linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *              Pedro Roque     :       Fast Retransmit/Recovery.
  24 *                                      Two receive queues.
  25 *                                      Retransmit queue handled by TCP.
  26 *                                      Better retransmit timer handling.
  27 *                                      New congestion avoidance.
  28 *                                      Header prediction.
  29 *                                      Variable renaming.
  30 *
  31 *              Eric            :       Fast Retransmit.
  32 *              Randy Scott     :       MSS option defines.
  33 *              Eric Schenk     :       Fixes to slow start algorithm.
  34 *              Eric Schenk     :       Yet another double ACK bug.
  35 *              Eric Schenk     :       Delayed ACK bug fixes.
  36 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  37 *              David S. Miller :       Don't allow zero congestion window.
  38 *              Eric Schenk     :       Fix retransmitter so that it sends
  39 *                                      next packet on ack of previous packet.
  40 *              Andi Kleen      :       Moved open_request checking here
  41 *                                      and process RSTs for open_requests.
  42 *              Andi Kleen      :       Better prune_queue, and other fixes.
  43 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  44 *                                      timestamps.
  45 *              Andrey Savochkin:       Check sequence numbers correctly when
  46 *                                      removing SACKs due to in sequence incoming
  47 *                                      data segments.
  48 *              Andi Kleen:             Make sure we never ack data there is not
  49 *                                      enough room for. Also make this condition
  50 *                                      a fatal error if it might still happen.
  51 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  52 *                                      connections with MSS<min(MTU,ann. MSS)
  53 *                                      work without delayed acks.
  54 *              Andi Kleen:             Process packets with PSH set in the
  55 *                                      fast path.
  56 *              J Hadi Salim:           ECN support
  57 *              Andrei Gurtov,
  58 *              Pasi Sarolahti,
  59 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  60 *                                      engine. Lots of bugs are found.
  61 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <net/dst.h>
  72#include <net/tcp.h>
  73#include <net/inet_common.h>
  74#include <linux/ipsec.h>
  75#include <asm/unaligned.h>
  76#include <net/netdma.h>
  77
  78int sysctl_tcp_timestamps __read_mostly = 1;
  79int sysctl_tcp_window_scaling __read_mostly = 1;
  80int sysctl_tcp_sack __read_mostly = 1;
  81int sysctl_tcp_fack __read_mostly = 1;
  82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  83EXPORT_SYMBOL(sysctl_tcp_reordering);
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 100;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
  96
  97int sysctl_tcp_thin_dupack __read_mostly;
  98
  99int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 100int sysctl_tcp_early_retrans __read_mostly = 3;
 101
 102#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
 103#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
 104#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
 105#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
 106#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
 107#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
 108#define FLAG_ECE                0x40 /* ECE in this ACK                         */
 109#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
 110#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
 111#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 112#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
 113#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
 114#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 115
 116#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 117#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 118#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
 119#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 120
 121#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 122#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 123
 124/* Adapt the MSS value used to make delayed ack decision to the
 125 * real world.
 126 */
 127static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 128{
 129        struct inet_connection_sock *icsk = inet_csk(sk);
 130        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 131        unsigned int len;
 132
 133        icsk->icsk_ack.last_seg_size = 0;
 134
 135        /* skb->len may jitter because of SACKs, even if peer
 136         * sends good full-sized frames.
 137         */
 138        len = skb_shinfo(skb)->gso_size ? : skb->len;
 139        if (len >= icsk->icsk_ack.rcv_mss) {
 140                icsk->icsk_ack.rcv_mss = len;
 141        } else {
 142                /* Otherwise, we make more careful check taking into account,
 143                 * that SACKs block is variable.
 144                 *
 145                 * "len" is invariant segment length, including TCP header.
 146                 */
 147                len += skb->data - skb_transport_header(skb);
 148                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 149                    /* If PSH is not set, packet should be
 150                     * full sized, provided peer TCP is not badly broken.
 151                     * This observation (if it is correct 8)) allows
 152                     * to handle super-low mtu links fairly.
 153                     */
 154                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 155                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 156                        /* Subtract also invariant (if peer is RFC compliant),
 157                         * tcp header plus fixed timestamp option length.
 158                         * Resulting "len" is MSS free of SACK jitter.
 159                         */
 160                        len -= tcp_sk(sk)->tcp_header_len;
 161                        icsk->icsk_ack.last_seg_size = len;
 162                        if (len == lss) {
 163                                icsk->icsk_ack.rcv_mss = len;
 164                                return;
 165                        }
 166                }
 167                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 168                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 169                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 170        }
 171}
 172
 173static void tcp_incr_quickack(struct sock *sk)
 174{
 175        struct inet_connection_sock *icsk = inet_csk(sk);
 176        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 177
 178        if (quickacks == 0)
 179                quickacks = 2;
 180        if (quickacks > icsk->icsk_ack.quick)
 181                icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 182}
 183
 184static void tcp_enter_quickack_mode(struct sock *sk)
 185{
 186        struct inet_connection_sock *icsk = inet_csk(sk);
 187        tcp_incr_quickack(sk);
 188        icsk->icsk_ack.pingpong = 0;
 189        icsk->icsk_ack.ato = TCP_ATO_MIN;
 190}
 191
 192/* Send ACKs quickly, if "quick" count is not exhausted
 193 * and the session is not interactive.
 194 */
 195
 196static inline bool tcp_in_quickack_mode(const struct sock *sk)
 197{
 198        const struct inet_connection_sock *icsk = inet_csk(sk);
 199
 200        return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 201}
 202
 203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 204{
 205        if (tp->ecn_flags & TCP_ECN_OK)
 206                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 207}
 208
 209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 210{
 211        if (tcp_hdr(skb)->cwr)
 212                tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 213}
 214
 215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 216{
 217        tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 218}
 219
 220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 221{
 222        if (!(tp->ecn_flags & TCP_ECN_OK))
 223                return;
 224
 225        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 226        case INET_ECN_NOT_ECT:
 227                /* Funny extension: if ECT is not set on a segment,
 228                 * and we already seen ECT on a previous segment,
 229                 * it is probably a retransmit.
 230                 */
 231                if (tp->ecn_flags & TCP_ECN_SEEN)
 232                        tcp_enter_quickack_mode((struct sock *)tp);
 233                break;
 234        case INET_ECN_CE:
 235                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 236                        /* Better not delay acks, sender can have a very low cwnd */
 237                        tcp_enter_quickack_mode((struct sock *)tp);
 238                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 239                }
 240                /* fallinto */
 241        default:
 242                tp->ecn_flags |= TCP_ECN_SEEN;
 243        }
 244}
 245
 246static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 247{
 248        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 249                tp->ecn_flags &= ~TCP_ECN_OK;
 250}
 251
 252static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 253{
 254        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 255                tp->ecn_flags &= ~TCP_ECN_OK;
 256}
 257
 258static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 259{
 260        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 261                return true;
 262        return false;
 263}
 264
 265/* Buffer size and advertised window tuning.
 266 *
 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 268 */
 269
 270static void tcp_fixup_sndbuf(struct sock *sk)
 271{
 272        int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
 273
 274        sndmem *= TCP_INIT_CWND;
 275        if (sk->sk_sndbuf < sndmem)
 276                sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 277}
 278
 279/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 280 *
 281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 282 * forward and advertised in receiver window (tp->rcv_wnd) and
 283 * "application buffer", required to isolate scheduling/application
 284 * latencies from network.
 285 * window_clamp is maximal advertised window. It can be less than
 286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 287 * is reserved for "application" buffer. The less window_clamp is
 288 * the smoother our behaviour from viewpoint of network, but the lower
 289 * throughput and the higher sensitivity of the connection to losses. 8)
 290 *
 291 * rcv_ssthresh is more strict window_clamp used at "slow start"
 292 * phase to predict further behaviour of this connection.
 293 * It is used for two goals:
 294 * - to enforce header prediction at sender, even when application
 295 *   requires some significant "application buffer". It is check #1.
 296 * - to prevent pruning of receive queue because of misprediction
 297 *   of receiver window. Check #2.
 298 *
 299 * The scheme does not work when sender sends good segments opening
 300 * window and then starts to feed us spaghetti. But it should work
 301 * in common situations. Otherwise, we have to rely on queue collapsing.
 302 */
 303
 304/* Slow part of check#2. */
 305static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 306{
 307        struct tcp_sock *tp = tcp_sk(sk);
 308        /* Optimize this! */
 309        int truesize = tcp_win_from_space(skb->truesize) >> 1;
 310        int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 311
 312        while (tp->rcv_ssthresh <= window) {
 313                if (truesize <= skb->len)
 314                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 315
 316                truesize >>= 1;
 317                window >>= 1;
 318        }
 319        return 0;
 320}
 321
 322static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 323{
 324        struct tcp_sock *tp = tcp_sk(sk);
 325
 326        /* Check #1 */
 327        if (tp->rcv_ssthresh < tp->window_clamp &&
 328            (int)tp->rcv_ssthresh < tcp_space(sk) &&
 329            !sk_under_memory_pressure(sk)) {
 330                int incr;
 331
 332                /* Check #2. Increase window, if skb with such overhead
 333                 * will fit to rcvbuf in future.
 334                 */
 335                if (tcp_win_from_space(skb->truesize) <= skb->len)
 336                        incr = 2 * tp->advmss;
 337                else
 338                        incr = __tcp_grow_window(sk, skb);
 339
 340                if (incr) {
 341                        incr = max_t(int, incr, 2 * skb->len);
 342                        tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 343                                               tp->window_clamp);
 344                        inet_csk(sk)->icsk_ack.quick |= 1;
 345                }
 346        }
 347}
 348
 349/* 3. Tuning rcvbuf, when connection enters established state. */
 350
 351static void tcp_fixup_rcvbuf(struct sock *sk)
 352{
 353        u32 mss = tcp_sk(sk)->advmss;
 354        u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
 355        int rcvmem;
 356
 357        /* Limit to 10 segments if mss <= 1460,
 358         * or 14600/mss segments, with a minimum of two segments.
 359         */
 360        if (mss > 1460)
 361                icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
 362
 363        rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
 364        while (tcp_win_from_space(rcvmem) < mss)
 365                rcvmem += 128;
 366
 367        rcvmem *= icwnd;
 368
 369        if (sk->sk_rcvbuf < rcvmem)
 370                sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 371}
 372
 373/* 4. Try to fixup all. It is made immediately after connection enters
 374 *    established state.
 375 */
 376void tcp_init_buffer_space(struct sock *sk)
 377{
 378        struct tcp_sock *tp = tcp_sk(sk);
 379        int maxwin;
 380
 381        if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 382                tcp_fixup_rcvbuf(sk);
 383        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 384                tcp_fixup_sndbuf(sk);
 385
 386        tp->rcvq_space.space = tp->rcv_wnd;
 387
 388        maxwin = tcp_full_space(sk);
 389
 390        if (tp->window_clamp >= maxwin) {
 391                tp->window_clamp = maxwin;
 392
 393                if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 394                        tp->window_clamp = max(maxwin -
 395                                               (maxwin >> sysctl_tcp_app_win),
 396                                               4 * tp->advmss);
 397        }
 398
 399        /* Force reservation of one segment. */
 400        if (sysctl_tcp_app_win &&
 401            tp->window_clamp > 2 * tp->advmss &&
 402            tp->window_clamp + tp->advmss > maxwin)
 403                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 404
 405        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 406        tp->snd_cwnd_stamp = tcp_time_stamp;
 407}
 408
 409/* 5. Recalculate window clamp after socket hit its memory bounds. */
 410static void tcp_clamp_window(struct sock *sk)
 411{
 412        struct tcp_sock *tp = tcp_sk(sk);
 413        struct inet_connection_sock *icsk = inet_csk(sk);
 414
 415        icsk->icsk_ack.quick = 0;
 416
 417        if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 418            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 419            !sk_under_memory_pressure(sk) &&
 420            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 421                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 422                                    sysctl_tcp_rmem[2]);
 423        }
 424        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 425                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 426}
 427
 428/* Initialize RCV_MSS value.
 429 * RCV_MSS is an our guess about MSS used by the peer.
 430 * We haven't any direct information about the MSS.
 431 * It's better to underestimate the RCV_MSS rather than overestimate.
 432 * Overestimations make us ACKing less frequently than needed.
 433 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 434 */
 435void tcp_initialize_rcv_mss(struct sock *sk)
 436{
 437        const struct tcp_sock *tp = tcp_sk(sk);
 438        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 439
 440        hint = min(hint, tp->rcv_wnd / 2);
 441        hint = min(hint, TCP_MSS_DEFAULT);
 442        hint = max(hint, TCP_MIN_MSS);
 443
 444        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 445}
 446EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 447
 448/* Receiver "autotuning" code.
 449 *
 450 * The algorithm for RTT estimation w/o timestamps is based on
 451 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 452 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 453 *
 454 * More detail on this code can be found at
 455 * <http://staff.psc.edu/jheffner/>,
 456 * though this reference is out of date.  A new paper
 457 * is pending.
 458 */
 459static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 460{
 461        u32 new_sample = tp->rcv_rtt_est.rtt;
 462        long m = sample;
 463
 464        if (m == 0)
 465                m = 1;
 466
 467        if (new_sample != 0) {
 468                /* If we sample in larger samples in the non-timestamp
 469                 * case, we could grossly overestimate the RTT especially
 470                 * with chatty applications or bulk transfer apps which
 471                 * are stalled on filesystem I/O.
 472                 *
 473                 * Also, since we are only going for a minimum in the
 474                 * non-timestamp case, we do not smooth things out
 475                 * else with timestamps disabled convergence takes too
 476                 * long.
 477                 */
 478                if (!win_dep) {
 479                        m -= (new_sample >> 3);
 480                        new_sample += m;
 481                } else {
 482                        m <<= 3;
 483                        if (m < new_sample)
 484                                new_sample = m;
 485                }
 486        } else {
 487                /* No previous measure. */
 488                new_sample = m << 3;
 489        }
 490
 491        if (tp->rcv_rtt_est.rtt != new_sample)
 492                tp->rcv_rtt_est.rtt = new_sample;
 493}
 494
 495static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 496{
 497        if (tp->rcv_rtt_est.time == 0)
 498                goto new_measure;
 499        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 500                return;
 501        tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 502
 503new_measure:
 504        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 505        tp->rcv_rtt_est.time = tcp_time_stamp;
 506}
 507
 508static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 509                                          const struct sk_buff *skb)
 510{
 511        struct tcp_sock *tp = tcp_sk(sk);
 512        if (tp->rx_opt.rcv_tsecr &&
 513            (TCP_SKB_CB(skb)->end_seq -
 514             TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 515                tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 516}
 517
 518/*
 519 * This function should be called every time data is copied to user space.
 520 * It calculates the appropriate TCP receive buffer space.
 521 */
 522void tcp_rcv_space_adjust(struct sock *sk)
 523{
 524        struct tcp_sock *tp = tcp_sk(sk);
 525        int time;
 526        int space;
 527
 528        if (tp->rcvq_space.time == 0)
 529                goto new_measure;
 530
 531        time = tcp_time_stamp - tp->rcvq_space.time;
 532        if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 533                return;
 534
 535        space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 536
 537        space = max(tp->rcvq_space.space, space);
 538
 539        if (tp->rcvq_space.space != space) {
 540                int rcvmem;
 541
 542                tp->rcvq_space.space = space;
 543
 544                if (sysctl_tcp_moderate_rcvbuf &&
 545                    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 546                        int new_clamp = space;
 547
 548                        /* Receive space grows, normalize in order to
 549                         * take into account packet headers and sk_buff
 550                         * structure overhead.
 551                         */
 552                        space /= tp->advmss;
 553                        if (!space)
 554                                space = 1;
 555                        rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 556                        while (tcp_win_from_space(rcvmem) < tp->advmss)
 557                                rcvmem += 128;
 558                        space *= rcvmem;
 559                        space = min(space, sysctl_tcp_rmem[2]);
 560                        if (space > sk->sk_rcvbuf) {
 561                                sk->sk_rcvbuf = space;
 562
 563                                /* Make the window clamp follow along.  */
 564                                tp->window_clamp = new_clamp;
 565                        }
 566                }
 567        }
 568
 569new_measure:
 570        tp->rcvq_space.seq = tp->copied_seq;
 571        tp->rcvq_space.time = tcp_time_stamp;
 572}
 573
 574/* There is something which you must keep in mind when you analyze the
 575 * behavior of the tp->ato delayed ack timeout interval.  When a
 576 * connection starts up, we want to ack as quickly as possible.  The
 577 * problem is that "good" TCP's do slow start at the beginning of data
 578 * transmission.  The means that until we send the first few ACK's the
 579 * sender will sit on his end and only queue most of his data, because
 580 * he can only send snd_cwnd unacked packets at any given time.  For
 581 * each ACK we send, he increments snd_cwnd and transmits more of his
 582 * queue.  -DaveM
 583 */
 584static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 585{
 586        struct tcp_sock *tp = tcp_sk(sk);
 587        struct inet_connection_sock *icsk = inet_csk(sk);
 588        u32 now;
 589
 590        inet_csk_schedule_ack(sk);
 591
 592        tcp_measure_rcv_mss(sk, skb);
 593
 594        tcp_rcv_rtt_measure(tp);
 595
 596        now = tcp_time_stamp;
 597
 598        if (!icsk->icsk_ack.ato) {
 599                /* The _first_ data packet received, initialize
 600                 * delayed ACK engine.
 601                 */
 602                tcp_incr_quickack(sk);
 603                icsk->icsk_ack.ato = TCP_ATO_MIN;
 604        } else {
 605                int m = now - icsk->icsk_ack.lrcvtime;
 606
 607                if (m <= TCP_ATO_MIN / 2) {
 608                        /* The fastest case is the first. */
 609                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 610                } else if (m < icsk->icsk_ack.ato) {
 611                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 612                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 613                                icsk->icsk_ack.ato = icsk->icsk_rto;
 614                } else if (m > icsk->icsk_rto) {
 615                        /* Too long gap. Apparently sender failed to
 616                         * restart window, so that we send ACKs quickly.
 617                         */
 618                        tcp_incr_quickack(sk);
 619                        sk_mem_reclaim(sk);
 620                }
 621        }
 622        icsk->icsk_ack.lrcvtime = now;
 623
 624        TCP_ECN_check_ce(tp, skb);
 625
 626        if (skb->len >= 128)
 627                tcp_grow_window(sk, skb);
 628}
 629
 630/* Called to compute a smoothed rtt estimate. The data fed to this
 631 * routine either comes from timestamps, or from segments that were
 632 * known _not_ to have been retransmitted [see Karn/Partridge
 633 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 634 * piece by Van Jacobson.
 635 * NOTE: the next three routines used to be one big routine.
 636 * To save cycles in the RFC 1323 implementation it was better to break
 637 * it up into three procedures. -- erics
 638 */
 639static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
 640{
 641        struct tcp_sock *tp = tcp_sk(sk);
 642        long m = mrtt; /* RTT */
 643
 644        /*      The following amusing code comes from Jacobson's
 645         *      article in SIGCOMM '88.  Note that rtt and mdev
 646         *      are scaled versions of rtt and mean deviation.
 647         *      This is designed to be as fast as possible
 648         *      m stands for "measurement".
 649         *
 650         *      On a 1990 paper the rto value is changed to:
 651         *      RTO = rtt + 4 * mdev
 652         *
 653         * Funny. This algorithm seems to be very broken.
 654         * These formulae increase RTO, when it should be decreased, increase
 655         * too slowly, when it should be increased quickly, decrease too quickly
 656         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 657         * does not matter how to _calculate_ it. Seems, it was trap
 658         * that VJ failed to avoid. 8)
 659         */
 660        if (m == 0)
 661                m = 1;
 662        if (tp->srtt != 0) {
 663                m -= (tp->srtt >> 3);   /* m is now error in rtt est */
 664                tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
 665                if (m < 0) {
 666                        m = -m;         /* m is now abs(error) */
 667                        m -= (tp->mdev >> 2);   /* similar update on mdev */
 668                        /* This is similar to one of Eifel findings.
 669                         * Eifel blocks mdev updates when rtt decreases.
 670                         * This solution is a bit different: we use finer gain
 671                         * for mdev in this case (alpha*beta).
 672                         * Like Eifel it also prevents growth of rto,
 673                         * but also it limits too fast rto decreases,
 674                         * happening in pure Eifel.
 675                         */
 676                        if (m > 0)
 677                                m >>= 3;
 678                } else {
 679                        m -= (tp->mdev >> 2);   /* similar update on mdev */
 680                }
 681                tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
 682                if (tp->mdev > tp->mdev_max) {
 683                        tp->mdev_max = tp->mdev;
 684                        if (tp->mdev_max > tp->rttvar)
 685                                tp->rttvar = tp->mdev_max;
 686                }
 687                if (after(tp->snd_una, tp->rtt_seq)) {
 688                        if (tp->mdev_max < tp->rttvar)
 689                                tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
 690                        tp->rtt_seq = tp->snd_nxt;
 691                        tp->mdev_max = tcp_rto_min(sk);
 692                }
 693        } else {
 694                /* no previous measure. */
 695                tp->srtt = m << 3;      /* take the measured time to be rtt */
 696                tp->mdev = m << 1;      /* make sure rto = 3*rtt */
 697                tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 698                tp->rtt_seq = tp->snd_nxt;
 699        }
 700}
 701
 702/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 703 * routine referred to above.
 704 */
 705void tcp_set_rto(struct sock *sk)
 706{
 707        const struct tcp_sock *tp = tcp_sk(sk);
 708        /* Old crap is replaced with new one. 8)
 709         *
 710         * More seriously:
 711         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 712         *    It cannot be less due to utterly erratic ACK generation made
 713         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 714         *    to do with delayed acks, because at cwnd>2 true delack timeout
 715         *    is invisible. Actually, Linux-2.4 also generates erratic
 716         *    ACKs in some circumstances.
 717         */
 718        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 719
 720        /* 2. Fixups made earlier cannot be right.
 721         *    If we do not estimate RTO correctly without them,
 722         *    all the algo is pure shit and should be replaced
 723         *    with correct one. It is exactly, which we pretend to do.
 724         */
 725
 726        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 727         * guarantees that rto is higher.
 728         */
 729        tcp_bound_rto(sk);
 730}
 731
 732__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 733{
 734        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 735
 736        if (!cwnd)
 737                cwnd = TCP_INIT_CWND;
 738        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 739}
 740
 741/*
 742 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 743 * disables it when reordering is detected
 744 */
 745void tcp_disable_fack(struct tcp_sock *tp)
 746{
 747        /* RFC3517 uses different metric in lost marker => reset on change */
 748        if (tcp_is_fack(tp))
 749                tp->lost_skb_hint = NULL;
 750        tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 751}
 752
 753/* Take a notice that peer is sending D-SACKs */
 754static void tcp_dsack_seen(struct tcp_sock *tp)
 755{
 756        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 757}
 758
 759static void tcp_update_reordering(struct sock *sk, const int metric,
 760                                  const int ts)
 761{
 762        struct tcp_sock *tp = tcp_sk(sk);
 763        if (metric > tp->reordering) {
 764                int mib_idx;
 765
 766                tp->reordering = min(TCP_MAX_REORDERING, metric);
 767
 768                /* This exciting event is worth to be remembered. 8) */
 769                if (ts)
 770                        mib_idx = LINUX_MIB_TCPTSREORDER;
 771                else if (tcp_is_reno(tp))
 772                        mib_idx = LINUX_MIB_TCPRENOREORDER;
 773                else if (tcp_is_fack(tp))
 774                        mib_idx = LINUX_MIB_TCPFACKREORDER;
 775                else
 776                        mib_idx = LINUX_MIB_TCPSACKREORDER;
 777
 778                NET_INC_STATS_BH(sock_net(sk), mib_idx);
 779#if FASTRETRANS_DEBUG > 1
 780                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 781                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 782                         tp->reordering,
 783                         tp->fackets_out,
 784                         tp->sacked_out,
 785                         tp->undo_marker ? tp->undo_retrans : 0);
 786#endif
 787                tcp_disable_fack(tp);
 788        }
 789
 790        if (metric > 0)
 791                tcp_disable_early_retrans(tp);
 792}
 793
 794/* This must be called before lost_out is incremented */
 795static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 796{
 797        if ((tp->retransmit_skb_hint == NULL) ||
 798            before(TCP_SKB_CB(skb)->seq,
 799                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 800                tp->retransmit_skb_hint = skb;
 801
 802        if (!tp->lost_out ||
 803            after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 804                tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 805}
 806
 807static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 808{
 809        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 810                tcp_verify_retransmit_hint(tp, skb);
 811
 812                tp->lost_out += tcp_skb_pcount(skb);
 813                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 814        }
 815}
 816
 817static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
 818                                            struct sk_buff *skb)
 819{
 820        tcp_verify_retransmit_hint(tp, skb);
 821
 822        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 823                tp->lost_out += tcp_skb_pcount(skb);
 824                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 825        }
 826}
 827
 828/* This procedure tags the retransmission queue when SACKs arrive.
 829 *
 830 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 831 * Packets in queue with these bits set are counted in variables
 832 * sacked_out, retrans_out and lost_out, correspondingly.
 833 *
 834 * Valid combinations are:
 835 * Tag  InFlight        Description
 836 * 0    1               - orig segment is in flight.
 837 * S    0               - nothing flies, orig reached receiver.
 838 * L    0               - nothing flies, orig lost by net.
 839 * R    2               - both orig and retransmit are in flight.
 840 * L|R  1               - orig is lost, retransmit is in flight.
 841 * S|R  1               - orig reached receiver, retrans is still in flight.
 842 * (L|S|R is logically valid, it could occur when L|R is sacked,
 843 *  but it is equivalent to plain S and code short-curcuits it to S.
 844 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 845 *
 846 * These 6 states form finite state machine, controlled by the following events:
 847 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 848 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 849 * 3. Loss detection event of two flavors:
 850 *      A. Scoreboard estimator decided the packet is lost.
 851 *         A'. Reno "three dupacks" marks head of queue lost.
 852 *         A''. Its FACK modification, head until snd.fack is lost.
 853 *      B. SACK arrives sacking SND.NXT at the moment, when the
 854 *         segment was retransmitted.
 855 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 856 *
 857 * It is pleasant to note, that state diagram turns out to be commutative,
 858 * so that we are allowed not to be bothered by order of our actions,
 859 * when multiple events arrive simultaneously. (see the function below).
 860 *
 861 * Reordering detection.
 862 * --------------------
 863 * Reordering metric is maximal distance, which a packet can be displaced
 864 * in packet stream. With SACKs we can estimate it:
 865 *
 866 * 1. SACK fills old hole and the corresponding segment was not
 867 *    ever retransmitted -> reordering. Alas, we cannot use it
 868 *    when segment was retransmitted.
 869 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 870 *    for retransmitted and already SACKed segment -> reordering..
 871 * Both of these heuristics are not used in Loss state, when we cannot
 872 * account for retransmits accurately.
 873 *
 874 * SACK block validation.
 875 * ----------------------
 876 *
 877 * SACK block range validation checks that the received SACK block fits to
 878 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 879 * Note that SND.UNA is not included to the range though being valid because
 880 * it means that the receiver is rather inconsistent with itself reporting
 881 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 882 * perfectly valid, however, in light of RFC2018 which explicitly states
 883 * that "SACK block MUST reflect the newest segment.  Even if the newest
 884 * segment is going to be discarded ...", not that it looks very clever
 885 * in case of head skb. Due to potentional receiver driven attacks, we
 886 * choose to avoid immediate execution of a walk in write queue due to
 887 * reneging and defer head skb's loss recovery to standard loss recovery
 888 * procedure that will eventually trigger (nothing forbids us doing this).
 889 *
 890 * Implements also blockage to start_seq wrap-around. Problem lies in the
 891 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 892 * there's no guarantee that it will be before snd_nxt (n). The problem
 893 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 894 * wrap (s_w):
 895 *
 896 *         <- outs wnd ->                          <- wrapzone ->
 897 *         u     e      n                         u_w   e_w  s n_w
 898 *         |     |      |                          |     |   |  |
 899 * |<------------+------+----- TCP seqno space --------------+---------->|
 900 * ...-- <2^31 ->|                                           |<--------...
 901 * ...---- >2^31 ------>|                                    |<--------...
 902 *
 903 * Current code wouldn't be vulnerable but it's better still to discard such
 904 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 905 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
 906 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
 907 * equal to the ideal case (infinite seqno space without wrap caused issues).
 908 *
 909 * With D-SACK the lower bound is extended to cover sequence space below
 910 * SND.UNA down to undo_marker, which is the last point of interest. Yet
 911 * again, D-SACK block must not to go across snd_una (for the same reason as
 912 * for the normal SACK blocks, explained above). But there all simplicity
 913 * ends, TCP might receive valid D-SACKs below that. As long as they reside
 914 * fully below undo_marker they do not affect behavior in anyway and can
 915 * therefore be safely ignored. In rare cases (which are more or less
 916 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
 917 * fragmentation and packet reordering past skb's retransmission. To consider
 918 * them correctly, the acceptable range must be extended even more though
 919 * the exact amount is rather hard to quantify. However, tp->max_window can
 920 * be used as an exaggerated estimate.
 921 */
 922static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
 923                                   u32 start_seq, u32 end_seq)
 924{
 925        /* Too far in future, or reversed (interpretation is ambiguous) */
 926        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
 927                return false;
 928
 929        /* Nasty start_seq wrap-around check (see comments above) */
 930        if (!before(start_seq, tp->snd_nxt))
 931                return false;
 932
 933        /* In outstanding window? ...This is valid exit for D-SACKs too.
 934         * start_seq == snd_una is non-sensical (see comments above)
 935         */
 936        if (after(start_seq, tp->snd_una))
 937                return true;
 938
 939        if (!is_dsack || !tp->undo_marker)
 940                return false;
 941
 942        /* ...Then it's D-SACK, and must reside below snd_una completely */
 943        if (after(end_seq, tp->snd_una))
 944                return false;
 945
 946        if (!before(start_seq, tp->undo_marker))
 947                return true;
 948
 949        /* Too old */
 950        if (!after(end_seq, tp->undo_marker))
 951                return false;
 952
 953        /* Undo_marker boundary crossing (overestimates a lot). Known already:
 954         *   start_seq < undo_marker and end_seq >= undo_marker.
 955         */
 956        return !before(start_seq, end_seq - tp->max_window);
 957}
 958
 959/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
 960 * Event "B". Later note: FACK people cheated me again 8), we have to account
 961 * for reordering! Ugly, but should help.
 962 *
 963 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
 964 * less than what is now known to be received by the other end (derived from
 965 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
 966 * retransmitted skbs to avoid some costly processing per ACKs.
 967 */
 968static void tcp_mark_lost_retrans(struct sock *sk)
 969{
 970        const struct inet_connection_sock *icsk = inet_csk(sk);
 971        struct tcp_sock *tp = tcp_sk(sk);
 972        struct sk_buff *skb;
 973        int cnt = 0;
 974        u32 new_low_seq = tp->snd_nxt;
 975        u32 received_upto = tcp_highest_sack_seq(tp);
 976
 977        if (!tcp_is_fack(tp) || !tp->retrans_out ||
 978            !after(received_upto, tp->lost_retrans_low) ||
 979            icsk->icsk_ca_state != TCP_CA_Recovery)
 980                return;
 981
 982        tcp_for_write_queue(skb, sk) {
 983                u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
 984
 985                if (skb == tcp_send_head(sk))
 986                        break;
 987                if (cnt == tp->retrans_out)
 988                        break;
 989                if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
 990                        continue;
 991
 992                if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
 993                        continue;
 994
 995                /* TODO: We would like to get rid of tcp_is_fack(tp) only
 996                 * constraint here (see above) but figuring out that at
 997                 * least tp->reordering SACK blocks reside between ack_seq
 998                 * and received_upto is not easy task to do cheaply with
 999                 * the available datastructures.
1000                 *
1001                 * Whether FACK should check here for tp->reordering segs
1002                 * in-between one could argue for either way (it would be
1003                 * rather simple to implement as we could count fack_count
1004                 * during the walk and do tp->fackets_out - fack_count).
1005                 */
1006                if (after(received_upto, ack_seq)) {
1007                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1008                        tp->retrans_out -= tcp_skb_pcount(skb);
1009
1010                        tcp_skb_mark_lost_uncond_verify(tp, skb);
1011                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1012                } else {
1013                        if (before(ack_seq, new_low_seq))
1014                                new_low_seq = ack_seq;
1015                        cnt += tcp_skb_pcount(skb);
1016                }
1017        }
1018
1019        if (tp->retrans_out)
1020                tp->lost_retrans_low = new_low_seq;
1021}
1022
1023static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1024                            struct tcp_sack_block_wire *sp, int num_sacks,
1025                            u32 prior_snd_una)
1026{
1027        struct tcp_sock *tp = tcp_sk(sk);
1028        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1029        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1030        bool dup_sack = false;
1031
1032        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1033                dup_sack = true;
1034                tcp_dsack_seen(tp);
1035                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1036        } else if (num_sacks > 1) {
1037                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1038                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1039
1040                if (!after(end_seq_0, end_seq_1) &&
1041                    !before(start_seq_0, start_seq_1)) {
1042                        dup_sack = true;
1043                        tcp_dsack_seen(tp);
1044                        NET_INC_STATS_BH(sock_net(sk),
1045                                        LINUX_MIB_TCPDSACKOFORECV);
1046                }
1047        }
1048
1049        /* D-SACK for already forgotten data... Do dumb counting. */
1050        if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1051            !after(end_seq_0, prior_snd_una) &&
1052            after(end_seq_0, tp->undo_marker))
1053                tp->undo_retrans--;
1054
1055        return dup_sack;
1056}
1057
1058struct tcp_sacktag_state {
1059        int reord;
1060        int fack_count;
1061        int flag;
1062};
1063
1064/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1065 * the incoming SACK may not exactly match but we can find smaller MSS
1066 * aligned portion of it that matches. Therefore we might need to fragment
1067 * which may fail and creates some hassle (caller must handle error case
1068 * returns).
1069 *
1070 * FIXME: this could be merged to shift decision code
1071 */
1072static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1073                                  u32 start_seq, u32 end_seq)
1074{
1075        int err;
1076        bool in_sack;
1077        unsigned int pkt_len;
1078        unsigned int mss;
1079
1080        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1081                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1082
1083        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1084            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1085                mss = tcp_skb_mss(skb);
1086                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1087
1088                if (!in_sack) {
1089                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1090                        if (pkt_len < mss)
1091                                pkt_len = mss;
1092                } else {
1093                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1094                        if (pkt_len < mss)
1095                                return -EINVAL;
1096                }
1097
1098                /* Round if necessary so that SACKs cover only full MSSes
1099                 * and/or the remaining small portion (if present)
1100                 */
1101                if (pkt_len > mss) {
1102                        unsigned int new_len = (pkt_len / mss) * mss;
1103                        if (!in_sack && new_len < pkt_len) {
1104                                new_len += mss;
1105                                if (new_len > skb->len)
1106                                        return 0;
1107                        }
1108                        pkt_len = new_len;
1109                }
1110                err = tcp_fragment(sk, skb, pkt_len, mss);
1111                if (err < 0)
1112                        return err;
1113        }
1114
1115        return in_sack;
1116}
1117
1118/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1119static u8 tcp_sacktag_one(struct sock *sk,
1120                          struct tcp_sacktag_state *state, u8 sacked,
1121                          u32 start_seq, u32 end_seq,
1122                          bool dup_sack, int pcount)
1123{
1124        struct tcp_sock *tp = tcp_sk(sk);
1125        int fack_count = state->fack_count;
1126
1127        /* Account D-SACK for retransmitted packet. */
1128        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1129                if (tp->undo_marker && tp->undo_retrans &&
1130                    after(end_seq, tp->undo_marker))
1131                        tp->undo_retrans--;
1132                if (sacked & TCPCB_SACKED_ACKED)
1133                        state->reord = min(fack_count, state->reord);
1134        }
1135
1136        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1137        if (!after(end_seq, tp->snd_una))
1138                return sacked;
1139
1140        if (!(sacked & TCPCB_SACKED_ACKED)) {
1141                if (sacked & TCPCB_SACKED_RETRANS) {
1142                        /* If the segment is not tagged as lost,
1143                         * we do not clear RETRANS, believing
1144                         * that retransmission is still in flight.
1145                         */
1146                        if (sacked & TCPCB_LOST) {
1147                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1148                                tp->lost_out -= pcount;
1149                                tp->retrans_out -= pcount;
1150                        }
1151                } else {
1152                        if (!(sacked & TCPCB_RETRANS)) {
1153                                /* New sack for not retransmitted frame,
1154                                 * which was in hole. It is reordering.
1155                                 */
1156                                if (before(start_seq,
1157                                           tcp_highest_sack_seq(tp)))
1158                                        state->reord = min(fack_count,
1159                                                           state->reord);
1160                                if (!after(end_seq, tp->high_seq))
1161                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1162                        }
1163
1164                        if (sacked & TCPCB_LOST) {
1165                                sacked &= ~TCPCB_LOST;
1166                                tp->lost_out -= pcount;
1167                        }
1168                }
1169
1170                sacked |= TCPCB_SACKED_ACKED;
1171                state->flag |= FLAG_DATA_SACKED;
1172                tp->sacked_out += pcount;
1173
1174                fack_count += pcount;
1175
1176                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1177                if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1178                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1179                        tp->lost_cnt_hint += pcount;
1180
1181                if (fack_count > tp->fackets_out)
1182                        tp->fackets_out = fack_count;
1183        }
1184
1185        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1186         * frames and clear it. undo_retrans is decreased above, L|R frames
1187         * are accounted above as well.
1188         */
1189        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1190                sacked &= ~TCPCB_SACKED_RETRANS;
1191                tp->retrans_out -= pcount;
1192        }
1193
1194        return sacked;
1195}
1196
1197/* Shift newly-SACKed bytes from this skb to the immediately previous
1198 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1199 */
1200static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1201                            struct tcp_sacktag_state *state,
1202                            unsigned int pcount, int shifted, int mss,
1203                            bool dup_sack)
1204{
1205        struct tcp_sock *tp = tcp_sk(sk);
1206        struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1207        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1208        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1209
1210        BUG_ON(!pcount);
1211
1212        /* Adjust counters and hints for the newly sacked sequence
1213         * range but discard the return value since prev is already
1214         * marked. We must tag the range first because the seq
1215         * advancement below implicitly advances
1216         * tcp_highest_sack_seq() when skb is highest_sack.
1217         */
1218        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1219                        start_seq, end_seq, dup_sack, pcount);
1220
1221        if (skb == tp->lost_skb_hint)
1222                tp->lost_cnt_hint += pcount;
1223
1224        TCP_SKB_CB(prev)->end_seq += shifted;
1225        TCP_SKB_CB(skb)->seq += shifted;
1226
1227        skb_shinfo(prev)->gso_segs += pcount;
1228        BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1229        skb_shinfo(skb)->gso_segs -= pcount;
1230
1231        /* When we're adding to gso_segs == 1, gso_size will be zero,
1232         * in theory this shouldn't be necessary but as long as DSACK
1233         * code can come after this skb later on it's better to keep
1234         * setting gso_size to something.
1235         */
1236        if (!skb_shinfo(prev)->gso_size) {
1237                skb_shinfo(prev)->gso_size = mss;
1238                skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1239        }
1240
1241        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1242        if (skb_shinfo(skb)->gso_segs <= 1) {
1243                skb_shinfo(skb)->gso_size = 0;
1244                skb_shinfo(skb)->gso_type = 0;
1245        }
1246
1247        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1248        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1249
1250        if (skb->len > 0) {
1251                BUG_ON(!tcp_skb_pcount(skb));
1252                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1253                return false;
1254        }
1255
1256        /* Whole SKB was eaten :-) */
1257
1258        if (skb == tp->retransmit_skb_hint)
1259                tp->retransmit_skb_hint = prev;
1260        if (skb == tp->scoreboard_skb_hint)
1261                tp->scoreboard_skb_hint = prev;
1262        if (skb == tp->lost_skb_hint) {
1263                tp->lost_skb_hint = prev;
1264                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1265        }
1266
1267        TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1268        if (skb == tcp_highest_sack(sk))
1269                tcp_advance_highest_sack(sk, skb);
1270
1271        tcp_unlink_write_queue(skb, sk);
1272        sk_wmem_free_skb(sk, skb);
1273
1274        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1275
1276        return true;
1277}
1278
1279/* I wish gso_size would have a bit more sane initialization than
1280 * something-or-zero which complicates things
1281 */
1282static int tcp_skb_seglen(const struct sk_buff *skb)
1283{
1284        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1285}
1286
1287/* Shifting pages past head area doesn't work */
1288static int skb_can_shift(const struct sk_buff *skb)
1289{
1290        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1291}
1292
1293/* Try collapsing SACK blocks spanning across multiple skbs to a single
1294 * skb.
1295 */
1296static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1297                                          struct tcp_sacktag_state *state,
1298                                          u32 start_seq, u32 end_seq,
1299                                          bool dup_sack)
1300{
1301        struct tcp_sock *tp = tcp_sk(sk);
1302        struct sk_buff *prev;
1303        int mss;
1304        int pcount = 0;
1305        int len;
1306        int in_sack;
1307
1308        if (!sk_can_gso(sk))
1309                goto fallback;
1310
1311        /* Normally R but no L won't result in plain S */
1312        if (!dup_sack &&
1313            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1314                goto fallback;
1315        if (!skb_can_shift(skb))
1316                goto fallback;
1317        /* This frame is about to be dropped (was ACKed). */
1318        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1319                goto fallback;
1320
1321        /* Can only happen with delayed DSACK + discard craziness */
1322        if (unlikely(skb == tcp_write_queue_head(sk)))
1323                goto fallback;
1324        prev = tcp_write_queue_prev(sk, skb);
1325
1326        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1327                goto fallback;
1328
1329        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1330                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1331
1332        if (in_sack) {
1333                len = skb->len;
1334                pcount = tcp_skb_pcount(skb);
1335                mss = tcp_skb_seglen(skb);
1336
1337                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1338                 * drop this restriction as unnecessary
1339                 */
1340                if (mss != tcp_skb_seglen(prev))
1341                        goto fallback;
1342        } else {
1343                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1344                        goto noop;
1345                /* CHECKME: This is non-MSS split case only?, this will
1346                 * cause skipped skbs due to advancing loop btw, original
1347                 * has that feature too
1348                 */
1349                if (tcp_skb_pcount(skb) <= 1)
1350                        goto noop;
1351
1352                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1353                if (!in_sack) {
1354                        /* TODO: head merge to next could be attempted here
1355                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1356                         * though it might not be worth of the additional hassle
1357                         *
1358                         * ...we can probably just fallback to what was done
1359                         * previously. We could try merging non-SACKed ones
1360                         * as well but it probably isn't going to buy off
1361                         * because later SACKs might again split them, and
1362                         * it would make skb timestamp tracking considerably
1363                         * harder problem.
1364                         */
1365                        goto fallback;
1366                }
1367
1368                len = end_seq - TCP_SKB_CB(skb)->seq;
1369                BUG_ON(len < 0);
1370                BUG_ON(len > skb->len);
1371
1372                /* MSS boundaries should be honoured or else pcount will
1373                 * severely break even though it makes things bit trickier.
1374                 * Optimize common case to avoid most of the divides
1375                 */
1376                mss = tcp_skb_mss(skb);
1377
1378                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1379                 * drop this restriction as unnecessary
1380                 */
1381                if (mss != tcp_skb_seglen(prev))
1382                        goto fallback;
1383
1384                if (len == mss) {
1385                        pcount = 1;
1386                } else if (len < mss) {
1387                        goto noop;
1388                } else {
1389                        pcount = len / mss;
1390                        len = pcount * mss;
1391                }
1392        }
1393
1394        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1395        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1396                goto fallback;
1397
1398        if (!skb_shift(prev, skb, len))
1399                goto fallback;
1400        if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1401                goto out;
1402
1403        /* Hole filled allows collapsing with the next as well, this is very
1404         * useful when hole on every nth skb pattern happens
1405         */
1406        if (prev == tcp_write_queue_tail(sk))
1407                goto out;
1408        skb = tcp_write_queue_next(sk, prev);
1409
1410        if (!skb_can_shift(skb) ||
1411            (skb == tcp_send_head(sk)) ||
1412            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1413            (mss != tcp_skb_seglen(skb)))
1414                goto out;
1415
1416        len = skb->len;
1417        if (skb_shift(prev, skb, len)) {
1418                pcount += tcp_skb_pcount(skb);
1419                tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1420        }
1421
1422out:
1423        state->fack_count += pcount;
1424        return prev;
1425
1426noop:
1427        return skb;
1428
1429fallback:
1430        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1431        return NULL;
1432}
1433
1434static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1435                                        struct tcp_sack_block *next_dup,
1436                                        struct tcp_sacktag_state *state,
1437                                        u32 start_seq, u32 end_seq,
1438                                        bool dup_sack_in)
1439{
1440        struct tcp_sock *tp = tcp_sk(sk);
1441        struct sk_buff *tmp;
1442
1443        tcp_for_write_queue_from(skb, sk) {
1444                int in_sack = 0;
1445                bool dup_sack = dup_sack_in;
1446
1447                if (skb == tcp_send_head(sk))
1448                        break;
1449
1450                /* queue is in-order => we can short-circuit the walk early */
1451                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1452                        break;
1453
1454                if ((next_dup != NULL) &&
1455                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1456                        in_sack = tcp_match_skb_to_sack(sk, skb,
1457                                                        next_dup->start_seq,
1458                                                        next_dup->end_seq);
1459                        if (in_sack > 0)
1460                                dup_sack = true;
1461                }
1462
1463                /* skb reference here is a bit tricky to get right, since
1464                 * shifting can eat and free both this skb and the next,
1465                 * so not even _safe variant of the loop is enough.
1466                 */
1467                if (in_sack <= 0) {
1468                        tmp = tcp_shift_skb_data(sk, skb, state,
1469                                                 start_seq, end_seq, dup_sack);
1470                        if (tmp != NULL) {
1471                                if (tmp != skb) {
1472                                        skb = tmp;
1473                                        continue;
1474                                }
1475
1476                                in_sack = 0;
1477                        } else {
1478                                in_sack = tcp_match_skb_to_sack(sk, skb,
1479                                                                start_seq,
1480                                                                end_seq);
1481                        }
1482                }
1483
1484                if (unlikely(in_sack < 0))
1485                        break;
1486
1487                if (in_sack) {
1488                        TCP_SKB_CB(skb)->sacked =
1489                                tcp_sacktag_one(sk,
1490                                                state,
1491                                                TCP_SKB_CB(skb)->sacked,
1492                                                TCP_SKB_CB(skb)->seq,
1493                                                TCP_SKB_CB(skb)->end_seq,
1494                                                dup_sack,
1495                                                tcp_skb_pcount(skb));
1496
1497                        if (!before(TCP_SKB_CB(skb)->seq,
1498                                    tcp_highest_sack_seq(tp)))
1499                                tcp_advance_highest_sack(sk, skb);
1500                }
1501
1502                state->fack_count += tcp_skb_pcount(skb);
1503        }
1504        return skb;
1505}
1506
1507/* Avoid all extra work that is being done by sacktag while walking in
1508 * a normal way
1509 */
1510static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1511                                        struct tcp_sacktag_state *state,
1512                                        u32 skip_to_seq)
1513{
1514        tcp_for_write_queue_from(skb, sk) {
1515                if (skb == tcp_send_head(sk))
1516                        break;
1517
1518                if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1519                        break;
1520
1521                state->fack_count += tcp_skb_pcount(skb);
1522        }
1523        return skb;
1524}
1525
1526static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1527                                                struct sock *sk,
1528                                                struct tcp_sack_block *next_dup,
1529                                                struct tcp_sacktag_state *state,
1530                                                u32 skip_to_seq)
1531{
1532        if (next_dup == NULL)
1533                return skb;
1534
1535        if (before(next_dup->start_seq, skip_to_seq)) {
1536                skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1537                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1538                                       next_dup->start_seq, next_dup->end_seq,
1539                                       1);
1540        }
1541
1542        return skb;
1543}
1544
1545static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1546{
1547        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1548}
1549
1550static int
1551tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1552                        u32 prior_snd_una)
1553{
1554        struct tcp_sock *tp = tcp_sk(sk);
1555        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1556                                    TCP_SKB_CB(ack_skb)->sacked);
1557        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1558        struct tcp_sack_block sp[TCP_NUM_SACKS];
1559        struct tcp_sack_block *cache;
1560        struct tcp_sacktag_state state;
1561        struct sk_buff *skb;
1562        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1563        int used_sacks;
1564        bool found_dup_sack = false;
1565        int i, j;
1566        int first_sack_index;
1567
1568        state.flag = 0;
1569        state.reord = tp->packets_out;
1570
1571        if (!tp->sacked_out) {
1572                if (WARN_ON(tp->fackets_out))
1573                        tp->fackets_out = 0;
1574                tcp_highest_sack_reset(sk);
1575        }
1576
1577        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1578                                         num_sacks, prior_snd_una);
1579        if (found_dup_sack)
1580                state.flag |= FLAG_DSACKING_ACK;
1581
1582        /* Eliminate too old ACKs, but take into
1583         * account more or less fresh ones, they can
1584         * contain valid SACK info.
1585         */
1586        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1587                return 0;
1588
1589        if (!tp->packets_out)
1590                goto out;
1591
1592        used_sacks = 0;
1593        first_sack_index = 0;
1594        for (i = 0; i < num_sacks; i++) {
1595                bool dup_sack = !i && found_dup_sack;
1596
1597                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1598                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1599
1600                if (!tcp_is_sackblock_valid(tp, dup_sack,
1601                                            sp[used_sacks].start_seq,
1602                                            sp[used_sacks].end_seq)) {
1603                        int mib_idx;
1604
1605                        if (dup_sack) {
1606                                if (!tp->undo_marker)
1607                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1608                                else
1609                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1610                        } else {
1611                                /* Don't count olds caused by ACK reordering */
1612                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1613                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1614                                        continue;
1615                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1616                        }
1617
1618                        NET_INC_STATS_BH(sock_net(sk), mib_idx);
1619                        if (i == 0)
1620                                first_sack_index = -1;
1621                        continue;
1622                }
1623
1624                /* Ignore very old stuff early */
1625                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1626                        continue;
1627
1628                used_sacks++;
1629        }
1630
1631        /* order SACK blocks to allow in order walk of the retrans queue */
1632        for (i = used_sacks - 1; i > 0; i--) {
1633                for (j = 0; j < i; j++) {
1634                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1635                                swap(sp[j], sp[j + 1]);
1636
1637                                /* Track where the first SACK block goes to */
1638                                if (j == first_sack_index)
1639                                        first_sack_index = j + 1;
1640                        }
1641                }
1642        }
1643
1644        skb = tcp_write_queue_head(sk);
1645        state.fack_count = 0;
1646        i = 0;
1647
1648        if (!tp->sacked_out) {
1649                /* It's already past, so skip checking against it */
1650                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1651        } else {
1652                cache = tp->recv_sack_cache;
1653                /* Skip empty blocks in at head of the cache */
1654                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1655                       !cache->end_seq)
1656                        cache++;
1657        }
1658
1659        while (i < used_sacks) {
1660                u32 start_seq = sp[i].start_seq;
1661                u32 end_seq = sp[i].end_seq;
1662                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1663                struct tcp_sack_block *next_dup = NULL;
1664
1665                if (found_dup_sack && ((i + 1) == first_sack_index))
1666                        next_dup = &sp[i + 1];
1667
1668                /* Skip too early cached blocks */
1669                while (tcp_sack_cache_ok(tp, cache) &&
1670                       !before(start_seq, cache->end_seq))
1671                        cache++;
1672
1673                /* Can skip some work by looking recv_sack_cache? */
1674                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1675                    after(end_seq, cache->start_seq)) {
1676
1677                        /* Head todo? */
1678                        if (before(start_seq, cache->start_seq)) {
1679                                skb = tcp_sacktag_skip(skb, sk, &state,
1680                                                       start_seq);
1681                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1682                                                       &state,
1683                                                       start_seq,
1684                                                       cache->start_seq,
1685                                                       dup_sack);
1686                        }
1687
1688                        /* Rest of the block already fully processed? */
1689                        if (!after(end_seq, cache->end_seq))
1690                                goto advance_sp;
1691
1692                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1693                                                       &state,
1694                                                       cache->end_seq);
1695
1696                        /* ...tail remains todo... */
1697                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1698                                /* ...but better entrypoint exists! */
1699                                skb = tcp_highest_sack(sk);
1700                                if (skb == NULL)
1701                                        break;
1702                                state.fack_count = tp->fackets_out;
1703                                cache++;
1704                                goto walk;
1705                        }
1706
1707                        skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1708                        /* Check overlap against next cached too (past this one already) */
1709                        cache++;
1710                        continue;
1711                }
1712
1713                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1714                        skb = tcp_highest_sack(sk);
1715                        if (skb == NULL)
1716                                break;
1717                        state.fack_count = tp->fackets_out;
1718                }
1719                skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1720
1721walk:
1722                skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1723                                       start_seq, end_seq, dup_sack);
1724
1725advance_sp:
1726                i++;
1727        }
1728
1729        /* Clear the head of the cache sack blocks so we can skip it next time */
1730        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1731                tp->recv_sack_cache[i].start_seq = 0;
1732                tp->recv_sack_cache[i].end_seq = 0;
1733        }
1734        for (j = 0; j < used_sacks; j++)
1735                tp->recv_sack_cache[i++] = sp[j];
1736
1737        tcp_mark_lost_retrans(sk);
1738
1739        tcp_verify_left_out(tp);
1740
1741        if ((state.reord < tp->fackets_out) &&
1742            ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1743                tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1744
1745out:
1746
1747#if FASTRETRANS_DEBUG > 0
1748        WARN_ON((int)tp->sacked_out < 0);
1749        WARN_ON((int)tp->lost_out < 0);
1750        WARN_ON((int)tp->retrans_out < 0);
1751        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1752#endif
1753        return state.flag;
1754}
1755
1756/* Limits sacked_out so that sum with lost_out isn't ever larger than
1757 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1758 */
1759static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1760{
1761        u32 holes;
1762
1763        holes = max(tp->lost_out, 1U);
1764        holes = min(holes, tp->packets_out);
1765
1766        if ((tp->sacked_out + holes) > tp->packets_out) {
1767                tp->sacked_out = tp->packets_out - holes;
1768                return true;
1769        }
1770        return false;
1771}
1772
1773/* If we receive more dupacks than we expected counting segments
1774 * in assumption of absent reordering, interpret this as reordering.
1775 * The only another reason could be bug in receiver TCP.
1776 */
1777static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1778{
1779        struct tcp_sock *tp = tcp_sk(sk);
1780        if (tcp_limit_reno_sacked(tp))
1781                tcp_update_reordering(sk, tp->packets_out + addend, 0);
1782}
1783
1784/* Emulate SACKs for SACKless connection: account for a new dupack. */
1785
1786static void tcp_add_reno_sack(struct sock *sk)
1787{
1788        struct tcp_sock *tp = tcp_sk(sk);
1789        tp->sacked_out++;
1790        tcp_check_reno_reordering(sk, 0);
1791        tcp_verify_left_out(tp);
1792}
1793
1794/* Account for ACK, ACKing some data in Reno Recovery phase. */
1795
1796static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1797{
1798        struct tcp_sock *tp = tcp_sk(sk);
1799
1800        if (acked > 0) {
1801                /* One ACK acked hole. The rest eat duplicate ACKs. */
1802                if (acked - 1 >= tp->sacked_out)
1803                        tp->sacked_out = 0;
1804                else
1805                        tp->sacked_out -= acked - 1;
1806        }
1807        tcp_check_reno_reordering(sk, acked);
1808        tcp_verify_left_out(tp);
1809}
1810
1811static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1812{
1813        tp->sacked_out = 0;
1814}
1815
1816static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1817{
1818        tp->retrans_out = 0;
1819        tp->lost_out = 0;
1820
1821        tp->undo_marker = 0;
1822        tp->undo_retrans = 0;
1823}
1824
1825void tcp_clear_retrans(struct tcp_sock *tp)
1826{
1827        tcp_clear_retrans_partial(tp);
1828
1829        tp->fackets_out = 0;
1830        tp->sacked_out = 0;
1831}
1832
1833/* Enter Loss state. If "how" is not zero, forget all SACK information
1834 * and reset tags completely, otherwise preserve SACKs. If receiver
1835 * dropped its ofo queue, we will know this due to reneging detection.
1836 */
1837void tcp_enter_loss(struct sock *sk, int how)
1838{
1839        const struct inet_connection_sock *icsk = inet_csk(sk);
1840        struct tcp_sock *tp = tcp_sk(sk);
1841        struct sk_buff *skb;
1842        bool new_recovery = false;
1843
1844        /* Reduce ssthresh if it has not yet been made inside this window. */
1845        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1846            !after(tp->high_seq, tp->snd_una) ||
1847            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1848                new_recovery = true;
1849                tp->prior_ssthresh = tcp_current_ssthresh(sk);
1850                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1851                tcp_ca_event(sk, CA_EVENT_LOSS);
1852        }
1853        tp->snd_cwnd       = 1;
1854        tp->snd_cwnd_cnt   = 0;
1855        tp->snd_cwnd_stamp = tcp_time_stamp;
1856
1857        tcp_clear_retrans_partial(tp);
1858
1859        if (tcp_is_reno(tp))
1860                tcp_reset_reno_sack(tp);
1861
1862        tp->undo_marker = tp->snd_una;
1863        if (how) {
1864                tp->sacked_out = 0;
1865                tp->fackets_out = 0;
1866        }
1867        tcp_clear_all_retrans_hints(tp);
1868
1869        tcp_for_write_queue(skb, sk) {
1870                if (skb == tcp_send_head(sk))
1871                        break;
1872
1873                if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1874                        tp->undo_marker = 0;
1875                TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1876                if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1877                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1878                        TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1879                        tp->lost_out += tcp_skb_pcount(skb);
1880                        tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1881                }
1882        }
1883        tcp_verify_left_out(tp);
1884
1885        tp->reordering = min_t(unsigned int, tp->reordering,
1886                               sysctl_tcp_reordering);
1887        tcp_set_ca_state(sk, TCP_CA_Loss);
1888        tp->high_seq = tp->snd_nxt;
1889        TCP_ECN_queue_cwr(tp);
1890
1891        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1892         * loss recovery is underway except recurring timeout(s) on
1893         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1894         */
1895        tp->frto = sysctl_tcp_frto &&
1896                   (new_recovery || icsk->icsk_retransmits) &&
1897                   !inet_csk(sk)->icsk_mtup.probe_size;
1898}
1899
1900/* If ACK arrived pointing to a remembered SACK, it means that our
1901 * remembered SACKs do not reflect real state of receiver i.e.
1902 * receiver _host_ is heavily congested (or buggy).
1903 *
1904 * Do processing similar to RTO timeout.
1905 */
1906static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1907{
1908        if (flag & FLAG_SACK_RENEGING) {
1909                struct inet_connection_sock *icsk = inet_csk(sk);
1910                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1911
1912                tcp_enter_loss(sk, 1);
1913                icsk->icsk_retransmits++;
1914                tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1915                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1916                                          icsk->icsk_rto, TCP_RTO_MAX);
1917                return true;
1918        }
1919        return false;
1920}
1921
1922static inline int tcp_fackets_out(const struct tcp_sock *tp)
1923{
1924        return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1925}
1926
1927/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1928 * counter when SACK is enabled (without SACK, sacked_out is used for
1929 * that purpose).
1930 *
1931 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1932 * segments up to the highest received SACK block so far and holes in
1933 * between them.
1934 *
1935 * With reordering, holes may still be in flight, so RFC3517 recovery
1936 * uses pure sacked_out (total number of SACKed segments) even though
1937 * it violates the RFC that uses duplicate ACKs, often these are equal
1938 * but when e.g. out-of-window ACKs or packet duplication occurs,
1939 * they differ. Since neither occurs due to loss, TCP should really
1940 * ignore them.
1941 */
1942static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1943{
1944        return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1945}
1946
1947static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1948{
1949        struct tcp_sock *tp = tcp_sk(sk);
1950        unsigned long delay;
1951
1952        /* Delay early retransmit and entering fast recovery for
1953         * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1954         * available, or RTO is scheduled to fire first.
1955         */
1956        if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1957            (flag & FLAG_ECE) || !tp->srtt)
1958                return false;
1959
1960        delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1961        if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1962                return false;
1963
1964        inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1965                                  TCP_RTO_MAX);
1966        return true;
1967}
1968
1969static inline int tcp_skb_timedout(const struct sock *sk,
1970                                   const struct sk_buff *skb)
1971{
1972        return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
1973}
1974
1975static inline int tcp_head_timedout(const struct sock *sk)
1976{
1977        const struct tcp_sock *tp = tcp_sk(sk);
1978
1979        return tp->packets_out &&
1980               tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1981}
1982
1983/* Linux NewReno/SACK/FACK/ECN state machine.
1984 * --------------------------------------
1985 *
1986 * "Open"       Normal state, no dubious events, fast path.
1987 * "Disorder"   In all the respects it is "Open",
1988 *              but requires a bit more attention. It is entered when
1989 *              we see some SACKs or dupacks. It is split of "Open"
1990 *              mainly to move some processing from fast path to slow one.
1991 * "CWR"        CWND was reduced due to some Congestion Notification event.
1992 *              It can be ECN, ICMP source quench, local device congestion.
1993 * "Recovery"   CWND was reduced, we are fast-retransmitting.
1994 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
1995 *
1996 * tcp_fastretrans_alert() is entered:
1997 * - each incoming ACK, if state is not "Open"
1998 * - when arrived ACK is unusual, namely:
1999 *      * SACK
2000 *      * Duplicate ACK.
2001 *      * ECN ECE.
2002 *
2003 * Counting packets in flight is pretty simple.
2004 *
2005 *      in_flight = packets_out - left_out + retrans_out
2006 *
2007 *      packets_out is SND.NXT-SND.UNA counted in packets.
2008 *
2009 *      retrans_out is number of retransmitted segments.
2010 *
2011 *      left_out is number of segments left network, but not ACKed yet.
2012 *
2013 *              left_out = sacked_out + lost_out
2014 *
2015 *     sacked_out: Packets, which arrived to receiver out of order
2016 *                 and hence not ACKed. With SACKs this number is simply
2017 *                 amount of SACKed data. Even without SACKs
2018 *                 it is easy to give pretty reliable estimate of this number,
2019 *                 counting duplicate ACKs.
2020 *
2021 *       lost_out: Packets lost by network. TCP has no explicit
2022 *                 "loss notification" feedback from network (for now).
2023 *                 It means that this number can be only _guessed_.
2024 *                 Actually, it is the heuristics to predict lossage that
2025 *                 distinguishes different algorithms.
2026 *
2027 *      F.e. after RTO, when all the queue is considered as lost,
2028 *      lost_out = packets_out and in_flight = retrans_out.
2029 *
2030 *              Essentially, we have now two algorithms counting
2031 *              lost packets.
2032 *
2033 *              FACK: It is the simplest heuristics. As soon as we decided
2034 *              that something is lost, we decide that _all_ not SACKed
2035 *              packets until the most forward SACK are lost. I.e.
2036 *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2037 *              It is absolutely correct estimate, if network does not reorder
2038 *              packets. And it loses any connection to reality when reordering
2039 *              takes place. We use FACK by default until reordering
2040 *              is suspected on the path to this destination.
2041 *
2042 *              NewReno: when Recovery is entered, we assume that one segment
2043 *              is lost (classic Reno). While we are in Recovery and
2044 *              a partial ACK arrives, we assume that one more packet
2045 *              is lost (NewReno). This heuristics are the same in NewReno
2046 *              and SACK.
2047 *
2048 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2049 *  deflation etc. CWND is real congestion window, never inflated, changes
2050 *  only according to classic VJ rules.
2051 *
2052 * Really tricky (and requiring careful tuning) part of algorithm
2053 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2054 * The first determines the moment _when_ we should reduce CWND and,
2055 * hence, slow down forward transmission. In fact, it determines the moment
2056 * when we decide that hole is caused by loss, rather than by a reorder.
2057 *
2058 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2059 * holes, caused by lost packets.
2060 *
2061 * And the most logically complicated part of algorithm is undo
2062 * heuristics. We detect false retransmits due to both too early
2063 * fast retransmit (reordering) and underestimated RTO, analyzing
2064 * timestamps and D-SACKs. When we detect that some segments were
2065 * retransmitted by mistake and CWND reduction was wrong, we undo
2066 * window reduction and abort recovery phase. This logic is hidden
2067 * inside several functions named tcp_try_undo_<something>.
2068 */
2069
2070/* This function decides, when we should leave Disordered state
2071 * and enter Recovery phase, reducing congestion window.
2072 *
2073 * Main question: may we further continue forward transmission
2074 * with the same cwnd?
2075 */
2076static bool tcp_time_to_recover(struct sock *sk, int flag)
2077{
2078        struct tcp_sock *tp = tcp_sk(sk);
2079        __u32 packets_out;
2080
2081        /* Trick#1: The loss is proven. */
2082        if (tp->lost_out)
2083                return true;
2084
2085        /* Not-A-Trick#2 : Classic rule... */
2086        if (tcp_dupack_heuristics(tp) > tp->reordering)
2087                return true;
2088
2089        /* Trick#3 : when we use RFC2988 timer restart, fast
2090         * retransmit can be triggered by timeout of queue head.
2091         */
2092        if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2093                return true;
2094
2095        /* Trick#4: It is still not OK... But will it be useful to delay
2096         * recovery more?
2097         */
2098        packets_out = tp->packets_out;
2099        if (packets_out <= tp->reordering &&
2100            tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2101            !tcp_may_send_now(sk)) {
2102                /* We have nothing to send. This connection is limited
2103                 * either by receiver window or by application.
2104                 */
2105                return true;
2106        }
2107
2108        /* If a thin stream is detected, retransmit after first
2109         * received dupack. Employ only if SACK is supported in order
2110         * to avoid possible corner-case series of spurious retransmissions
2111         * Use only if there are no unsent data.
2112         */
2113        if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2114            tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2115            tcp_is_sack(tp) && !tcp_send_head(sk))
2116                return true;
2117
2118        /* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2119         * retransmissions due to small network reorderings, we implement
2120         * Mitigation A.3 in the RFC and delay the retransmission for a short
2121         * interval if appropriate.
2122         */
2123        if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2124            (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2125            !tcp_may_send_now(sk))
2126                return !tcp_pause_early_retransmit(sk, flag);
2127
2128        return false;
2129}
2130
2131/* New heuristics: it is possible only after we switched to restart timer
2132 * each time when something is ACKed. Hence, we can detect timed out packets
2133 * during fast retransmit without falling to slow start.
2134 *
2135 * Usefulness of this as is very questionable, since we should know which of
2136 * the segments is the next to timeout which is relatively expensive to find
2137 * in general case unless we add some data structure just for that. The
2138 * current approach certainly won't find the right one too often and when it
2139 * finally does find _something_ it usually marks large part of the window
2140 * right away (because a retransmission with a larger timestamp blocks the
2141 * loop from advancing). -ij
2142 */
2143static void tcp_timeout_skbs(struct sock *sk)
2144{
2145        struct tcp_sock *tp = tcp_sk(sk);
2146        struct sk_buff *skb;
2147
2148        if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2149                return;
2150
2151        skb = tp->scoreboard_skb_hint;
2152        if (tp->scoreboard_skb_hint == NULL)
2153                skb = tcp_write_queue_head(sk);
2154
2155        tcp_for_write_queue_from(skb, sk) {
2156                if (skb == tcp_send_head(sk))
2157                        break;
2158                if (!tcp_skb_timedout(sk, skb))
2159                        break;
2160
2161                tcp_skb_mark_lost(tp, skb);
2162        }
2163
2164        tp->scoreboard_skb_hint = skb;
2165
2166        tcp_verify_left_out(tp);
2167}
2168
2169/* Detect loss in event "A" above by marking head of queue up as lost.
2170 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2171 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2172 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2173 * the maximum SACKed segments to pass before reaching this limit.
2174 */
2175static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2176{
2177        struct tcp_sock *tp = tcp_sk(sk);
2178        struct sk_buff *skb;
2179        int cnt, oldcnt;
2180        int err;
2181        unsigned int mss;
2182        /* Use SACK to deduce losses of new sequences sent during recovery */
2183        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2184
2185        WARN_ON(packets > tp->packets_out);
2186        if (tp->lost_skb_hint) {
2187                skb = tp->lost_skb_hint;
2188                cnt = tp->lost_cnt_hint;
2189                /* Head already handled? */
2190                if (mark_head && skb != tcp_write_queue_head(sk))
2191                        return;
2192        } else {
2193                skb = tcp_write_queue_head(sk);
2194                cnt = 0;
2195        }
2196
2197        tcp_for_write_queue_from(skb, sk) {
2198                if (skb == tcp_send_head(sk))
2199                        break;
2200                /* TODO: do this better */
2201                /* this is not the most efficient way to do this... */
2202                tp->lost_skb_hint = skb;
2203                tp->lost_cnt_hint = cnt;
2204
2205                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2206                        break;
2207
2208                oldcnt = cnt;
2209                if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2210                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2211                        cnt += tcp_skb_pcount(skb);
2212
2213                if (cnt > packets) {
2214                        if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2215                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2216                            (oldcnt >= packets))
2217                                break;
2218
2219                        mss = skb_shinfo(skb)->gso_size;
2220                        err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2221                        if (err < 0)
2222                                break;
2223                        cnt = packets;
2224                }
2225
2226                tcp_skb_mark_lost(tp, skb);
2227
2228                if (mark_head)
2229                        break;
2230        }
2231        tcp_verify_left_out(tp);
2232}
2233
2234/* Account newly detected lost packet(s) */
2235
2236static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237{
2238        struct tcp_sock *tp = tcp_sk(sk);
2239
2240        if (tcp_is_reno(tp)) {
2241                tcp_mark_head_lost(sk, 1, 1);
2242        } else if (tcp_is_fack(tp)) {
2243                int lost = tp->fackets_out - tp->reordering;
2244                if (lost <= 0)
2245                        lost = 1;
2246                tcp_mark_head_lost(sk, lost, 0);
2247        } else {
2248                int sacked_upto = tp->sacked_out - tp->reordering;
2249                if (sacked_upto >= 0)
2250                        tcp_mark_head_lost(sk, sacked_upto, 0);
2251                else if (fast_rexmit)
2252                        tcp_mark_head_lost(sk, 1, 1);
2253        }
2254
2255        tcp_timeout_skbs(sk);
2256}
2257
2258/* CWND moderation, preventing bursts due to too big ACKs
2259 * in dubious situations.
2260 */
2261static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2262{
2263        tp->snd_cwnd = min(tp->snd_cwnd,
2264                           tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2265        tp->snd_cwnd_stamp = tcp_time_stamp;
2266}
2267
2268/* Nothing was retransmitted or returned timestamp is less
2269 * than timestamp of the first retransmission.
2270 */
2271static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2272{
2273        return !tp->retrans_stamp ||
2274                (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2275                 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2276}
2277
2278/* Undo procedures. */
2279
2280#if FASTRETRANS_DEBUG > 1
2281static void DBGUNDO(struct sock *sk, const char *msg)
2282{
2283        struct tcp_sock *tp = tcp_sk(sk);
2284        struct inet_sock *inet = inet_sk(sk);
2285
2286        if (sk->sk_family == AF_INET) {
2287                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2288                         msg,
2289                         &inet->inet_daddr, ntohs(inet->inet_dport),
2290                         tp->snd_cwnd, tcp_left_out(tp),
2291                         tp->snd_ssthresh, tp->prior_ssthresh,
2292                         tp->packets_out);
2293        }
2294#if IS_ENABLED(CONFIG_IPV6)
2295        else if (sk->sk_family == AF_INET6) {
2296                struct ipv6_pinfo *np = inet6_sk(sk);
2297                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2298                         msg,
2299                         &np->daddr, ntohs(inet->inet_dport),
2300                         tp->snd_cwnd, tcp_left_out(tp),
2301                         tp->snd_ssthresh, tp->prior_ssthresh,
2302                         tp->packets_out);
2303        }
2304#endif
2305}
2306#else
2307#define DBGUNDO(x...) do { } while (0)
2308#endif
2309
2310static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2311{
2312        struct tcp_sock *tp = tcp_sk(sk);
2313
2314        if (tp->prior_ssthresh) {
2315                const struct inet_connection_sock *icsk = inet_csk(sk);
2316
2317                if (icsk->icsk_ca_ops->undo_cwnd)
2318                        tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2319                else
2320                        tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2321
2322                if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2323                        tp->snd_ssthresh = tp->prior_ssthresh;
2324                        TCP_ECN_withdraw_cwr(tp);
2325                }
2326        } else {
2327                tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2328        }
2329        tp->snd_cwnd_stamp = tcp_time_stamp;
2330}
2331
2332static inline bool tcp_may_undo(const struct tcp_sock *tp)
2333{
2334        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2335}
2336
2337/* People celebrate: "We love our President!" */
2338static bool tcp_try_undo_recovery(struct sock *sk)
2339{
2340        struct tcp_sock *tp = tcp_sk(sk);
2341
2342        if (tcp_may_undo(tp)) {
2343                int mib_idx;
2344
2345                /* Happy end! We did not retransmit anything
2346                 * or our original transmission succeeded.
2347                 */
2348                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2349                tcp_undo_cwr(sk, true);
2350                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2351                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2352                else
2353                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2354
2355                NET_INC_STATS_BH(sock_net(sk), mib_idx);
2356                tp->undo_marker = 0;
2357        }
2358        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2359                /* Hold old state until something *above* high_seq
2360                 * is ACKed. For Reno it is MUST to prevent false
2361                 * fast retransmits (RFC2582). SACK TCP is safe. */
2362                tcp_moderate_cwnd(tp);
2363                return true;
2364        }
2365        tcp_set_ca_state(sk, TCP_CA_Open);
2366        return false;
2367}
2368
2369/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2370static void tcp_try_undo_dsack(struct sock *sk)
2371{
2372        struct tcp_sock *tp = tcp_sk(sk);
2373
2374        if (tp->undo_marker && !tp->undo_retrans) {
2375                DBGUNDO(sk, "D-SACK");
2376                tcp_undo_cwr(sk, true);
2377                tp->undo_marker = 0;
2378                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2379        }
2380}
2381
2382/* We can clear retrans_stamp when there are no retransmissions in the
2383 * window. It would seem that it is trivially available for us in
2384 * tp->retrans_out, however, that kind of assumptions doesn't consider
2385 * what will happen if errors occur when sending retransmission for the
2386 * second time. ...It could the that such segment has only
2387 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2388 * the head skb is enough except for some reneging corner cases that
2389 * are not worth the effort.
2390 *
2391 * Main reason for all this complexity is the fact that connection dying
2392 * time now depends on the validity of the retrans_stamp, in particular,
2393 * that successive retransmissions of a segment must not advance
2394 * retrans_stamp under any conditions.
2395 */
2396static bool tcp_any_retrans_done(const struct sock *sk)
2397{
2398        const struct tcp_sock *tp = tcp_sk(sk);
2399        struct sk_buff *skb;
2400
2401        if (tp->retrans_out)
2402                return true;
2403
2404        skb = tcp_write_queue_head(sk);
2405        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2406                return true;
2407
2408        return false;
2409}
2410
2411/* Undo during fast recovery after partial ACK. */
2412
2413static int tcp_try_undo_partial(struct sock *sk, int acked)
2414{
2415        struct tcp_sock *tp = tcp_sk(sk);
2416        /* Partial ACK arrived. Force Hoe's retransmit. */
2417        int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2418
2419        if (tcp_may_undo(tp)) {
2420                /* Plain luck! Hole if filled with delayed
2421                 * packet, rather than with a retransmit.
2422                 */
2423                if (!tcp_any_retrans_done(sk))
2424                        tp->retrans_stamp = 0;
2425
2426                tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2427
2428                DBGUNDO(sk, "Hoe");
2429                tcp_undo_cwr(sk, false);
2430                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2431
2432                /* So... Do not make Hoe's retransmit yet.
2433                 * If the first packet was delayed, the rest
2434                 * ones are most probably delayed as well.
2435                 */
2436                failed = 0;
2437        }
2438        return failed;
2439}
2440
2441/* Undo during loss recovery after partial ACK or using F-RTO. */
2442static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2443{
2444        struct tcp_sock *tp = tcp_sk(sk);
2445
2446        if (frto_undo || tcp_may_undo(tp)) {
2447                struct sk_buff *skb;
2448                tcp_for_write_queue(skb, sk) {
2449                        if (skb == tcp_send_head(sk))
2450                                break;
2451                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2452                }
2453
2454                tcp_clear_all_retrans_hints(tp);
2455
2456                DBGUNDO(sk, "partial loss");
2457                tp->lost_out = 0;
2458                tcp_undo_cwr(sk, true);
2459                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2460                if (frto_undo)
2461                        NET_INC_STATS_BH(sock_net(sk),
2462                                         LINUX_MIB_TCPSPURIOUSRTOS);
2463                inet_csk(sk)->icsk_retransmits = 0;
2464                tp->undo_marker = 0;
2465                if (frto_undo || tcp_is_sack(tp))
2466                        tcp_set_ca_state(sk, TCP_CA_Open);
2467                return true;
2468        }
2469        return false;
2470}
2471
2472/* The cwnd reduction in CWR and Recovery use the PRR algorithm
2473 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2474 * It computes the number of packets to send (sndcnt) based on packets newly
2475 * delivered:
2476 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2477 *      cwnd reductions across a full RTT.
2478 *   2) If packets in flight is lower than ssthresh (such as due to excess
2479 *      losses and/or application stalls), do not perform any further cwnd
2480 *      reductions, but instead slow start up to ssthresh.
2481 */
2482static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2483{
2484        struct tcp_sock *tp = tcp_sk(sk);
2485
2486        tp->high_seq = tp->snd_nxt;
2487        tp->tlp_high_seq = 0;
2488        tp->snd_cwnd_cnt = 0;
2489        tp->prior_cwnd = tp->snd_cwnd;
2490        tp->prr_delivered = 0;
2491        tp->prr_out = 0;
2492        if (set_ssthresh)
2493                tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2494        TCP_ECN_queue_cwr(tp);
2495}
2496
2497static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2498                               int fast_rexmit)
2499{
2500        struct tcp_sock *tp = tcp_sk(sk);
2501        int sndcnt = 0;
2502        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2503
2504        tp->prr_delivered += newly_acked_sacked;
2505        if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2506                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2507                               tp->prior_cwnd - 1;
2508                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2509        } else {
2510                sndcnt = min_t(int, delta,
2511                               max_t(int, tp->prr_delivered - tp->prr_out,
2512                                     newly_acked_sacked) + 1);
2513        }
2514
2515        sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2516        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2517}
2518
2519static inline void tcp_end_cwnd_reduction(struct sock *sk)
2520{
2521        struct tcp_sock *tp = tcp_sk(sk);
2522
2523        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2524        if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2525            (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2526                tp->snd_cwnd = tp->snd_ssthresh;
2527                tp->snd_cwnd_stamp = tcp_time_stamp;
2528        }
2529        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2530}
2531
2532/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2533void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2534{
2535        struct tcp_sock *tp = tcp_sk(sk);
2536
2537        tp->prior_ssthresh = 0;
2538        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2539                tp->undo_marker = 0;
2540                tcp_init_cwnd_reduction(sk, set_ssthresh);
2541                tcp_set_ca_state(sk, TCP_CA_CWR);
2542        }
2543}
2544
2545static void tcp_try_keep_open(struct sock *sk)
2546{
2547        struct tcp_sock *tp = tcp_sk(sk);
2548        int state = TCP_CA_Open;
2549
2550        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2551                state = TCP_CA_Disorder;
2552
2553        if (inet_csk(sk)->icsk_ca_state != state) {
2554                tcp_set_ca_state(sk, state);
2555                tp->high_seq = tp->snd_nxt;
2556        }
2557}
2558
2559static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2560{
2561        struct tcp_sock *tp = tcp_sk(sk);
2562
2563        tcp_verify_left_out(tp);
2564
2565        if (!tcp_any_retrans_done(sk))
2566                tp->retrans_stamp = 0;
2567
2568        if (flag & FLAG_ECE)
2569                tcp_enter_cwr(sk, 1);
2570
2571        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2572                tcp_try_keep_open(sk);
2573                if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2574                        tcp_moderate_cwnd(tp);
2575        } else {
2576                tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2577        }
2578}
2579
2580static void tcp_mtup_probe_failed(struct sock *sk)
2581{
2582        struct inet_connection_sock *icsk = inet_csk(sk);
2583
2584        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2585        icsk->icsk_mtup.probe_size = 0;
2586}
2587
2588static void tcp_mtup_probe_success(struct sock *sk)
2589{
2590        struct tcp_sock *tp = tcp_sk(sk);
2591        struct inet_connection_sock *icsk = inet_csk(sk);
2592
2593        /* FIXME: breaks with very large cwnd */
2594        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2595        tp->snd_cwnd = tp->snd_cwnd *
2596                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2597                       icsk->icsk_mtup.probe_size;
2598        tp->snd_cwnd_cnt = 0;
2599        tp->snd_cwnd_stamp = tcp_time_stamp;
2600        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2601
2602        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2603        icsk->icsk_mtup.probe_size = 0;
2604        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2605}
2606
2607/* Do a simple retransmit without using the backoff mechanisms in
2608 * tcp_timer. This is used for path mtu discovery.
2609 * The socket is already locked here.
2610 */
2611void tcp_simple_retransmit(struct sock *sk)
2612{
2613        const struct inet_connection_sock *icsk = inet_csk(sk);
2614        struct tcp_sock *tp = tcp_sk(sk);
2615        struct sk_buff *skb;
2616        unsigned int mss = tcp_current_mss(sk);
2617        u32 prior_lost = tp->lost_out;
2618
2619        tcp_for_write_queue(skb, sk) {
2620                if (skb == tcp_send_head(sk))
2621                        break;
2622                if (tcp_skb_seglen(skb) > mss &&
2623                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626                                tp->retrans_out -= tcp_skb_pcount(skb);
2627                        }
2628                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2629                }
2630        }
2631
2632        tcp_clear_retrans_hints_partial(tp);
2633
2634        if (prior_lost == tp->lost_out)
2635                return;
2636
2637        if (tcp_is_reno(tp))
2638                tcp_limit_reno_sacked(tp);
2639
2640        tcp_verify_left_out(tp);
2641
2642        /* Don't muck with the congestion window here.
2643         * Reason is that we do not increase amount of _data_
2644         * in network, but units changed and effective
2645         * cwnd/ssthresh really reduced now.
2646         */
2647        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648                tp->high_seq = tp->snd_nxt;
2649                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650                tp->prior_ssthresh = 0;
2651                tp->undo_marker = 0;
2652                tcp_set_ca_state(sk, TCP_CA_Loss);
2653        }
2654        tcp_xmit_retransmit_queue(sk);
2655}
2656EXPORT_SYMBOL(tcp_simple_retransmit);
2657
2658static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659{
2660        struct tcp_sock *tp = tcp_sk(sk);
2661        int mib_idx;
2662
2663        if (tcp_is_reno(tp))
2664                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665        else
2666                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667
2668        NET_INC_STATS_BH(sock_net(sk), mib_idx);
2669
2670        tp->prior_ssthresh = 0;
2671        tp->undo_marker = tp->snd_una;
2672        tp->undo_retrans = tp->retrans_out;
2673
2674        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2675                if (!ece_ack)
2676                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2677                tcp_init_cwnd_reduction(sk, true);
2678        }
2679        tcp_set_ca_state(sk, TCP_CA_Recovery);
2680}
2681
2682/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2683 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2684 */
2685static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2686{
2687        struct inet_connection_sock *icsk = inet_csk(sk);
2688        struct tcp_sock *tp = tcp_sk(sk);
2689        bool recovered = !before(tp->snd_una, tp->high_seq);
2690
2691        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2692                if (flag & FLAG_ORIG_SACK_ACKED) {
2693                        /* Step 3.b. A timeout is spurious if not all data are
2694                         * lost, i.e., never-retransmitted data are (s)acked.
2695                         */
2696                        tcp_try_undo_loss(sk, true);
2697                        return;
2698                }
2699                if (after(tp->snd_nxt, tp->high_seq) &&
2700                    (flag & FLAG_DATA_SACKED || is_dupack)) {
2701                        tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2702                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2703                        tp->high_seq = tp->snd_nxt;
2704                        __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2705                                                  TCP_NAGLE_OFF);
2706                        if (after(tp->snd_nxt, tp->high_seq))
2707                                return; /* Step 2.b */
2708                        tp->frto = 0;
2709                }
2710        }
2711
2712        if (recovered) {
2713                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2714                icsk->icsk_retransmits = 0;
2715                tcp_try_undo_recovery(sk);
2716                return;
2717        }
2718        if (flag & FLAG_DATA_ACKED)
2719                icsk->icsk_retransmits = 0;
2720        if (tcp_is_reno(tp)) {
2721                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2722                 * delivered. Lower inflight to clock out (re)tranmissions.
2723                 */
2724                if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2725                        tcp_add_reno_sack(sk);
2726                else if (flag & FLAG_SND_UNA_ADVANCED)
2727                        tcp_reset_reno_sack(tp);
2728        }
2729        if (tcp_try_undo_loss(sk, false))
2730                return;
2731        tcp_xmit_retransmit_queue(sk);
2732}
2733
2734/* Process an event, which can update packets-in-flight not trivially.
2735 * Main goal of this function is to calculate new estimate for left_out,
2736 * taking into account both packets sitting in receiver's buffer and
2737 * packets lost by network.
2738 *
2739 * Besides that it does CWND reduction, when packet loss is detected
2740 * and changes state of machine.
2741 *
2742 * It does _not_ decide what to send, it is made in function
2743 * tcp_xmit_retransmit_queue().
2744 */
2745static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2746                                  int prior_sacked, int prior_packets,
2747                                  bool is_dupack, int flag)
2748{
2749        struct inet_connection_sock *icsk = inet_csk(sk);
2750        struct tcp_sock *tp = tcp_sk(sk);
2751        int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2752                                    (tcp_fackets_out(tp) > tp->reordering));
2753        int newly_acked_sacked = 0;
2754        int fast_rexmit = 0;
2755
2756        if (WARN_ON(!tp->packets_out && tp->sacked_out))
2757                tp->sacked_out = 0;
2758        if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2759                tp->fackets_out = 0;
2760
2761        /* Now state machine starts.
2762         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2763        if (flag & FLAG_ECE)
2764                tp->prior_ssthresh = 0;
2765
2766        /* B. In all the states check for reneging SACKs. */
2767        if (tcp_check_sack_reneging(sk, flag))
2768                return;
2769
2770        /* C. Check consistency of the current state. */
2771        tcp_verify_left_out(tp);
2772
2773        /* D. Check state exit conditions. State can be terminated
2774         *    when high_seq is ACKed. */
2775        if (icsk->icsk_ca_state == TCP_CA_Open) {
2776                WARN_ON(tp->retrans_out != 0);
2777                tp->retrans_stamp = 0;
2778        } else if (!before(tp->snd_una, tp->high_seq)) {
2779                switch (icsk->icsk_ca_state) {
2780                case TCP_CA_CWR:
2781                        /* CWR is to be held something *above* high_seq
2782                         * is ACKed for CWR bit to reach receiver. */
2783                        if (tp->snd_una != tp->high_seq) {
2784                                tcp_end_cwnd_reduction(sk);
2785                                tcp_set_ca_state(sk, TCP_CA_Open);
2786                        }
2787                        break;
2788
2789                case TCP_CA_Recovery:
2790                        if (tcp_is_reno(tp))
2791                                tcp_reset_reno_sack(tp);
2792                        if (tcp_try_undo_recovery(sk))
2793                                return;
2794                        tcp_end_cwnd_reduction(sk);
2795                        break;
2796                }
2797        }
2798
2799        /* E. Process state. */
2800        switch (icsk->icsk_ca_state) {
2801        case TCP_CA_Recovery:
2802                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2803                        if (tcp_is_reno(tp) && is_dupack)
2804                                tcp_add_reno_sack(sk);
2805                } else
2806                        do_lost = tcp_try_undo_partial(sk, pkts_acked);
2807                newly_acked_sacked = prior_packets - tp->packets_out +
2808                                     tp->sacked_out - prior_sacked;
2809                break;
2810        case TCP_CA_Loss:
2811                tcp_process_loss(sk, flag, is_dupack);
2812                if (icsk->icsk_ca_state != TCP_CA_Open)
2813                        return;
2814                /* Fall through to processing in Open state. */
2815        default:
2816                if (tcp_is_reno(tp)) {
2817                        if (flag & FLAG_SND_UNA_ADVANCED)
2818                                tcp_reset_reno_sack(tp);
2819                        if (is_dupack)
2820                                tcp_add_reno_sack(sk);
2821                }
2822                newly_acked_sacked = prior_packets - tp->packets_out +
2823                                     tp->sacked_out - prior_sacked;
2824
2825                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2826                        tcp_try_undo_dsack(sk);
2827
2828                if (!tcp_time_to_recover(sk, flag)) {
2829                        tcp_try_to_open(sk, flag, newly_acked_sacked);
2830                        return;
2831                }
2832
2833                /* MTU probe failure: don't reduce cwnd */
2834                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2835                    icsk->icsk_mtup.probe_size &&
2836                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2837                        tcp_mtup_probe_failed(sk);
2838                        /* Restores the reduction we did in tcp_mtup_probe() */
2839                        tp->snd_cwnd++;
2840                        tcp_simple_retransmit(sk);
2841                        return;
2842                }
2843
2844                /* Otherwise enter Recovery state */
2845                tcp_enter_recovery(sk, (flag & FLAG_ECE));
2846                fast_rexmit = 1;
2847        }
2848
2849        if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2850                tcp_update_scoreboard(sk, fast_rexmit);
2851        tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2852        tcp_xmit_retransmit_queue(sk);
2853}
2854
2855void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2856{
2857        tcp_rtt_estimator(sk, seq_rtt);
2858        tcp_set_rto(sk);
2859        inet_csk(sk)->icsk_backoff = 0;
2860}
2861EXPORT_SYMBOL(tcp_valid_rtt_meas);
2862
2863/* Read draft-ietf-tcplw-high-performance before mucking
2864 * with this code. (Supersedes RFC1323)
2865 */
2866static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2867{
2868        /* RTTM Rule: A TSecr value received in a segment is used to
2869         * update the averaged RTT measurement only if the segment
2870         * acknowledges some new data, i.e., only if it advances the
2871         * left edge of the send window.
2872         *
2873         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2874         * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2875         *
2876         * Changed: reset backoff as soon as we see the first valid sample.
2877         * If we do not, we get strongly overestimated rto. With timestamps
2878         * samples are accepted even from very old segments: f.e., when rtt=1
2879         * increases to 8, we retransmit 5 times and after 8 seconds delayed
2880         * answer arrives rto becomes 120 seconds! If at least one of segments
2881         * in window is lost... Voila.                          --ANK (010210)
2882         */
2883        struct tcp_sock *tp = tcp_sk(sk);
2884
2885        tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2886}
2887
2888static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2889{
2890        /* We don't have a timestamp. Can only use
2891         * packets that are not retransmitted to determine
2892         * rtt estimates. Also, we must not reset the
2893         * backoff for rto until we get a non-retransmitted
2894         * packet. This allows us to deal with a situation
2895         * where the network delay has increased suddenly.
2896         * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2897         */
2898
2899        if (flag & FLAG_RETRANS_DATA_ACKED)
2900                return;
2901
2902        tcp_valid_rtt_meas(sk, seq_rtt);
2903}
2904
2905static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2906                                      const s32 seq_rtt)
2907{
2908        const struct tcp_sock *tp = tcp_sk(sk);
2909        /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2910        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2911                tcp_ack_saw_tstamp(sk, flag);
2912        else if (seq_rtt >= 0)
2913                tcp_ack_no_tstamp(sk, seq_rtt, flag);
2914}
2915
2916static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2917{
2918        const struct inet_connection_sock *icsk = inet_csk(sk);
2919        icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2920        tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2921}
2922
2923/* Restart timer after forward progress on connection.
2924 * RFC2988 recommends to restart timer to now+rto.
2925 */
2926void tcp_rearm_rto(struct sock *sk)
2927{
2928        const struct inet_connection_sock *icsk = inet_csk(sk);
2929        struct tcp_sock *tp = tcp_sk(sk);
2930
2931        /* If the retrans timer is currently being used by Fast Open
2932         * for SYN-ACK retrans purpose, stay put.
2933         */
2934        if (tp->fastopen_rsk)
2935                return;
2936
2937        if (!tp->packets_out) {
2938                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2939        } else {
2940                u32 rto = inet_csk(sk)->icsk_rto;
2941                /* Offset the time elapsed after installing regular RTO */
2942                if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2943                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2944                        struct sk_buff *skb = tcp_write_queue_head(sk);
2945                        const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2946                        s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2947                        /* delta may not be positive if the socket is locked
2948                         * when the retrans timer fires and is rescheduled.
2949                         */
2950                        if (delta > 0)
2951                                rto = delta;
2952                }
2953                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2954                                          TCP_RTO_MAX);
2955        }
2956}
2957
2958/* This function is called when the delayed ER timer fires. TCP enters
2959 * fast recovery and performs fast-retransmit.
2960 */
2961void tcp_resume_early_retransmit(struct sock *sk)
2962{
2963        struct tcp_sock *tp = tcp_sk(sk);
2964
2965        tcp_rearm_rto(sk);
2966
2967        /* Stop if ER is disabled after the delayed ER timer is scheduled */
2968        if (!tp->do_early_retrans)
2969                return;
2970
2971        tcp_enter_recovery(sk, false);
2972        tcp_update_scoreboard(sk, 1);
2973        tcp_xmit_retransmit_queue(sk);
2974}
2975
2976/* If we get here, the whole TSO packet has not been acked. */
2977static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2978{
2979        struct tcp_sock *tp = tcp_sk(sk);
2980        u32 packets_acked;
2981
2982        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2983
2984        packets_acked = tcp_skb_pcount(skb);
2985        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2986                return 0;
2987        packets_acked -= tcp_skb_pcount(skb);
2988
2989        if (packets_acked) {
2990                BUG_ON(tcp_skb_pcount(skb) == 0);
2991                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2992        }
2993
2994        return packets_acked;
2995}
2996
2997/* Remove acknowledged frames from the retransmission queue. If our packet
2998 * is before the ack sequence we can discard it as it's confirmed to have
2999 * arrived at the other end.
3000 */
3001static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3002                               u32 prior_snd_una)
3003{
3004        struct tcp_sock *tp = tcp_sk(sk);
3005        const struct inet_connection_sock *icsk = inet_csk(sk);
3006        struct sk_buff *skb;
3007        u32 now = tcp_time_stamp;
3008        int fully_acked = true;
3009        int flag = 0;
3010        u32 pkts_acked = 0;
3011        u32 reord = tp->packets_out;
3012        u32 prior_sacked = tp->sacked_out;
3013        s32 seq_rtt = -1;
3014        s32 ca_seq_rtt = -1;
3015        ktime_t last_ackt = net_invalid_timestamp();
3016
3017        while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3018                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3019                u32 acked_pcount;
3020                u8 sacked = scb->sacked;
3021
3022                /* Determine how many packets and what bytes were acked, tso and else */
3023                if (after(scb->end_seq, tp->snd_una)) {
3024                        if (tcp_skb_pcount(skb) == 1 ||
3025                            !after(tp->snd_una, scb->seq))
3026                                break;
3027
3028                        acked_pcount = tcp_tso_acked(sk, skb);
3029                        if (!acked_pcount)
3030                                break;
3031
3032                        fully_acked = false;
3033                } else {
3034                        acked_pcount = tcp_skb_pcount(skb);
3035                }
3036
3037                if (sacked & TCPCB_RETRANS) {
3038                        if (sacked & TCPCB_SACKED_RETRANS)
3039                                tp->retrans_out -= acked_pcount;
3040                        flag |= FLAG_RETRANS_DATA_ACKED;
3041                        ca_seq_rtt = -1;
3042                        seq_rtt = -1;
3043                } else {
3044                        ca_seq_rtt = now - scb->when;
3045                        last_ackt = skb->tstamp;
3046                        if (seq_rtt < 0) {
3047                                seq_rtt = ca_seq_rtt;
3048                        }
3049                        if (!(sacked & TCPCB_SACKED_ACKED))
3050                                reord = min(pkts_acked, reord);
3051                        if (!after(scb->end_seq, tp->high_seq))
3052                                flag |= FLAG_ORIG_SACK_ACKED;
3053                }
3054
3055                if (sacked & TCPCB_SACKED_ACKED)
3056                        tp->sacked_out -= acked_pcount;
3057                if (sacked & TCPCB_LOST)
3058                        tp->lost_out -= acked_pcount;
3059
3060                tp->packets_out -= acked_pcount;
3061                pkts_acked += acked_pcount;
3062
3063                /* Initial outgoing SYN's get put onto the write_queue
3064                 * just like anything else we transmit.  It is not
3065                 * true data, and if we misinform our callers that
3066                 * this ACK acks real data, we will erroneously exit
3067                 * connection startup slow start one packet too
3068                 * quickly.  This is severely frowned upon behavior.
3069                 */
3070                if (!(scb->tcp_flags & TCPHDR_SYN)) {
3071                        flag |= FLAG_DATA_ACKED;
3072                } else {
3073                        flag |= FLAG_SYN_ACKED;
3074                        tp->retrans_stamp = 0;
3075                }
3076
3077                if (!fully_acked)
3078                        break;
3079
3080                tcp_unlink_write_queue(skb, sk);
3081                sk_wmem_free_skb(sk, skb);
3082                tp->scoreboard_skb_hint = NULL;
3083                if (skb == tp->retransmit_skb_hint)
3084                        tp->retransmit_skb_hint = NULL;
3085                if (skb == tp->lost_skb_hint)
3086                        tp->lost_skb_hint = NULL;
3087        }
3088
3089        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3090                tp->snd_up = tp->snd_una;
3091
3092        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3093                flag |= FLAG_SACK_RENEGING;
3094
3095        if (flag & FLAG_ACKED) {
3096                const struct tcp_congestion_ops *ca_ops
3097                        = inet_csk(sk)->icsk_ca_ops;
3098
3099                if (unlikely(icsk->icsk_mtup.probe_size &&
3100                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3101                        tcp_mtup_probe_success(sk);
3102                }
3103
3104                tcp_ack_update_rtt(sk, flag, seq_rtt);
3105                tcp_rearm_rto(sk);
3106
3107                if (tcp_is_reno(tp)) {
3108                        tcp_remove_reno_sacks(sk, pkts_acked);
3109                } else {
3110                        int delta;
3111
3112                        /* Non-retransmitted hole got filled? That's reordering */
3113                        if (reord < prior_fackets)
3114                                tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3115
3116                        delta = tcp_is_fack(tp) ? pkts_acked :
3117                                                  prior_sacked - tp->sacked_out;
3118                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3119                }
3120
3121                tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3122
3123                if (ca_ops->pkts_acked) {
3124                        s32 rtt_us = -1;
3125
3126                        /* Is the ACK triggering packet unambiguous? */
3127                        if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3128                                /* High resolution needed and available? */
3129                                if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3130                                    !ktime_equal(last_ackt,
3131                                                 net_invalid_timestamp()))
3132                                        rtt_us = ktime_us_delta(ktime_get_real(),
3133                                                                last_ackt);
3134                                else if (ca_seq_rtt >= 0)
3135                                        rtt_us = jiffies_to_usecs(ca_seq_rtt);
3136                        }
3137
3138                        ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3139                }
3140        }
3141
3142#if FASTRETRANS_DEBUG > 0
3143        WARN_ON((int)tp->sacked_out < 0);
3144        WARN_ON((int)tp->lost_out < 0);
3145        WARN_ON((int)tp->retrans_out < 0);
3146        if (!tp->packets_out && tcp_is_sack(tp)) {
3147                icsk = inet_csk(sk);
3148                if (tp->lost_out) {
3149                        pr_debug("Leak l=%u %d\n",
3150                                 tp->lost_out, icsk->icsk_ca_state);
3151                        tp->lost_out = 0;
3152                }
3153                if (tp->sacked_out) {
3154                        pr_debug("Leak s=%u %d\n",
3155                                 tp->sacked_out, icsk->icsk_ca_state);
3156                        tp->sacked_out = 0;
3157                }
3158                if (tp->retrans_out) {
3159                        pr_debug("Leak r=%u %d\n",
3160                                 tp->retrans_out, icsk->icsk_ca_state);
3161                        tp->retrans_out = 0;
3162                }
3163        }
3164#endif
3165        return flag;
3166}
3167
3168static void tcp_ack_probe(struct sock *sk)
3169{
3170        const struct tcp_sock *tp = tcp_sk(sk);
3171        struct inet_connection_sock *icsk = inet_csk(sk);
3172
3173        /* Was it a usable window open? */
3174
3175        if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3176                icsk->icsk_backoff = 0;
3177                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3178                /* Socket must be waked up by subsequent tcp_data_snd_check().
3179                 * This function is not for random using!
3180                 */
3181        } else {
3182                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3183                                          min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3184                                          TCP_RTO_MAX);
3185        }
3186}
3187
3188static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3189{
3190        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3191                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3192}
3193
3194static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3195{
3196        const struct tcp_sock *tp = tcp_sk(sk);
3197        return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3198                !tcp_in_cwnd_reduction(sk);
3199}
3200
3201/* Check that window update is acceptable.
3202 * The function assumes that snd_una<=ack<=snd_next.
3203 */
3204static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3205                                        const u32 ack, const u32 ack_seq,
3206                                        const u32 nwin)
3207{
3208        return  after(ack, tp->snd_una) ||
3209                after(ack_seq, tp->snd_wl1) ||
3210                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3211}
3212
3213/* Update our send window.
3214 *
3215 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3216 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3217 */
3218static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3219                                 u32 ack_seq)
3220{
3221        struct tcp_sock *tp = tcp_sk(sk);
3222        int flag = 0;
3223        u32 nwin = ntohs(tcp_hdr(skb)->window);
3224
3225        if (likely(!tcp_hdr(skb)->syn))
3226                nwin <<= tp->rx_opt.snd_wscale;
3227
3228        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3229                flag |= FLAG_WIN_UPDATE;
3230                tcp_update_wl(tp, ack_seq);
3231
3232                if (tp->snd_wnd != nwin) {
3233                        tp->snd_wnd = nwin;
3234
3235                        /* Note, it is the only place, where
3236                         * fast path is recovered for sending TCP.
3237                         */
3238                        tp->pred_flags = 0;
3239                        tcp_fast_path_check(sk);
3240
3241                        if (nwin > tp->max_window) {
3242                                tp->max_window = nwin;
3243                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3244                        }
3245                }
3246        }
3247
3248        tp->snd_una = ack;
3249
3250        return flag;
3251}
3252
3253/* RFC 5961 7 [ACK Throttling] */
3254static void tcp_send_challenge_ack(struct sock *sk)
3255{
3256        /* unprotected vars, we dont care of overwrites */
3257        static u32 challenge_timestamp;
3258        static unsigned int challenge_count;
3259        u32 now = jiffies / HZ;
3260
3261        if (now != challenge_timestamp) {
3262                challenge_timestamp = now;
3263                challenge_count = 0;
3264        }
3265        if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3266                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3267                tcp_send_ack(sk);
3268        }
3269}
3270
3271static void tcp_store_ts_recent(struct tcp_sock *tp)
3272{
3273        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3274        tp->rx_opt.ts_recent_stamp = get_seconds();
3275}
3276
3277static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3278{
3279        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3280                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3281                 * extra check below makes sure this can only happen
3282                 * for pure ACK frames.  -DaveM
3283                 *
3284                 * Not only, also it occurs for expired timestamps.
3285                 */
3286
3287                if (tcp_paws_check(&tp->rx_opt, 0))
3288                        tcp_store_ts_recent(tp);
3289        }
3290}
3291
3292/* This routine deals with acks during a TLP episode.
3293 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3294 */
3295static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3296{
3297        struct tcp_sock *tp = tcp_sk(sk);
3298        bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3299                             !(flag & (FLAG_SND_UNA_ADVANCED |
3300                                       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3301
3302        /* Mark the end of TLP episode on receiving TLP dupack or when
3303         * ack is after tlp_high_seq.
3304         */
3305        if (is_tlp_dupack) {
3306                tp->tlp_high_seq = 0;
3307                return;
3308        }
3309
3310        if (after(ack, tp->tlp_high_seq)) {
3311                tp->tlp_high_seq = 0;
3312                /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3313                if (!(flag & FLAG_DSACKING_ACK)) {
3314                        tcp_init_cwnd_reduction(sk, true);
3315                        tcp_set_ca_state(sk, TCP_CA_CWR);
3316                        tcp_end_cwnd_reduction(sk);
3317                        tcp_set_ca_state(sk, TCP_CA_Open);
3318                        NET_INC_STATS_BH(sock_net(sk),
3319                                         LINUX_MIB_TCPLOSSPROBERECOVERY);
3320                }
3321        }
3322}
3323
3324/* This routine deals with incoming acks, but not outgoing ones. */
3325static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3326{
3327        struct inet_connection_sock *icsk = inet_csk(sk);
3328        struct tcp_sock *tp = tcp_sk(sk);
3329        u32 prior_snd_una = tp->snd_una;
3330        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3331        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3332        bool is_dupack = false;
3333        u32 prior_in_flight;
3334        u32 prior_fackets;
3335        int prior_packets = tp->packets_out;
3336        int prior_sacked = tp->sacked_out;
3337        int pkts_acked = 0;
3338        int previous_packets_out = 0;
3339
3340        /* If the ack is older than previous acks
3341         * then we can probably ignore it.
3342         */
3343        if (before(ack, prior_snd_una)) {
3344                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3345                if (before(ack, prior_snd_una - tp->max_window)) {
3346                        tcp_send_challenge_ack(sk);
3347                        return -1;
3348                }
3349                goto old_ack;
3350        }
3351
3352        /* If the ack includes data we haven't sent yet, discard
3353         * this segment (RFC793 Section 3.9).
3354         */
3355        if (after(ack, tp->snd_nxt))
3356                goto invalid_ack;
3357
3358        if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3359            icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3360                tcp_rearm_rto(sk);
3361
3362        if (after(ack, prior_snd_una))
3363                flag |= FLAG_SND_UNA_ADVANCED;
3364
3365        prior_fackets = tp->fackets_out;
3366        prior_in_flight = tcp_packets_in_flight(tp);
3367
3368        /* ts_recent update must be made after we are sure that the packet
3369         * is in window.
3370         */
3371        if (flag & FLAG_UPDATE_TS_RECENT)
3372                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3373
3374        if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3375                /* Window is constant, pure forward advance.
3376                 * No more checks are required.
3377                 * Note, we use the fact that SND.UNA>=SND.WL2.
3378                 */
3379                tcp_update_wl(tp, ack_seq);
3380                tp->snd_una = ack;
3381                flag |= FLAG_WIN_UPDATE;
3382
3383                tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3384
3385                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3386        } else {
3387                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3388                        flag |= FLAG_DATA;
3389                else
3390                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3391
3392                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3393
3394                if (TCP_SKB_CB(skb)->sacked)
3395                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3396
3397                if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3398                        flag |= FLAG_ECE;
3399
3400                tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3401        }
3402
3403        /* We passed data and got it acked, remove any soft error
3404         * log. Something worked...
3405         */
3406        sk->sk_err_soft = 0;
3407        icsk->icsk_probes_out = 0;
3408        tp->rcv_tstamp = tcp_time_stamp;
3409        if (!prior_packets)
3410                goto no_queue;
3411
3412        /* See if we can take anything off of the retransmit queue. */
3413        previous_packets_out = tp->packets_out;
3414        flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3415
3416        pkts_acked = previous_packets_out - tp->packets_out;
3417
3418        if (tcp_ack_is_dubious(sk, flag)) {
3419                /* Advance CWND, if state allows this. */
3420                if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3421                        tcp_cong_avoid(sk, ack, prior_in_flight);
3422                is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3423                tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3424                                      prior_packets, is_dupack, flag);
3425        } else {
3426                if (flag & FLAG_DATA_ACKED)
3427                        tcp_cong_avoid(sk, ack, prior_in_flight);
3428        }
3429
3430        if (tp->tlp_high_seq)
3431                tcp_process_tlp_ack(sk, ack, flag);
3432
3433        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3434                struct dst_entry *dst = __sk_dst_get(sk);
3435                if (dst)
3436                        dst_confirm(dst);
3437        }
3438
3439        if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3440                tcp_schedule_loss_probe(sk);
3441        return 1;
3442
3443no_queue:
3444        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3445        if (flag & FLAG_DSACKING_ACK)
3446                tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3447                                      prior_packets, is_dupack, flag);
3448        /* If this ack opens up a zero window, clear backoff.  It was
3449         * being used to time the probes, and is probably far higher than
3450         * it needs to be for normal retransmission.
3451         */
3452        if (tcp_send_head(sk))
3453                tcp_ack_probe(sk);
3454
3455        if (tp->tlp_high_seq)
3456                tcp_process_tlp_ack(sk, ack, flag);
3457        return 1;
3458
3459invalid_ack:
3460        SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3461        return -1;
3462
3463old_ack:
3464        /* If data was SACKed, tag it and see if we should send more data.
3465         * If data was DSACKed, see if we can undo a cwnd reduction.
3466         */
3467        if (TCP_SKB_CB(skb)->sacked) {
3468                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3469                tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3470                                      prior_packets, is_dupack, flag);
3471        }
3472
3473        SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3474        return 0;
3475}
3476
3477/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3478 * But, this can also be called on packets in the established flow when
3479 * the fast version below fails.
3480 */
3481void tcp_parse_options(const struct sk_buff *skb,
3482                       struct tcp_options_received *opt_rx, int estab,
3483                       struct tcp_fastopen_cookie *foc)
3484{
3485        const unsigned char *ptr;
3486        const struct tcphdr *th = tcp_hdr(skb);
3487        int length = (th->doff * 4) - sizeof(struct tcphdr);
3488
3489        ptr = (const unsigned char *)(th + 1);
3490        opt_rx->saw_tstamp = 0;
3491
3492        while (length > 0) {
3493                int opcode = *ptr++;
3494                int opsize;
3495
3496                switch (opcode) {
3497                case TCPOPT_EOL:
3498                        return;
3499                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3500                        length--;
3501                        continue;
3502                default:
3503                        opsize = *ptr++;
3504                        if (opsize < 2) /* "silly options" */
3505                                return;
3506                        if (opsize > length)
3507                                return; /* don't parse partial options */
3508                        switch (opcode) {
3509                        case TCPOPT_MSS:
3510                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3511                                        u16 in_mss = get_unaligned_be16(ptr);
3512                                        if (in_mss) {
3513                                                if (opt_rx->user_mss &&
3514                                                    opt_rx->user_mss < in_mss)
3515                                                        in_mss = opt_rx->user_mss;
3516                                                opt_rx->mss_clamp = in_mss;
3517                                        }
3518                                }
3519                                break;
3520                        case TCPOPT_WINDOW:
3521                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3522                                    !estab && sysctl_tcp_window_scaling) {
3523                                        __u8 snd_wscale = *(__u8 *)ptr;
3524                                        opt_rx->wscale_ok = 1;
3525                                        if (snd_wscale > 14) {
3526                                                net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3527                                                                     __func__,
3528                                                                     snd_wscale);
3529                                                snd_wscale = 14;
3530                                        }
3531                                        opt_rx->snd_wscale = snd_wscale;
3532                                }
3533                                break;
3534                        case TCPOPT_TIMESTAMP:
3535                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3536                                    ((estab && opt_rx->tstamp_ok) ||
3537                                     (!estab && sysctl_tcp_timestamps))) {
3538                                        opt_rx->saw_tstamp = 1;
3539                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3540                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3541                                }
3542                                break;
3543                        case TCPOPT_SACK_PERM:
3544                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3545                                    !estab && sysctl_tcp_sack) {
3546                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3547                                        tcp_sack_reset(opt_rx);
3548                                }
3549                                break;
3550
3551                        case TCPOPT_SACK:
3552                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3553                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3554                                   opt_rx->sack_ok) {
3555                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3556                                }
3557                                break;
3558#ifdef CONFIG_TCP_MD5SIG
3559                        case TCPOPT_MD5SIG:
3560                                /*
3561                                 * The MD5 Hash has already been
3562                                 * checked (see tcp_v{4,6}_do_rcv()).
3563                                 */
3564                                break;
3565#endif
3566                        case TCPOPT_EXP:
3567                                /* Fast Open option shares code 254 using a
3568                                 * 16 bits magic number. It's valid only in
3569                                 * SYN or SYN-ACK with an even size.
3570                                 */
3571                                if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3572                                    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3573                                    foc == NULL || !th->syn || (opsize & 1))
3574                                        break;
3575                                foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3576                                if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3577                                    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3578                                        memcpy(foc->val, ptr + 2, foc->len);
3579                                else if (foc->len != 0)
3580                                        foc->len = -1;
3581                                break;
3582
3583                        }
3584                        ptr += opsize-2;
3585                        length -= opsize;
3586                }
3587        }
3588}
3589EXPORT_SYMBOL(tcp_parse_options);
3590
3591static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3592{
3593        const __be32 *ptr = (const __be32 *)(th + 1);
3594
3595        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3596                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3597                tp->rx_opt.saw_tstamp = 1;
3598                ++ptr;
3599                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3600                ++ptr;
3601                tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3602                return true;
3603        }
3604        return false;
3605}
3606
3607/* Fast parse options. This hopes to only see timestamps.
3608 * If it is wrong it falls back on tcp_parse_options().
3609 */
3610static bool tcp_fast_parse_options(const struct sk_buff *skb,
3611                                   const struct tcphdr *th, struct tcp_sock *tp)
3612{
3613        /* In the spirit of fast parsing, compare doff directly to constant
3614         * values.  Because equality is used, short doff can be ignored here.
3615         */
3616        if (th->doff == (sizeof(*th) / 4)) {
3617                tp->rx_opt.saw_tstamp = 0;
3618                return false;
3619        } else if (tp->rx_opt.tstamp_ok &&
3620                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3621                if (tcp_parse_aligned_timestamp(tp, th))
3622                        return true;
3623        }
3624
3625        tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3626        if (tp->rx_opt.saw_tstamp)
3627                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3628
3629        return true;
3630}
3631
3632#ifdef CONFIG_TCP_MD5SIG
3633/*
3634 * Parse MD5 Signature option
3635 */
3636const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3637{
3638        int length = (th->doff << 2) - sizeof(*th);
3639        const u8 *ptr = (const u8 *)(th + 1);
3640
3641        /* If the TCP option is too short, we can short cut */
3642        if (length < TCPOLEN_MD5SIG)
3643                return NULL;
3644
3645        while (length > 0) {
3646                int opcode = *ptr++;
3647                int opsize;
3648
3649                switch(opcode) {
3650                case TCPOPT_EOL:
3651                        return NULL;
3652                case TCPOPT_NOP:
3653                        length--;
3654                        continue;
3655                default:
3656                        opsize = *ptr++;
3657                        if (opsize < 2 || opsize > length)
3658                                return NULL;
3659                        if (opcode == TCPOPT_MD5SIG)
3660                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3661                }
3662                ptr += opsize - 2;
3663                length -= opsize;
3664        }
3665        return NULL;
3666}
3667EXPORT_SYMBOL(tcp_parse_md5sig_option);
3668#endif
3669
3670/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3671 *
3672 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3673 * it can pass through stack. So, the following predicate verifies that
3674 * this segment is not used for anything but congestion avoidance or
3675 * fast retransmit. Moreover, we even are able to eliminate most of such
3676 * second order effects, if we apply some small "replay" window (~RTO)
3677 * to timestamp space.
3678 *
3679 * All these measures still do not guarantee that we reject wrapped ACKs
3680 * on networks with high bandwidth, when sequence space is recycled fastly,
3681 * but it guarantees that such events will be very rare and do not affect
3682 * connection seriously. This doesn't look nice, but alas, PAWS is really
3683 * buggy extension.
3684 *
3685 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3686 * states that events when retransmit arrives after original data are rare.
3687 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3688 * the biggest problem on large power networks even with minor reordering.
3689 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3690 * up to bandwidth of 18Gigabit/sec. 8) ]
3691 */
3692
3693static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3694{
3695        const struct tcp_sock *tp = tcp_sk(sk);
3696        const struct tcphdr *th = tcp_hdr(skb);
3697        u32 seq = TCP_SKB_CB(skb)->seq;
3698        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3699
3700        return (/* 1. Pure ACK with correct sequence number. */
3701                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3702
3703                /* 2. ... and duplicate ACK. */
3704                ack == tp->snd_una &&
3705
3706                /* 3. ... and does not update window. */
3707                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3708
3709                /* 4. ... and sits in replay window. */
3710                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3711}
3712
3713static inline bool tcp_paws_discard(const struct sock *sk,
3714                                   const struct sk_buff *skb)
3715{
3716        const struct tcp_sock *tp = tcp_sk(sk);
3717
3718        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3719               !tcp_disordered_ack(sk, skb);
3720}
3721
3722/* Check segment sequence number for validity.
3723 *
3724 * Segment controls are considered valid, if the segment
3725 * fits to the window after truncation to the window. Acceptability
3726 * of data (and SYN, FIN, of course) is checked separately.
3727 * See tcp_data_queue(), for example.
3728 *
3729 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3730 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3731 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3732 * (borrowed from freebsd)
3733 */
3734
3735static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3736{
3737        return  !before(end_seq, tp->rcv_wup) &&
3738                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3739}
3740
3741/* When we get a reset we do this. */
3742void tcp_reset(struct sock *sk)
3743{
3744        /* We want the right error as BSD sees it (and indeed as we do). */
3745        switch (sk->sk_state) {
3746        case TCP_SYN_SENT:
3747                sk->sk_err = ECONNREFUSED;
3748                break;
3749        case TCP_CLOSE_WAIT:
3750                sk->sk_err = EPIPE;
3751                break;
3752        case TCP_CLOSE:
3753                return;
3754        default:
3755                sk->sk_err = ECONNRESET;
3756        }
3757        /* This barrier is coupled with smp_rmb() in tcp_poll() */
3758        smp_wmb();
3759
3760        if (!sock_flag(sk, SOCK_DEAD))
3761                sk->sk_error_report(sk);
3762
3763        tcp_done(sk);
3764}
3765
3766/*
3767 *      Process the FIN bit. This now behaves as it is supposed to work
3768 *      and the FIN takes effect when it is validly part of sequence
3769 *      space. Not before when we get holes.
3770 *
3771 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3772 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3773 *      TIME-WAIT)
3774 *
3775 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3776 *      close and we go into CLOSING (and later onto TIME-WAIT)
3777 *
3778 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3779 */
3780static void tcp_fin(struct sock *sk)
3781{
3782        struct tcp_sock *tp = tcp_sk(sk);
3783
3784        inet_csk_schedule_ack(sk);
3785
3786        sk->sk_shutdown |= RCV_SHUTDOWN;
3787        sock_set_flag(sk, SOCK_DONE);
3788
3789        switch (sk->sk_state) {
3790        case TCP_SYN_RECV:
3791        case TCP_ESTABLISHED:
3792                /* Move to CLOSE_WAIT */
3793                tcp_set_state(sk, TCP_CLOSE_WAIT);
3794                inet_csk(sk)->icsk_ack.pingpong = 1;
3795                break;
3796
3797        case TCP_CLOSE_WAIT:
3798        case TCP_CLOSING:
3799                /* Received a retransmission of the FIN, do
3800                 * nothing.
3801                 */
3802                break;
3803        case TCP_LAST_ACK:
3804                /* RFC793: Remain in the LAST-ACK state. */
3805                break;
3806
3807        case TCP_FIN_WAIT1:
3808                /* This case occurs when a simultaneous close
3809                 * happens, we must ack the received FIN and
3810                 * enter the CLOSING state.
3811                 */
3812                tcp_send_ack(sk);
3813                tcp_set_state(sk, TCP_CLOSING);
3814                break;
3815        case TCP_FIN_WAIT2:
3816                /* Received a FIN -- send ACK and enter TIME_WAIT. */
3817                tcp_send_ack(sk);
3818                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3819                break;
3820        default:
3821                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3822                 * cases we should never reach this piece of code.
3823                 */
3824                pr_err("%s: Impossible, sk->sk_state=%d\n",
3825                       __func__, sk->sk_state);
3826                break;
3827        }
3828
3829        /* It _is_ possible, that we have something out-of-order _after_ FIN.
3830         * Probably, we should reset in this case. For now drop them.
3831         */
3832        __skb_queue_purge(&tp->out_of_order_queue);
3833        if (tcp_is_sack(tp))
3834                tcp_sack_reset(&tp->rx_opt);
3835        sk_mem_reclaim(sk);
3836
3837        if (!sock_flag(sk, SOCK_DEAD)) {
3838                sk->sk_state_change(sk);
3839
3840                /* Do not send POLL_HUP for half duplex close. */
3841                if (sk->sk_shutdown == SHUTDOWN_MASK ||
3842                    sk->sk_state == TCP_CLOSE)
3843                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3844                else
3845                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3846        }
3847}
3848
3849static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3850                                  u32 end_seq)
3851{
3852        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3853                if (before(seq, sp->start_seq))
3854                        sp->start_seq = seq;
3855                if (after(end_seq, sp->end_seq))
3856                        sp->end_seq = end_seq;
3857                return true;
3858        }
3859        return false;
3860}
3861
3862static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3863{
3864        struct tcp_sock *tp = tcp_sk(sk);
3865
3866        if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3867                int mib_idx;
3868
3869                if (before(seq, tp->rcv_nxt))
3870                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3871                else
3872                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3873
3874                NET_INC_STATS_BH(sock_net(sk), mib_idx);
3875
3876                tp->rx_opt.dsack = 1;
3877                tp->duplicate_sack[0].start_seq = seq;
3878                tp->duplicate_sack[0].end_seq = end_seq;
3879        }
3880}
3881
3882static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3883{
3884        struct tcp_sock *tp = tcp_sk(sk);
3885
3886        if (!tp->rx_opt.dsack)
3887                tcp_dsack_set(sk, seq, end_seq);
3888        else
3889                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3890}
3891
3892static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3893{
3894        struct tcp_sock *tp = tcp_sk(sk);
3895
3896        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3897            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3898                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3899                tcp_enter_quickack_mode(sk);
3900
3901                if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3902                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3903
3904                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3905                                end_seq = tp->rcv_nxt;
3906                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3907                }
3908        }
3909
3910        tcp_send_ack(sk);
3911}
3912
3913/* These routines update the SACK block as out-of-order packets arrive or
3914 * in-order packets close up the sequence space.
3915 */
3916static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3917{
3918        int this_sack;
3919        struct tcp_sack_block *sp = &tp->selective_acks[0];
3920        struct tcp_sack_block *swalk = sp + 1;
3921
3922        /* See if the recent change to the first SACK eats into
3923         * or hits the sequence space of other SACK blocks, if so coalesce.
3924         */
3925        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3926                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3927                        int i;
3928
3929                        /* Zap SWALK, by moving every further SACK up by one slot.
3930                         * Decrease num_sacks.
3931                         */
3932                        tp->rx_opt.num_sacks--;
3933                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3934                                sp[i] = sp[i + 1];
3935                        continue;
3936                }
3937                this_sack++, swalk++;
3938        }
3939}
3940
3941static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3942{
3943        struct tcp_sock *tp = tcp_sk(sk);
3944        struct tcp_sack_block *sp = &tp->selective_acks[0];
3945        int cur_sacks = tp->rx_opt.num_sacks;
3946        int this_sack;
3947
3948        if (!cur_sacks)
3949                goto new_sack;
3950
3951        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3952                if (tcp_sack_extend(sp, seq, end_seq)) {
3953                        /* Rotate this_sack to the first one. */
3954                        for (; this_sack > 0; this_sack--, sp--)
3955                                swap(*sp, *(sp - 1));
3956                        if (cur_sacks > 1)
3957                                tcp_sack_maybe_coalesce(tp);
3958                        return;
3959                }
3960        }
3961
3962        /* Could not find an adjacent existing SACK, build a new one,
3963         * put it at the front, and shift everyone else down.  We
3964         * always know there is at least one SACK present already here.
3965         *
3966         * If the sack array is full, forget about the last one.
3967         */
3968        if (this_sack >= TCP_NUM_SACKS) {
3969                this_sack--;
3970                tp->rx_opt.num_sacks--;
3971                sp--;
3972        }
3973        for (; this_sack > 0; this_sack--, sp--)
3974                *sp = *(sp - 1);
3975
3976new_sack:
3977        /* Build the new head SACK, and we're done. */
3978        sp->start_seq = seq;
3979        sp->end_seq = end_seq;
3980        tp->rx_opt.num_sacks++;
3981}
3982
3983/* RCV.NXT advances, some SACKs should be eaten. */
3984
3985static void tcp_sack_remove(struct tcp_sock *tp)
3986{
3987        struct tcp_sack_block *sp = &tp->selective_acks[0];
3988        int num_sacks = tp->rx_opt.num_sacks;
3989        int this_sack;
3990
3991        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3992        if (skb_queue_empty(&tp->out_of_order_queue)) {
3993                tp->rx_opt.num_sacks = 0;
3994                return;
3995        }
3996
3997        for (this_sack = 0; this_sack < num_sacks;) {
3998                /* Check if the start of the sack is covered by RCV.NXT. */
3999                if (!before(tp->rcv_nxt, sp->start_seq)) {
4000                        int i;
4001
4002                        /* RCV.NXT must cover all the block! */
4003                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4004
4005                        /* Zap this SACK, by moving forward any other SACKS. */
4006                        for (i=this_sack+1; i < num_sacks; i++)
4007                                tp->selective_acks[i-1] = tp->selective_acks[i];
4008                        num_sacks--;
4009                        continue;
4010                }
4011                this_sack++;
4012                sp++;
4013        }
4014        tp->rx_opt.num_sacks = num_sacks;
4015}
4016
4017/* This one checks to see if we can put data from the
4018 * out_of_order queue into the receive_queue.
4019 */
4020static void tcp_ofo_queue(struct sock *sk)
4021{
4022        struct tcp_sock *tp = tcp_sk(sk);
4023        __u32 dsack_high = tp->rcv_nxt;
4024        struct sk_buff *skb;
4025
4026        while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4027                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4028                        break;
4029
4030                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4031                        __u32 dsack = dsack_high;
4032                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4033                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4034                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4035                }
4036
4037                if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4038                        SOCK_DEBUG(sk, "ofo packet was already received\n");
4039                        __skb_unlink(skb, &tp->out_of_order_queue);
4040                        __kfree_skb(skb);
4041                        continue;
4042                }
4043                SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4044                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4045                           TCP_SKB_CB(skb)->end_seq);
4046
4047                __skb_unlink(skb, &tp->out_of_order_queue);
4048                __skb_queue_tail(&sk->sk_receive_queue, skb);
4049                tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4050                if (tcp_hdr(skb)->fin)
4051                        tcp_fin(sk);
4052        }
4053}
4054
4055static bool tcp_prune_ofo_queue(struct sock *sk);
4056static int tcp_prune_queue(struct sock *sk);
4057
4058static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4059                                 unsigned int size)
4060{
4061        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4062            !sk_rmem_schedule(sk, skb, size)) {
4063
4064                if (tcp_prune_queue(sk) < 0)
4065                        return -1;
4066
4067                if (!sk_rmem_schedule(sk, skb, size)) {
4068                        if (!tcp_prune_ofo_queue(sk))
4069                                return -1;
4070
4071                        if (!sk_rmem_schedule(sk, skb, size))
4072                                return -1;
4073                }
4074        }
4075        return 0;
4076}
4077
4078/**
4079 * tcp_try_coalesce - try to merge skb to prior one
4080 * @sk: socket
4081 * @to: prior buffer
4082 * @from: buffer to add in queue
4083 * @fragstolen: pointer to boolean
4084 *
4085 * Before queueing skb @from after @to, try to merge them
4086 * to reduce overall memory use and queue lengths, if cost is small.
4087 * Packets in ofo or receive queues can stay a long time.
4088 * Better try to coalesce them right now to avoid future collapses.
4089 * Returns true if caller should free @from instead of queueing it
4090 */
4091static bool tcp_try_coalesce(struct sock *sk,
4092                             struct sk_buff *to,
4093                             struct sk_buff *from,
4094                             bool *fragstolen)
4095{
4096        int delta;
4097
4098        *fragstolen = false;
4099
4100        if (tcp_hdr(from)->fin)
4101                return false;
4102
4103        /* Its possible this segment overlaps with prior segment in queue */
4104        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4105                return false;
4106
4107        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4108                return false;
4109
4110        atomic_add(delta, &sk->sk_rmem_alloc);
4111        sk_mem_charge(sk, delta);
4112        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4113        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4114        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4115        return true;
4116}
4117
4118static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4119{
4120        struct tcp_sock *tp = tcp_sk(sk);
4121        struct sk_buff *skb1;
4122        u32 seq, end_seq;
4123
4124        TCP_ECN_check_ce(tp, skb);
4125
4126        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4127                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4128                __kfree_skb(skb);
4129                return;
4130        }
4131
4132        /* Disable header prediction. */
4133        tp->pred_flags = 0;
4134        inet_csk_schedule_ack(sk);
4135
4136        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4137        SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4138                   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4139
4140        skb1 = skb_peek_tail(&tp->out_of_order_queue);
4141        if (!skb1) {
4142                /* Initial out of order segment, build 1 SACK. */
4143                if (tcp_is_sack(tp)) {
4144                        tp->rx_opt.num_sacks = 1;
4145                        tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4146                        tp->selective_acks[0].end_seq =
4147                                                TCP_SKB_CB(skb)->end_seq;
4148                }
4149                __skb_queue_head(&tp->out_of_order_queue, skb);
4150                goto end;
4151        }
4152
4153        seq = TCP_SKB_CB(skb)->seq;
4154        end_seq = TCP_SKB_CB(skb)->end_seq;
4155
4156        if (seq == TCP_SKB_CB(skb1)->end_seq) {
4157                bool fragstolen;
4158
4159                if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4160                        __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4161                } else {
4162                        kfree_skb_partial(skb, fragstolen);
4163                        skb = NULL;
4164                }
4165
4166                if (!tp->rx_opt.num_sacks ||
4167                    tp->selective_acks[0].end_seq != seq)
4168                        goto add_sack;
4169
4170                /* Common case: data arrive in order after hole. */
4171                tp->selective_acks[0].end_seq = end_seq;
4172                goto end;
4173        }
4174
4175        /* Find place to insert this segment. */
4176        while (1) {
4177                if (!after(TCP_SKB_CB(skb1)->seq, seq))
4178                        break;
4179                if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4180                        skb1 = NULL;
4181                        break;
4182                }
4183                skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4184        }
4185
4186        /* Do skb overlap to previous one? */
4187        if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4188                if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4189                        /* All the bits are present. Drop. */
4190                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4191                        __kfree_skb(skb);
4192                        skb = NULL;
4193                        tcp_dsack_set(sk, seq, end_seq);
4194                        goto add_sack;
4195                }
4196                if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4197                        /* Partial overlap. */
4198                        tcp_dsack_set(sk, seq,
4199                                      TCP_SKB_CB(skb1)->end_seq);
4200                } else {
4201                        if (skb_queue_is_first(&tp->out_of_order_queue,
4202                                               skb1))
4203                                skb1 = NULL;
4204                        else
4205                                skb1 = skb_queue_prev(
4206                                        &tp->out_of_order_queue,
4207                                        skb1);
4208                }
4209        }
4210        if (!skb1)
4211                __skb_queue_head(&tp->out_of_order_queue, skb);
4212        else
4213                __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4214
4215        /* And clean segments covered by new one as whole. */
4216        while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4217                skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4218
4219                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4220                        break;
4221                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4222                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4223                                         end_seq);
4224                        break;
4225                }
4226                __skb_unlink(skb1, &tp->out_of_order_queue);
4227                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4228                                 TCP_SKB_CB(skb1)->end_seq);
4229                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4230                __kfree_skb(skb1);
4231        }
4232
4233add_sack:
4234        if (tcp_is_sack(tp))
4235                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4236end:
4237        if (skb)
4238                skb_set_owner_r(skb, sk);
4239}
4240
4241static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4242                  bool *fragstolen)
4243{
4244        int eaten;
4245        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4246
4247        __skb_pull(skb, hdrlen);
4248        eaten = (tail &&
4249                 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4250        tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4251        if (!eaten) {
4252                __skb_queue_tail(&sk->sk_receive_queue, skb);
4253                skb_set_owner_r(skb, sk);
4254        }
4255        return eaten;
4256}
4257
4258int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4259{
4260        struct sk_buff *skb = NULL;
4261        struct tcphdr *th;
4262        bool fragstolen;
4263
4264        if (size == 0)
4265                return 0;
4266
4267        skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4268        if (!skb)
4269                goto err;
4270
4271        if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4272                goto err_free;
4273
4274        th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4275        skb_reset_transport_header(skb);
4276        memset(th, 0, sizeof(*th));
4277
4278        if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4279                goto err_free;
4280
4281        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4282        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4283        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4284
4285        if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4286                WARN_ON_ONCE(fragstolen); /* should not happen */
4287                __kfree_skb(skb);
4288        }
4289        return size;
4290
4291err_free:
4292        kfree_skb(skb);
4293err:
4294        return -ENOMEM;
4295}
4296
4297static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4298{
4299        const struct tcphdr *th = tcp_hdr(skb);
4300        struct tcp_sock *tp = tcp_sk(sk);
4301        int eaten = -1;
4302        bool fragstolen = false;
4303
4304        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4305                goto drop;
4306
4307        skb_dst_drop(skb);
4308        __skb_pull(skb, th->doff * 4);
4309
4310        TCP_ECN_accept_cwr(tp, skb);
4311
4312        tp->rx_opt.dsack = 0;
4313
4314        /*  Queue data for delivery to the user.
4315         *  Packets in sequence go to the receive queue.
4316         *  Out of sequence packets to the out_of_order_queue.
4317         */
4318        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4319                if (tcp_receive_window(tp) == 0)
4320                        goto out_of_window;
4321
4322                /* Ok. In sequence. In window. */
4323                if (tp->ucopy.task == current &&
4324                    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4325                    sock_owned_by_user(sk) && !tp->urg_data) {
4326                        int chunk = min_t(unsigned int, skb->len,
4327                                          tp->ucopy.len);
4328
4329                        __set_current_state(TASK_RUNNING);
4330
4331                        local_bh_enable();
4332                        if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4333                                tp->ucopy.len -= chunk;
4334                                tp->copied_seq += chunk;
4335                                eaten = (chunk == skb->len);
4336                                tcp_rcv_space_adjust(sk);
4337                        }
4338                        local_bh_disable();
4339                }
4340
4341                if (eaten <= 0) {
4342queue_and_out:
4343                        if (eaten < 0 &&
4344                            tcp_try_rmem_schedule(sk, skb, skb->truesize))
4345                                goto drop;
4346
4347                        eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4348                }
4349                tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4350                if (skb->len)
4351                        tcp_event_data_recv(sk, skb);
4352                if (th->fin)
4353                        tcp_fin(sk);
4354
4355                if (!skb_queue_empty(&tp->out_of_order_queue)) {
4356                        tcp_ofo_queue(sk);
4357
4358                        /* RFC2581. 4.2. SHOULD send immediate ACK, when
4359                         * gap in queue is filled.
4360                         */
4361                        if (skb_queue_empty(&tp->out_of_order_queue))
4362                                inet_csk(sk)->icsk_ack.pingpong = 0;
4363                }
4364
4365                if (tp->rx_opt.num_sacks)
4366                        tcp_sack_remove(tp);
4367
4368                tcp_fast_path_check(sk);
4369
4370                if (eaten > 0)
4371                        kfree_skb_partial(skb, fragstolen);
4372                if (!sock_flag(sk, SOCK_DEAD))
4373                        sk->sk_data_ready(sk, 0);
4374                return;
4375        }
4376
4377        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4378                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4379                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4380                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4381
4382out_of_window:
4383                tcp_enter_quickack_mode(sk);
4384                inet_csk_schedule_ack(sk);
4385drop:
4386                __kfree_skb(skb);
4387                return;
4388        }
4389
4390        /* Out of window. F.e. zero window probe. */
4391        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4392                goto out_of_window;
4393
4394        tcp_enter_quickack_mode(sk);
4395
4396        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4397                /* Partial packet, seq < rcv_next < end_seq */
4398                SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4399                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4400                           TCP_SKB_CB(skb)->end_seq);
4401
4402                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4403
4404                /* If window is closed, drop tail of packet. But after
4405                 * remembering D-SACK for its head made in previous line.
4406                 */
4407                if (!tcp_receive_window(tp))
4408                        goto out_of_window;
4409                goto queue_and_out;
4410        }
4411
4412        tcp_data_queue_ofo(sk, skb);
4413}
4414
4415static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4416                                        struct sk_buff_head *list)
4417{
4418        struct sk_buff *next = NULL;
4419
4420        if (!skb_queue_is_last(list, skb))
4421                next = skb_queue_next(list, skb);
4422
4423        __skb_unlink(skb, list);
4424        __kfree_skb(skb);
4425        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4426
4427        return next;
4428}
4429
4430/* Collapse contiguous sequence of skbs head..tail with
4431 * sequence numbers start..end.
4432 *
4433 * If tail is NULL, this means until the end of the list.
4434 *
4435 * Segments with FIN/SYN are not collapsed (only because this
4436 * simplifies code)
4437 */
4438static void
4439tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4440             struct sk_buff *head, struct sk_buff *tail,
4441             u32 start, u32 end)
4442{
4443        struct sk_buff *skb, *n;
4444        bool end_of_skbs;
4445
4446        /* First, check that queue is collapsible and find
4447         * the point where collapsing can be useful. */
4448        skb = head;
4449restart:
4450        end_of_skbs = true;
4451        skb_queue_walk_from_safe(list, skb, n) {
4452                if (skb == tail)
4453                        break;
4454                /* No new bits? It is possible on ofo queue. */
4455                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4456                        skb = tcp_collapse_one(sk, skb, list);
4457                        if (!skb)
4458                                break;
4459                        goto restart;
4460                }
4461
4462                /* The first skb to collapse is:
4463                 * - not SYN/FIN and
4464                 * - bloated or contains data before "start" or
4465                 *   overlaps to the next one.
4466                 */
4467                if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4468                    (tcp_win_from_space(skb->truesize) > skb->len ||
4469                     before(TCP_SKB_CB(skb)->seq, start))) {
4470                        end_of_skbs = false;
4471                        break;
4472                }
4473
4474                if (!skb_queue_is_last(list, skb)) {
4475                        struct sk_buff *next = skb_queue_next(list, skb);
4476                        if (next != tail &&
4477                            TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4478                                end_of_skbs = false;
4479                                break;
4480                        }
4481                }
4482
4483                /* Decided to skip this, advance start seq. */
4484                start = TCP_SKB_CB(skb)->end_seq;
4485        }
4486        if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4487                return;
4488
4489        while (before(start, end)) {
4490                struct sk_buff *nskb;
4491                unsigned int header = skb_headroom(skb);
4492                int copy = SKB_MAX_ORDER(header, 0);
4493
4494                /* Too big header? This can happen with IPv6. */
4495                if (copy < 0)
4496                        return;
4497                if (end - start < copy)
4498                        copy = end - start;
4499                nskb = alloc_skb(copy + header, GFP_ATOMIC);
4500                if (!nskb)
4501                        return;
4502
4503                skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4504                skb_set_network_header(nskb, (skb_network_header(skb) -
4505                                              skb->head));
4506                skb_set_transport_header(nskb, (skb_transport_header(skb) -
4507                                                skb->head));
4508                skb_reserve(nskb, header);
4509                memcpy(nskb->head, skb->head, header);
4510                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4511                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4512                __skb_queue_before(list, skb, nskb);
4513                skb_set_owner_r(nskb, sk);
4514
4515                /* Copy data, releasing collapsed skbs. */
4516                while (copy > 0) {
4517                        int offset = start - TCP_SKB_CB(skb)->seq;
4518                        int size = TCP_SKB_CB(skb)->end_seq - start;
4519
4520                        BUG_ON(offset < 0);
4521                        if (size > 0) {
4522                                size = min(copy, size);
4523                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4524                                        BUG();
4525                                TCP_SKB_CB(nskb)->end_seq += size;
4526                                copy -= size;
4527                                start += size;
4528                        }
4529                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4530                                skb = tcp_collapse_one(sk, skb, list);
4531                                if (!skb ||
4532                                    skb == tail ||
4533                                    tcp_hdr(skb)->syn ||
4534                                    tcp_hdr(skb)->fin)
4535                                        return;
4536                        }
4537                }
4538        }
4539}
4540
4541/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4542 * and tcp_collapse() them until all the queue is collapsed.
4543 */
4544static void tcp_collapse_ofo_queue(struct sock *sk)
4545{
4546        struct tcp_sock *tp = tcp_sk(sk);
4547        struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4548        struct sk_buff *head;
4549        u32 start, end;
4550
4551        if (skb == NULL)
4552                return;
4553
4554        start = TCP_SKB_CB(skb)->seq;
4555        end = TCP_SKB_CB(skb)->end_seq;
4556        head = skb;
4557
4558        for (;;) {
4559                struct sk_buff *next = NULL;
4560
4561                if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4562                        next = skb_queue_next(&tp->out_of_order_queue, skb);
4563                skb = next;
4564
4565                /* Segment is terminated when we see gap or when
4566                 * we are at the end of all the queue. */
4567                if (!skb ||
4568                    after(TCP_SKB_CB(skb)->seq, end) ||
4569                    before(TCP_SKB_CB(skb)->end_seq, start)) {
4570                        tcp_collapse(sk, &tp->out_of_order_queue,
4571                                     head, skb, start, end);
4572                        head = skb;
4573                        if (!skb)
4574                                break;
4575                        /* Start new segment */
4576                        start = TCP_SKB_CB(skb)->seq;
4577                        end = TCP_SKB_CB(skb)->end_seq;
4578                } else {
4579                        if (before(TCP_SKB_CB(skb)->seq, start))
4580                                start = TCP_SKB_CB(skb)->seq;
4581                        if (after(TCP_SKB_CB(skb)->end_seq, end))
4582                                end = TCP_SKB_CB(skb)->end_seq;
4583                }
4584        }
4585}
4586
4587/*
4588 * Purge the out-of-order queue.
4589 * Return true if queue was pruned.
4590 */
4591static bool tcp_prune_ofo_queue(struct sock *sk)
4592{
4593        struct tcp_sock *tp = tcp_sk(sk);
4594        bool res = false;
4595
4596        if (!skb_queue_empty(&tp->out_of_order_queue)) {
4597                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4598                __skb_queue_purge(&tp->out_of_order_queue);
4599
4600                /* Reset SACK state.  A conforming SACK implementation will
4601                 * do the same at a timeout based retransmit.  When a connection
4602                 * is in a sad state like this, we care only about integrity
4603                 * of the connection not performance.
4604                 */
4605                if (tp->rx_opt.sack_ok)
4606                        tcp_sack_reset(&tp->rx_opt);
4607                sk_mem_reclaim(sk);
4608                res = true;
4609        }
4610        return res;
4611}
4612
4613/* Reduce allocated memory if we can, trying to get
4614 * the socket within its memory limits again.
4615 *
4616 * Return less than zero if we should start dropping frames
4617 * until the socket owning process reads some of the data
4618 * to stabilize the situation.
4619 */
4620static int tcp_prune_queue(struct sock *sk)
4621{
4622        struct tcp_sock *tp = tcp_sk(sk);
4623
4624        SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4625
4626        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4627
4628        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4629                tcp_clamp_window(sk);
4630        else if (sk_under_memory_pressure(sk))
4631                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4632
4633        tcp_collapse_ofo_queue(sk);
4634        if (!skb_queue_empty(&sk->sk_receive_queue))
4635                tcp_collapse(sk, &sk->sk_receive_queue,
4636                             skb_peek(&sk->sk_receive_queue),
4637                             NULL,
4638                             tp->copied_seq, tp->rcv_nxt);
4639        sk_mem_reclaim(sk);
4640
4641        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4642                return 0;
4643
4644        /* Collapsing did not help, destructive actions follow.
4645         * This must not ever occur. */
4646
4647        tcp_prune_ofo_queue(sk);
4648
4649        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4650                return 0;
4651
4652        /* If we are really being abused, tell the caller to silently
4653         * drop receive data on the floor.  It will get retransmitted
4654         * and hopefully then we'll have sufficient space.
4655         */
4656        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4657
4658        /* Massive buffer overcommit. */
4659        tp->pred_flags = 0;
4660        return -1;
4661}
4662
4663/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4664 * As additional protections, we do not touch cwnd in retransmission phases,
4665 * and if application hit its sndbuf limit recently.
4666 */
4667void tcp_cwnd_application_limited(struct sock *sk)
4668{
4669        struct tcp_sock *tp = tcp_sk(sk);
4670
4671        if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4672            sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4673                /* Limited by application or receiver window. */
4674                u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4675                u32 win_used = max(tp->snd_cwnd_used, init_win);
4676                if (win_used < tp->snd_cwnd) {
4677                        tp->snd_ssthresh = tcp_current_ssthresh(sk);
4678                        tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4679                }
4680                tp->snd_cwnd_used = 0;
4681        }
4682        tp->snd_cwnd_stamp = tcp_time_stamp;
4683}
4684
4685static bool tcp_should_expand_sndbuf(const struct sock *sk)
4686{
4687        const struct tcp_sock *tp = tcp_sk(sk);
4688
4689        /* If the user specified a specific send buffer setting, do
4690         * not modify it.
4691         */
4692        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4693                return false;
4694
4695        /* If we are under global TCP memory pressure, do not expand.  */
4696        if (sk_under_memory_pressure(sk))
4697                return false;
4698
4699        /* If we are under soft global TCP memory pressure, do not expand.  */
4700        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4701                return false;
4702
4703        /* If we filled the congestion window, do not expand.  */
4704        if (tp->packets_out >= tp->snd_cwnd)
4705                return false;
4706
4707        return true;
4708}
4709
4710/* When incoming ACK allowed to free some skb from write_queue,
4711 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4712 * on the exit from tcp input handler.
4713 *
4714 * PROBLEM: sndbuf expansion does not work well with largesend.
4715 */
4716static void tcp_new_space(struct sock *sk)
4717{
4718        struct tcp_sock *tp = tcp_sk(sk);
4719
4720        if (tcp_should_expand_sndbuf(sk)) {
4721                int sndmem = SKB_TRUESIZE(max_t(u32,
4722                                                tp->rx_opt.mss_clamp,
4723                                                tp->mss_cache) +
4724                                          MAX_TCP_HEADER);
4725                int demanded = max_t(unsigned int, tp->snd_cwnd,
4726                                     tp->reordering + 1);
4727                sndmem *= 2 * demanded;
4728                if (sndmem > sk->sk_sndbuf)
4729                        sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4730                tp->snd_cwnd_stamp = tcp_time_stamp;
4731        }
4732
4733        sk->sk_write_space(sk);
4734}
4735
4736static void tcp_check_space(struct sock *sk)
4737{
4738        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4739                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4740                if (sk->sk_socket &&
4741                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4742                        tcp_new_space(sk);
4743        }
4744}
4745
4746static inline void tcp_data_snd_check(struct sock *sk)
4747{
4748        tcp_push_pending_frames(sk);
4749        tcp_check_space(sk);
4750}
4751
4752/*
4753 * Check if sending an ack is needed.
4754 */
4755static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4756{
4757        struct tcp_sock *tp = tcp_sk(sk);
4758
4759            /* More than one full frame received... */
4760        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4761             /* ... and right edge of window advances far enough.
4762              * (tcp_recvmsg() will send ACK otherwise). Or...
4763              */
4764             __tcp_select_window(sk) >= tp->rcv_wnd) ||
4765            /* We ACK each frame or... */
4766            tcp_in_quickack_mode(sk) ||
4767            /* We have out of order data. */
4768            (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4769                /* Then ack it now */
4770                tcp_send_ack(sk);
4771        } else {
4772                /* Else, send delayed ack. */
4773                tcp_send_delayed_ack(sk);
4774        }
4775}
4776
4777static inline void tcp_ack_snd_check(struct sock *sk)
4778{
4779        if (!inet_csk_ack_scheduled(sk)) {
4780                /* We sent a data segment already. */
4781                return;
4782        }
4783        __tcp_ack_snd_check(sk, 1);
4784}
4785
4786/*
4787 *      This routine is only called when we have urgent data
4788 *      signaled. Its the 'slow' part of tcp_urg. It could be
4789 *      moved inline now as tcp_urg is only called from one
4790 *      place. We handle URGent data wrong. We have to - as
4791 *      BSD still doesn't use the correction from RFC961.
4792 *      For 1003.1g we should support a new option TCP_STDURG to permit
4793 *      either form (or just set the sysctl tcp_stdurg).
4794 */
4795
4796static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4797{
4798        struct tcp_sock *tp = tcp_sk(sk);
4799        u32 ptr = ntohs(th->urg_ptr);
4800
4801        if (ptr && !sysctl_tcp_stdurg)
4802                ptr--;
4803        ptr += ntohl(th->seq);
4804
4805        /* Ignore urgent data that we've already seen and read. */
4806        if (after(tp->copied_seq, ptr))
4807                return;
4808
4809        /* Do not replay urg ptr.
4810         *
4811         * NOTE: interesting situation not covered by specs.
4812         * Misbehaving sender may send urg ptr, pointing to segment,
4813         * which we already have in ofo queue. We are not able to fetch
4814         * such data and will stay in TCP_URG_NOTYET until will be eaten
4815         * by recvmsg(). Seems, we are not obliged to handle such wicked
4816         * situations. But it is worth to think about possibility of some
4817         * DoSes using some hypothetical application level deadlock.
4818         */
4819        if (before(ptr, tp->rcv_nxt))
4820                return;
4821
4822        /* Do we already have a newer (or duplicate) urgent pointer? */
4823        if (tp->urg_data && !after(ptr, tp->urg_seq))
4824                return;
4825
4826        /* Tell the world about our new urgent pointer. */
4827        sk_send_sigurg(sk);
4828
4829        /* We may be adding urgent data when the last byte read was
4830         * urgent. To do this requires some care. We cannot just ignore
4831         * tp->copied_seq since we would read the last urgent byte again
4832         * as data, nor can we alter copied_seq until this data arrives
4833         * or we break the semantics of SIOCATMARK (and thus sockatmark())
4834         *
4835         * NOTE. Double Dutch. Rendering to plain English: author of comment
4836         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4837         * and expect that both A and B disappear from stream. This is _wrong_.
4838         * Though this happens in BSD with high probability, this is occasional.
4839         * Any application relying on this is buggy. Note also, that fix "works"
4840         * only in this artificial test. Insert some normal data between A and B and we will
4841         * decline of BSD again. Verdict: it is better to remove to trap
4842         * buggy users.
4843         */
4844        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4845            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4846                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4847                tp->copied_seq++;
4848                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4849                        __skb_unlink(skb, &sk->sk_receive_queue);
4850                        __kfree_skb(skb);
4851                }
4852        }
4853
4854        tp->urg_data = TCP_URG_NOTYET;
4855        tp->urg_seq = ptr;
4856
4857        /* Disable header prediction. */
4858        tp->pred_flags = 0;
4859}
4860
4861/* This is the 'fast' part of urgent handling. */
4862static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4863{
4864        struct tcp_sock *tp = tcp_sk(sk);
4865
4866        /* Check if we get a new urgent pointer - normally not. */
4867        if (th->urg)
4868                tcp_check_urg(sk, th);
4869
4870        /* Do we wait for any urgent data? - normally not... */
4871        if (tp->urg_data == TCP_URG_NOTYET) {
4872                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4873                          th->syn;
4874
4875                /* Is the urgent pointer pointing into this packet? */
4876                if (ptr < skb->len) {
4877                        u8 tmp;
4878                        if (skb_copy_bits(skb, ptr, &tmp, 1))
4879                                BUG();
4880                        tp->urg_data = TCP_URG_VALID | tmp;
4881                        if (!sock_flag(sk, SOCK_DEAD))
4882                                sk->sk_data_ready(sk, 0);
4883                }
4884        }
4885}
4886
4887static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4888{
4889        struct tcp_sock *tp = tcp_sk(sk);
4890        int chunk = skb->len - hlen;
4891        int err;
4892
4893        local_bh_enable();
4894        if (skb_csum_unnecessary(skb))
4895                err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4896        else
4897                err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4898                                                       tp->ucopy.iov);
4899
4900        if (!err) {
4901                tp->ucopy.len -= chunk;
4902                tp->copied_seq += chunk;
4903                tcp_rcv_space_adjust(sk);
4904        }
4905
4906        local_bh_disable();
4907        return err;
4908}
4909
4910static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4911                                            struct sk_buff *skb)
4912{
4913        __sum16 result;
4914
4915        if (sock_owned_by_user(sk)) {
4916                local_bh_enable();
4917                result = __tcp_checksum_complete(skb);
4918                local_bh_disable();
4919        } else {
4920                result = __tcp_checksum_complete(skb);
4921        }
4922        return result;
4923}
4924
4925static inline bool tcp_checksum_complete_user(struct sock *sk,
4926                                             struct sk_buff *skb)
4927{
4928        return !skb_csum_unnecessary(skb) &&
4929               __tcp_checksum_complete_user(sk, skb);
4930}
4931
4932#ifdef CONFIG_NET_DMA
4933static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4934                                  int hlen)
4935{
4936        struct tcp_sock *tp = tcp_sk(sk);
4937        int chunk = skb->len - hlen;
4938        int dma_cookie;
4939        bool copied_early = false;
4940
4941        if (tp->ucopy.wakeup)
4942                return false;
4943
4944        if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4945                tp->ucopy.dma_chan = net_dma_find_channel();
4946
4947        if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4948
4949                dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4950                                                         skb, hlen,
4951                                                         tp->ucopy.iov, chunk,
4952                                                         tp->ucopy.pinned_list);
4953
4954                if (dma_cookie < 0)
4955                        goto out;
4956
4957                tp->ucopy.dma_cookie = dma_cookie;
4958                copied_early = true;
4959
4960                tp->ucopy.len -= chunk;
4961                tp->copied_seq += chunk;
4962                tcp_rcv_space_adjust(sk);
4963
4964                if ((tp->ucopy.len == 0) ||
4965                    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4966                    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4967                        tp->ucopy.wakeup = 1;
4968                        sk->sk_data_ready(sk, 0);
4969                }
4970        } else if (chunk > 0) {
4971                tp->ucopy.wakeup = 1;
4972                sk->sk_data_ready(sk, 0);
4973        }
4974out:
4975        return copied_early;
4976}
4977#endif /* CONFIG_NET_DMA */
4978
4979/* Does PAWS and seqno based validation of an incoming segment, flags will
4980 * play significant role here.
4981 */
4982static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4983                                  const struct tcphdr *th, int syn_inerr)
4984{
4985        struct tcp_sock *tp = tcp_sk(sk);
4986
4987        /* RFC1323: H1. Apply PAWS check first. */
4988        if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4989            tcp_paws_discard(sk, skb)) {
4990                if (!th->rst) {
4991                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4992                        tcp_send_dupack(sk, skb);
4993                        goto discard;
4994                }
4995                /* Reset is accepted even if it did not pass PAWS. */
4996        }
4997
4998        /* Step 1: check sequence number */
4999        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5000                /* RFC793, page 37: "In all states except SYN-SENT, all reset
5001                 * (RST) segments are validated by checking their SEQ-fields."
5002                 * And page 69: "If an incoming segment is not acceptable,
5003                 * an acknowledgment should be sent in reply (unless the RST
5004                 * bit is set, if so drop the segment and return)".
5005                 */
5006                if (!th->rst) {
5007                        if (th->syn)
5008                                goto syn_challenge;
5009                        tcp_send_dupack(sk, skb);
5010                }
5011                goto discard;
5012        }
5013
5014        /* Step 2: check RST bit */
5015        if (th->rst) {
5016                /* RFC 5961 3.2 :
5017                 * If sequence number exactly matches RCV.NXT, then
5018                 *     RESET the connection
5019                 * else
5020                 *     Send a challenge ACK
5021                 */
5022                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5023                        tcp_reset(sk);
5024                else
5025                        tcp_send_challenge_ack(sk);
5026                goto discard;
5027        }
5028
5029        /* step 3: check security and precedence [ignored] */
5030
5031        /* step 4: Check for a SYN
5032         * RFC 5691 4.2 : Send a challenge ack
5033         */
5034        if (th->syn) {
5035syn_challenge:
5036                if (syn_inerr)
5037                        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5038                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5039                tcp_send_challenge_ack(sk);
5040                goto discard;
5041        }
5042
5043        return true;
5044
5045discard:
5046        __kfree_skb(skb);
5047        return false;
5048}
5049
5050/*
5051 *      TCP receive function for the ESTABLISHED state.
5052 *
5053 *      It is split into a fast path and a slow path. The fast path is
5054 *      disabled when:
5055 *      - A zero window was announced from us - zero window probing
5056 *        is only handled properly in the slow path.
5057 *      - Out of order segments arrived.
5058 *      - Urgent data is expected.
5059 *      - There is no buffer space left
5060 *      - Unexpected TCP flags/window values/header lengths are received
5061 *        (detected by checking the TCP header against pred_flags)
5062 *      - Data is sent in both directions. Fast path only supports pure senders
5063 *        or pure receivers (this means either the sequence number or the ack
5064 *        value must stay constant)
5065 *      - Unexpected TCP option.
5066 *
5067 *      When these conditions are not satisfied it drops into a standard
5068 *      receive procedure patterned after RFC793 to handle all cases.
5069 *      The first three cases are guaranteed by proper pred_flags setting,
5070 *      the rest is checked inline. Fast processing is turned on in
5071 *      tcp_data_queue when everything is OK.
5072 */
5073int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5074                        const struct tcphdr *th, unsigned int len)
5075{
5076        struct tcp_sock *tp = tcp_sk(sk);
5077
5078        if (unlikely(sk->sk_rx_dst == NULL))
5079                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5080        /*
5081         *      Header prediction.
5082         *      The code loosely follows the one in the famous
5083         *      "30 instruction TCP receive" Van Jacobson mail.
5084         *
5085         *      Van's trick is to deposit buffers into socket queue
5086         *      on a device interrupt, to call tcp_recv function
5087         *      on the receive process context and checksum and copy
5088         *      the buffer to user space. smart...
5089         *
5090         *      Our current scheme is not silly either but we take the
5091         *      extra cost of the net_bh soft interrupt processing...
5092         *      We do checksum and copy also but from device to kernel.
5093         */
5094
5095        tp->rx_opt.saw_tstamp = 0;
5096
5097        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5098         *      if header_prediction is to be made
5099         *      'S' will always be tp->tcp_header_len >> 2
5100         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5101         *  turn it off (when there are holes in the receive
5102         *       space for instance)
5103         *      PSH flag is ignored.
5104         */
5105
5106        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5107            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5108            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5109                int tcp_header_len = tp->tcp_header_len;
5110
5111                /* Timestamp header prediction: tcp_header_len
5112                 * is automatically equal to th->doff*4 due to pred_flags
5113                 * match.
5114                 */
5115
5116                /* Check timestamp */
5117                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5118                        /* No? Slow path! */
5119                        if (!tcp_parse_aligned_timestamp(tp, th))
5120                                goto slow_path;
5121
5122                        /* If PAWS failed, check it more carefully in slow path */
5123                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5124                                goto slow_path;
5125
5126                        /* DO NOT update ts_recent here, if checksum fails
5127                         * and timestamp was corrupted part, it will result
5128                         * in a hung connection since we will drop all
5129                         * future packets due to the PAWS test.
5130                         */
5131                }
5132
5133                if (len <= tcp_header_len) {
5134                        /* Bulk data transfer: sender */
5135                        if (len == tcp_header_len) {
5136                                /* Predicted packet is in window by definition.
5137                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5138                                 * Hence, check seq<=rcv_wup reduces to:
5139                                 */
5140                                if (tcp_header_len ==
5141                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5142                                    tp->rcv_nxt == tp->rcv_wup)
5143                                        tcp_store_ts_recent(tp);
5144
5145                                /* We know that such packets are checksummed
5146                                 * on entry.
5147                                 */
5148                                tcp_ack(sk, skb, 0);
5149                                __kfree_skb(skb);
5150                                tcp_data_snd_check(sk);
5151                                return 0;
5152                        } else { /* Header too small */
5153                                TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5154                                goto discard;
5155                        }
5156                } else {
5157                        int eaten = 0;
5158                        int copied_early = 0;
5159                        bool fragstolen = false;
5160
5161                        if (tp->copied_seq == tp->rcv_nxt &&
5162                            len - tcp_header_len <= tp->ucopy.len) {
5163#ifdef CONFIG_NET_DMA
5164                                if (tp->ucopy.task == current &&
5165                                    sock_owned_by_user(sk) &&
5166                                    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5167                                        copied_early = 1;
5168                                        eaten = 1;
5169                                }
5170#endif
5171                                if (tp->ucopy.task == current &&
5172                                    sock_owned_by_user(sk) && !copied_early) {
5173                                        __set_current_state(TASK_RUNNING);
5174
5175                                        if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5176                                                eaten = 1;
5177                                }
5178                                if (eaten) {
5179                                        /* Predicted packet is in window by definition.
5180                                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5181                                         * Hence, check seq<=rcv_wup reduces to:
5182                                         */
5183                                        if (tcp_header_len ==
5184                                            (sizeof(struct tcphdr) +
5185                                             TCPOLEN_TSTAMP_ALIGNED) &&
5186                                            tp->rcv_nxt == tp->rcv_wup)
5187                                                tcp_store_ts_recent(tp);
5188
5189                                        tcp_rcv_rtt_measure_ts(sk, skb);
5190
5191                                        __skb_pull(skb, tcp_header_len);
5192                                        tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5193                                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5194                                }
5195                                if (copied_early)
5196                                        tcp_cleanup_rbuf(sk, skb->len);
5197                        }
5198                        if (!eaten) {
5199                                if (tcp_checksum_complete_user(sk, skb))
5200                                        goto csum_error;
5201
5202                                if ((int)skb->truesize > sk->sk_forward_alloc)
5203                                        goto step5;
5204
5205                                /* Predicted packet is in window by definition.
5206                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5207                                 * Hence, check seq<=rcv_wup reduces to:
5208                                 */
5209                                if (tcp_header_len ==
5210                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5211                                    tp->rcv_nxt == tp->rcv_wup)
5212                                        tcp_store_ts_recent(tp);
5213
5214                                tcp_rcv_rtt_measure_ts(sk, skb);
5215
5216                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5217
5218                                /* Bulk data transfer: receiver */
5219                                eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5220                                                      &fragstolen);
5221                        }
5222
5223                        tcp_event_data_recv(sk, skb);
5224
5225                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5226                                /* Well, only one small jumplet in fast path... */
5227                                tcp_ack(sk, skb, FLAG_DATA);
5228                                tcp_data_snd_check(sk);
5229                                if (!inet_csk_ack_scheduled(sk))
5230                                        goto no_ack;
5231                        }
5232
5233                        if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5234                                __tcp_ack_snd_check(sk, 0);
5235no_ack:
5236#ifdef CONFIG_NET_DMA
5237                        if (copied_early)
5238                                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5239                        else
5240#endif
5241                        if (eaten)
5242                                kfree_skb_partial(skb, fragstolen);
5243                        sk->sk_data_ready(sk, 0);
5244                        return 0;
5245                }
5246        }
5247
5248slow_path:
5249        if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5250                goto csum_error;
5251
5252        if (!th->ack && !th->rst)
5253                goto discard;
5254
5255        /*
5256         *      Standard slow path.
5257         */
5258
5259        if (!tcp_validate_incoming(sk, skb, th, 1))
5260                return 0;
5261
5262step5:
5263        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5264                goto discard;
5265
5266        tcp_rcv_rtt_measure_ts(sk, skb);
5267
5268        /* Process urgent data. */
5269        tcp_urg(sk, skb, th);
5270
5271        /* step 7: process the segment text */
5272        tcp_data_queue(sk, skb);
5273
5274        tcp_data_snd_check(sk);
5275        tcp_ack_snd_check(sk);
5276        return 0;
5277
5278csum_error:
5279        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5280        TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5281
5282discard:
5283        __kfree_skb(skb);
5284        return 0;
5285}
5286EXPORT_SYMBOL(tcp_rcv_established);
5287
5288void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5289{
5290        struct tcp_sock *tp = tcp_sk(sk);
5291        struct inet_connection_sock *icsk = inet_csk(sk);
5292
5293        tcp_set_state(sk, TCP_ESTABLISHED);
5294
5295        if (skb != NULL) {
5296                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5297                security_inet_conn_established(sk, skb);
5298        }
5299
5300        /* Make sure socket is routed, for correct metrics.  */
5301        icsk->icsk_af_ops->rebuild_header(sk);
5302
5303        tcp_init_metrics(sk);
5304
5305        tcp_init_congestion_control(sk);
5306
5307        /* Prevent spurious tcp_cwnd_restart() on first data
5308         * packet.
5309         */
5310        tp->lsndtime = tcp_time_stamp;
5311
5312        tcp_init_buffer_space(sk);
5313
5314        if (sock_flag(sk, SOCK_KEEPOPEN))
5315                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5316
5317        if (!tp->rx_opt.snd_wscale)
5318                __tcp_fast_path_on(tp, tp->snd_wnd);
5319        else
5320                tp->pred_flags = 0;
5321
5322        if (!sock_flag(sk, SOCK_DEAD)) {
5323                sk->sk_state_change(sk);
5324                sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5325        }
5326}
5327
5328static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5329                                    struct tcp_fastopen_cookie *cookie)
5330{
5331        struct tcp_sock *tp = tcp_sk(sk);
5332        struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5333        u16 mss = tp->rx_opt.mss_clamp;
5334        bool syn_drop;
5335
5336        if (mss == tp->rx_opt.user_mss) {
5337                struct tcp_options_received opt;
5338
5339                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5340                tcp_clear_options(&opt);
5341                opt.user_mss = opt.mss_clamp = 0;
5342                tcp_parse_options(synack, &opt, 0, NULL);
5343                mss = opt.mss_clamp;
5344        }
5345
5346        if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5347                cookie->len = -1;
5348
5349        /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5350         * the remote receives only the retransmitted (regular) SYNs: either
5351         * the original SYN-data or the corresponding SYN-ACK is lost.
5352         */
5353        syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5354
5355        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5356
5357        if (data) { /* Retransmit unacked data in SYN */
5358                tcp_for_write_queue_from(data, sk) {
5359                        if (data == tcp_send_head(sk) ||
5360                            __tcp_retransmit_skb(sk, data))
5361                                break;
5362                }
5363                tcp_rearm_rto(sk);
5364                return true;
5365        }
5366        tp->syn_data_acked = tp->syn_data;
5367        return false;
5368}
5369
5370static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5371                                         const struct tcphdr *th, unsigned int len)
5372{
5373        struct inet_connection_sock *icsk = inet_csk(sk);
5374        struct tcp_sock *tp = tcp_sk(sk);
5375        struct tcp_fastopen_cookie foc = { .len = -1 };
5376        int saved_clamp = tp->rx_opt.mss_clamp;
5377
5378        tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5379        if (tp->rx_opt.saw_tstamp)
5380                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5381
5382        if (th->ack) {
5383                /* rfc793:
5384                 * "If the state is SYN-SENT then
5385                 *    first check the ACK bit
5386                 *      If the ACK bit is set
5387                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5388                 *        a reset (unless the RST bit is set, if so drop
5389                 *        the segment and return)"
5390                 */
5391                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5392                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5393                        goto reset_and_undo;
5394
5395                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5396                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5397                             tcp_time_stamp)) {
5398                        NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5399                        goto reset_and_undo;
5400                }
5401
5402                /* Now ACK is acceptable.
5403                 *
5404                 * "If the RST bit is set
5405                 *    If the ACK was acceptable then signal the user "error:
5406                 *    connection reset", drop the segment, enter CLOSED state,
5407                 *    delete TCB, and return."
5408                 */
5409
5410                if (th->rst) {
5411                        tcp_reset(sk);
5412                        goto discard;
5413                }
5414
5415                /* rfc793:
5416                 *   "fifth, if neither of the SYN or RST bits is set then
5417                 *    drop the segment and return."
5418                 *
5419                 *    See note below!
5420                 *                                        --ANK(990513)
5421                 */
5422                if (!th->syn)
5423                        goto discard_and_undo;
5424
5425                /* rfc793:
5426                 *   "If the SYN bit is on ...
5427                 *    are acceptable then ...
5428                 *    (our SYN has been ACKed), change the connection
5429                 *    state to ESTABLISHED..."
5430                 */
5431
5432                TCP_ECN_rcv_synack(tp, th);
5433
5434                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5435                tcp_ack(sk, skb, FLAG_SLOWPATH);
5436
5437                /* Ok.. it's good. Set up sequence numbers and
5438                 * move to established.
5439                 */
5440                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5441                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5442
5443                /* RFC1323: The window in SYN & SYN/ACK segments is
5444                 * never scaled.
5445                 */
5446                tp->snd_wnd = ntohs(th->window);
5447
5448                if (!tp->rx_opt.wscale_ok) {
5449                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5450                        tp->window_clamp = min(tp->window_clamp, 65535U);
5451                }
5452
5453                if (tp->rx_opt.saw_tstamp) {
5454                        tp->rx_opt.tstamp_ok       = 1;
5455                        tp->tcp_header_len =
5456                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5457                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5458                        tcp_store_ts_recent(tp);
5459                } else {
5460                        tp->tcp_header_len = sizeof(struct tcphdr);
5461                }
5462
5463                if (tcp_is_sack(tp) && sysctl_tcp_fack)
5464                        tcp_enable_fack(tp);
5465
5466                tcp_mtup_init(sk);
5467                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5468                tcp_initialize_rcv_mss(sk);
5469
5470                /* Remember, tcp_poll() does not lock socket!
5471                 * Change state from SYN-SENT only after copied_seq
5472                 * is initialized. */
5473                tp->copied_seq = tp->rcv_nxt;
5474
5475                smp_mb();
5476
5477                tcp_finish_connect(sk, skb);
5478
5479                if ((tp->syn_fastopen || tp->syn_data) &&
5480                    tcp_rcv_fastopen_synack(sk, skb, &foc))
5481                        return -1;
5482
5483                if (sk->sk_write_pending ||
5484                    icsk->icsk_accept_queue.rskq_defer_accept ||
5485                    icsk->icsk_ack.pingpong) {
5486                        /* Save one ACK. Data will be ready after
5487                         * several ticks, if write_pending is set.
5488                         *
5489                         * It may be deleted, but with this feature tcpdumps
5490                         * look so _wonderfully_ clever, that I was not able
5491                         * to stand against the temptation 8)     --ANK
5492                         */
5493                        inet_csk_schedule_ack(sk);
5494                        icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5495                        tcp_enter_quickack_mode(sk);
5496                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5497                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
5498
5499discard:
5500                        __kfree_skb(skb);
5501                        return 0;
5502                } else {
5503                        tcp_send_ack(sk);
5504                }
5505                return -1;
5506        }
5507
5508        /* No ACK in the segment */
5509
5510        if (th->rst) {
5511                /* rfc793:
5512                 * "If the RST bit is set
5513                 *
5514                 *      Otherwise (no ACK) drop the segment and return."
5515                 */
5516
5517                goto discard_and_undo;
5518        }
5519
5520        /* PAWS check. */
5521        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5522            tcp_paws_reject(&tp->rx_opt, 0))
5523                goto discard_and_undo;
5524
5525        if (th->syn) {
5526                /* We see SYN without ACK. It is attempt of
5527                 * simultaneous connect with crossed SYNs.
5528                 * Particularly, it can be connect to self.
5529                 */
5530                tcp_set_state(sk, TCP_SYN_RECV);
5531
5532                if (tp->rx_opt.saw_tstamp) {
5533                        tp->rx_opt.tstamp_ok = 1;
5534                        tcp_store_ts_recent(tp);
5535                        tp->tcp_header_len =
5536                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5537                } else {
5538                        tp->tcp_header_len = sizeof(struct tcphdr);
5539                }
5540
5541                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5542                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5543
5544                /* RFC1323: The window in SYN & SYN/ACK segments is
5545                 * never scaled.
5546                 */
5547                tp->snd_wnd    = ntohs(th->window);
5548                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5549                tp->max_window = tp->snd_wnd;
5550
5551                TCP_ECN_rcv_syn(tp, th);
5552
5553                tcp_mtup_init(sk);
5554                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5555                tcp_initialize_rcv_mss(sk);
5556
5557                tcp_send_synack(sk);
5558#if 0
5559                /* Note, we could accept data and URG from this segment.
5560                 * There are no obstacles to make this (except that we must
5561                 * either change tcp_recvmsg() to prevent it from returning data
5562                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5563                 *
5564                 * However, if we ignore data in ACKless segments sometimes,
5565                 * we have no reasons to accept it sometimes.
5566                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5567                 * is not flawless. So, discard packet for sanity.
5568                 * Uncomment this return to process the data.
5569                 */
5570                return -1;
5571#else
5572                goto discard;
5573#endif
5574        }
5575        /* "fifth, if neither of the SYN or RST bits is set then
5576         * drop the segment and return."
5577         */
5578
5579discard_and_undo:
5580        tcp_clear_options(&tp->rx_opt);
5581        tp->rx_opt.mss_clamp = saved_clamp;
5582        goto discard;
5583
5584reset_and_undo:
5585        tcp_clear_options(&tp->rx_opt);
5586        tp->rx_opt.mss_clamp = saved_clamp;
5587        return 1;
5588}
5589
5590/*
5591 *      This function implements the receiving procedure of RFC 793 for
5592 *      all states except ESTABLISHED and TIME_WAIT.
5593 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5594 *      address independent.
5595 */
5596
5597int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5598                          const struct tcphdr *th, unsigned int len)
5599{
5600        struct tcp_sock *tp = tcp_sk(sk);
5601        struct inet_connection_sock *icsk = inet_csk(sk);
5602        struct request_sock *req;
5603        int queued = 0;
5604
5605        tp->rx_opt.saw_tstamp = 0;
5606
5607        switch (sk->sk_state) {
5608        case TCP_CLOSE:
5609                goto discard;
5610
5611        case TCP_LISTEN:
5612                if (th->ack)
5613                        return 1;
5614
5615                if (th->rst)
5616                        goto discard;
5617
5618                if (th->syn) {
5619                        if (th->fin)
5620                                goto discard;
5621                        if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5622                                return 1;
5623
5624                        /* Now we have several options: In theory there is
5625                         * nothing else in the frame. KA9Q has an option to
5626                         * send data with the syn, BSD accepts data with the
5627                         * syn up to the [to be] advertised window and
5628                         * Solaris 2.1 gives you a protocol error. For now
5629                         * we just ignore it, that fits the spec precisely
5630                         * and avoids incompatibilities. It would be nice in
5631                         * future to drop through and process the data.
5632                         *
5633                         * Now that TTCP is starting to be used we ought to
5634                         * queue this data.
5635                         * But, this leaves one open to an easy denial of
5636                         * service attack, and SYN cookies can't defend
5637                         * against this problem. So, we drop the data
5638                         * in the interest of security over speed unless
5639                         * it's still in use.
5640                         */
5641                        kfree_skb(skb);
5642                        return 0;
5643                }
5644                goto discard;
5645
5646        case TCP_SYN_SENT:
5647                queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5648                if (queued >= 0)
5649                        return queued;
5650
5651                /* Do step6 onward by hand. */
5652                tcp_urg(sk, skb, th);
5653                __kfree_skb(skb);
5654                tcp_data_snd_check(sk);
5655                return 0;
5656        }
5657
5658        req = tp->fastopen_rsk;
5659        if (req != NULL) {
5660                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5661                    sk->sk_state != TCP_FIN_WAIT1);
5662
5663                if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5664                        goto discard;
5665        }
5666
5667        if (!th->ack && !th->rst)
5668                goto discard;
5669
5670        if (!tcp_validate_incoming(sk, skb, th, 0))
5671                return 0;
5672
5673        /* step 5: check the ACK field */
5674        if (true) {
5675                int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5676                                                  FLAG_UPDATE_TS_RECENT) > 0;
5677
5678                switch (sk->sk_state) {
5679                case TCP_SYN_RECV:
5680                        if (acceptable) {
5681                                /* Once we leave TCP_SYN_RECV, we no longer
5682                                 * need req so release it.
5683                                 */
5684                                if (req) {
5685                                        tcp_synack_rtt_meas(sk, req);
5686                                        tp->total_retrans = req->num_retrans;
5687
5688                                        reqsk_fastopen_remove(sk, req, false);
5689                                } else {
5690                                        /* Make sure socket is routed, for
5691                                         * correct metrics.
5692                                         */
5693                                        icsk->icsk_af_ops->rebuild_header(sk);
5694                                        tcp_init_congestion_control(sk);
5695
5696                                        tcp_mtup_init(sk);
5697                                        tcp_init_buffer_space(sk);
5698                                        tp->copied_seq = tp->rcv_nxt;
5699                                }
5700                                smp_mb();
5701                                tcp_set_state(sk, TCP_ESTABLISHED);
5702                                sk->sk_state_change(sk);
5703
5704                                /* Note, that this wakeup is only for marginal
5705                                 * crossed SYN case. Passively open sockets
5706                                 * are not waked up, because sk->sk_sleep ==
5707                                 * NULL and sk->sk_socket == NULL.
5708                                 */
5709                                if (sk->sk_socket)
5710                                        sk_wake_async(sk,
5711                                                      SOCK_WAKE_IO, POLL_OUT);
5712
5713                                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5714                                tp->snd_wnd = ntohs(th->window) <<
5715                                              tp->rx_opt.snd_wscale;
5716                                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5717
5718                                if (tp->rx_opt.tstamp_ok)
5719                                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5720
5721                                if (req) {
5722                                        /* Re-arm the timer because data may
5723                                         * have been sent out. This is similar
5724                                         * to the regular data transmission case
5725                                         * when new data has just been ack'ed.
5726                                         *
5727                                         * (TFO) - we could try to be more
5728                                         * aggressive and retranmitting any data
5729                                         * sooner based on when they were sent
5730                                         * out.
5731                                         */
5732                                        tcp_rearm_rto(sk);
5733                                } else
5734                                        tcp_init_metrics(sk);
5735
5736                                /* Prevent spurious tcp_cwnd_restart() on
5737                                 * first data packet.
5738                                 */
5739                                tp->lsndtime = tcp_time_stamp;
5740
5741                                tcp_initialize_rcv_mss(sk);
5742                                tcp_fast_path_on(tp);
5743                        } else {
5744                                return 1;
5745                        }
5746                        break;
5747
5748                case TCP_FIN_WAIT1:
5749                        /* If we enter the TCP_FIN_WAIT1 state and we are a
5750                         * Fast Open socket and this is the first acceptable
5751                         * ACK we have received, this would have acknowledged
5752                         * our SYNACK so stop the SYNACK timer.
5753                         */
5754                        if (req != NULL) {
5755                                /* Return RST if ack_seq is invalid.
5756                                 * Note that RFC793 only says to generate a
5757                                 * DUPACK for it but for TCP Fast Open it seems
5758                                 * better to treat this case like TCP_SYN_RECV
5759                                 * above.
5760                                 */
5761                                if (!acceptable)
5762                                        return 1;
5763                                /* We no longer need the request sock. */
5764                                reqsk_fastopen_remove(sk, req, false);
5765                                tcp_rearm_rto(sk);
5766                        }
5767                        if (tp->snd_una == tp->write_seq) {
5768                                struct dst_entry *dst;
5769
5770                                tcp_set_state(sk, TCP_FIN_WAIT2);
5771                                sk->sk_shutdown |= SEND_SHUTDOWN;
5772
5773                                dst = __sk_dst_get(sk);
5774                                if (dst)
5775                                        dst_confirm(dst);
5776
5777                                if (!sock_flag(sk, SOCK_DEAD))
5778                                        /* Wake up lingering close() */
5779                                        sk->sk_state_change(sk);
5780                                else {
5781                                        int tmo;
5782
5783                                        if (tp->linger2 < 0 ||
5784                                            (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5785                                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5786                                                tcp_done(sk);
5787                                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5788                                                return 1;
5789                                        }
5790
5791                                        tmo = tcp_fin_time(sk);
5792                                        if (tmo > TCP_TIMEWAIT_LEN) {
5793                                                inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5794                                        } else if (th->fin || sock_owned_by_user(sk)) {
5795                                                /* Bad case. We could lose such FIN otherwise.
5796                                                 * It is not a big problem, but it looks confusing
5797                                                 * and not so rare event. We still can lose it now,
5798                                                 * if it spins in bh_lock_sock(), but it is really
5799                                                 * marginal case.
5800                                                 */
5801                                                inet_csk_reset_keepalive_timer(sk, tmo);
5802                                        } else {
5803                                                tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5804                                                goto discard;
5805                                        }
5806                                }
5807                        }
5808                        break;
5809
5810                case TCP_CLOSING:
5811                        if (tp->snd_una == tp->write_seq) {
5812                                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5813                                goto discard;
5814                        }
5815                        break;
5816
5817                case TCP_LAST_ACK:
5818                        if (tp->snd_una == tp->write_seq) {
5819                                tcp_update_metrics(sk);
5820                                tcp_done(sk);
5821                                goto discard;
5822                        }
5823                        break;
5824                }
5825        }
5826
5827        /* step 6: check the URG bit */
5828        tcp_urg(sk, skb, th);
5829
5830        /* step 7: process the segment text */
5831        switch (sk->sk_state) {
5832        case TCP_CLOSE_WAIT:
5833        case TCP_CLOSING:
5834        case TCP_LAST_ACK:
5835                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5836                        break;
5837        case TCP_FIN_WAIT1:
5838        case TCP_FIN_WAIT2:
5839                /* RFC 793 says to queue data in these states,
5840                 * RFC 1122 says we MUST send a reset.
5841                 * BSD 4.4 also does reset.
5842                 */
5843                if (sk->sk_shutdown & RCV_SHUTDOWN) {
5844                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5845                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5846                                NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5847                                tcp_reset(sk);
5848                                return 1;
5849                        }
5850                }
5851                /* Fall through */
5852        case TCP_ESTABLISHED:
5853                tcp_data_queue(sk, skb);
5854                queued = 1;
5855                break;
5856        }
5857
5858        /* tcp_data could move socket to TIME-WAIT */
5859        if (sk->sk_state != TCP_CLOSE) {
5860                tcp_data_snd_check(sk);
5861                tcp_ack_snd_check(sk);
5862        }
5863
5864        if (!queued) {
5865discard:
5866                __kfree_skb(skb);
5867        }
5868        return 0;
5869}
5870EXPORT_SYMBOL(tcp_rcv_state_process);
5871