMIC, skb_alloc_rx_flag(skb),
2828                                           NUMA_NO_NODE);
2829
2830                        if (unlikely(!nskb))
2831                                goto err;
2832
2833                        skb_reserve(nskb, headroom);
2834                        __skb_put(nskb, doffset);
2835                }
2836
2837                if (segs)
2838                        tail->next = nskb;
2839                else
2840                        segs = nskb;
2841                tail = nskb;
2842
2843                __copy_skb_header(nskb, skb);
2844                nskb->mac_len = skb->mac_len;
2845
2846                /* nskb and skb might have different headroom */
2847                if (nskb->ip_summed == CHECKSUM_PARTIAL)
2848                        nskb->csum_start += skb_headroom(nskb) - headroom;
2849
2850                skb_reset_mac_header(nskb);
2851                skb_set_network_header(nskb, skb->mac_len);
2852                nskb->transport_header = (nskb->network_header +
2853                                          skb_network_header_len(skb));
2854
2855                skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2856                                                 nskb->data - tnl_hlen,
2857                                                 doffset + tnl_hlen);
2858
2859                if (fskb != skb_shinfo(skb)->frag_list)
2860                        continue;
2861
2862                if (!sg) {
2863                        nskb->ip_summed = CHECKSUM_NONE;
2864                        nskb->csum = skb_copy_and_csum_bits(skb, offset,
2865                                                            skb_put(nskb, len),
2866                                                            len, 0);
2867                        continue;
2868                }
2869
2870                frag = skb_shinfo(nskb)->frags;
2871
2872                skb_copy_from_linear_data_offset(skb, offset,
2873                                                 skb_put(nskb, hsize), hsize);
2874
2875                skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2876
2877                while (pos < offset + len && i < nfrags) {
2878                        *frag = skb_shinfo(skb)->frags[i];
2879                        __skb_frag_ref(frag);
2880                        size = skb_frag_size(frag);
2881
2882                        if (pos < offset) {
2883                                frag->page_offset += offset - pos;
2884                                skb_frag_size_sub(frag, offset - pos);
2885                        }
2886
2887                        skb_shinfo(nskb)->nr_frags++;
2888
2889                        if (pos + size <= offset + len) {
2890                                i++;
2891                                pos += size;
2892                        } else {
2893                                skb_frag_size_sub(frag, pos + size - (offset + len));
2894                                goto skip_fraglist;
2895                        }
2896
2897                        frag++;
2898                }
2899
2900                if (pos < offset + len) {
2901                        struct sk_buff *fskb2 = fskb;
2902
2903                        BUG_ON(pos + fskb->len != offset + len);
2904
2905                        pos += fskb->len;
2906                        fskb = fskb->next;
2907
2908                        if (fskb2->next) {
2909                                fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2910                                if (!fskb2)
2911                                        goto err;
2912                        } else
2913                                skb_get(fskb2);
2914
2915                        SKB_FRAG_ASSERT(nskb);
2916                        skb_shinfo(nskb)->frag_list = fskb2;
2917                }
2918
2919skip_fraglist:
2920                nskb->data_len = len - hsize;
2921                nskb->len += nskb->data_len;
2922                nskb->truesize += nskb->data_len;
2923
2924                if (!csum) {
2925                        nskb->csum = skb_checksum(nskb, doffset,
2926                                                  nskb->len - doffset, 0);
2927                        nskb->ip_summed = CHECKSUM_NONE;
2928                }
2929        } while ((offset += len) < skb->len);
2930
2931        return segs;
2932
2933err:
2934        while ((skb = segs)) {
2935                segs = skb->next;
2936                kfree_skb(skb);
2937        }
2938        return ERR_PTR(err);
2939}
2940EXPORT_SYMBOL_GPL(skb_segment);
2941
2942int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2943{
2944        struct sk_buff *p = *head;
2945        struct sk_buff *nskb;
2946        struct skb_shared_info *skbinfo = skb_shinfo(skb);
2947        struct skb_shared_info *pinfo = skb_shinfo(p);
2948        unsigned int headroom;
2949        unsigned int len = skb_gro_len(skb);
2950        unsigned int offset = skb_gro_offset(skb);
2951        unsigned int headlen = skb_headlen(skb);
2952        unsigned int delta_truesize;
2953
2954        if (p->len + len >= 65536)
2955                return -E2BIG;
2956
2957        if (pinfo->frag_list)
2958                goto merge;
2959        else if (headlen <= offset) {
2960                skb_frag_t *frag;
2961                skb_frag_t *frag2;
2962                int i = skbinfo->nr_frags;
2963                int nr_frags = pinfo->nr_frags + i;
2964
2965                offset -= headlen;
2966
2967                if (nr_frags > MAX_SKB_FRAGS)
2968                        return -E2BIG;
2969
2970                pinfo->nr_frags = nr_frags;
2971                skbinfo->nr_frags = 0;
2972
2973                frag = pinfo->frags + nr_frags;
2974                frag2 = skbinfo->frags + i;
2975                do {
2976                        *--frag = *--frag2;
2977                } while (--i);
2978
2979                frag->page_offset += offset;
2980                skb_frag_size_sub(frag, offset);
2981
2982                /* all fragments truesize : remove (head size + sk_buff) */
2983                delta_truesize = skb->truesize -
2984                                 SKB_TRUESIZE(skb_end_offset(skb));
2985
2986                skb->truesize -= skb->data_len;
2987                skb->len -= skb->data_len;
2988                skb->data_len = 0;
2989
2990                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2991                goto done;
2992        } else if (skb->head_frag) {
2993                int nr_frags = pinfo->nr_frags;
2994                skb_frag_t *frag = pinfo->frags + nr_frags;
2995                struct page *page = virt_to_head_page(skb->head);
2996                unsigned int first_size = headlen - offset;
2997                unsigned int first_offset;
2998
2999                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3000                        return -E2BIG;
3001
3002                first_offset = skb->data -
3003                               (unsigned char *)page_address(page) +
3004                               offset;
3005
3006                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3007
3008                frag->page.p      = page;
3009                frag->page_offset = first_offset;
3010                skb_frag_size_set(frag, first_size);
3011
3012                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3013                /* We dont need to clear skbinfo->nr_frags here */
3014
3015                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3016                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3017                goto done;
3018        } else if (skb_gro_len(p) != pinfo->gso_size)
3019                return -E2BIG;
3020
3021        headroom = skb_headroom(p);
3022        nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3023        if (unlikely(!nskb))
3024                return -ENOMEM;
3025
3026        __copy_skb_header(nskb, p);
3027        nskb->mac_len = p->mac_len;
3028
3029        skb_reserve(nskb, headroom);
3030        __skb_put(nskb, skb_gro_offset(p));
3031
3032        skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3033        skb_set_network_header(nskb, skb_network_offset(p));
3034        skb_set_transport_header(nskb, skb_transport_offset(p));
3035
3036        __skb_pull(p, skb_gro_offset(p));
3037        memcpy(skb_mac_header(nskb), skb_mac_header(p),
3038               p->data - skb_mac_header(p));
3039
3040        skb_shinfo(nskb)->frag_list = p;
3041        skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3042        pinfo->gso_size = 0;
3043        skb_header_release(p);
3044        NAPI_GRO_CB(nskb)->last = p;
3045
3046        nskb->data_len += p->len;
3047        nskb->truesize += p->truesize;
3048        nskb->len += p->len;
3049
3050        *head = nskb;
3051        nskb->next = p->next;
3052        p->next = NULL;
3053
3054        p = nskb;
3055
3056merge:
3057        delta_truesize = skb->truesize;
3058        if (offset > headlen) {
3059                unsigned int eat = offset - headlen;
3060
3061                skbinfo->frags[0].page_offset += eat;
3062                skb_frag_size_sub(&skbinfo->frags[0], eat);
3063                skb->data_len -= eat;
3064                skb->len -= eat;
3065                offset = headlen;
3066        }
3067
3068        __skb_pull(skb, offset);
3069
3070        NAPI_GRO_CB(p)->last->next = skb;
3071        NAPI_GRO_CB(p)->last = skb;
3072        skb_header_release(skb);
3073
3074done:
3075        NAPI_GRO_CB(p)->count++;
3076        p->data_len += len;
3077        p->truesize += delta_truesize;
3078        p->len += len;
3079
3080        NAPI_GRO_CB(skb)->same_flow = 1;
3081        return 0;
3082}
3083EXPORT_SYMBOL_GPL(skb_gro_receive);
3084
3085void __init skb_init(void)
3086{
3087        skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3088                                              sizeof(struct sk_buff),
3089                                              0,
3090                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3091                                              NULL);
3092        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3093                                                (2*sizeof(struct sk_buff)) +
3094                                                sizeof(atomic_t),
3095                                                0,
3096                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3097                                                NULL);
3098}
3099
3100/**
3101 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3102 *      @skb: Socket buffer containing the buffers to be mapped
3103 *      @sg: The scatter-gather list to map into
3104 *      @offset: The offset into the buffer's contents to start mapping
3105 *      @len: Length of buffer space to be mapped
3106 *
3107 *      Fill the specified scatter-gather list with mappings/pointers into a
3108 *      region of the buffer space attached to a socket buffer.
3109 */
3110static int
3111__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3112{
3113        int start = skb_headlen(skb);
3114        int i, copy = start - offset;
3115        struct sk_buff *frag_iter;
3116        int elt = 0;
3117
3118        if (copy > 0) {
3119                if (copy > len)
3120                        copy = len;
3121                sg_set_buf(sg, skb->data + offset, copy);
3122                elt++;
3123                if ((len -= copy) == 0)
3124                        return elt;
3125                offset += copy;
3126        }
3127
3128        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3129                int end;
3130
3131                WARN_ON(start > offset + len);
3132
3133                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3134                if ((copy = end - offset) > 0) {
3135                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3136
3137                        if (copy > len)
3138                                copy = len;
3139                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3140                                        frag->page_offset+offset-start);
3141                        elt++;
3142                        if (!(len -= copy))
3143                                return elt;
3144                        offset += copy;
3145                }
3146                start = end;
3147        }
3148
3149        skb_walk_frags(skb, frag_iter) {
3150                int end;
3151
3152                WARN_ON(start > offset + len);
3153
3154                end = start + frag_iter->len;
3155                if ((copy = end - offset) > 0) {
3156                        if (copy > len)
3157                                copy = len;
3158                        elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3159                                              copy);
3160                        if ((len -= copy) == 0)
3161                                return elt;
3162                        offset += copy;
3163                }
3164                start = end;
3165        }
3166        BUG_ON(len);
3167        return elt;
3168}
3169
3170int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3171{
3172        int nsg = __skb_to_sgvec(skb, sg, offset, len);
3173
3174        sg_mark_end(&sg[nsg - 1]);
3175
3176        return nsg;
3177}
3178EXPORT_SYMBOL_GPL(skb_to_sgvec);
3179
3180/**
3181 *      skb_cow_data - Check that a socket buffer's data buffers are writable
3182 *      @skb: The socket buffer to check.
3183 *      @tailbits: Amount of trailing space to be added
3184 *      @trailer: Returned pointer to the skb where the @tailbits space begins
3185 *
3186 *      Make sure that the data buffers attached to a socket buffer are
3187 *      writable. If they are not, private copies are made of the data buffers
3188 *      and the socket buffer is set to use these instead.
3189 *
3190 *      If @tailbits is given, make sure that there is space to write @tailbits
3191 *      bytes of data beyond current end of socket buffer.  @trailer will be
3192 *      set to point to the skb in which this space begins.
3193 *
3194 *      The number of scatterlist elements required to completely map the
3195 *      COW'd and extended socket buffer will be returned.
3196 */
3197int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3198{
3199        int copyflag;
3200        int elt;
3201        struct sk_buff *skb1, **skb_p;
3202
3203        /* If skb is cloned or its head is paged, reallocate
3204         * head pulling out all the pages (pages are considered not writable
3205         * at the moment even if they are anonymous).
3206         */
3207        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3208            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3209                return -ENOMEM;
3210
3211        /* Easy case. Most of packets will go this way. */
3212        if (!skb_has_frag_list(skb)) {
3213                /* A little of trouble, not enough of space for trailer.
3214                 * This should not happen, when stack is tuned to generate
3215                 * good frames. OK, on miss we reallocate and reserve even more
3216                 * space, 128 bytes is fair. */
3217
3218                if (skb_tailroom(skb) < tailbits &&
3219                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3220                        return -ENOMEM;
3221
3222                /* Voila! */
3223                *trailer = skb;
3224                return 1;
3225        }
3226
3227        /* Misery. We are in troubles, going to mincer fragments... */
3228
3229        elt = 1;
3230        skb_p = &skb_shinfo(skb)->frag_list;
3231        copyflag = 0;
3232
3233        while ((skb1 = *skb_p) != NULL) {
3234                int ntail = 0;
3235
3236                /* The fragment is partially pulled by someone,
3237                 * this can happen on input. Copy it and everything
3238                 * after it. */
3239
3240                if (skb_shared(skb1))
3241                        copyflag = 1;
3242
3243                /* If the skb is the last, worry about trailer. */
3244
3245                if (skb1->next == NULL && tailbits) {
3246                        if (skb_shinfo(skb1)->nr_frags ||
3247                            skb_has_frag_list(skb1) ||
3248                            skb_tailroom(skb1) < tailbits)
3249                                ntail = tailbits + 128;
3250                }
3251
3252                if (copyflag ||
3253                    skb_cloned(skb1) ||
3254                    ntail ||
3255                    skb_shinfo(skb1)->nr_frags ||
3256                    skb_has_frag_list(skb1)) {
3257                        struct sk_buff *skb2;
3258
3259                        /* Fuck, we are miserable poor guys... */
3260                        if (ntail == 0)
3261                                skb2 = skb_copy(skb1, GFP_ATOMIC);
3262                        else
3263                                skb2 = skb_copy_expand(skb1,
3264                                                       skb_headroom(skb1),
3265                                                       ntail,
3266                                                       GFP_ATOMIC);
3267                        if (unlikely(skb2 == NULL))
3268                                return -ENOMEM;
3269
3270                        if (skb1->sk)
3271                                skb_set_owner_w(skb2, skb1->sk);
3272
3273                        /* Looking around. Are we still alive?
3274                         * OK, link new skb, drop old one */
3275
3276                        skb2->next = skb1->next;
3277                        *skb_p = skb2;
3278                        kfree_skb(skb1);
3279                        skb1 = skb2;
3280                }
3281                elt++;
3282                *trailer = skb1;
3283                skb_p = &skb1->next;
3284        }
3285
3286        return elt;
3287}
3288EXPORT_SYMBOL_GPL(skb_cow_data);
3289
3290static void sock_rmem_free(struct sk_buff *skb)
3291{
3292        struct sock *sk = skb->sk;
3293
3294        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3295}
3296
3297/*
3298 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3299 */
3300int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3301{
3302        int len = skb->len;
3303
3304        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3305            (unsigned int)sk->sk_rcvbuf)
3306                return -ENOMEM;
3307
3308        skb_orphan(skb);
3309        skb->sk = sk;
3310        skb->destructor = sock_rmem_free;
3311        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3312
3313        /* before exiting rcu section, make sure dst is refcounted */
3314        skb_dst_force(skb);
3315
3316        skb_queue_tail(&sk->sk_error_queue, skb);
3317        if (!sock_flag(sk, SOCK_DEAD))
3318                sk->sk_data_ready(sk, len);
3319        return 0;
3320}
3321EXPORT_SYMBOL(sock_queue_err_skb);
3322
3323void skb_tstamp_tx(struct sk_buff *orig_skb,
3324                struct skb_shared_hwtstamps *hwtstamps)
3325{
3326        struct sock *sk = orig_skb->sk;
3327        struct sock_exterr_skb *serr;
3328        struct sk_buff *skb;
3329        int err;
3330
3331        if (!sk)
3332                return;
3333
3334        if (hwtstamps) {
3335                *skb_hwtstamps(orig_skb) =
3336                        *hwtstamps;
3337        } else {
3338                /*
3339                 * no hardware time stamps available,
3340                 * so keep the shared tx_flags and only
3341                 * store software time stamp
3342                 */
3343                orig_skb->tstamp = ktime_get_real();
3344        }
3345
3346        skb = skb_clone(orig_skb, GFP_ATOMIC);
3347        if (!skb)
3348                return;
3349
3350        serr = SKB_EXT_ERR(skb);
3351        memset(serr, 0, sizeof(*serr));
3352        serr->ee.ee_errno = ENOMSG;
3353        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3354
3355        err = sock_queue_err_skb(sk, skb);
3356
3357        if (err)
3358                kfree_skb(skb);
3359}
3360EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3361
3362void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3363{
3364        struct sock *sk = skb->sk;
3365        struct sock_exterr_skb *serr;
3366        int err;
3367
3368        skb->wifi_acked_valid = 1;
3369        skb->wifi_acked = acked;
3370
3371        serr = SKB_EXT_ERR(skb);
3372        memset(serr, 0, sizeof(*serr));
3373        serr->ee.ee_errno = ENOMSG;
3374        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3375
3376        err = sock_queue_err_skb(sk, skb);
3377        if (err)
3378                kfree_skb(skb);
3379}
3380EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3381
3382
3383/**
3384 * skb_partial_csum_set - set up and verify partial csum values for packet
3385 * @skb: the skb to set
3386 * @start: the number of bytes after skb->data to start checksumming.
3387 * @off: the offset from start to place the checksum.
3388 *
3389 * For untrusted partially-checksummed packets, we need to make sure the values
3390 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3391 *
3392 * This function checks and sets those values and skb->ip_summed: if this
3393 * returns false you should drop the packet.
3394 */
3395bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3396{
3397        if (unlikely(start > skb_headlen(skb)) ||
3398            unlikely((int)start + off > skb_headlen(skb) - 2)) {
3399                net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3400                                     start, off, skb_headlen(skb));
3401                return false;
3402        }
3403        skb->ip_summed = CHECKSUM_PARTIAL;
3404        skb->csum_start = skb_headroom(skb) + start;
3405        skb->csum_offset = off;
3406        skb_set_transport_header(skb, start);
3407        return true;
3408}
3409EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3410
3411void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3412{
3413        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3414                             skb->dev->name);
3415}
3416EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3417
3418void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3419{
3420        if (head_stolen) {
3421                skb_release_head_state(skb);
3422                kmem_cache_free(skbuff_head_cache, skb);
3423        } else {
3424                __kfree_skb(skb);
3425        }
3426}
3427EXPORT_SYMBOL(kfree_skb_partial);
3428
3429/**
3430 * skb_try_coalesce - try to merge skb to prior one
3431 * @to: prior buffer
3432 * @from: buffer to add
3433 * @fragstolen: pointer to boolean
3434 * @delta_truesize: how much more was allocated than was requested
3435 */
3436bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3437                      bool *fragstolen, int *delta_truesize)
3438{
3439        int i, delta, len = from->len;
3440
3441        *fragstolen = false;
3442
3443        if (skb_cloned(to))
3444                return false;
3445
3446        if (len <= skb_tailroom(to)) {
3447                BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3448                *delta_truesize = 0;
3449                return true;
3450        }
3451
3452        if (skb_has_frag_list(to) || skb_has_frag_list(from))
3453                return false;
3454
3455        if (skb_headlen(from) != 0) {
3456                struct page *page;
3457                unsigned int offset;
3458
3459                if (skb_shinfo(to)->nr_frags +
3460                    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3461                        return false;
3462
3463                if (skb_head_is_locked(from))
3464                        return false;
3465
3466                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3467
3468                page = virt_to_head_page(from->head);
3469                offset = from->data - (unsigned char *)page_address(page);
3470
3471                skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3472                                   page, offset, skb_headlen(from));
3473                *fragstolen = true;
3474        } else {
3475                if (skb_shinfo(to)->nr_frags +
3476                    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3477                        return false;
3478
3479                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3480        }
3481
3482        WARN_ON_ONCE(delta < len);
3483
3484        memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3485               skb_shinfo(from)->frags,
3486               skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3487        skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3488
3489        if (!skb_cloned(from))
3490                skb_shinfo(from)->nr_frags = 0;
3491
3492        /* if the skb is not cloned this does nothing
3493         * since we set nr_frags to 0.
3494         */
3495        for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3496                skb_frag_ref(from, i);
3497
3498        to->truesize += delta;
3499        to->len += len;
3500        to->data_len += len;
3501
3502        *delta_truesize = delta;
3503        return true;
3504}
3505EXPORT_SYMBOL(skb_try_coalesce);
3506