linux/sound/soc/fsl/fsl_ssi.c
<<
>>
Prefs
   1/*
   2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
   3 *
   4 * Author: Timur Tabi <timur@freescale.com>
   5 *
   6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
   7 *
   8 * This file is licensed under the terms of the GNU General Public License
   9 * version 2.  This program is licensed "as is" without any warranty of any
  10 * kind, whether express or implied.
  11 */
  12
  13#include <linux/init.h>
  14#include <linux/io.h>
  15#include <linux/module.h>
  16#include <linux/interrupt.h>
  17#include <linux/clk.h>
  18#include <linux/device.h>
  19#include <linux/delay.h>
  20#include <linux/slab.h>
  21#include <linux/of_address.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_platform.h>
  24
  25#include <sound/core.h>
  26#include <sound/pcm.h>
  27#include <sound/pcm_params.h>
  28#include <sound/initval.h>
  29#include <sound/soc.h>
  30#include <sound/dmaengine_pcm.h>
  31
  32#include "fsl_ssi.h"
  33#include "imx-pcm.h"
  34
  35#ifdef PPC
  36#define read_ssi(addr)                   in_be32(addr)
  37#define write_ssi(val, addr)             out_be32(addr, val)
  38#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
  39#elif defined ARM
  40#define read_ssi(addr)                   readl(addr)
  41#define write_ssi(val, addr)             writel(val, addr)
  42/*
  43 * FIXME: Proper locking should be added at write_ssi_mask caller level
  44 * to ensure this register read/modify/write sequence is race free.
  45 */
  46static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
  47{
  48        u32 val = readl(addr);
  49        val = (val & ~clear) | set;
  50        writel(val, addr);
  51}
  52#endif
  53
  54/**
  55 * FSLSSI_I2S_RATES: sample rates supported by the I2S
  56 *
  57 * This driver currently only supports the SSI running in I2S slave mode,
  58 * which means the codec determines the sample rate.  Therefore, we tell
  59 * ALSA that we support all rates and let the codec driver decide what rates
  60 * are really supported.
  61 */
  62#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  63                          SNDRV_PCM_RATE_CONTINUOUS)
  64
  65/**
  66 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
  67 *
  68 * This driver currently only supports the SSI running in I2S slave mode.
  69 *
  70 * The SSI has a limitation in that the samples must be in the same byte
  71 * order as the host CPU.  This is because when multiple bytes are written
  72 * to the STX register, the bytes and bits must be written in the same
  73 * order.  The STX is a shift register, so all the bits need to be aligned
  74 * (bit-endianness must match byte-endianness).  Processors typically write
  75 * the bits within a byte in the same order that the bytes of a word are
  76 * written in.  So if the host CPU is big-endian, then only big-endian
  77 * samples will be written to STX properly.
  78 */
  79#ifdef __BIG_ENDIAN
  80#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
  81         SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
  82         SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
  83#else
  84#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
  85         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
  86         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
  87#endif
  88
  89/* SIER bitflag of interrupts to enable */
  90#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
  91                    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
  92                    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
  93                    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
  94                    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
  95
  96/**
  97 * fsl_ssi_private: per-SSI private data
  98 *
  99 * @ssi: pointer to the SSI's registers
 100 * @ssi_phys: physical address of the SSI registers
 101 * @irq: IRQ of this SSI
 102 * @first_stream: pointer to the stream that was opened first
 103 * @second_stream: pointer to second stream
 104 * @playback: the number of playback streams opened
 105 * @capture: the number of capture streams opened
 106 * @cpu_dai: the CPU DAI for this device
 107 * @dev_attr: the sysfs device attribute structure
 108 * @stats: SSI statistics
 109 * @name: name for this device
 110 */
 111struct fsl_ssi_private {
 112        struct ccsr_ssi __iomem *ssi;
 113        dma_addr_t ssi_phys;
 114        unsigned int irq;
 115        struct snd_pcm_substream *first_stream;
 116        struct snd_pcm_substream *second_stream;
 117        unsigned int fifo_depth;
 118        struct snd_soc_dai_driver cpu_dai_drv;
 119        struct device_attribute dev_attr;
 120        struct platform_device *pdev;
 121
 122        bool new_binding;
 123        bool ssi_on_imx;
 124        struct clk *clk;
 125        struct platform_device *imx_pcm_pdev;
 126        struct snd_dmaengine_dai_dma_data dma_params_tx;
 127        struct snd_dmaengine_dai_dma_data dma_params_rx;
 128        struct imx_dma_data filter_data_tx;
 129        struct imx_dma_data filter_data_rx;
 130
 131        struct {
 132                unsigned int rfrc;
 133                unsigned int tfrc;
 134                unsigned int cmdau;
 135                unsigned int cmddu;
 136                unsigned int rxt;
 137                unsigned int rdr1;
 138                unsigned int rdr0;
 139                unsigned int tde1;
 140                unsigned int tde0;
 141                unsigned int roe1;
 142                unsigned int roe0;
 143                unsigned int tue1;
 144                unsigned int tue0;
 145                unsigned int tfs;
 146                unsigned int rfs;
 147                unsigned int tls;
 148                unsigned int rls;
 149                unsigned int rff1;
 150                unsigned int rff0;
 151                unsigned int tfe1;
 152                unsigned int tfe0;
 153        } stats;
 154
 155        char name[1];
 156};
 157
 158/**
 159 * fsl_ssi_isr: SSI interrupt handler
 160 *
 161 * Although it's possible to use the interrupt handler to send and receive
 162 * data to/from the SSI, we use the DMA instead.  Programming is more
 163 * complicated, but the performance is much better.
 164 *
 165 * This interrupt handler is used only to gather statistics.
 166 *
 167 * @irq: IRQ of the SSI device
 168 * @dev_id: pointer to the ssi_private structure for this SSI device
 169 */
 170static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
 171{
 172        struct fsl_ssi_private *ssi_private = dev_id;
 173        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 174        irqreturn_t ret = IRQ_NONE;
 175        __be32 sisr;
 176        __be32 sisr2 = 0;
 177
 178        /* We got an interrupt, so read the status register to see what we
 179           were interrupted for.  We mask it with the Interrupt Enable register
 180           so that we only check for events that we're interested in.
 181         */
 182        sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
 183
 184        if (sisr & CCSR_SSI_SISR_RFRC) {
 185                ssi_private->stats.rfrc++;
 186                sisr2 |= CCSR_SSI_SISR_RFRC;
 187                ret = IRQ_HANDLED;
 188        }
 189
 190        if (sisr & CCSR_SSI_SISR_TFRC) {
 191                ssi_private->stats.tfrc++;
 192                sisr2 |= CCSR_SSI_SISR_TFRC;
 193                ret = IRQ_HANDLED;
 194        }
 195
 196        if (sisr & CCSR_SSI_SISR_CMDAU) {
 197                ssi_private->stats.cmdau++;
 198                ret = IRQ_HANDLED;
 199        }
 200
 201        if (sisr & CCSR_SSI_SISR_CMDDU) {
 202                ssi_private->stats.cmddu++;
 203                ret = IRQ_HANDLED;
 204        }
 205
 206        if (sisr & CCSR_SSI_SISR_RXT) {
 207                ssi_private->stats.rxt++;
 208                ret = IRQ_HANDLED;
 209        }
 210
 211        if (sisr & CCSR_SSI_SISR_RDR1) {
 212                ssi_private->stats.rdr1++;
 213                ret = IRQ_HANDLED;
 214        }
 215
 216        if (sisr & CCSR_SSI_SISR_RDR0) {
 217                ssi_private->stats.rdr0++;
 218                ret = IRQ_HANDLED;
 219        }
 220
 221        if (sisr & CCSR_SSI_SISR_TDE1) {
 222                ssi_private->stats.tde1++;
 223                ret = IRQ_HANDLED;
 224        }
 225
 226        if (sisr & CCSR_SSI_SISR_TDE0) {
 227                ssi_private->stats.tde0++;
 228                ret = IRQ_HANDLED;
 229        }
 230
 231        if (sisr & CCSR_SSI_SISR_ROE1) {
 232                ssi_private->stats.roe1++;
 233                sisr2 |= CCSR_SSI_SISR_ROE1;
 234                ret = IRQ_HANDLED;
 235        }
 236
 237        if (sisr & CCSR_SSI_SISR_ROE0) {
 238                ssi_private->stats.roe0++;
 239                sisr2 |= CCSR_SSI_SISR_ROE0;
 240                ret = IRQ_HANDLED;
 241        }
 242
 243        if (sisr & CCSR_SSI_SISR_TUE1) {
 244                ssi_private->stats.tue1++;
 245                sisr2 |= CCSR_SSI_SISR_TUE1;
 246                ret = IRQ_HANDLED;
 247        }
 248
 249        if (sisr & CCSR_SSI_SISR_TUE0) {
 250                ssi_private->stats.tue0++;
 251                sisr2 |= CCSR_SSI_SISR_TUE0;
 252                ret = IRQ_HANDLED;
 253        }
 254
 255        if (sisr & CCSR_SSI_SISR_TFS) {
 256                ssi_private->stats.tfs++;
 257                ret = IRQ_HANDLED;
 258        }
 259
 260        if (sisr & CCSR_SSI_SISR_RFS) {
 261                ssi_private->stats.rfs++;
 262                ret = IRQ_HANDLED;
 263        }
 264
 265        if (sisr & CCSR_SSI_SISR_TLS) {
 266                ssi_private->stats.tls++;
 267                ret = IRQ_HANDLED;
 268        }
 269
 270        if (sisr & CCSR_SSI_SISR_RLS) {
 271                ssi_private->stats.rls++;
 272                ret = IRQ_HANDLED;
 273        }
 274
 275        if (sisr & CCSR_SSI_SISR_RFF1) {
 276                ssi_private->stats.rff1++;
 277                ret = IRQ_HANDLED;
 278        }
 279
 280        if (sisr & CCSR_SSI_SISR_RFF0) {
 281                ssi_private->stats.rff0++;
 282                ret = IRQ_HANDLED;
 283        }
 284
 285        if (sisr & CCSR_SSI_SISR_TFE1) {
 286                ssi_private->stats.tfe1++;
 287                ret = IRQ_HANDLED;
 288        }
 289
 290        if (sisr & CCSR_SSI_SISR_TFE0) {
 291                ssi_private->stats.tfe0++;
 292                ret = IRQ_HANDLED;
 293        }
 294
 295        /* Clear the bits that we set */
 296        if (sisr2)
 297                write_ssi(sisr2, &ssi->sisr);
 298
 299        return ret;
 300}
 301
 302/**
 303 * fsl_ssi_startup: create a new substream
 304 *
 305 * This is the first function called when a stream is opened.
 306 *
 307 * If this is the first stream open, then grab the IRQ and program most of
 308 * the SSI registers.
 309 */
 310static int fsl_ssi_startup(struct snd_pcm_substream *substream,
 311                           struct snd_soc_dai *dai)
 312{
 313        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 314        struct fsl_ssi_private *ssi_private =
 315                snd_soc_dai_get_drvdata(rtd->cpu_dai);
 316        int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
 317
 318        /*
 319         * If this is the first stream opened, then request the IRQ
 320         * and initialize the SSI registers.
 321         */
 322        if (!ssi_private->first_stream) {
 323                struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 324
 325                ssi_private->first_stream = substream;
 326
 327                /*
 328                 * Section 16.5 of the MPC8610 reference manual says that the
 329                 * SSI needs to be disabled before updating the registers we set
 330                 * here.
 331                 */
 332                write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
 333
 334                /*
 335                 * Program the SSI into I2S Slave Non-Network Synchronous mode.
 336                 * Also enable the transmit and receive FIFO.
 337                 *
 338                 * FIXME: Little-endian samples require a different shift dir
 339                 */
 340                write_ssi_mask(&ssi->scr,
 341                        CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
 342                        CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
 343                        | (synchronous ? CCSR_SSI_SCR_SYN : 0));
 344
 345                write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
 346                         CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
 347                         CCSR_SSI_STCR_TSCKP, &ssi->stcr);
 348
 349                write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
 350                         CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
 351                         CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
 352
 353                /*
 354                 * The DC and PM bits are only used if the SSI is the clock
 355                 * master.
 356                 */
 357
 358                /* Enable the interrupts and DMA requests */
 359                write_ssi(SIER_FLAGS, &ssi->sier);
 360
 361                /*
 362                 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
 363                 * don't use FIFO 1.  We program the transmit water to signal a
 364                 * DMA transfer if there are only two (or fewer) elements left
 365                 * in the FIFO.  Two elements equals one frame (left channel,
 366                 * right channel).  This value, however, depends on the depth of
 367                 * the transmit buffer.
 368                 *
 369                 * We program the receive FIFO to notify us if at least two
 370                 * elements (one frame) have been written to the FIFO.  We could
 371                 * make this value larger (and maybe we should), but this way
 372                 * data will be written to memory as soon as it's available.
 373                 */
 374                write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
 375                        CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
 376                        &ssi->sfcsr);
 377
 378                /*
 379                 * We keep the SSI disabled because if we enable it, then the
 380                 * DMA controller will start.  It's not supposed to start until
 381                 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
 382                 * DMA controller will transfer one "BWC" of data (i.e. the
 383                 * amount of data that the MR.BWC bits are set to).  The reason
 384                 * this is bad is because at this point, the PCM driver has not
 385                 * finished initializing the DMA controller.
 386                 */
 387        } else {
 388                if (synchronous) {
 389                        struct snd_pcm_runtime *first_runtime =
 390                                ssi_private->first_stream->runtime;
 391                        /*
 392                         * This is the second stream open, and we're in
 393                         * synchronous mode, so we need to impose sample
 394                         * sample size constraints. This is because STCCR is
 395                         * used for playback and capture in synchronous mode,
 396                         * so there's no way to specify different word
 397                         * lengths.
 398                         *
 399                         * Note that this can cause a race condition if the
 400                         * second stream is opened before the first stream is
 401                         * fully initialized.  We provide some protection by
 402                         * checking to make sure the first stream is
 403                         * initialized, but it's not perfect.  ALSA sometimes
 404                         * re-initializes the driver with a different sample
 405                         * rate or size.  If the second stream is opened
 406                         * before the first stream has received its final
 407                         * parameters, then the second stream may be
 408                         * constrained to the wrong sample rate or size.
 409                         */
 410                        if (!first_runtime->sample_bits) {
 411                                dev_err(substream->pcm->card->dev,
 412                                        "set sample size in %s stream first\n",
 413                                        substream->stream ==
 414                                        SNDRV_PCM_STREAM_PLAYBACK
 415                                        ? "capture" : "playback");
 416                                return -EAGAIN;
 417                        }
 418
 419                        snd_pcm_hw_constraint_minmax(substream->runtime,
 420                                SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
 421                                first_runtime->sample_bits,
 422                                first_runtime->sample_bits);
 423                }
 424
 425                ssi_private->second_stream = substream;
 426        }
 427
 428        return 0;
 429}
 430
 431/**
 432 * fsl_ssi_hw_params - program the sample size
 433 *
 434 * Most of the SSI registers have been programmed in the startup function,
 435 * but the word length must be programmed here.  Unfortunately, programming
 436 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 437 * cause a problem with supporting simultaneous playback and capture.  If
 438 * the SSI is already playing a stream, then that stream may be temporarily
 439 * stopped when you start capture.
 440 *
 441 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 442 * clock master.
 443 */
 444static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
 445        struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
 446{
 447        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
 448        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 449        unsigned int sample_size =
 450                snd_pcm_format_width(params_format(hw_params));
 451        u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
 452        int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
 453
 454        /*
 455         * If we're in synchronous mode, and the SSI is already enabled,
 456         * then STCCR is already set properly.
 457         */
 458        if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
 459                return 0;
 460
 461        /*
 462         * FIXME: The documentation says that SxCCR[WL] should not be
 463         * modified while the SSI is enabled.  The only time this can
 464         * happen is if we're trying to do simultaneous playback and
 465         * capture in asynchronous mode.  Unfortunately, I have been enable
 466         * to get that to work at all on the P1022DS.  Therefore, we don't
 467         * bother to disable/enable the SSI when setting SxCCR[WL], because
 468         * the SSI will stop anyway.  Maybe one day, this will get fixed.
 469         */
 470
 471        /* In synchronous mode, the SSI uses STCCR for capture */
 472        if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
 473            ssi_private->cpu_dai_drv.symmetric_rates)
 474                write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
 475        else
 476                write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
 477
 478        return 0;
 479}
 480
 481/**
 482 * fsl_ssi_trigger: start and stop the DMA transfer.
 483 *
 484 * This function is called by ALSA to start, stop, pause, and resume the DMA
 485 * transfer of data.
 486 *
 487 * The DMA channel is in external master start and pause mode, which
 488 * means the SSI completely controls the flow of data.
 489 */
 490static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
 491                           struct snd_soc_dai *dai)
 492{
 493        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 494        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
 495        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 496
 497        switch (cmd) {
 498        case SNDRV_PCM_TRIGGER_START:
 499        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 500                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 501                        write_ssi_mask(&ssi->scr, 0,
 502                                CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
 503                else
 504                        write_ssi_mask(&ssi->scr, 0,
 505                                CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
 506                break;
 507
 508        case SNDRV_PCM_TRIGGER_STOP:
 509        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 510                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 511                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
 512                else
 513                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
 514                break;
 515
 516        default:
 517                return -EINVAL;
 518        }
 519
 520        return 0;
 521}
 522
 523/**
 524 * fsl_ssi_shutdown: shutdown the SSI
 525 *
 526 * Shutdown the SSI if there are no other substreams open.
 527 */
 528static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
 529                             struct snd_soc_dai *dai)
 530{
 531        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 532        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
 533
 534        if (ssi_private->first_stream == substream)
 535                ssi_private->first_stream = ssi_private->second_stream;
 536
 537        ssi_private->second_stream = NULL;
 538
 539        /*
 540         * If this is the last active substream, disable the SSI.
 541         */
 542        if (!ssi_private->first_stream) {
 543                struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 544
 545                write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
 546        }
 547}
 548
 549static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
 550{
 551        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
 552
 553        if (ssi_private->ssi_on_imx) {
 554                dai->playback_dma_data = &ssi_private->dma_params_tx;
 555                dai->capture_dma_data = &ssi_private->dma_params_rx;
 556        }
 557
 558        return 0;
 559}
 560
 561static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
 562        .startup        = fsl_ssi_startup,
 563        .hw_params      = fsl_ssi_hw_params,
 564        .shutdown       = fsl_ssi_shutdown,
 565        .trigger        = fsl_ssi_trigger,
 566};
 567
 568/* Template for the CPU dai driver structure */
 569static struct snd_soc_dai_driver fsl_ssi_dai_template = {
 570        .probe = fsl_ssi_dai_probe,
 571        .playback = {
 572                /* The SSI does not support monaural audio. */
 573                .channels_min = 2,
 574                .channels_max = 2,
 575                .rates = FSLSSI_I2S_RATES,
 576                .formats = FSLSSI_I2S_FORMATS,
 577        },
 578        .capture = {
 579                .channels_min = 2,
 580                .channels_max = 2,
 581                .rates = FSLSSI_I2S_RATES,
 582                .formats = FSLSSI_I2S_FORMATS,
 583        },
 584        .ops = &fsl_ssi_dai_ops,
 585};
 586
 587static const struct snd_soc_component_driver fsl_ssi_component = {
 588        .name           = "fsl-ssi",
 589};
 590
 591/* Show the statistics of a flag only if its interrupt is enabled.  The
 592 * compiler will optimze this code to a no-op if the interrupt is not
 593 * enabled.
 594 */
 595#define SIER_SHOW(flag, name) \
 596        do { \
 597                if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
 598                        length += sprintf(buf + length, #name "=%u\n", \
 599                                ssi_private->stats.name); \
 600        } while (0)
 601
 602
 603/**
 604 * fsl_sysfs_ssi_show: display SSI statistics
 605 *
 606 * Display the statistics for the current SSI device.  To avoid confusion,
 607 * we only show those counts that are enabled.
 608 */
 609static ssize_t fsl_sysfs_ssi_show(struct device *dev,
 610        struct device_attribute *attr, char *buf)
 611{
 612        struct fsl_ssi_private *ssi_private =
 613                container_of(attr, struct fsl_ssi_private, dev_attr);
 614        ssize_t length = 0;
 615
 616        SIER_SHOW(RFRC_EN, rfrc);
 617        SIER_SHOW(TFRC_EN, tfrc);
 618        SIER_SHOW(CMDAU_EN, cmdau);
 619        SIER_SHOW(CMDDU_EN, cmddu);
 620        SIER_SHOW(RXT_EN, rxt);
 621        SIER_SHOW(RDR1_EN, rdr1);
 622        SIER_SHOW(RDR0_EN, rdr0);
 623        SIER_SHOW(TDE1_EN, tde1);
 624        SIER_SHOW(TDE0_EN, tde0);
 625        SIER_SHOW(ROE1_EN, roe1);
 626        SIER_SHOW(ROE0_EN, roe0);
 627        SIER_SHOW(TUE1_EN, tue1);
 628        SIER_SHOW(TUE0_EN, tue0);
 629        SIER_SHOW(TFS_EN, tfs);
 630        SIER_SHOW(RFS_EN, rfs);
 631        SIER_SHOW(TLS_EN, tls);
 632        SIER_SHOW(RLS_EN, rls);
 633        SIER_SHOW(RFF1_EN, rff1);
 634        SIER_SHOW(RFF0_EN, rff0);
 635        SIER_SHOW(TFE1_EN, tfe1);
 636        SIER_SHOW(TFE0_EN, tfe0);
 637
 638        return length;
 639}
 640
 641/**
 642 * Make every character in a string lower-case
 643 */
 644static void make_lowercase(char *s)
 645{
 646        char *p = s;
 647        char c;
 648
 649        while ((c = *p)) {
 650                if ((c >= 'A') && (c <= 'Z'))
 651                        *p = c + ('a' - 'A');
 652                p++;
 653        }
 654}
 655
 656static int fsl_ssi_probe(struct platform_device *pdev)
 657{
 658        struct fsl_ssi_private *ssi_private;
 659        int ret = 0;
 660        struct device_attribute *dev_attr = NULL;
 661        struct device_node *np = pdev->dev.of_node;
 662        const char *p, *sprop;
 663        const uint32_t *iprop;
 664        struct resource res;
 665        char name[64];
 666        bool shared;
 667
 668        /* SSIs that are not connected on the board should have a
 669         *      status = "disabled"
 670         * property in their device tree nodes.
 671         */
 672        if (!of_device_is_available(np))
 673                return -ENODEV;
 674
 675        /* We only support the SSI in "I2S Slave" mode */
 676        sprop = of_get_property(np, "fsl,mode", NULL);
 677        if (!sprop || strcmp(sprop, "i2s-slave")) {
 678                dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
 679                return -ENODEV;
 680        }
 681
 682        /* The DAI name is the last part of the full name of the node. */
 683        p = strrchr(np->full_name, '/') + 1;
 684        ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
 685                              GFP_KERNEL);
 686        if (!ssi_private) {
 687                dev_err(&pdev->dev, "could not allocate DAI object\n");
 688                return -ENOMEM;
 689        }
 690
 691        strcpy(ssi_private->name, p);
 692
 693        /* Initialize this copy of the CPU DAI driver structure */
 694        memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
 695               sizeof(fsl_ssi_dai_template));
 696        ssi_private->cpu_dai_drv.name = ssi_private->name;
 697
 698        /* Get the addresses and IRQ */
 699        ret = of_address_to_resource(np, 0, &res);
 700        if (ret) {
 701                dev_err(&pdev->dev, "could not determine device resources\n");
 702                goto error_kmalloc;
 703        }
 704        ssi_private->ssi = of_iomap(np, 0);
 705        if (!ssi_private->ssi) {
 706                dev_err(&pdev->dev, "could not map device resources\n");
 707                ret = -ENOMEM;
 708                goto error_kmalloc;
 709        }
 710        ssi_private->ssi_phys = res.start;
 711
 712        ssi_private->irq = irq_of_parse_and_map(np, 0);
 713        if (ssi_private->irq == NO_IRQ) {
 714                dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
 715                ret = -ENXIO;
 716                goto error_iomap;
 717        }
 718
 719        /* The 'name' should not have any slashes in it. */
 720        ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
 721                          ssi_private);
 722        if (ret < 0) {
 723                dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
 724                goto error_irqmap;
 725        }
 726
 727        /* Are the RX and the TX clocks locked? */
 728        if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
 729                ssi_private->cpu_dai_drv.symmetric_rates = 1;
 730
 731        /* Determine the FIFO depth. */
 732        iprop = of_get_property(np, "fsl,fifo-depth", NULL);
 733        if (iprop)
 734                ssi_private->fifo_depth = be32_to_cpup(iprop);
 735        else
 736                /* Older 8610 DTs didn't have the fifo-depth property */
 737                ssi_private->fifo_depth = 8;
 738
 739        if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
 740                u32 dma_events[2];
 741                ssi_private->ssi_on_imx = true;
 742
 743                ssi_private->clk = clk_get(&pdev->dev, NULL);
 744                if (IS_ERR(ssi_private->clk)) {
 745                        ret = PTR_ERR(ssi_private->clk);
 746                        dev_err(&pdev->dev, "could not get clock: %d\n", ret);
 747                        goto error_irq;
 748                }
 749                clk_prepare_enable(ssi_private->clk);
 750
 751                /*
 752                 * We have burstsize be "fifo_depth - 2" to match the SSI
 753                 * watermark setting in fsl_ssi_startup().
 754                 */
 755                ssi_private->dma_params_tx.maxburst =
 756                        ssi_private->fifo_depth - 2;
 757                ssi_private->dma_params_rx.maxburst =
 758                        ssi_private->fifo_depth - 2;
 759                ssi_private->dma_params_tx.addr =
 760                        ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
 761                ssi_private->dma_params_rx.addr =
 762                        ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
 763                ssi_private->dma_params_tx.filter_data =
 764                        &ssi_private->filter_data_tx;
 765                ssi_private->dma_params_rx.filter_data =
 766                        &ssi_private->filter_data_rx;
 767                /*
 768                 * TODO: This is a temporary solution and should be changed
 769                 * to use generic DMA binding later when the helplers get in.
 770                 */
 771                ret = of_property_read_u32_array(pdev->dev.of_node,
 772                                        "fsl,ssi-dma-events", dma_events, 2);
 773                if (ret) {
 774                        dev_err(&pdev->dev, "could not get dma events\n");
 775                        goto error_clk;
 776                }
 777
 778                shared = of_device_is_compatible(of_get_parent(np),
 779                            "fsl,spba-bus");
 780
 781                imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
 782                        dma_events[0], shared);
 783                imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
 784                        dma_events[1], shared);
 785        }
 786
 787        /* Initialize the the device_attribute structure */
 788        dev_attr = &ssi_private->dev_attr;
 789        sysfs_attr_init(&dev_attr->attr);
 790        dev_attr->attr.name = "statistics";
 791        dev_attr->attr.mode = S_IRUGO;
 792        dev_attr->show = fsl_sysfs_ssi_show;
 793
 794        ret = device_create_file(&pdev->dev, dev_attr);
 795        if (ret) {
 796                dev_err(&pdev->dev, "could not create sysfs %s file\n",
 797                        ssi_private->dev_attr.attr.name);
 798                goto error_irq;
 799        }
 800
 801        /* Register with ASoC */
 802        dev_set_drvdata(&pdev->dev, ssi_private);
 803
 804        ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
 805                                         &ssi_private->cpu_dai_drv, 1);
 806        if (ret) {
 807                dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
 808                goto error_dev;
 809        }
 810
 811        if (ssi_private->ssi_on_imx) {
 812                ssi_private->imx_pcm_pdev =
 813                        platform_device_register_simple("imx-pcm-audio",
 814                                                        -1, NULL, 0);
 815                if (IS_ERR(ssi_private->imx_pcm_pdev)) {
 816                        ret = PTR_ERR(ssi_private->imx_pcm_pdev);
 817                        goto error_dev;
 818                }
 819        }
 820
 821        /*
 822         * If codec-handle property is missing from SSI node, we assume
 823         * that the machine driver uses new binding which does not require
 824         * SSI driver to trigger machine driver's probe.
 825         */
 826        if (!of_get_property(np, "codec-handle", NULL)) {
 827                ssi_private->new_binding = true;
 828                goto done;
 829        }
 830
 831        /* Trigger the machine driver's probe function.  The platform driver
 832         * name of the machine driver is taken from /compatible property of the
 833         * device tree.  We also pass the address of the CPU DAI driver
 834         * structure.
 835         */
 836        sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
 837        /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
 838        p = strrchr(sprop, ',');
 839        if (p)
 840                sprop = p + 1;
 841        snprintf(name, sizeof(name), "snd-soc-%s", sprop);
 842        make_lowercase(name);
 843
 844        ssi_private->pdev =
 845                platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
 846        if (IS_ERR(ssi_private->pdev)) {
 847                ret = PTR_ERR(ssi_private->pdev);
 848                dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
 849                goto error_dai;
 850        }
 851
 852done:
 853        return 0;
 854
 855error_dai:
 856        if (ssi_private->ssi_on_imx)
 857                platform_device_unregister(ssi_private->imx_pcm_pdev);
 858        snd_soc_unregister_component(&pdev->dev);
 859
 860error_dev:
 861        dev_set_drvdata(&pdev->dev, NULL);
 862        device_remove_file(&pdev->dev, dev_attr);
 863
 864error_clk:
 865        if (ssi_private->ssi_on_imx) {
 866                clk_disable_unprepare(ssi_private->clk);
 867                clk_put(ssi_private->clk);
 868        }
 869
 870error_irq:
 871        free_irq(ssi_private->irq, ssi_private);
 872
 873error_irqmap:
 874        irq_dispose_mapping(ssi_private->irq);
 875
 876error_iomap:
 877        iounmap(ssi_private->ssi);
 878
 879error_kmalloc:
 880        kfree(ssi_private);
 881
 882        return ret;
 883}
 884
 885static int fsl_ssi_remove(struct platform_device *pdev)
 886{
 887        struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
 888
 889        if (!ssi_private->new_binding)
 890                platform_device_unregister(ssi_private->pdev);
 891        if (ssi_private->ssi_on_imx) {
 892                platform_device_unregister(ssi_private->imx_pcm_pdev);
 893                clk_disable_unprepare(ssi_private->clk);
 894                clk_put(ssi_private->clk);
 895        }
 896        snd_soc_unregister_component(&pdev->dev);
 897        device_remove_file(&pdev->dev, &ssi_private->dev_attr);
 898
 899        free_irq(ssi_private->irq, ssi_private);
 900        irq_dispose_mapping(ssi_private->irq);
 901
 902        kfree(ssi_private);
 903        dev_set_drvdata(&pdev->dev, NULL);
 904
 905        return 0;
 906}
 907
 908static const struct of_device_id fsl_ssi_ids[] = {
 909        { .compatible = "fsl,mpc8610-ssi", },
 910        { .compatible = "fsl,imx21-ssi", },
 911        {}
 912};
 913MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
 914
 915static struct platform_driver fsl_ssi_driver = {
 916        .driver = {
 917                .name = "fsl-ssi-dai",
 918                .owner = THIS_MODULE,
 919                .of_match_table = fsl_ssi_ids,
 920        },
 921        .probe = fsl_ssi_probe,
 922        .remove = fsl_ssi_remove,
 923};
 924
 925module_platform_driver(fsl_ssi_driver);
 926
 927MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
 928MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
 929MODULE_LICENSE("GPL v2");
 930