linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1/*
   2 * VMware vSockets Driver
   3 *
   4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 */
  15
  16/* Implementation notes:
  17 *
  18 * - There are two kinds of sockets: those created by user action (such as
  19 * calling socket(2)) and those created by incoming connection request packets.
  20 *
  21 * - There are two "global" tables, one for bound sockets (sockets that have
  22 * specified an address that they are responsible for) and one for connected
  23 * sockets (sockets that have established a connection with another socket).
  24 * These tables are "global" in that all sockets on the system are placed
  25 * within them. - Note, though, that the bound table contains an extra entry
  26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  27 * that list. The bound table is used solely for lookup of sockets when packets
  28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  29 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  30 * sockets out of the bound hash buckets will reduce the chance of collisions
  31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  32 * socket type in the hash table lookups.
  33 *
  34 * - Sockets created by user action will either be "client" sockets that
  35 * initiate a connection or "server" sockets that listen for connections; we do
  36 * not support simultaneous connects (two "client" sockets connecting).
  37 *
  38 * - "Server" sockets are referred to as listener sockets throughout this
  39 * implementation because they are in the SS_LISTEN state.  When a connection
  40 * request is received (the second kind of socket mentioned above), we create a
  41 * new socket and refer to it as a pending socket.  These pending sockets are
  42 * placed on the pending connection list of the listener socket.  When future
  43 * packets are received for the address the listener socket is bound to, we
  44 * check if the source of the packet is from one that has an existing pending
  45 * connection.  If it does, we process the packet for the pending socket.  When
  46 * that socket reaches the connected state, it is removed from the listener
  47 * socket's pending list and enqueued in the listener socket's accept queue.
  48 * Callers of accept(2) will accept connected sockets from the listener socket's
  49 * accept queue.  If the socket cannot be accepted for some reason then it is
  50 * marked rejected.  Once the connection is accepted, it is owned by the user
  51 * process and the responsibility for cleanup falls with that user process.
  52 *
  53 * - It is possible that these pending sockets will never reach the connected
  54 * state; in fact, we may never receive another packet after the connection
  55 * request.  Because of this, we must schedule a cleanup function to run in the
  56 * future, after some amount of time passes where a connection should have been
  57 * established.  This function ensures that the socket is off all lists so it
  58 * cannot be retrieved, then drops all references to the socket so it is cleaned
  59 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  60 * function will also cleanup rejected sockets, those that reach the connected
  61 * state but leave it before they have been accepted.
  62 *
  63 * - Sockets created by user action will be cleaned up when the user process
  64 * calls close(2), causing our release implementation to be called. Our release
  65 * implementation will perform some cleanup then drop the last reference so our
  66 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  67 * perform additional cleanup that's common for both types of sockets.
  68 *
  69 * - A socket's reference count is what ensures that the structure won't be
  70 * freed.  Each entry in a list (such as the "global" bound and connected tables
  71 * and the listener socket's pending list and connected queue) ensures a
  72 * reference.  When we defer work until process context and pass a socket as our
  73 * argument, we must ensure the reference count is increased to ensure the
  74 * socket isn't freed before the function is run; the deferred function will
  75 * then drop the reference.
  76 */
  77
  78#include <linux/types.h>
  79#include <linux/bitops.h>
  80#include <linux/cred.h>
  81#include <linux/init.h>
  82#include <linux/io.h>
  83#include <linux/kernel.h>
  84#include <linux/kmod.h>
  85#include <linux/list.h>
  86#include <linux/miscdevice.h>
  87#include <linux/module.h>
  88#include <linux/mutex.h>
  89#include <linux/net.h>
  90#include <linux/poll.h>
  91#include <linux/skbuff.h>
  92#include <linux/smp.h>
  93#include <linux/socket.h>
  94#include <linux/stddef.h>
  95#include <linux/unistd.h>
  96#include <linux/wait.h>
  97#include <linux/workqueue.h>
  98#include <net/sock.h>
  99
 100#include "af_vsock.h"
 101
 102static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 103static void vsock_sk_destruct(struct sock *sk);
 104static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 105
 106/* Protocol family. */
 107static struct proto vsock_proto = {
 108        .name = "AF_VSOCK",
 109        .owner = THIS_MODULE,
 110        .obj_size = sizeof(struct vsock_sock),
 111};
 112
 113/* The default peer timeout indicates how long we will wait for a peer response
 114 * to a control message.
 115 */
 116#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 117
 118#define SS_LISTEN 255
 119
 120static const struct vsock_transport *transport;
 121static DEFINE_MUTEX(vsock_register_mutex);
 122
 123/**** EXPORTS ****/
 124
 125/* Get the ID of the local context.  This is transport dependent. */
 126
 127int vm_sockets_get_local_cid(void)
 128{
 129        return transport->get_local_cid();
 130}
 131EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
 132
 133/**** UTILS ****/
 134
 135/* Each bound VSocket is stored in the bind hash table and each connected
 136 * VSocket is stored in the connected hash table.
 137 *
 138 * Unbound sockets are all put on the same list attached to the end of the hash
 139 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 140 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 141 * represents the list that addr hashes to).
 142 *
 143 * Specifically, we initialize the vsock_bind_table array to a size of
 144 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 145 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 146 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 147 * mods with VSOCK_HASH_SIZE - 1 to ensure this.
 148 */
 149#define VSOCK_HASH_SIZE         251
 150#define MAX_PORT_RETRIES        24
 151
 152#define VSOCK_HASH(addr)        ((addr)->svm_port % (VSOCK_HASH_SIZE - 1))
 153#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 154#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 155
 156/* XXX This can probably be implemented in a better way. */
 157#define VSOCK_CONN_HASH(src, dst)                               \
 158        (((src)->svm_cid ^ (dst)->svm_port) % (VSOCK_HASH_SIZE - 1))
 159#define vsock_connected_sockets(src, dst)               \
 160        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 161#define vsock_connected_sockets_vsk(vsk)                                \
 162        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 163
 164static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 165static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 166static DEFINE_SPINLOCK(vsock_table_lock);
 167
 168static void vsock_init_tables(void)
 169{
 170        int i;
 171
 172        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 173                INIT_LIST_HEAD(&vsock_bind_table[i]);
 174
 175        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 176                INIT_LIST_HEAD(&vsock_connected_table[i]);
 177}
 178
 179static void __vsock_insert_bound(struct list_head *list,
 180                                 struct vsock_sock *vsk)
 181{
 182        sock_hold(&vsk->sk);
 183        list_add(&vsk->bound_table, list);
 184}
 185
 186static void __vsock_insert_connected(struct list_head *list,
 187                                     struct vsock_sock *vsk)
 188{
 189        sock_hold(&vsk->sk);
 190        list_add(&vsk->connected_table, list);
 191}
 192
 193static void __vsock_remove_bound(struct vsock_sock *vsk)
 194{
 195        list_del_init(&vsk->bound_table);
 196        sock_put(&vsk->sk);
 197}
 198
 199static void __vsock_remove_connected(struct vsock_sock *vsk)
 200{
 201        list_del_init(&vsk->connected_table);
 202        sock_put(&vsk->sk);
 203}
 204
 205static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 206{
 207        struct vsock_sock *vsk;
 208
 209        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
 210                if (addr->svm_port == vsk->local_addr.svm_port)
 211                        return sk_vsock(vsk);
 212
 213        return NULL;
 214}
 215
 216static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 217                                                  struct sockaddr_vm *dst)
 218{
 219        struct vsock_sock *vsk;
 220
 221        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 222                            connected_table) {
 223                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 224                    dst->svm_port == vsk->local_addr.svm_port) {
 225                        return sk_vsock(vsk);
 226                }
 227        }
 228
 229        return NULL;
 230}
 231
 232static bool __vsock_in_bound_table(struct vsock_sock *vsk)
 233{
 234        return !list_empty(&vsk->bound_table);
 235}
 236
 237static bool __vsock_in_connected_table(struct vsock_sock *vsk)
 238{
 239        return !list_empty(&vsk->connected_table);
 240}
 241
 242static void vsock_insert_unbound(struct vsock_sock *vsk)
 243{
 244        spin_lock_bh(&vsock_table_lock);
 245        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 246        spin_unlock_bh(&vsock_table_lock);
 247}
 248
 249void vsock_insert_connected(struct vsock_sock *vsk)
 250{
 251        struct list_head *list = vsock_connected_sockets(
 252                &vsk->remote_addr, &vsk->local_addr);
 253
 254        spin_lock_bh(&vsock_table_lock);
 255        __vsock_insert_connected(list, vsk);
 256        spin_unlock_bh(&vsock_table_lock);
 257}
 258EXPORT_SYMBOL_GPL(vsock_insert_connected);
 259
 260void vsock_remove_bound(struct vsock_sock *vsk)
 261{
 262        spin_lock_bh(&vsock_table_lock);
 263        __vsock_remove_bound(vsk);
 264        spin_unlock_bh(&vsock_table_lock);
 265}
 266EXPORT_SYMBOL_GPL(vsock_remove_bound);
 267
 268void vsock_remove_connected(struct vsock_sock *vsk)
 269{
 270        spin_lock_bh(&vsock_table_lock);
 271        __vsock_remove_connected(vsk);
 272        spin_unlock_bh(&vsock_table_lock);
 273}
 274EXPORT_SYMBOL_GPL(vsock_remove_connected);
 275
 276struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 277{
 278        struct sock *sk;
 279
 280        spin_lock_bh(&vsock_table_lock);
 281        sk = __vsock_find_bound_socket(addr);
 282        if (sk)
 283                sock_hold(sk);
 284
 285        spin_unlock_bh(&vsock_table_lock);
 286
 287        return sk;
 288}
 289EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 290
 291struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 292                                         struct sockaddr_vm *dst)
 293{
 294        struct sock *sk;
 295
 296        spin_lock_bh(&vsock_table_lock);
 297        sk = __vsock_find_connected_socket(src, dst);
 298        if (sk)
 299                sock_hold(sk);
 300
 301        spin_unlock_bh(&vsock_table_lock);
 302
 303        return sk;
 304}
 305EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 306
 307static bool vsock_in_bound_table(struct vsock_sock *vsk)
 308{
 309        bool ret;
 310
 311        spin_lock_bh(&vsock_table_lock);
 312        ret = __vsock_in_bound_table(vsk);
 313        spin_unlock_bh(&vsock_table_lock);
 314
 315        return ret;
 316}
 317
 318static bool vsock_in_connected_table(struct vsock_sock *vsk)
 319{
 320        bool ret;
 321
 322        spin_lock_bh(&vsock_table_lock);
 323        ret = __vsock_in_connected_table(vsk);
 324        spin_unlock_bh(&vsock_table_lock);
 325
 326        return ret;
 327}
 328
 329void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 330{
 331        int i;
 332
 333        spin_lock_bh(&vsock_table_lock);
 334
 335        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 336                struct vsock_sock *vsk;
 337                list_for_each_entry(vsk, &vsock_connected_table[i],
 338                                    connected_table);
 339                        fn(sk_vsock(vsk));
 340        }
 341
 342        spin_unlock_bh(&vsock_table_lock);
 343}
 344EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 345
 346void vsock_add_pending(struct sock *listener, struct sock *pending)
 347{
 348        struct vsock_sock *vlistener;
 349        struct vsock_sock *vpending;
 350
 351        vlistener = vsock_sk(listener);
 352        vpending = vsock_sk(pending);
 353
 354        sock_hold(pending);
 355        sock_hold(listener);
 356        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 357}
 358EXPORT_SYMBOL_GPL(vsock_add_pending);
 359
 360void vsock_remove_pending(struct sock *listener, struct sock *pending)
 361{
 362        struct vsock_sock *vpending = vsock_sk(pending);
 363
 364        list_del_init(&vpending->pending_links);
 365        sock_put(listener);
 366        sock_put(pending);
 367}
 368EXPORT_SYMBOL_GPL(vsock_remove_pending);
 369
 370void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 371{
 372        struct vsock_sock *vlistener;
 373        struct vsock_sock *vconnected;
 374
 375        vlistener = vsock_sk(listener);
 376        vconnected = vsock_sk(connected);
 377
 378        sock_hold(connected);
 379        sock_hold(listener);
 380        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 381}
 382EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 383
 384static struct sock *vsock_dequeue_accept(struct sock *listener)
 385{
 386        struct vsock_sock *vlistener;
 387        struct vsock_sock *vconnected;
 388
 389        vlistener = vsock_sk(listener);
 390
 391        if (list_empty(&vlistener->accept_queue))
 392                return NULL;
 393
 394        vconnected = list_entry(vlistener->accept_queue.next,
 395                                struct vsock_sock, accept_queue);
 396
 397        list_del_init(&vconnected->accept_queue);
 398        sock_put(listener);
 399        /* The caller will need a reference on the connected socket so we let
 400         * it call sock_put().
 401         */
 402
 403        return sk_vsock(vconnected);
 404}
 405
 406static bool vsock_is_accept_queue_empty(struct sock *sk)
 407{
 408        struct vsock_sock *vsk = vsock_sk(sk);
 409        return list_empty(&vsk->accept_queue);
 410}
 411
 412static bool vsock_is_pending(struct sock *sk)
 413{
 414        struct vsock_sock *vsk = vsock_sk(sk);
 415        return !list_empty(&vsk->pending_links);
 416}
 417
 418static int vsock_send_shutdown(struct sock *sk, int mode)
 419{
 420        return transport->shutdown(vsock_sk(sk), mode);
 421}
 422
 423void vsock_pending_work(struct work_struct *work)
 424{
 425        struct sock *sk;
 426        struct sock *listener;
 427        struct vsock_sock *vsk;
 428        bool cleanup;
 429
 430        vsk = container_of(work, struct vsock_sock, dwork.work);
 431        sk = sk_vsock(vsk);
 432        listener = vsk->listener;
 433        cleanup = true;
 434
 435        lock_sock(listener);
 436        lock_sock(sk);
 437
 438        if (vsock_is_pending(sk)) {
 439                vsock_remove_pending(listener, sk);
 440        } else if (!vsk->rejected) {
 441                /* We are not on the pending list and accept() did not reject
 442                 * us, so we must have been accepted by our user process.  We
 443                 * just need to drop our references to the sockets and be on
 444                 * our way.
 445                 */
 446                cleanup = false;
 447                goto out;
 448        }
 449
 450        listener->sk_ack_backlog--;
 451
 452        /* We need to remove ourself from the global connected sockets list so
 453         * incoming packets can't find this socket, and to reduce the reference
 454         * count.
 455         */
 456        if (vsock_in_connected_table(vsk))
 457                vsock_remove_connected(vsk);
 458
 459        sk->sk_state = SS_FREE;
 460
 461out:
 462        release_sock(sk);
 463        release_sock(listener);
 464        if (cleanup)
 465                sock_put(sk);
 466
 467        sock_put(sk);
 468        sock_put(listener);
 469}
 470EXPORT_SYMBOL_GPL(vsock_pending_work);
 471
 472/**** SOCKET OPERATIONS ****/
 473
 474static int __vsock_bind_stream(struct vsock_sock *vsk,
 475                               struct sockaddr_vm *addr)
 476{
 477        static u32 port = LAST_RESERVED_PORT + 1;
 478        struct sockaddr_vm new_addr;
 479
 480        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 481
 482        if (addr->svm_port == VMADDR_PORT_ANY) {
 483                bool found = false;
 484                unsigned int i;
 485
 486                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 487                        if (port <= LAST_RESERVED_PORT)
 488                                port = LAST_RESERVED_PORT + 1;
 489
 490                        new_addr.svm_port = port++;
 491
 492                        if (!__vsock_find_bound_socket(&new_addr)) {
 493                                found = true;
 494                                break;
 495                        }
 496                }
 497
 498                if (!found)
 499                        return -EADDRNOTAVAIL;
 500        } else {
 501                /* If port is in reserved range, ensure caller
 502                 * has necessary privileges.
 503                 */
 504                if (addr->svm_port <= LAST_RESERVED_PORT &&
 505                    !capable(CAP_NET_BIND_SERVICE)) {
 506                        return -EACCES;
 507                }
 508
 509                if (__vsock_find_bound_socket(&new_addr))
 510                        return -EADDRINUSE;
 511        }
 512
 513        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 514
 515        /* Remove stream sockets from the unbound list and add them to the hash
 516         * table for easy lookup by its address.  The unbound list is simply an
 517         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 518         */
 519        __vsock_remove_bound(vsk);
 520        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 521
 522        return 0;
 523}
 524
 525static int __vsock_bind_dgram(struct vsock_sock *vsk,
 526                              struct sockaddr_vm *addr)
 527{
 528        return transport->dgram_bind(vsk, addr);
 529}
 530
 531static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 532{
 533        struct vsock_sock *vsk = vsock_sk(sk);
 534        u32 cid;
 535        int retval;
 536
 537        /* First ensure this socket isn't already bound. */
 538        if (vsock_addr_bound(&vsk->local_addr))
 539                return -EINVAL;
 540
 541        /* Now bind to the provided address or select appropriate values if
 542         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 543         * like AF_INET prevents binding to a non-local IP address (in most
 544         * cases), we only allow binding to the local CID.
 545         */
 546        cid = transport->get_local_cid();
 547        if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
 548                return -EADDRNOTAVAIL;
 549
 550        switch (sk->sk_socket->type) {
 551        case SOCK_STREAM:
 552                spin_lock_bh(&vsock_table_lock);
 553                retval = __vsock_bind_stream(vsk, addr);
 554                spin_unlock_bh(&vsock_table_lock);
 555                break;
 556
 557        case SOCK_DGRAM:
 558                retval = __vsock_bind_dgram(vsk, addr);
 559                break;
 560
 561        default:
 562                retval = -EINVAL;
 563                break;
 564        }
 565
 566        return retval;
 567}
 568
 569struct sock *__vsock_create(struct net *net,
 570                            struct socket *sock,
 571                            struct sock *parent,
 572                            gfp_t priority,
 573                            unsigned short type)
 574{
 575        struct sock *sk;
 576        struct vsock_sock *psk;
 577        struct vsock_sock *vsk;
 578
 579        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
 580        if (!sk)
 581                return NULL;
 582
 583        sock_init_data(sock, sk);
 584
 585        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 586         * non-NULL. We make sure that our sockets always have a type by
 587         * setting it here if needed.
 588         */
 589        if (!sock)
 590                sk->sk_type = type;
 591
 592        vsk = vsock_sk(sk);
 593        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 594        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 595
 596        sk->sk_destruct = vsock_sk_destruct;
 597        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 598        sk->sk_state = 0;
 599        sock_reset_flag(sk, SOCK_DONE);
 600
 601        INIT_LIST_HEAD(&vsk->bound_table);
 602        INIT_LIST_HEAD(&vsk->connected_table);
 603        vsk->listener = NULL;
 604        INIT_LIST_HEAD(&vsk->pending_links);
 605        INIT_LIST_HEAD(&vsk->accept_queue);
 606        vsk->rejected = false;
 607        vsk->sent_request = false;
 608        vsk->ignore_connecting_rst = false;
 609        vsk->peer_shutdown = 0;
 610
 611        psk = parent ? vsock_sk(parent) : NULL;
 612        if (parent) {
 613                vsk->trusted = psk->trusted;
 614                vsk->owner = get_cred(psk->owner);
 615                vsk->connect_timeout = psk->connect_timeout;
 616        } else {
 617                vsk->trusted = capable(CAP_NET_ADMIN);
 618                vsk->owner = get_current_cred();
 619                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 620        }
 621
 622        if (transport->init(vsk, psk) < 0) {
 623                sk_free(sk);
 624                return NULL;
 625        }
 626
 627        if (sock)
 628                vsock_insert_unbound(vsk);
 629
 630        return sk;
 631}
 632EXPORT_SYMBOL_GPL(__vsock_create);
 633
 634static void __vsock_release(struct sock *sk)
 635{
 636        if (sk) {
 637                struct sk_buff *skb;
 638                struct sock *pending;
 639                struct vsock_sock *vsk;
 640
 641                vsk = vsock_sk(sk);
 642                pending = NULL; /* Compiler warning. */
 643
 644                if (vsock_in_bound_table(vsk))
 645                        vsock_remove_bound(vsk);
 646
 647                if (vsock_in_connected_table(vsk))
 648                        vsock_remove_connected(vsk);
 649
 650                transport->release(vsk);
 651
 652                lock_sock(sk);
 653                sock_orphan(sk);
 654                sk->sk_shutdown = SHUTDOWN_MASK;
 655
 656                while ((skb = skb_dequeue(&sk->sk_receive_queue)))
 657                        kfree_skb(skb);
 658
 659                /* Clean up any sockets that never were accepted. */
 660                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 661                        __vsock_release(pending);
 662                        sock_put(pending);
 663                }
 664
 665                release_sock(sk);
 666                sock_put(sk);
 667        }
 668}
 669
 670static void vsock_sk_destruct(struct sock *sk)
 671{
 672        struct vsock_sock *vsk = vsock_sk(sk);
 673
 674        transport->destruct(vsk);
 675
 676        /* When clearing these addresses, there's no need to set the family and
 677         * possibly register the address family with the kernel.
 678         */
 679        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 680        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 681
 682        put_cred(vsk->owner);
 683}
 684
 685static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 686{
 687        int err;
 688
 689        err = sock_queue_rcv_skb(sk, skb);
 690        if (err)
 691                kfree_skb(skb);
 692
 693        return err;
 694}
 695
 696s64 vsock_stream_has_data(struct vsock_sock *vsk)
 697{
 698        return transport->stream_has_data(vsk);
 699}
 700EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 701
 702s64 vsock_stream_has_space(struct vsock_sock *vsk)
 703{
 704        return transport->stream_has_space(vsk);
 705}
 706EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 707
 708static int vsock_release(struct socket *sock)
 709{
 710        __vsock_release(sock->sk);
 711        sock->sk = NULL;
 712        sock->state = SS_FREE;
 713
 714        return 0;
 715}
 716
 717static int
 718vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 719{
 720        int err;
 721        struct sock *sk;
 722        struct sockaddr_vm *vm_addr;
 723
 724        sk = sock->sk;
 725
 726        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 727                return -EINVAL;
 728
 729        lock_sock(sk);
 730        err = __vsock_bind(sk, vm_addr);
 731        release_sock(sk);
 732
 733        return err;
 734}
 735
 736static int vsock_getname(struct socket *sock,
 737                         struct sockaddr *addr, int *addr_len, int peer)
 738{
 739        int err;
 740        struct sock *sk;
 741        struct vsock_sock *vsk;
 742        struct sockaddr_vm *vm_addr;
 743
 744        sk = sock->sk;
 745        vsk = vsock_sk(sk);
 746        err = 0;
 747
 748        lock_sock(sk);
 749
 750        if (peer) {
 751                if (sock->state != SS_CONNECTED) {
 752                        err = -ENOTCONN;
 753                        goto out;
 754                }
 755                vm_addr = &vsk->remote_addr;
 756        } else {
 757                vm_addr = &vsk->local_addr;
 758        }
 759
 760        if (!vm_addr) {
 761                err = -EINVAL;
 762                goto out;
 763        }
 764
 765        /* sys_getsockname() and sys_getpeername() pass us a
 766         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 767         * that macro is defined in socket.c instead of .h, so we hardcode its
 768         * value here.
 769         */
 770        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 771        memcpy(addr, vm_addr, sizeof(*vm_addr));
 772        *addr_len = sizeof(*vm_addr);
 773
 774out:
 775        release_sock(sk);
 776        return err;
 777}
 778
 779static int vsock_shutdown(struct socket *sock, int mode)
 780{
 781        int err;
 782        struct sock *sk;
 783
 784        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 785         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 786         * here like the other address families do.  Note also that the
 787         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 788         * which is what we want.
 789         */
 790        mode++;
 791
 792        if ((mode & ~SHUTDOWN_MASK) || !mode)
 793                return -EINVAL;
 794
 795        /* If this is a STREAM socket and it is not connected then bail out
 796         * immediately.  If it is a DGRAM socket then we must first kick the
 797         * socket so that it wakes up from any sleeping calls, for example
 798         * recv(), and then afterwards return the error.
 799         */
 800
 801        sk = sock->sk;
 802        if (sock->state == SS_UNCONNECTED) {
 803                err = -ENOTCONN;
 804                if (sk->sk_type == SOCK_STREAM)
 805                        return err;
 806        } else {
 807                sock->state = SS_DISCONNECTING;
 808                err = 0;
 809        }
 810
 811        /* Receive and send shutdowns are treated alike. */
 812        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 813        if (mode) {
 814                lock_sock(sk);
 815                sk->sk_shutdown |= mode;
 816                sk->sk_state_change(sk);
 817                release_sock(sk);
 818
 819                if (sk->sk_type == SOCK_STREAM) {
 820                        sock_reset_flag(sk, SOCK_DONE);
 821                        vsock_send_shutdown(sk, mode);
 822                }
 823        }
 824
 825        return err;
 826}
 827
 828static unsigned int vsock_poll(struct file *file, struct socket *sock,
 829                               poll_table *wait)
 830{
 831        struct sock *sk;
 832        unsigned int mask;
 833        struct vsock_sock *vsk;
 834
 835        sk = sock->sk;
 836        vsk = vsock_sk(sk);
 837
 838        poll_wait(file, sk_sleep(sk), wait);
 839        mask = 0;
 840
 841        if (sk->sk_err)
 842                /* Signify that there has been an error on this socket. */
 843                mask |= POLLERR;
 844
 845        /* INET sockets treat local write shutdown and peer write shutdown as a
 846         * case of POLLHUP set.
 847         */
 848        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 849            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 850             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 851                mask |= POLLHUP;
 852        }
 853
 854        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 855            vsk->peer_shutdown & SEND_SHUTDOWN) {
 856                mask |= POLLRDHUP;
 857        }
 858
 859        if (sock->type == SOCK_DGRAM) {
 860                /* For datagram sockets we can read if there is something in
 861                 * the queue and write as long as the socket isn't shutdown for
 862                 * sending.
 863                 */
 864                if (!skb_queue_empty(&sk->sk_receive_queue) ||
 865                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 866                        mask |= POLLIN | POLLRDNORM;
 867                }
 868
 869                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 870                        mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
 871
 872        } else if (sock->type == SOCK_STREAM) {
 873                lock_sock(sk);
 874
 875                /* Listening sockets that have connections in their accept
 876                 * queue can be read.
 877                 */
 878                if (sk->sk_state == SS_LISTEN
 879                    && !vsock_is_accept_queue_empty(sk))
 880                        mask |= POLLIN | POLLRDNORM;
 881
 882                /* If there is something in the queue then we can read. */
 883                if (transport->stream_is_active(vsk) &&
 884                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
 885                        bool data_ready_now = false;
 886                        int ret = transport->notify_poll_in(
 887                                        vsk, 1, &data_ready_now);
 888                        if (ret < 0) {
 889                                mask |= POLLERR;
 890                        } else {
 891                                if (data_ready_now)
 892                                        mask |= POLLIN | POLLRDNORM;
 893
 894                        }
 895                }
 896
 897                /* Sockets whose connections have been closed, reset, or
 898                 * terminated should also be considered read, and we check the
 899                 * shutdown flag for that.
 900                 */
 901                if (sk->sk_shutdown & RCV_SHUTDOWN ||
 902                    vsk->peer_shutdown & SEND_SHUTDOWN) {
 903                        mask |= POLLIN | POLLRDNORM;
 904                }
 905
 906                /* Connected sockets that can produce data can be written. */
 907                if (sk->sk_state == SS_CONNECTED) {
 908                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 909                                bool space_avail_now = false;
 910                                int ret = transport->notify_poll_out(
 911                                                vsk, 1, &space_avail_now);
 912                                if (ret < 0) {
 913                                        mask |= POLLERR;
 914                                } else {
 915                                        if (space_avail_now)
 916                                                /* Remove POLLWRBAND since INET
 917                                                 * sockets are not setting it.
 918                                                 */
 919                                                mask |= POLLOUT | POLLWRNORM;
 920
 921                                }
 922                        }
 923                }
 924
 925                /* Simulate INET socket poll behaviors, which sets
 926                 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
 927                 * but local send is not shutdown.
 928                 */
 929                if (sk->sk_state == SS_UNCONNECTED) {
 930                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 931                                mask |= POLLOUT | POLLWRNORM;
 932
 933                }
 934
 935                release_sock(sk);
 936        }
 937
 938        return mask;
 939}
 940
 941static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
 942                               struct msghdr *msg, size_t len)
 943{
 944        int err;
 945        struct sock *sk;
 946        struct vsock_sock *vsk;
 947        struct sockaddr_vm *remote_addr;
 948
 949        if (msg->msg_flags & MSG_OOB)
 950                return -EOPNOTSUPP;
 951
 952        /* For now, MSG_DONTWAIT is always assumed... */
 953        err = 0;
 954        sk = sock->sk;
 955        vsk = vsock_sk(sk);
 956
 957        lock_sock(sk);
 958
 959        if (!vsock_addr_bound(&vsk->local_addr)) {
 960                struct sockaddr_vm local_addr;
 961
 962                vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 963                err = __vsock_bind(sk, &local_addr);
 964                if (err != 0)
 965                        goto out;
 966
 967        }
 968
 969        /* If the provided message contains an address, use that.  Otherwise
 970         * fall back on the socket's remote handle (if it has been connected).
 971         */
 972        if (msg->msg_name &&
 973            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
 974                            &remote_addr) == 0) {
 975                /* Ensure this address is of the right type and is a valid
 976                 * destination.
 977                 */
 978
 979                if (remote_addr->svm_cid == VMADDR_CID_ANY)
 980                        remote_addr->svm_cid = transport->get_local_cid();
 981
 982                if (!vsock_addr_bound(remote_addr)) {
 983                        err = -EINVAL;
 984                        goto out;
 985                }
 986        } else if (sock->state == SS_CONNECTED) {
 987                remote_addr = &vsk->remote_addr;
 988
 989                if (remote_addr->svm_cid == VMADDR_CID_ANY)
 990                        remote_addr->svm_cid = transport->get_local_cid();
 991
 992                /* XXX Should connect() or this function ensure remote_addr is
 993                 * bound?
 994                 */
 995                if (!vsock_addr_bound(&vsk->remote_addr)) {
 996                        err = -EINVAL;
 997                        goto out;
 998                }
 999        } else {
1000                err = -EINVAL;
1001                goto out;
1002        }
1003
1004        if (!transport->dgram_allow(remote_addr->svm_cid,
1005                                    remote_addr->svm_port)) {
1006                err = -EINVAL;
1007                goto out;
1008        }
1009
1010        err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len);
1011
1012out:
1013        release_sock(sk);
1014        return err;
1015}
1016
1017static int vsock_dgram_connect(struct socket *sock,
1018                               struct sockaddr *addr, int addr_len, int flags)
1019{
1020        int err;
1021        struct sock *sk;
1022        struct vsock_sock *vsk;
1023        struct sockaddr_vm *remote_addr;
1024
1025        sk = sock->sk;
1026        vsk = vsock_sk(sk);
1027
1028        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1029        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1030                lock_sock(sk);
1031                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1032                                VMADDR_PORT_ANY);
1033                sock->state = SS_UNCONNECTED;
1034                release_sock(sk);
1035                return 0;
1036        } else if (err != 0)
1037                return -EINVAL;
1038
1039        lock_sock(sk);
1040
1041        if (!vsock_addr_bound(&vsk->local_addr)) {
1042                struct sockaddr_vm local_addr;
1043
1044                vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
1045                err = __vsock_bind(sk, &local_addr);
1046                if (err != 0)
1047                        goto out;
1048
1049        }
1050
1051        if (!transport->dgram_allow(remote_addr->svm_cid,
1052                                    remote_addr->svm_port)) {
1053                err = -EINVAL;
1054                goto out;
1055        }
1056
1057        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1058        sock->state = SS_CONNECTED;
1059
1060out:
1061        release_sock(sk);
1062        return err;
1063}
1064
1065static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock,
1066                               struct msghdr *msg, size_t len, int flags)
1067{
1068        return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len,
1069                                        flags);
1070}
1071
1072static const struct proto_ops vsock_dgram_ops = {
1073        .family = PF_VSOCK,
1074        .owner = THIS_MODULE,
1075        .release = vsock_release,
1076        .bind = vsock_bind,
1077        .connect = vsock_dgram_connect,
1078        .socketpair = sock_no_socketpair,
1079        .accept = sock_no_accept,
1080        .getname = vsock_getname,
1081        .poll = vsock_poll,
1082        .ioctl = sock_no_ioctl,
1083        .listen = sock_no_listen,
1084        .shutdown = vsock_shutdown,
1085        .setsockopt = sock_no_setsockopt,
1086        .getsockopt = sock_no_getsockopt,
1087        .sendmsg = vsock_dgram_sendmsg,
1088        .recvmsg = vsock_dgram_recvmsg,
1089        .mmap = sock_no_mmap,
1090        .sendpage = sock_no_sendpage,
1091};
1092
1093static void vsock_connect_timeout(struct work_struct *work)
1094{
1095        struct sock *sk;
1096        struct vsock_sock *vsk;
1097
1098        vsk = container_of(work, struct vsock_sock, dwork.work);
1099        sk = sk_vsock(vsk);
1100
1101        lock_sock(sk);
1102        if (sk->sk_state == SS_CONNECTING &&
1103            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1104                sk->sk_state = SS_UNCONNECTED;
1105                sk->sk_err = ETIMEDOUT;
1106                sk->sk_error_report(sk);
1107        }
1108        release_sock(sk);
1109
1110        sock_put(sk);
1111}
1112
1113static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1114                                int addr_len, int flags)
1115{
1116        int err;
1117        struct sock *sk;
1118        struct vsock_sock *vsk;
1119        struct sockaddr_vm *remote_addr;
1120        long timeout;
1121        DEFINE_WAIT(wait);
1122
1123        err = 0;
1124        sk = sock->sk;
1125        vsk = vsock_sk(sk);
1126
1127        lock_sock(sk);
1128
1129        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1130        switch (sock->state) {
1131        case SS_CONNECTED:
1132                err = -EISCONN;
1133                goto out;
1134        case SS_DISCONNECTING:
1135                err = -EINVAL;
1136                goto out;
1137        case SS_CONNECTING:
1138                /* This continues on so we can move sock into the SS_CONNECTED
1139                 * state once the connection has completed (at which point err
1140                 * will be set to zero also).  Otherwise, we will either wait
1141                 * for the connection or return -EALREADY should this be a
1142                 * non-blocking call.
1143                 */
1144                err = -EALREADY;
1145                break;
1146        default:
1147                if ((sk->sk_state == SS_LISTEN) ||
1148                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1149                        err = -EINVAL;
1150                        goto out;
1151                }
1152
1153                /* The hypervisor and well-known contexts do not have socket
1154                 * endpoints.
1155                 */
1156                if (!transport->stream_allow(remote_addr->svm_cid,
1157                                             remote_addr->svm_port)) {
1158                        err = -ENETUNREACH;
1159                        goto out;
1160                }
1161
1162                /* Set the remote address that we are connecting to. */
1163                memcpy(&vsk->remote_addr, remote_addr,
1164                       sizeof(vsk->remote_addr));
1165
1166                /* Autobind this socket to the local address if necessary. */
1167                if (!vsock_addr_bound(&vsk->local_addr)) {
1168                        struct sockaddr_vm local_addr;
1169
1170                        vsock_addr_init(&local_addr, VMADDR_CID_ANY,
1171                                        VMADDR_PORT_ANY);
1172                        err = __vsock_bind(sk, &local_addr);
1173                        if (err != 0)
1174                                goto out;
1175
1176                }
1177
1178                sk->sk_state = SS_CONNECTING;
1179
1180                err = transport->connect(vsk);
1181                if (err < 0)
1182                        goto out;
1183
1184                /* Mark sock as connecting and set the error code to in
1185                 * progress in case this is a non-blocking connect.
1186                 */
1187                sock->state = SS_CONNECTING;
1188                err = -EINPROGRESS;
1189        }
1190
1191        /* The receive path will handle all communication until we are able to
1192         * enter the connected state.  Here we wait for the connection to be
1193         * completed or a notification of an error.
1194         */
1195        timeout = vsk->connect_timeout;
1196        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1197
1198        while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1199                if (flags & O_NONBLOCK) {
1200                        /* If we're not going to block, we schedule a timeout
1201                         * function to generate a timeout on the connection
1202                         * attempt, in case the peer doesn't respond in a
1203                         * timely manner. We hold on to the socket until the
1204                         * timeout fires.
1205                         */
1206                        sock_hold(sk);
1207                        INIT_DELAYED_WORK(&vsk->dwork,
1208                                          vsock_connect_timeout);
1209                        schedule_delayed_work(&vsk->dwork, timeout);
1210
1211                        /* Skip ahead to preserve error code set above. */
1212                        goto out_wait;
1213                }
1214
1215                release_sock(sk);
1216                timeout = schedule_timeout(timeout);
1217                lock_sock(sk);
1218
1219                if (signal_pending(current)) {
1220                        err = sock_intr_errno(timeout);
1221                        goto out_wait_error;
1222                } else if (timeout == 0) {
1223                        err = -ETIMEDOUT;
1224                        goto out_wait_error;
1225                }
1226
1227                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1228        }
1229
1230        if (sk->sk_err) {
1231                err = -sk->sk_err;
1232                goto out_wait_error;
1233        } else
1234                err = 0;
1235
1236out_wait:
1237        finish_wait(sk_sleep(sk), &wait);
1238out:
1239        release_sock(sk);
1240        return err;
1241
1242out_wait_error:
1243        sk->sk_state = SS_UNCONNECTED;
1244        sock->state = SS_UNCONNECTED;
1245        goto out_wait;
1246}
1247
1248static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1249{
1250        struct sock *listener;
1251        int err;
1252        struct sock *connected;
1253        struct vsock_sock *vconnected;
1254        long timeout;
1255        DEFINE_WAIT(wait);
1256
1257        err = 0;
1258        listener = sock->sk;
1259
1260        lock_sock(listener);
1261
1262        if (sock->type != SOCK_STREAM) {
1263                err = -EOPNOTSUPP;
1264                goto out;
1265        }
1266
1267        if (listener->sk_state != SS_LISTEN) {
1268                err = -EINVAL;
1269                goto out;
1270        }
1271
1272        /* Wait for children sockets to appear; these are the new sockets
1273         * created upon connection establishment.
1274         */
1275        timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1276        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1277
1278        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1279               listener->sk_err == 0) {
1280                release_sock(listener);
1281                timeout = schedule_timeout(timeout);
1282                lock_sock(listener);
1283
1284                if (signal_pending(current)) {
1285                        err = sock_intr_errno(timeout);
1286                        goto out_wait;
1287                } else if (timeout == 0) {
1288                        err = -EAGAIN;
1289                        goto out_wait;
1290                }
1291
1292                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1293        }
1294
1295        if (listener->sk_err)
1296                err = -listener->sk_err;
1297
1298        if (connected) {
1299                listener->sk_ack_backlog--;
1300
1301                lock_sock(connected);
1302                vconnected = vsock_sk(connected);
1303
1304                /* If the listener socket has received an error, then we should
1305                 * reject this socket and return.  Note that we simply mark the
1306                 * socket rejected, drop our reference, and let the cleanup
1307                 * function handle the cleanup; the fact that we found it in
1308                 * the listener's accept queue guarantees that the cleanup
1309                 * function hasn't run yet.
1310                 */
1311                if (err) {
1312                        vconnected->rejected = true;
1313                        release_sock(connected);
1314                        sock_put(connected);
1315                        goto out_wait;
1316                }
1317
1318                newsock->state = SS_CONNECTED;
1319                sock_graft(connected, newsock);
1320                release_sock(connected);
1321                sock_put(connected);
1322        }
1323
1324out_wait:
1325        finish_wait(sk_sleep(listener), &wait);
1326out:
1327        release_sock(listener);
1328        return err;
1329}
1330
1331static int vsock_listen(struct socket *sock, int backlog)
1332{
1333        int err;
1334        struct sock *sk;
1335        struct vsock_sock *vsk;
1336
1337        sk = sock->sk;
1338
1339        lock_sock(sk);
1340
1341        if (sock->type != SOCK_STREAM) {
1342                err = -EOPNOTSUPP;
1343                goto out;
1344        }
1345
1346        if (sock->state != SS_UNCONNECTED) {
1347                err = -EINVAL;
1348                goto out;
1349        }
1350
1351        vsk = vsock_sk(sk);
1352
1353        if (!vsock_addr_bound(&vsk->local_addr)) {
1354                err = -EINVAL;
1355                goto out;
1356        }
1357
1358        sk->sk_max_ack_backlog = backlog;
1359        sk->sk_state = SS_LISTEN;
1360
1361        err = 0;
1362
1363out:
1364        release_sock(sk);
1365        return err;
1366}
1367
1368static int vsock_stream_setsockopt(struct socket *sock,
1369                                   int level,
1370                                   int optname,
1371                                   char __user *optval,
1372                                   unsigned int optlen)
1373{
1374        int err;
1375        struct sock *sk;
1376        struct vsock_sock *vsk;
1377        u64 val;
1378
1379        if (level != AF_VSOCK)
1380                return -ENOPROTOOPT;
1381
1382#define COPY_IN(_v)                                       \
1383        do {                                              \
1384                if (optlen < sizeof(_v)) {                \
1385                        err = -EINVAL;                    \
1386                        goto exit;                        \
1387                }                                         \
1388                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1389                        err = -EFAULT;                                  \
1390                        goto exit;                                      \
1391                }                                                       \
1392        } while (0)
1393
1394        err = 0;
1395        sk = sock->sk;
1396        vsk = vsock_sk(sk);
1397
1398        lock_sock(sk);
1399
1400        switch (optname) {
1401        case SO_VM_SOCKETS_BUFFER_SIZE:
1402                COPY_IN(val);
1403                transport->set_buffer_size(vsk, val);
1404                break;
1405
1406        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1407                COPY_IN(val);
1408                transport->set_max_buffer_size(vsk, val);
1409                break;
1410
1411        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1412                COPY_IN(val);
1413                transport->set_min_buffer_size(vsk, val);
1414                break;
1415
1416        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1417                struct timeval tv;
1418                COPY_IN(tv);
1419                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1420                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1421                        vsk->connect_timeout = tv.tv_sec * HZ +
1422                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1423                        if (vsk->connect_timeout == 0)
1424                                vsk->connect_timeout =
1425                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1426
1427                } else {
1428                        err = -ERANGE;
1429                }
1430                break;
1431        }
1432
1433        default:
1434                err = -ENOPROTOOPT;
1435                break;
1436        }
1437
1438#undef COPY_IN
1439
1440exit:
1441        release_sock(sk);
1442        return err;
1443}
1444
1445static int vsock_stream_getsockopt(struct socket *sock,
1446                                   int level, int optname,
1447                                   char __user *optval,
1448                                   int __user *optlen)
1449{
1450        int err;
1451        int len;
1452        struct sock *sk;
1453        struct vsock_sock *vsk;
1454        u64 val;
1455
1456        if (level != AF_VSOCK)
1457                return -ENOPROTOOPT;
1458
1459        err = get_user(len, optlen);
1460        if (err != 0)
1461                return err;
1462
1463#define COPY_OUT(_v)                            \
1464        do {                                    \
1465                if (len < sizeof(_v))           \
1466                        return -EINVAL;         \
1467                                                \
1468                len = sizeof(_v);               \
1469                if (copy_to_user(optval, &_v, len) != 0)        \
1470                        return -EFAULT;                         \
1471                                                                \
1472        } while (0)
1473
1474        err = 0;
1475        sk = sock->sk;
1476        vsk = vsock_sk(sk);
1477
1478        switch (optname) {
1479        case SO_VM_SOCKETS_BUFFER_SIZE:
1480                val = transport->get_buffer_size(vsk);
1481                COPY_OUT(val);
1482                break;
1483
1484        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1485                val = transport->get_max_buffer_size(vsk);
1486                COPY_OUT(val);
1487                break;
1488
1489        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1490                val = transport->get_min_buffer_size(vsk);
1491                COPY_OUT(val);
1492                break;
1493
1494        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1495                struct timeval tv;
1496                tv.tv_sec = vsk->connect_timeout / HZ;
1497                tv.tv_usec =
1498                    (vsk->connect_timeout -
1499                     tv.tv_sec * HZ) * (1000000 / HZ);
1500                COPY_OUT(tv);
1501                break;
1502        }
1503        default:
1504                return -ENOPROTOOPT;
1505        }
1506
1507        err = put_user(len, optlen);
1508        if (err != 0)
1509                return -EFAULT;
1510
1511#undef COPY_OUT
1512
1513        return 0;
1514}
1515
1516static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock,
1517                                struct msghdr *msg, size_t len)
1518{
1519        struct sock *sk;
1520        struct vsock_sock *vsk;
1521        ssize_t total_written;
1522        long timeout;
1523        int err;
1524        struct vsock_transport_send_notify_data send_data;
1525
1526        DEFINE_WAIT(wait);
1527
1528        sk = sock->sk;
1529        vsk = vsock_sk(sk);
1530        total_written = 0;
1531        err = 0;
1532
1533        if (msg->msg_flags & MSG_OOB)
1534                return -EOPNOTSUPP;
1535
1536        lock_sock(sk);
1537
1538        /* Callers should not provide a destination with stream sockets. */
1539        if (msg->msg_namelen) {
1540                err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1541                goto out;
1542        }
1543
1544        /* Send data only if both sides are not shutdown in the direction. */
1545        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1546            vsk->peer_shutdown & RCV_SHUTDOWN) {
1547                err = -EPIPE;
1548                goto out;
1549        }
1550
1551        if (sk->sk_state != SS_CONNECTED ||
1552            !vsock_addr_bound(&vsk->local_addr)) {
1553                err = -ENOTCONN;
1554                goto out;
1555        }
1556
1557        if (!vsock_addr_bound(&vsk->remote_addr)) {
1558                err = -EDESTADDRREQ;
1559                goto out;
1560        }
1561
1562        /* Wait for room in the produce queue to enqueue our user's data. */
1563        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1564
1565        err = transport->notify_send_init(vsk, &send_data);
1566        if (err < 0)
1567                goto out;
1568
1569        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1570
1571        while (total_written < len) {
1572                ssize_t written;
1573
1574                while (vsock_stream_has_space(vsk) == 0 &&
1575                       sk->sk_err == 0 &&
1576                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1577                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1578
1579                        /* Don't wait for non-blocking sockets. */
1580                        if (timeout == 0) {
1581                                err = -EAGAIN;
1582                                goto out_wait;
1583                        }
1584
1585                        err = transport->notify_send_pre_block(vsk, &send_data);
1586                        if (err < 0)
1587                                goto out_wait;
1588
1589                        release_sock(sk);
1590                        timeout = schedule_timeout(timeout);
1591                        lock_sock(sk);
1592                        if (signal_pending(current)) {
1593                                err = sock_intr_errno(timeout);
1594                                goto out_wait;
1595                        } else if (timeout == 0) {
1596                                err = -EAGAIN;
1597                                goto out_wait;
1598                        }
1599
1600                        prepare_to_wait(sk_sleep(sk), &wait,
1601                                        TASK_INTERRUPTIBLE);
1602                }
1603
1604                /* These checks occur both as part of and after the loop
1605                 * conditional since we need to check before and after
1606                 * sleeping.
1607                 */
1608                if (sk->sk_err) {
1609                        err = -sk->sk_err;
1610                        goto out_wait;
1611                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1612                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1613                        err = -EPIPE;
1614                        goto out_wait;
1615                }
1616
1617                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1618                if (err < 0)
1619                        goto out_wait;
1620
1621                /* Note that enqueue will only write as many bytes as are free
1622                 * in the produce queue, so we don't need to ensure len is
1623                 * smaller than the queue size.  It is the caller's
1624                 * responsibility to check how many bytes we were able to send.
1625                 */
1626
1627                written = transport->stream_enqueue(
1628                                vsk, msg->msg_iov,
1629                                len - total_written);
1630                if (written < 0) {
1631                        err = -ENOMEM;
1632                        goto out_wait;
1633                }
1634
1635                total_written += written;
1636
1637                err = transport->notify_send_post_enqueue(
1638                                vsk, written, &send_data);
1639                if (err < 0)
1640                        goto out_wait;
1641
1642        }
1643
1644out_wait:
1645        if (total_written > 0)
1646                err = total_written;
1647        finish_wait(sk_sleep(sk), &wait);
1648out:
1649        release_sock(sk);
1650        return err;
1651}
1652
1653
1654static int
1655vsock_stream_recvmsg(struct kiocb *kiocb,
1656                     struct socket *sock,
1657                     struct msghdr *msg, size_t len, int flags)
1658{
1659        struct sock *sk;
1660        struct vsock_sock *vsk;
1661        int err;
1662        size_t target;
1663        ssize_t copied;
1664        long timeout;
1665        struct vsock_transport_recv_notify_data recv_data;
1666
1667        DEFINE_WAIT(wait);
1668
1669        sk = sock->sk;
1670        vsk = vsock_sk(sk);
1671        err = 0;
1672
1673        msg->msg_namelen = 0;
1674
1675        lock_sock(sk);
1676
1677        if (sk->sk_state != SS_CONNECTED) {
1678                /* Recvmsg is supposed to return 0 if a peer performs an
1679                 * orderly shutdown. Differentiate between that case and when a
1680                 * peer has not connected or a local shutdown occured with the
1681                 * SOCK_DONE flag.
1682                 */
1683                if (sock_flag(sk, SOCK_DONE))
1684                        err = 0;
1685                else
1686                        err = -ENOTCONN;
1687
1688                goto out;
1689        }
1690
1691        if (flags & MSG_OOB) {
1692                err = -EOPNOTSUPP;
1693                goto out;
1694        }
1695
1696        /* We don't check peer_shutdown flag here since peer may actually shut
1697         * down, but there can be data in the queue that a local socket can
1698         * receive.
1699         */
1700        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1701                err = 0;
1702                goto out;
1703        }
1704
1705        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1706         * is not an error.  We may as well bail out now.
1707         */
1708        if (!len) {
1709                err = 0;
1710                goto out;
1711        }
1712
1713        /* We must not copy less than target bytes into the user's buffer
1714         * before returning successfully, so we wait for the consume queue to
1715         * have that much data to consume before dequeueing.  Note that this
1716         * makes it impossible to handle cases where target is greater than the
1717         * queue size.
1718         */
1719        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1720        if (target >= transport->stream_rcvhiwat(vsk)) {
1721                err = -ENOMEM;
1722                goto out;
1723        }
1724        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1725        copied = 0;
1726
1727        err = transport->notify_recv_init(vsk, target, &recv_data);
1728        if (err < 0)
1729                goto out;
1730
1731        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1732
1733        while (1) {
1734                s64 ready = vsock_stream_has_data(vsk);
1735
1736                if (ready < 0) {
1737                        /* Invalid queue pair content. XXX This should be
1738                         * changed to a connection reset in a later change.
1739                         */
1740
1741                        err = -ENOMEM;
1742                        goto out_wait;
1743                } else if (ready > 0) {
1744                        ssize_t read;
1745
1746                        err = transport->notify_recv_pre_dequeue(
1747                                        vsk, target, &recv_data);
1748                        if (err < 0)
1749                                break;
1750
1751                        read = transport->stream_dequeue(
1752                                        vsk, msg->msg_iov,
1753                                        len - copied, flags);
1754                        if (read < 0) {
1755                                err = -ENOMEM;
1756                                break;
1757                        }
1758
1759                        copied += read;
1760
1761                        err = transport->notify_recv_post_dequeue(
1762                                        vsk, target, read,
1763                                        !(flags & MSG_PEEK), &recv_data);
1764                        if (err < 0)
1765                                goto out_wait;
1766
1767                        if (read >= target || flags & MSG_PEEK)
1768                                break;
1769
1770                        target -= read;
1771                } else {
1772                        if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1773                            || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1774                                break;
1775                        }
1776                        /* Don't wait for non-blocking sockets. */
1777                        if (timeout == 0) {
1778                                err = -EAGAIN;
1779                                break;
1780                        }
1781
1782                        err = transport->notify_recv_pre_block(
1783                                        vsk, target, &recv_data);
1784                        if (err < 0)
1785                                break;
1786
1787                        release_sock(sk);
1788                        timeout = schedule_timeout(timeout);
1789                        lock_sock(sk);
1790
1791                        if (signal_pending(current)) {
1792                                err = sock_intr_errno(timeout);
1793                                break;
1794                        } else if (timeout == 0) {
1795                                err = -EAGAIN;
1796                                break;
1797                        }
1798
1799                        prepare_to_wait(sk_sleep(sk), &wait,
1800                                        TASK_INTERRUPTIBLE);
1801                }
1802        }
1803
1804        if (sk->sk_err)
1805                err = -sk->sk_err;
1806        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1807                err = 0;
1808
1809        if (copied > 0) {
1810                /* We only do these additional bookkeeping/notification steps
1811                 * if we actually copied something out of the queue pair
1812                 * instead of just peeking ahead.
1813                 */
1814
1815                if (!(flags & MSG_PEEK)) {
1816                        /* If the other side has shutdown for sending and there
1817                         * is nothing more to read, then modify the socket
1818                         * state.
1819                         */
1820                        if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1821                                if (vsock_stream_has_data(vsk) <= 0) {
1822                                        sk->sk_state = SS_UNCONNECTED;
1823                                        sock_set_flag(sk, SOCK_DONE);
1824                                        sk->sk_state_change(sk);
1825                                }
1826                        }
1827                }
1828                err = copied;
1829        }
1830
1831out_wait:
1832        finish_wait(sk_sleep(sk), &wait);
1833out:
1834        release_sock(sk);
1835        return err;
1836}
1837
1838static const struct proto_ops vsock_stream_ops = {
1839        .family = PF_VSOCK,
1840        .owner = THIS_MODULE,
1841        .release = vsock_release,
1842        .bind = vsock_bind,
1843        .connect = vsock_stream_connect,
1844        .socketpair = sock_no_socketpair,
1845        .accept = vsock_accept,
1846        .getname = vsock_getname,
1847        .poll = vsock_poll,
1848        .ioctl = sock_no_ioctl,
1849        .listen = vsock_listen,
1850        .shutdown = vsock_shutdown,
1851        .setsockopt = vsock_stream_setsockopt,
1852        .getsockopt = vsock_stream_getsockopt,
1853        .sendmsg = vsock_stream_sendmsg,
1854        .recvmsg = vsock_stream_recvmsg,
1855        .mmap = sock_no_mmap,
1856        .sendpage = sock_no_sendpage,
1857};
1858
1859static int vsock_create(struct net *net, struct socket *sock,
1860                        int protocol, int kern)
1861{
1862        if (!sock)
1863                return -EINVAL;
1864
1865        if (protocol && protocol != PF_VSOCK)
1866                return -EPROTONOSUPPORT;
1867
1868        switch (sock->type) {
1869        case SOCK_DGRAM:
1870                sock->ops = &vsock_dgram_ops;
1871                break;
1872        case SOCK_STREAM:
1873                sock->ops = &vsock_stream_ops;
1874                break;
1875        default:
1876                return -ESOCKTNOSUPPORT;
1877        }
1878
1879        sock->state = SS_UNCONNECTED;
1880
1881        return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1882}
1883
1884static const struct net_proto_family vsock_family_ops = {
1885        .family = AF_VSOCK,
1886        .create = vsock_create,
1887        .owner = THIS_MODULE,
1888};
1889
1890static long vsock_dev_do_ioctl(struct file *filp,
1891                               unsigned int cmd, void __user *ptr)
1892{
1893        u32 __user *p = ptr;
1894        int retval = 0;
1895
1896        switch (cmd) {
1897        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1898                if (put_user(transport->get_local_cid(), p) != 0)
1899                        retval = -EFAULT;
1900                break;
1901
1902        default:
1903                pr_err("Unknown ioctl %d\n", cmd);
1904                retval = -EINVAL;
1905        }
1906
1907        return retval;
1908}
1909
1910static long vsock_dev_ioctl(struct file *filp,
1911                            unsigned int cmd, unsigned long arg)
1912{
1913        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1914}
1915
1916#ifdef CONFIG_COMPAT
1917static long vsock_dev_compat_ioctl(struct file *filp,
1918                                   unsigned int cmd, unsigned long arg)
1919{
1920        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1921}
1922#endif
1923
1924static const struct file_operations vsock_device_ops = {
1925        .owner          = THIS_MODULE,
1926        .unlocked_ioctl = vsock_dev_ioctl,
1927#ifdef CONFIG_COMPAT
1928        .compat_ioctl   = vsock_dev_compat_ioctl,
1929#endif
1930        .open           = nonseekable_open,
1931};
1932
1933static struct miscdevice vsock_device = {
1934        .name           = "vsock",
1935        .fops           = &vsock_device_ops,
1936};
1937
1938static int __vsock_core_init(void)
1939{
1940        int err;
1941
1942        vsock_init_tables();
1943
1944        vsock_device.minor = MISC_DYNAMIC_MINOR;
1945        err = misc_register(&vsock_device);
1946        if (err) {
1947                pr_err("Failed to register misc device\n");
1948                return -ENOENT;
1949        }
1950
1951        err = proto_register(&vsock_proto, 1);  /* we want our slab */
1952        if (err) {
1953                pr_err("Cannot register vsock protocol\n");
1954                goto err_misc_deregister;
1955        }
1956
1957        err = sock_register(&vsock_family_ops);
1958        if (err) {
1959                pr_err("could not register af_vsock (%d) address family: %d\n",
1960                       AF_VSOCK, err);
1961                goto err_unregister_proto;
1962        }
1963
1964        return 0;
1965
1966err_unregister_proto:
1967        proto_unregister(&vsock_proto);
1968err_misc_deregister:
1969        misc_deregister(&vsock_device);
1970        return err;
1971}
1972
1973int vsock_core_init(const struct vsock_transport *t)
1974{
1975        int retval = mutex_lock_interruptible(&vsock_register_mutex);
1976        if (retval)
1977                return retval;
1978
1979        if (transport) {
1980                retval = -EBUSY;
1981                goto out;
1982        }
1983
1984        transport = t;
1985        retval = __vsock_core_init();
1986        if (retval)
1987                transport = NULL;
1988
1989out:
1990        mutex_unlock(&vsock_register_mutex);
1991        return retval;
1992}
1993EXPORT_SYMBOL_GPL(vsock_core_init);
1994
1995void vsock_core_exit(void)
1996{
1997        mutex_lock(&vsock_register_mutex);
1998
1999        misc_deregister(&vsock_device);
2000        sock_unregister(AF_VSOCK);
2001        proto_unregister(&vsock_proto);
2002
2003        /* We do not want the assignment below re-ordered. */
2004        mb();
2005        transport = NULL;
2006
2007        mutex_unlock(&vsock_register_mutex);
2008}
2009EXPORT_SYMBOL_GPL(vsock_core_exit);
2010
2011MODULE_AUTHOR("VMware, Inc.");
2012MODULE_DESCRIPTION("VMware Virtual Socket Family");
2013MODULE_VERSION("1.0.0.0-k");
2014MODULE_LICENSE("GPL v2");
2015