linux/net/rds/ib_recv.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/slab.h>
  35#include <linux/pci.h>
  36#include <linux/dma-mapping.h>
  37#include <rdma/rdma_cm.h>
  38
  39#include "rds.h"
  40#include "ib.h"
  41
  42static struct kmem_cache *rds_ib_incoming_slab;
  43static struct kmem_cache *rds_ib_frag_slab;
  44static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  45
  46void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  47{
  48        struct rds_ib_recv_work *recv;
  49        u32 i;
  50
  51        for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  52                struct ib_sge *sge;
  53
  54                recv->r_ibinc = NULL;
  55                recv->r_frag = NULL;
  56
  57                recv->r_wr.next = NULL;
  58                recv->r_wr.wr_id = i;
  59                recv->r_wr.sg_list = recv->r_sge;
  60                recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  61
  62                sge = &recv->r_sge[0];
  63                sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  64                sge->length = sizeof(struct rds_header);
  65                sge->lkey = ic->i_mr->lkey;
  66
  67                sge = &recv->r_sge[1];
  68                sge->addr = 0;
  69                sge->length = RDS_FRAG_SIZE;
  70                sge->lkey = ic->i_mr->lkey;
  71        }
  72}
  73
  74/*
  75 * The entire 'from' list, including the from element itself, is put on
  76 * to the tail of the 'to' list.
  77 */
  78static void list_splice_entire_tail(struct list_head *from,
  79                                    struct list_head *to)
  80{
  81        struct list_head *from_last = from->prev;
  82
  83        list_splice_tail(from_last, to);
  84        list_add_tail(from_last, to);
  85}
  86
  87static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  88{
  89        struct list_head *tmp;
  90
  91        tmp = xchg(&cache->xfer, NULL);
  92        if (tmp) {
  93                if (cache->ready)
  94                        list_splice_entire_tail(tmp, cache->ready);
  95                else
  96                        cache->ready = tmp;
  97        }
  98}
  99
 100static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
 101{
 102        struct rds_ib_cache_head *head;
 103        int cpu;
 104
 105        cache->percpu = alloc_percpu(struct rds_ib_cache_head);
 106        if (!cache->percpu)
 107               return -ENOMEM;
 108
 109        for_each_possible_cpu(cpu) {
 110                head = per_cpu_ptr(cache->percpu, cpu);
 111                head->first = NULL;
 112                head->count = 0;
 113        }
 114        cache->xfer = NULL;
 115        cache->ready = NULL;
 116
 117        return 0;
 118}
 119
 120int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
 121{
 122        int ret;
 123
 124        ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
 125        if (!ret) {
 126                ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
 127                if (ret)
 128                        free_percpu(ic->i_cache_incs.percpu);
 129        }
 130
 131        return ret;
 132}
 133
 134static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
 135                                          struct list_head *caller_list)
 136{
 137        struct rds_ib_cache_head *head;
 138        int cpu;
 139
 140        for_each_possible_cpu(cpu) {
 141                head = per_cpu_ptr(cache->percpu, cpu);
 142                if (head->first) {
 143                        list_splice_entire_tail(head->first, caller_list);
 144                        head->first = NULL;
 145                }
 146        }
 147
 148        if (cache->ready) {
 149                list_splice_entire_tail(cache->ready, caller_list);
 150                cache->ready = NULL;
 151        }
 152}
 153
 154void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
 155{
 156        struct rds_ib_incoming *inc;
 157        struct rds_ib_incoming *inc_tmp;
 158        struct rds_page_frag *frag;
 159        struct rds_page_frag *frag_tmp;
 160        LIST_HEAD(list);
 161
 162        rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 163        rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
 164        free_percpu(ic->i_cache_incs.percpu);
 165
 166        list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
 167                list_del(&inc->ii_cache_entry);
 168                WARN_ON(!list_empty(&inc->ii_frags));
 169                kmem_cache_free(rds_ib_incoming_slab, inc);
 170        }
 171
 172        rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 173        rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
 174        free_percpu(ic->i_cache_frags.percpu);
 175
 176        list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
 177                list_del(&frag->f_cache_entry);
 178                WARN_ON(!list_empty(&frag->f_item));
 179                kmem_cache_free(rds_ib_frag_slab, frag);
 180        }
 181}
 182
 183/* fwd decl */
 184static void rds_ib_recv_cache_put(struct list_head *new_item,
 185                                  struct rds_ib_refill_cache *cache);
 186static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
 187
 188
 189/* Recycle frag and attached recv buffer f_sg */
 190static void rds_ib_frag_free(struct rds_ib_connection *ic,
 191                             struct rds_page_frag *frag)
 192{
 193        rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
 194
 195        rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
 196}
 197
 198/* Recycle inc after freeing attached frags */
 199void rds_ib_inc_free(struct rds_incoming *inc)
 200{
 201        struct rds_ib_incoming *ibinc;
 202        struct rds_page_frag *frag;
 203        struct rds_page_frag *pos;
 204        struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
 205
 206        ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 207
 208        /* Free attached frags */
 209        list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
 210                list_del_init(&frag->f_item);
 211                rds_ib_frag_free(ic, frag);
 212        }
 213        BUG_ON(!list_empty(&ibinc->ii_frags));
 214
 215        rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
 216        rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
 217}
 218
 219static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
 220                                  struct rds_ib_recv_work *recv)
 221{
 222        if (recv->r_ibinc) {
 223                rds_inc_put(&recv->r_ibinc->ii_inc);
 224                recv->r_ibinc = NULL;
 225        }
 226        if (recv->r_frag) {
 227                ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 228                rds_ib_frag_free(ic, recv->r_frag);
 229                recv->r_frag = NULL;
 230        }
 231}
 232
 233void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
 234{
 235        u32 i;
 236
 237        for (i = 0; i < ic->i_recv_ring.w_nr; i++)
 238                rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
 239}
 240
 241static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
 242                                                     gfp_t slab_mask)
 243{
 244        struct rds_ib_incoming *ibinc;
 245        struct list_head *cache_item;
 246        int avail_allocs;
 247
 248        cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
 249        if (cache_item) {
 250                ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
 251        } else {
 252                avail_allocs = atomic_add_unless(&rds_ib_allocation,
 253                                                 1, rds_ib_sysctl_max_recv_allocation);
 254                if (!avail_allocs) {
 255                        rds_ib_stats_inc(s_ib_rx_alloc_limit);
 256                        return NULL;
 257                }
 258                ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
 259                if (!ibinc) {
 260                        atomic_dec(&rds_ib_allocation);
 261                        return NULL;
 262                }
 263        }
 264        INIT_LIST_HEAD(&ibinc->ii_frags);
 265        rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
 266
 267        return ibinc;
 268}
 269
 270static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
 271                                                    gfp_t slab_mask, gfp_t page_mask)
 272{
 273        struct rds_page_frag *frag;
 274        struct list_head *cache_item;
 275        int ret;
 276
 277        cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
 278        if (cache_item) {
 279                frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
 280        } else {
 281                frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
 282                if (!frag)
 283                        return NULL;
 284
 285                sg_init_table(&frag->f_sg, 1);
 286                ret = rds_page_remainder_alloc(&frag->f_sg,
 287                                               RDS_FRAG_SIZE, page_mask);
 288                if (ret) {
 289                        kmem_cache_free(rds_ib_frag_slab, frag);
 290                        return NULL;
 291                }
 292        }
 293
 294        INIT_LIST_HEAD(&frag->f_item);
 295
 296        return frag;
 297}
 298
 299static int rds_ib_recv_refill_one(struct rds_connection *conn,
 300                                  struct rds_ib_recv_work *recv, int prefill)
 301{
 302        struct rds_ib_connection *ic = conn->c_transport_data;
 303        struct ib_sge *sge;
 304        int ret = -ENOMEM;
 305        gfp_t slab_mask = GFP_NOWAIT;
 306        gfp_t page_mask = GFP_NOWAIT;
 307
 308        if (prefill) {
 309                slab_mask = GFP_KERNEL;
 310                page_mask = GFP_HIGHUSER;
 311        }
 312
 313        if (!ic->i_cache_incs.ready)
 314                rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
 315        if (!ic->i_cache_frags.ready)
 316                rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
 317
 318        /*
 319         * ibinc was taken from recv if recv contained the start of a message.
 320         * recvs that were continuations will still have this allocated.
 321         */
 322        if (!recv->r_ibinc) {
 323                recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
 324                if (!recv->r_ibinc)
 325                        goto out;
 326        }
 327
 328        WARN_ON(recv->r_frag); /* leak! */
 329        recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
 330        if (!recv->r_frag)
 331                goto out;
 332
 333        ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
 334                            1, DMA_FROM_DEVICE);
 335        WARN_ON(ret != 1);
 336
 337        sge = &recv->r_sge[0];
 338        sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
 339        sge->length = sizeof(struct rds_header);
 340
 341        sge = &recv->r_sge[1];
 342        sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
 343        sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
 344
 345        ret = 0;
 346out:
 347        return ret;
 348}
 349
 350/*
 351 * This tries to allocate and post unused work requests after making sure that
 352 * they have all the allocations they need to queue received fragments into
 353 * sockets.
 354 *
 355 * -1 is returned if posting fails due to temporary resource exhaustion.
 356 */
 357void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
 358{
 359        struct rds_ib_connection *ic = conn->c_transport_data;
 360        struct rds_ib_recv_work *recv;
 361        struct ib_recv_wr *failed_wr;
 362        unsigned int posted = 0;
 363        int ret = 0;
 364        u32 pos;
 365
 366        while ((prefill || rds_conn_up(conn)) &&
 367               rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
 368                if (pos >= ic->i_recv_ring.w_nr) {
 369                        printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
 370                                        pos);
 371                        break;
 372                }
 373
 374                recv = &ic->i_recvs[pos];
 375                ret = rds_ib_recv_refill_one(conn, recv, prefill);
 376                if (ret) {
 377                        break;
 378                }
 379
 380                /* XXX when can this fail? */
 381                ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
 382                rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
 383                         recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
 384                         (long) ib_sg_dma_address(
 385                                ic->i_cm_id->device,
 386                                &recv->r_frag->f_sg),
 387                        ret);
 388                if (ret) {
 389                        rds_ib_conn_error(conn, "recv post on "
 390                               "%pI4 returned %d, disconnecting and "
 391                               "reconnecting\n", &conn->c_faddr,
 392                               ret);
 393                        break;
 394                }
 395
 396                posted++;
 397        }
 398
 399        /* We're doing flow control - update the window. */
 400        if (ic->i_flowctl && posted)
 401                rds_ib_advertise_credits(conn, posted);
 402
 403        if (ret)
 404                rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
 405}
 406
 407/*
 408 * We want to recycle several types of recv allocations, like incs and frags.
 409 * To use this, the *_free() function passes in the ptr to a list_head within
 410 * the recyclee, as well as the cache to put it on.
 411 *
 412 * First, we put the memory on a percpu list. When this reaches a certain size,
 413 * We move it to an intermediate non-percpu list in a lockless manner, with some
 414 * xchg/compxchg wizardry.
 415 *
 416 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
 417 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
 418 * list_empty() will return true with one element is actually present.
 419 */
 420static void rds_ib_recv_cache_put(struct list_head *new_item,
 421                                 struct rds_ib_refill_cache *cache)
 422{
 423        unsigned long flags;
 424        struct list_head *old;
 425        struct list_head __percpu *chpfirst;
 426
 427        local_irq_save(flags);
 428
 429        chpfirst = __this_cpu_read(cache->percpu->first);
 430        if (!chpfirst)
 431                INIT_LIST_HEAD(new_item);
 432        else /* put on front */
 433                list_add_tail(new_item, chpfirst);
 434
 435        __this_cpu_write(chpfirst, new_item);
 436        __this_cpu_inc(cache->percpu->count);
 437
 438        if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
 439                goto end;
 440
 441        /*
 442         * Return our per-cpu first list to the cache's xfer by atomically
 443         * grabbing the current xfer list, appending it to our per-cpu list,
 444         * and then atomically returning that entire list back to the
 445         * cache's xfer list as long as it's still empty.
 446         */
 447        do {
 448                old = xchg(&cache->xfer, NULL);
 449                if (old)
 450                        list_splice_entire_tail(old, chpfirst);
 451                old = cmpxchg(&cache->xfer, NULL, chpfirst);
 452        } while (old);
 453
 454
 455        __this_cpu_write(chpfirst, NULL);
 456        __this_cpu_write(cache->percpu->count, 0);
 457end:
 458        local_irq_restore(flags);
 459}
 460
 461static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
 462{
 463        struct list_head *head = cache->ready;
 464
 465        if (head) {
 466                if (!list_empty(head)) {
 467                        cache->ready = head->next;
 468                        list_del_init(head);
 469                } else
 470                        cache->ready = NULL;
 471        }
 472
 473        return head;
 474}
 475
 476int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
 477                            size_t size)
 478{
 479        struct rds_ib_incoming *ibinc;
 480        struct rds_page_frag *frag;
 481        struct iovec *iov = first_iov;
 482        unsigned long to_copy;
 483        unsigned long frag_off = 0;
 484        unsigned long iov_off = 0;
 485        int copied = 0;
 486        int ret;
 487        u32 len;
 488
 489        ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
 490        frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 491        len = be32_to_cpu(inc->i_hdr.h_len);
 492
 493        while (copied < size && copied < len) {
 494                if (frag_off == RDS_FRAG_SIZE) {
 495                        frag = list_entry(frag->f_item.next,
 496                                          struct rds_page_frag, f_item);
 497                        frag_off = 0;
 498                }
 499                while (iov_off == iov->iov_len) {
 500                        iov_off = 0;
 501                        iov++;
 502                }
 503
 504                to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
 505                to_copy = min_t(size_t, to_copy, size - copied);
 506                to_copy = min_t(unsigned long, to_copy, len - copied);
 507
 508                rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
 509                         "[%p, %u] + %lu\n",
 510                         to_copy, iov->iov_base, iov->iov_len, iov_off,
 511                         sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
 512
 513                /* XXX needs + offset for multiple recvs per page */
 514                ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
 515                                            frag->f_sg.offset + frag_off,
 516                                            iov->iov_base + iov_off,
 517                                            to_copy);
 518                if (ret) {
 519                        copied = ret;
 520                        break;
 521                }
 522
 523                iov_off += to_copy;
 524                frag_off += to_copy;
 525                copied += to_copy;
 526        }
 527
 528        return copied;
 529}
 530
 531/* ic starts out kzalloc()ed */
 532void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
 533{
 534        struct ib_send_wr *wr = &ic->i_ack_wr;
 535        struct ib_sge *sge = &ic->i_ack_sge;
 536
 537        sge->addr = ic->i_ack_dma;
 538        sge->length = sizeof(struct rds_header);
 539        sge->lkey = ic->i_mr->lkey;
 540
 541        wr->sg_list = sge;
 542        wr->num_sge = 1;
 543        wr->opcode = IB_WR_SEND;
 544        wr->wr_id = RDS_IB_ACK_WR_ID;
 545        wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
 546}
 547
 548/*
 549 * You'd think that with reliable IB connections you wouldn't need to ack
 550 * messages that have been received.  The problem is that IB hardware generates
 551 * an ack message before it has DMAed the message into memory.  This creates a
 552 * potential message loss if the HCA is disabled for any reason between when it
 553 * sends the ack and before the message is DMAed and processed.  This is only a
 554 * potential issue if another HCA is available for fail-over.
 555 *
 556 * When the remote host receives our ack they'll free the sent message from
 557 * their send queue.  To decrease the latency of this we always send an ack
 558 * immediately after we've received messages.
 559 *
 560 * For simplicity, we only have one ack in flight at a time.  This puts
 561 * pressure on senders to have deep enough send queues to absorb the latency of
 562 * a single ack frame being in flight.  This might not be good enough.
 563 *
 564 * This is implemented by have a long-lived send_wr and sge which point to a
 565 * statically allocated ack frame.  This ack wr does not fall under the ring
 566 * accounting that the tx and rx wrs do.  The QP attribute specifically makes
 567 * room for it beyond the ring size.  Send completion notices its special
 568 * wr_id and avoids working with the ring in that case.
 569 */
 570#ifndef KERNEL_HAS_ATOMIC64
 571static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
 572                                int ack_required)
 573{
 574        unsigned long flags;
 575
 576        spin_lock_irqsave(&ic->i_ack_lock, flags);
 577        ic->i_ack_next = seq;
 578        if (ack_required)
 579                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 580        spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 581}
 582
 583static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 584{
 585        unsigned long flags;
 586        u64 seq;
 587
 588        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 589
 590        spin_lock_irqsave(&ic->i_ack_lock, flags);
 591        seq = ic->i_ack_next;
 592        spin_unlock_irqrestore(&ic->i_ack_lock, flags);
 593
 594        return seq;
 595}
 596#else
 597static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
 598                                int ack_required)
 599{
 600        atomic64_set(&ic->i_ack_next, seq);
 601        if (ack_required) {
 602                smp_mb__before_clear_bit();
 603                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 604        }
 605}
 606
 607static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
 608{
 609        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 610        smp_mb__after_clear_bit();
 611
 612        return atomic64_read(&ic->i_ack_next);
 613}
 614#endif
 615
 616
 617static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
 618{
 619        struct rds_header *hdr = ic->i_ack;
 620        struct ib_send_wr *failed_wr;
 621        u64 seq;
 622        int ret;
 623
 624        seq = rds_ib_get_ack(ic);
 625
 626        rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
 627        rds_message_populate_header(hdr, 0, 0, 0);
 628        hdr->h_ack = cpu_to_be64(seq);
 629        hdr->h_credit = adv_credits;
 630        rds_message_make_checksum(hdr);
 631        ic->i_ack_queued = jiffies;
 632
 633        ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
 634        if (unlikely(ret)) {
 635                /* Failed to send. Release the WR, and
 636                 * force another ACK.
 637                 */
 638                clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 639                set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 640
 641                rds_ib_stats_inc(s_ib_ack_send_failure);
 642
 643                rds_ib_conn_error(ic->conn, "sending ack failed\n");
 644        } else
 645                rds_ib_stats_inc(s_ib_ack_sent);
 646}
 647
 648/*
 649 * There are 3 ways of getting acknowledgements to the peer:
 650 *  1.  We call rds_ib_attempt_ack from the recv completion handler
 651 *      to send an ACK-only frame.
 652 *      However, there can be only one such frame in the send queue
 653 *      at any time, so we may have to postpone it.
 654 *  2.  When another (data) packet is transmitted while there's
 655 *      an ACK in the queue, we piggyback the ACK sequence number
 656 *      on the data packet.
 657 *  3.  If the ACK WR is done sending, we get called from the
 658 *      send queue completion handler, and check whether there's
 659 *      another ACK pending (postponed because the WR was on the
 660 *      queue). If so, we transmit it.
 661 *
 662 * We maintain 2 variables:
 663 *  -   i_ack_flags, which keeps track of whether the ACK WR
 664 *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
 665 *  -   i_ack_next, which is the last sequence number we received
 666 *
 667 * Potentially, send queue and receive queue handlers can run concurrently.
 668 * It would be nice to not have to use a spinlock to synchronize things,
 669 * but the one problem that rules this out is that 64bit updates are
 670 * not atomic on all platforms. Things would be a lot simpler if
 671 * we had atomic64 or maybe cmpxchg64 everywhere.
 672 *
 673 * Reconnecting complicates this picture just slightly. When we
 674 * reconnect, we may be seeing duplicate packets. The peer
 675 * is retransmitting them, because it hasn't seen an ACK for
 676 * them. It is important that we ACK these.
 677 *
 678 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
 679 * this flag set *MUST* be acknowledged immediately.
 680 */
 681
 682/*
 683 * When we get here, we're called from the recv queue handler.
 684 * Check whether we ought to transmit an ACK.
 685 */
 686void rds_ib_attempt_ack(struct rds_ib_connection *ic)
 687{
 688        unsigned int adv_credits;
 689
 690        if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 691                return;
 692
 693        if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
 694                rds_ib_stats_inc(s_ib_ack_send_delayed);
 695                return;
 696        }
 697
 698        /* Can we get a send credit? */
 699        if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
 700                rds_ib_stats_inc(s_ib_tx_throttle);
 701                clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 702                return;
 703        }
 704
 705        clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
 706        rds_ib_send_ack(ic, adv_credits);
 707}
 708
 709/*
 710 * We get here from the send completion handler, when the
 711 * adapter tells us the ACK frame was sent.
 712 */
 713void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
 714{
 715        clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
 716        rds_ib_attempt_ack(ic);
 717}
 718
 719/*
 720 * This is called by the regular xmit code when it wants to piggyback
 721 * an ACK on an outgoing frame.
 722 */
 723u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
 724{
 725        if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
 726                rds_ib_stats_inc(s_ib_ack_send_piggybacked);
 727        return rds_ib_get_ack(ic);
 728}
 729
 730/*
 731 * It's kind of lame that we're copying from the posted receive pages into
 732 * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
 733 * them.  But receiving new congestion bitmaps should be a *rare* event, so
 734 * hopefully we won't need to invest that complexity in making it more
 735 * efficient.  By copying we can share a simpler core with TCP which has to
 736 * copy.
 737 */
 738static void rds_ib_cong_recv(struct rds_connection *conn,
 739                              struct rds_ib_incoming *ibinc)
 740{
 741        struct rds_cong_map *map;
 742        unsigned int map_off;
 743        unsigned int map_page;
 744        struct rds_page_frag *frag;
 745        unsigned long frag_off;
 746        unsigned long to_copy;
 747        unsigned long copied;
 748        uint64_t uncongested = 0;
 749        void *addr;
 750
 751        /* catch completely corrupt packets */
 752        if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
 753                return;
 754
 755        map = conn->c_fcong;
 756        map_page = 0;
 757        map_off = 0;
 758
 759        frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
 760        frag_off = 0;
 761
 762        copied = 0;
 763
 764        while (copied < RDS_CONG_MAP_BYTES) {
 765                uint64_t *src, *dst;
 766                unsigned int k;
 767
 768                to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
 769                BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
 770
 771                addr = kmap_atomic(sg_page(&frag->f_sg));
 772
 773                src = addr + frag_off;
 774                dst = (void *)map->m_page_addrs[map_page] + map_off;
 775                for (k = 0; k < to_copy; k += 8) {
 776                        /* Record ports that became uncongested, ie
 777                         * bits that changed from 0 to 1. */
 778                        uncongested |= ~(*src) & *dst;
 779                        *dst++ = *src++;
 780                }
 781                kunmap_atomic(addr);
 782
 783                copied += to_copy;
 784
 785                map_off += to_copy;
 786                if (map_off == PAGE_SIZE) {
 787                        map_off = 0;
 788                        map_page++;
 789                }
 790
 791                frag_off += to_copy;
 792                if (frag_off == RDS_FRAG_SIZE) {
 793                        frag = list_entry(frag->f_item.next,
 794                                          struct rds_page_frag, f_item);
 795                        frag_off = 0;
 796                }
 797        }
 798
 799        /* the congestion map is in little endian order */
 800        uncongested = le64_to_cpu(uncongested);
 801
 802        rds_cong_map_updated(map, uncongested);
 803}
 804
 805/*
 806 * Rings are posted with all the allocations they'll need to queue the
 807 * incoming message to the receiving socket so this can't fail.
 808 * All fragments start with a header, so we can make sure we're not receiving
 809 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
 810 */
 811struct rds_ib_ack_state {
 812        u64             ack_next;
 813        u64             ack_recv;
 814        unsigned int    ack_required:1;
 815        unsigned int    ack_next_valid:1;
 816        unsigned int    ack_recv_valid:1;
 817};
 818
 819static void rds_ib_process_recv(struct rds_connection *conn,
 820                                struct rds_ib_recv_work *recv, u32 data_len,
 821                                struct rds_ib_ack_state *state)
 822{
 823        struct rds_ib_connection *ic = conn->c_transport_data;
 824        struct rds_ib_incoming *ibinc = ic->i_ibinc;
 825        struct rds_header *ihdr, *hdr;
 826
 827        /* XXX shut down the connection if port 0,0 are seen? */
 828
 829        rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
 830                 data_len);
 831
 832        if (data_len < sizeof(struct rds_header)) {
 833                rds_ib_conn_error(conn, "incoming message "
 834                       "from %pI4 didn't include a "
 835                       "header, disconnecting and "
 836                       "reconnecting\n",
 837                       &conn->c_faddr);
 838                return;
 839        }
 840        data_len -= sizeof(struct rds_header);
 841
 842        ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
 843
 844        /* Validate the checksum. */
 845        if (!rds_message_verify_checksum(ihdr)) {
 846                rds_ib_conn_error(conn, "incoming message "
 847                       "from %pI4 has corrupted header - "
 848                       "forcing a reconnect\n",
 849                       &conn->c_faddr);
 850                rds_stats_inc(s_recv_drop_bad_checksum);
 851                return;
 852        }
 853
 854        /* Process the ACK sequence which comes with every packet */
 855        state->ack_recv = be64_to_cpu(ihdr->h_ack);
 856        state->ack_recv_valid = 1;
 857
 858        /* Process the credits update if there was one */
 859        if (ihdr->h_credit)
 860                rds_ib_send_add_credits(conn, ihdr->h_credit);
 861
 862        if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
 863                /* This is an ACK-only packet. The fact that it gets
 864                 * special treatment here is that historically, ACKs
 865                 * were rather special beasts.
 866                 */
 867                rds_ib_stats_inc(s_ib_ack_received);
 868
 869                /*
 870                 * Usually the frags make their way on to incs and are then freed as
 871                 * the inc is freed.  We don't go that route, so we have to drop the
 872                 * page ref ourselves.  We can't just leave the page on the recv
 873                 * because that confuses the dma mapping of pages and each recv's use
 874                 * of a partial page.
 875                 *
 876                 * FIXME: Fold this into the code path below.
 877                 */
 878                rds_ib_frag_free(ic, recv->r_frag);
 879                recv->r_frag = NULL;
 880                return;
 881        }
 882
 883        /*
 884         * If we don't already have an inc on the connection then this
 885         * fragment has a header and starts a message.. copy its header
 886         * into the inc and save the inc so we can hang upcoming fragments
 887         * off its list.
 888         */
 889        if (!ibinc) {
 890                ibinc = recv->r_ibinc;
 891                recv->r_ibinc = NULL;
 892                ic->i_ibinc = ibinc;
 893
 894                hdr = &ibinc->ii_inc.i_hdr;
 895                memcpy(hdr, ihdr, sizeof(*hdr));
 896                ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
 897
 898                rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
 899                         ic->i_recv_data_rem, hdr->h_flags);
 900        } else {
 901                hdr = &ibinc->ii_inc.i_hdr;
 902                /* We can't just use memcmp here; fragments of a
 903                 * single message may carry different ACKs */
 904                if (hdr->h_sequence != ihdr->h_sequence ||
 905                    hdr->h_len != ihdr->h_len ||
 906                    hdr->h_sport != ihdr->h_sport ||
 907                    hdr->h_dport != ihdr->h_dport) {
 908                        rds_ib_conn_error(conn,
 909                                "fragment header mismatch; forcing reconnect\n");
 910                        return;
 911                }
 912        }
 913
 914        list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
 915        recv->r_frag = NULL;
 916
 917        if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
 918                ic->i_recv_data_rem -= RDS_FRAG_SIZE;
 919        else {
 920                ic->i_recv_data_rem = 0;
 921                ic->i_ibinc = NULL;
 922
 923                if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
 924                        rds_ib_cong_recv(conn, ibinc);
 925                else {
 926                        rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
 927                                          &ibinc->ii_inc, GFP_ATOMIC);
 928                        state->ack_next = be64_to_cpu(hdr->h_sequence);
 929                        state->ack_next_valid = 1;
 930                }
 931
 932                /* Evaluate the ACK_REQUIRED flag *after* we received
 933                 * the complete frame, and after bumping the next_rx
 934                 * sequence. */
 935                if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
 936                        rds_stats_inc(s_recv_ack_required);
 937                        state->ack_required = 1;
 938                }
 939
 940                rds_inc_put(&ibinc->ii_inc);
 941        }
 942}
 943
 944/*
 945 * Plucking the oldest entry from the ring can be done concurrently with
 946 * the thread refilling the ring.  Each ring operation is protected by
 947 * spinlocks and the transient state of refilling doesn't change the
 948 * recording of which entry is oldest.
 949 *
 950 * This relies on IB only calling one cq comp_handler for each cq so that
 951 * there will only be one caller of rds_recv_incoming() per RDS connection.
 952 */
 953void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
 954{
 955        struct rds_connection *conn = context;
 956        struct rds_ib_connection *ic = conn->c_transport_data;
 957
 958        rdsdebug("conn %p cq %p\n", conn, cq);
 959
 960        rds_ib_stats_inc(s_ib_rx_cq_call);
 961
 962        tasklet_schedule(&ic->i_recv_tasklet);
 963}
 964
 965static inline void rds_poll_cq(struct rds_ib_connection *ic,
 966                               struct rds_ib_ack_state *state)
 967{
 968        struct rds_connection *conn = ic->conn;
 969        struct ib_wc wc;
 970        struct rds_ib_recv_work *recv;
 971
 972        while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
 973                rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
 974                         (unsigned long long)wc.wr_id, wc.status,
 975                         rds_ib_wc_status_str(wc.status), wc.byte_len,
 976                         be32_to_cpu(wc.ex.imm_data));
 977                rds_ib_stats_inc(s_ib_rx_cq_event);
 978
 979                recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
 980
 981                ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
 982
 983                /*
 984                 * Also process recvs in connecting state because it is possible
 985                 * to get a recv completion _before_ the rdmacm ESTABLISHED
 986                 * event is processed.
 987                 */
 988                if (wc.status == IB_WC_SUCCESS) {
 989                        rds_ib_process_recv(conn, recv, wc.byte_len, state);
 990                } else {
 991                        /* We expect errors as the qp is drained during shutdown */
 992                        if (rds_conn_up(conn) || rds_conn_connecting(conn))
 993                                rds_ib_conn_error(conn, "recv completion on %pI4 had "
 994                                                  "status %u (%s), disconnecting and "
 995                                                  "reconnecting\n", &conn->c_faddr,
 996                                                  wc.status,
 997                                                  rds_ib_wc_status_str(wc.status));
 998                }
 999
1000                /*
1001                 * It's very important that we only free this ring entry if we've truly
1002                 * freed the resources allocated to the entry.  The refilling path can
1003                 * leak if we don't.
1004                 */
1005                rds_ib_ring_free(&ic->i_recv_ring, 1);
1006        }
1007}
1008
1009void rds_ib_recv_tasklet_fn(unsigned long data)
1010{
1011        struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
1012        struct rds_connection *conn = ic->conn;
1013        struct rds_ib_ack_state state = { 0, };
1014
1015        rds_poll_cq(ic, &state);
1016        ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1017        rds_poll_cq(ic, &state);
1018
1019        if (state.ack_next_valid)
1020                rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1021        if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1022                rds_send_drop_acked(conn, state.ack_recv, NULL);
1023                ic->i_ack_recv = state.ack_recv;
1024        }
1025        if (rds_conn_up(conn))
1026                rds_ib_attempt_ack(ic);
1027
1028        /* If we ever end up with a really empty receive ring, we're
1029         * in deep trouble, as the sender will definitely see RNR
1030         * timeouts. */
1031        if (rds_ib_ring_empty(&ic->i_recv_ring))
1032                rds_ib_stats_inc(s_ib_rx_ring_empty);
1033
1034        if (rds_ib_ring_low(&ic->i_recv_ring))
1035                rds_ib_recv_refill(conn, 0);
1036}
1037
1038int rds_ib_recv(struct rds_connection *conn)
1039{
1040        struct rds_ib_connection *ic = conn->c_transport_data;
1041        int ret = 0;
1042
1043        rdsdebug("conn %p\n", conn);
1044        if (rds_conn_up(conn))
1045                rds_ib_attempt_ack(ic);
1046
1047        return ret;
1048}
1049
1050int rds_ib_recv_init(void)
1051{
1052        struct sysinfo si;
1053        int ret = -ENOMEM;
1054
1055        /* Default to 30% of all available RAM for recv memory */
1056        si_meminfo(&si);
1057        rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1058
1059        rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1060                                        sizeof(struct rds_ib_incoming),
1061                                        0, SLAB_HWCACHE_ALIGN, NULL);
1062        if (!rds_ib_incoming_slab)
1063                goto out;
1064
1065        rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1066                                        sizeof(struct rds_page_frag),
1067                                        0, SLAB_HWCACHE_ALIGN, NULL);
1068        if (!rds_ib_frag_slab)
1069                kmem_cache_destroy(rds_ib_incoming_slab);
1070        else
1071                ret = 0;
1072out:
1073        return ret;
1074}
1075
1076void rds_ib_recv_exit(void)
1077{
1078        kmem_cache_destroy(rds_ib_incoming_slab);
1079        kmem_cache_destroy(rds_ib_frag_slab);
1080}
1081