linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/uaccess.h>
  56#include <asm/pgtable.h>
  57
  58#include "coalesced_mmio.h"
  59#include "async_pf.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/kvm.h>
  63
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
  67/*
  68 * Ordering of locks:
  69 *
  70 *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  71 */
  72
  73DEFINE_RAW_SPINLOCK(kvm_lock);
  74LIST_HEAD(vm_list);
  75
  76static cpumask_var_t cpus_hardware_enabled;
  77static int kvm_usage_count = 0;
  78static atomic_t hardware_enable_failed;
  79
  80struct kmem_cache *kvm_vcpu_cache;
  81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  82
  83static __read_mostly struct preempt_ops kvm_preempt_ops;
  84
  85struct dentry *kvm_debugfs_dir;
  86
  87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88                           unsigned long arg);
  89#ifdef CONFIG_COMPAT
  90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91                                  unsigned long arg);
  92#endif
  93static int hardware_enable_all(void);
  94static void hardware_disable_all(void);
  95
  96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  97
  98bool kvm_rebooting;
  99EXPORT_SYMBOL_GPL(kvm_rebooting);
 100
 101static bool largepages_enabled = true;
 102
 103bool kvm_is_mmio_pfn(pfn_t pfn)
 104{
 105        if (pfn_valid(pfn)) {
 106                int reserved;
 107                struct page *tail = pfn_to_page(pfn);
 108                struct page *head = compound_trans_head(tail);
 109                reserved = PageReserved(head);
 110                if (head != tail) {
 111                        /*
 112                         * "head" is not a dangling pointer
 113                         * (compound_trans_head takes care of that)
 114                         * but the hugepage may have been splitted
 115                         * from under us (and we may not hold a
 116                         * reference count on the head page so it can
 117                         * be reused before we run PageReferenced), so
 118                         * we've to check PageTail before returning
 119                         * what we just read.
 120                         */
 121                        smp_rmb();
 122                        if (PageTail(tail))
 123                                return reserved;
 124                }
 125                return PageReserved(tail);
 126        }
 127
 128        return true;
 129}
 130
 131/*
 132 * Switches to specified vcpu, until a matching vcpu_put()
 133 */
 134int vcpu_load(struct kvm_vcpu *vcpu)
 135{
 136        int cpu;
 137
 138        if (mutex_lock_killable(&vcpu->mutex))
 139                return -EINTR;
 140        if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 141                /* The thread running this VCPU changed. */
 142                struct pid *oldpid = vcpu->pid;
 143                struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 144                rcu_assign_pointer(vcpu->pid, newpid);
 145                synchronize_rcu();
 146                put_pid(oldpid);
 147        }
 148        cpu = get_cpu();
 149        preempt_notifier_register(&vcpu->preempt_notifier);
 150        kvm_arch_vcpu_load(vcpu, cpu);
 151        put_cpu();
 152        return 0;
 153}
 154
 155void vcpu_put(struct kvm_vcpu *vcpu)
 156{
 157        preempt_disable();
 158        kvm_arch_vcpu_put(vcpu);
 159        preempt_notifier_unregister(&vcpu->preempt_notifier);
 160        preempt_enable();
 161        mutex_unlock(&vcpu->mutex);
 162}
 163
 164static void ack_flush(void *_completed)
 165{
 166}
 167
 168static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 169{
 170        int i, cpu, me;
 171        cpumask_var_t cpus;
 172        bool called = true;
 173        struct kvm_vcpu *vcpu;
 174
 175        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 176
 177        me = get_cpu();
 178        kvm_for_each_vcpu(i, vcpu, kvm) {
 179                kvm_make_request(req, vcpu);
 180                cpu = vcpu->cpu;
 181
 182                /* Set ->requests bit before we read ->mode */
 183                smp_mb();
 184
 185                if (cpus != NULL && cpu != -1 && cpu != me &&
 186                      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 187                        cpumask_set_cpu(cpu, cpus);
 188        }
 189        if (unlikely(cpus == NULL))
 190                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 191        else if (!cpumask_empty(cpus))
 192                smp_call_function_many(cpus, ack_flush, NULL, 1);
 193        else
 194                called = false;
 195        put_cpu();
 196        free_cpumask_var(cpus);
 197        return called;
 198}
 199
 200void kvm_flush_remote_tlbs(struct kvm *kvm)
 201{
 202        long dirty_count = kvm->tlbs_dirty;
 203
 204        smp_mb();
 205        if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 206                ++kvm->stat.remote_tlb_flush;
 207        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 208}
 209
 210void kvm_reload_remote_mmus(struct kvm *kvm)
 211{
 212        make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 213}
 214
 215void kvm_make_mclock_inprogress_request(struct kvm *kvm)
 216{
 217        make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
 218}
 219
 220void kvm_make_scan_ioapic_request(struct kvm *kvm)
 221{
 222        make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
 223}
 224
 225int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 226{
 227        struct page *page;
 228        int r;
 229
 230        mutex_init(&vcpu->mutex);
 231        vcpu->cpu = -1;
 232        vcpu->kvm = kvm;
 233        vcpu->vcpu_id = id;
 234        vcpu->pid = NULL;
 235        init_waitqueue_head(&vcpu->wq);
 236        kvm_async_pf_vcpu_init(vcpu);
 237
 238        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 239        if (!page) {
 240                r = -ENOMEM;
 241                goto fail;
 242        }
 243        vcpu->run = page_address(page);
 244
 245        kvm_vcpu_set_in_spin_loop(vcpu, false);
 246        kvm_vcpu_set_dy_eligible(vcpu, false);
 247        vcpu->preempted = false;
 248
 249        r = kvm_arch_vcpu_init(vcpu);
 250        if (r < 0)
 251                goto fail_free_run;
 252        return 0;
 253
 254fail_free_run:
 255        free_page((unsigned long)vcpu->run);
 256fail:
 257        return r;
 258}
 259EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 260
 261void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 262{
 263        put_pid(vcpu->pid);
 264        kvm_arch_vcpu_uninit(vcpu);
 265        free_page((unsigned long)vcpu->run);
 266}
 267EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 268
 269#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 270static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 271{
 272        return container_of(mn, struct kvm, mmu_notifier);
 273}
 274
 275static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 276                                             struct mm_struct *mm,
 277                                             unsigned long address)
 278{
 279        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 280        int need_tlb_flush, idx;
 281
 282        /*
 283         * When ->invalidate_page runs, the linux pte has been zapped
 284         * already but the page is still allocated until
 285         * ->invalidate_page returns. So if we increase the sequence
 286         * here the kvm page fault will notice if the spte can't be
 287         * established because the page is going to be freed. If
 288         * instead the kvm page fault establishes the spte before
 289         * ->invalidate_page runs, kvm_unmap_hva will release it
 290         * before returning.
 291         *
 292         * The sequence increase only need to be seen at spin_unlock
 293         * time, and not at spin_lock time.
 294         *
 295         * Increasing the sequence after the spin_unlock would be
 296         * unsafe because the kvm page fault could then establish the
 297         * pte after kvm_unmap_hva returned, without noticing the page
 298         * is going to be freed.
 299         */
 300        idx = srcu_read_lock(&kvm->srcu);
 301        spin_lock(&kvm->mmu_lock);
 302
 303        kvm->mmu_notifier_seq++;
 304        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 305        /* we've to flush the tlb before the pages can be freed */
 306        if (need_tlb_flush)
 307                kvm_flush_remote_tlbs(kvm);
 308
 309        spin_unlock(&kvm->mmu_lock);
 310        srcu_read_unlock(&kvm->srcu, idx);
 311}
 312
 313static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 314                                        struct mm_struct *mm,
 315                                        unsigned long address,
 316                                        pte_t pte)
 317{
 318        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 319        int idx;
 320
 321        idx = srcu_read_lock(&kvm->srcu);
 322        spin_lock(&kvm->mmu_lock);
 323        kvm->mmu_notifier_seq++;
 324        kvm_set_spte_hva(kvm, address, pte);
 325        spin_unlock(&kvm->mmu_lock);
 326        srcu_read_unlock(&kvm->srcu, idx);
 327}
 328
 329static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 330                                                    struct mm_struct *mm,
 331                                                    unsigned long start,
 332                                                    unsigned long end)
 333{
 334        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 335        int need_tlb_flush = 0, idx;
 336
 337        idx = srcu_read_lock(&kvm->srcu);
 338        spin_lock(&kvm->mmu_lock);
 339        /*
 340         * The count increase must become visible at unlock time as no
 341         * spte can be established without taking the mmu_lock and
 342         * count is also read inside the mmu_lock critical section.
 343         */
 344        kvm->mmu_notifier_count++;
 345        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 346        need_tlb_flush |= kvm->tlbs_dirty;
 347        /* we've to flush the tlb before the pages can be freed */
 348        if (need_tlb_flush)
 349                kvm_flush_remote_tlbs(kvm);
 350
 351        spin_unlock(&kvm->mmu_lock);
 352        srcu_read_unlock(&kvm->srcu, idx);
 353}
 354
 355static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 356                                                  struct mm_struct *mm,
 357                                                  unsigned long start,
 358                                                  unsigned long end)
 359{
 360        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 361
 362        spin_lock(&kvm->mmu_lock);
 363        /*
 364         * This sequence increase will notify the kvm page fault that
 365         * the page that is going to be mapped in the spte could have
 366         * been freed.
 367         */
 368        kvm->mmu_notifier_seq++;
 369        smp_wmb();
 370        /*
 371         * The above sequence increase must be visible before the
 372         * below count decrease, which is ensured by the smp_wmb above
 373         * in conjunction with the smp_rmb in mmu_notifier_retry().
 374         */
 375        kvm->mmu_notifier_count--;
 376        spin_unlock(&kvm->mmu_lock);
 377
 378        BUG_ON(kvm->mmu_notifier_count < 0);
 379}
 380
 381static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 382                                              struct mm_struct *mm,
 383                                              unsigned long address)
 384{
 385        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 386        int young, idx;
 387
 388        idx = srcu_read_lock(&kvm->srcu);
 389        spin_lock(&kvm->mmu_lock);
 390
 391        young = kvm_age_hva(kvm, address);
 392        if (young)
 393                kvm_flush_remote_tlbs(kvm);
 394
 395        spin_unlock(&kvm->mmu_lock);
 396        srcu_read_unlock(&kvm->srcu, idx);
 397
 398        return young;
 399}
 400
 401static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 402                                       struct mm_struct *mm,
 403                                       unsigned long address)
 404{
 405        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 406        int young, idx;
 407
 408        idx = srcu_read_lock(&kvm->srcu);
 409        spin_lock(&kvm->mmu_lock);
 410        young = kvm_test_age_hva(kvm, address);
 411        spin_unlock(&kvm->mmu_lock);
 412        srcu_read_unlock(&kvm->srcu, idx);
 413
 414        return young;
 415}
 416
 417static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 418                                     struct mm_struct *mm)
 419{
 420        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 421        int idx;
 422
 423        idx = srcu_read_lock(&kvm->srcu);
 424        kvm_arch_flush_shadow_all(kvm);
 425        srcu_read_unlock(&kvm->srcu, idx);
 426}
 427
 428static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 429        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 430        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 431        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 432        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 433        .test_young             = kvm_mmu_notifier_test_young,
 434        .change_pte             = kvm_mmu_notifier_change_pte,
 435        .release                = kvm_mmu_notifier_release,
 436};
 437
 438static int kvm_init_mmu_notifier(struct kvm *kvm)
 439{
 440        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 441        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 442}
 443
 444#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 445
 446static int kvm_init_mmu_notifier(struct kvm *kvm)
 447{
 448        return 0;
 449}
 450
 451#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 452
 453static void kvm_init_memslots_id(struct kvm *kvm)
 454{
 455        int i;
 456        struct kvm_memslots *slots = kvm->memslots;
 457
 458        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 459                slots->id_to_index[i] = slots->memslots[i].id = i;
 460}
 461
 462static struct kvm *kvm_create_vm(unsigned long type)
 463{
 464        int r, i;
 465        struct kvm *kvm = kvm_arch_alloc_vm();
 466
 467        if (!kvm)
 468                return ERR_PTR(-ENOMEM);
 469
 470        r = kvm_arch_init_vm(kvm, type);
 471        if (r)
 472                goto out_err_nodisable;
 473
 474        r = hardware_enable_all();
 475        if (r)
 476                goto out_err_nodisable;
 477
 478#ifdef CONFIG_HAVE_KVM_IRQCHIP
 479        INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 480        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 481#endif
 482
 483        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 484
 485        r = -ENOMEM;
 486        kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 487        if (!kvm->memslots)
 488                goto out_err_nosrcu;
 489        kvm_init_memslots_id(kvm);
 490        if (init_srcu_struct(&kvm->srcu))
 491                goto out_err_nosrcu;
 492        for (i = 0; i < KVM_NR_BUSES; i++) {
 493                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 494                                        GFP_KERNEL);
 495                if (!kvm->buses[i])
 496                        goto out_err;
 497        }
 498
 499        spin_lock_init(&kvm->mmu_lock);
 500        kvm->mm = current->mm;
 501        atomic_inc(&kvm->mm->mm_count);
 502        kvm_eventfd_init(kvm);
 503        mutex_init(&kvm->lock);
 504        mutex_init(&kvm->irq_lock);
 505        mutex_init(&kvm->slots_lock);
 506        atomic_set(&kvm->users_count, 1);
 507        INIT_LIST_HEAD(&kvm->devices);
 508
 509        r = kvm_init_mmu_notifier(kvm);
 510        if (r)
 511                goto out_err;
 512
 513        raw_spin_lock(&kvm_lock);
 514        list_add(&kvm->vm_list, &vm_list);
 515        raw_spin_unlock(&kvm_lock);
 516
 517        return kvm;
 518
 519out_err:
 520        cleanup_srcu_struct(&kvm->srcu);
 521out_err_nosrcu:
 522        hardware_disable_all();
 523out_err_nodisable:
 524        for (i = 0; i < KVM_NR_BUSES; i++)
 525                kfree(kvm->buses[i]);
 526        kfree(kvm->memslots);
 527        kvm_arch_free_vm(kvm);
 528        return ERR_PTR(r);
 529}
 530
 531/*
 532 * Avoid using vmalloc for a small buffer.
 533 * Should not be used when the size is statically known.
 534 */
 535void *kvm_kvzalloc(unsigned long size)
 536{
 537        if (size > PAGE_SIZE)
 538                return vzalloc(size);
 539        else
 540                return kzalloc(size, GFP_KERNEL);
 541}
 542
 543void kvm_kvfree(const void *addr)
 544{
 545        if (is_vmalloc_addr(addr))
 546                vfree(addr);
 547        else
 548                kfree(addr);
 549}
 550
 551static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 552{
 553        if (!memslot->dirty_bitmap)
 554                return;
 555
 556        kvm_kvfree(memslot->dirty_bitmap);
 557        memslot->dirty_bitmap = NULL;
 558}
 559
 560/*
 561 * Free any memory in @free but not in @dont.
 562 */
 563static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 564                                  struct kvm_memory_slot *dont)
 565{
 566        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 567                kvm_destroy_dirty_bitmap(free);
 568
 569        kvm_arch_free_memslot(free, dont);
 570
 571        free->npages = 0;
 572}
 573
 574void kvm_free_physmem(struct kvm *kvm)
 575{
 576        struct kvm_memslots *slots = kvm->memslots;
 577        struct kvm_memory_slot *memslot;
 578
 579        kvm_for_each_memslot(memslot, slots)
 580                kvm_free_physmem_slot(memslot, NULL);
 581
 582        kfree(kvm->memslots);
 583}
 584
 585static void kvm_destroy_devices(struct kvm *kvm)
 586{
 587        struct list_head *node, *tmp;
 588
 589        list_for_each_safe(node, tmp, &kvm->devices) {
 590                struct kvm_device *dev =
 591                        list_entry(node, struct kvm_device, vm_node);
 592
 593                list_del(node);
 594                dev->ops->destroy(dev);
 595        }
 596}
 597
 598static void kvm_destroy_vm(struct kvm *kvm)
 599{
 600        int i;
 601        struct mm_struct *mm = kvm->mm;
 602
 603        kvm_arch_sync_events(kvm);
 604        raw_spin_lock(&kvm_lock);
 605        list_del(&kvm->vm_list);
 606        raw_spin_unlock(&kvm_lock);
 607        kvm_free_irq_routing(kvm);
 608        for (i = 0; i < KVM_NR_BUSES; i++)
 609                kvm_io_bus_destroy(kvm->buses[i]);
 610        kvm_coalesced_mmio_free(kvm);
 611#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 612        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 613#else
 614        kvm_arch_flush_shadow_all(kvm);
 615#endif
 616        kvm_arch_destroy_vm(kvm);
 617        kvm_destroy_devices(kvm);
 618        kvm_free_physmem(kvm);
 619        cleanup_srcu_struct(&kvm->srcu);
 620        kvm_arch_free_vm(kvm);
 621        hardware_disable_all();
 622        mmdrop(mm);
 623}
 624
 625void kvm_get_kvm(struct kvm *kvm)
 626{
 627        atomic_inc(&kvm->users_count);
 628}
 629EXPORT_SYMBOL_GPL(kvm_get_kvm);
 630
 631void kvm_put_kvm(struct kvm *kvm)
 632{
 633        if (atomic_dec_and_test(&kvm->users_count))
 634                kvm_destroy_vm(kvm);
 635}
 636EXPORT_SYMBOL_GPL(kvm_put_kvm);
 637
 638
 639static int kvm_vm_release(struct inode *inode, struct file *filp)
 640{
 641        struct kvm *kvm = filp->private_data;
 642
 643        kvm_irqfd_release(kvm);
 644
 645        kvm_put_kvm(kvm);
 646        return 0;
 647}
 648
 649/*
 650 * Allocation size is twice as large as the actual dirty bitmap size.
 651 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 652 */
 653static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 654{
 655#ifndef CONFIG_S390
 656        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 657
 658        memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
 659        if (!memslot->dirty_bitmap)
 660                return -ENOMEM;
 661
 662#endif /* !CONFIG_S390 */
 663        return 0;
 664}
 665
 666static int cmp_memslot(const void *slot1, const void *slot2)
 667{
 668        struct kvm_memory_slot *s1, *s2;
 669
 670        s1 = (struct kvm_memory_slot *)slot1;
 671        s2 = (struct kvm_memory_slot *)slot2;
 672
 673        if (s1->npages < s2->npages)
 674                return 1;
 675        if (s1->npages > s2->npages)
 676                return -1;
 677
 678        return 0;
 679}
 680
 681/*
 682 * Sort the memslots base on its size, so the larger slots
 683 * will get better fit.
 684 */
 685static void sort_memslots(struct kvm_memslots *slots)
 686{
 687        int i;
 688
 689        sort(slots->memslots, KVM_MEM_SLOTS_NUM,
 690              sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
 691
 692        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 693                slots->id_to_index[slots->memslots[i].id] = i;
 694}
 695
 696void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
 697                     u64 last_generation)
 698{
 699        if (new) {
 700                int id = new->id;
 701                struct kvm_memory_slot *old = id_to_memslot(slots, id);
 702                unsigned long npages = old->npages;
 703
 704                *old = *new;
 705                if (new->npages != npages)
 706                        sort_memslots(slots);
 707        }
 708
 709        slots->generation = last_generation + 1;
 710}
 711
 712static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
 713{
 714        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 715
 716#ifdef KVM_CAP_READONLY_MEM
 717        valid_flags |= KVM_MEM_READONLY;
 718#endif
 719
 720        if (mem->flags & ~valid_flags)
 721                return -EINVAL;
 722
 723        return 0;
 724}
 725
 726static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 727                struct kvm_memslots *slots, struct kvm_memory_slot *new)
 728{
 729        struct kvm_memslots *old_memslots = kvm->memslots;
 730
 731        update_memslots(slots, new, kvm->memslots->generation);
 732        rcu_assign_pointer(kvm->memslots, slots);
 733        synchronize_srcu_expedited(&kvm->srcu);
 734        return old_memslots; 
 735}
 736
 737/*
 738 * Allocate some memory and give it an address in the guest physical address
 739 * space.
 740 *
 741 * Discontiguous memory is allowed, mostly for framebuffers.
 742 *
 743 * Must be called holding mmap_sem for write.
 744 */
 745int __kvm_set_memory_region(struct kvm *kvm,
 746                            struct kvm_userspace_memory_region *mem)
 747{
 748        int r;
 749        gfn_t base_gfn;
 750        unsigned long npages;
 751        struct kvm_memory_slot *slot;
 752        struct kvm_memory_slot old, new;
 753        struct kvm_memslots *slots = NULL, *old_memslots;
 754        enum kvm_mr_change change;
 755
 756        r = check_memory_region_flags(mem);
 757        if (r)
 758                goto out;
 759
 760        r = -EINVAL;
 761        /* General sanity checks */
 762        if (mem->memory_size & (PAGE_SIZE - 1))
 763                goto out;
 764        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 765                goto out;
 766        /* We can read the guest memory with __xxx_user() later on. */
 767        if ((mem->slot < KVM_USER_MEM_SLOTS) &&
 768            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 769             !access_ok(VERIFY_WRITE,
 770                        (void __user *)(unsigned long)mem->userspace_addr,
 771                        mem->memory_size)))
 772                goto out;
 773        if (mem->slot >= KVM_MEM_SLOTS_NUM)
 774                goto out;
 775        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 776                goto out;
 777
 778        slot = id_to_memslot(kvm->memslots, mem->slot);
 779        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 780        npages = mem->memory_size >> PAGE_SHIFT;
 781
 782        r = -EINVAL;
 783        if (npages > KVM_MEM_MAX_NR_PAGES)
 784                goto out;
 785
 786        if (!npages)
 787                mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 788
 789        new = old = *slot;
 790
 791        new.id = mem->slot;
 792        new.base_gfn = base_gfn;
 793        new.npages = npages;
 794        new.flags = mem->flags;
 795
 796        r = -EINVAL;
 797        if (npages) {
 798                if (!old.npages)
 799                        change = KVM_MR_CREATE;
 800                else { /* Modify an existing slot. */
 801                        if ((mem->userspace_addr != old.userspace_addr) ||
 802                            (npages != old.npages) ||
 803                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 804                                goto out;
 805
 806                        if (base_gfn != old.base_gfn)
 807                                change = KVM_MR_MOVE;
 808                        else if (new.flags != old.flags)
 809                                change = KVM_MR_FLAGS_ONLY;
 810                        else { /* Nothing to change. */
 811                                r = 0;
 812                                goto out;
 813                        }
 814                }
 815        } else if (old.npages) {
 816                change = KVM_MR_DELETE;
 817        } else /* Modify a non-existent slot: disallowed. */
 818                goto out;
 819
 820        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 821                /* Check for overlaps */
 822                r = -EEXIST;
 823                kvm_for_each_memslot(slot, kvm->memslots) {
 824                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 825                            (slot->id == mem->slot))
 826                                continue;
 827                        if (!((base_gfn + npages <= slot->base_gfn) ||
 828                              (base_gfn >= slot->base_gfn + slot->npages)))
 829                                goto out;
 830                }
 831        }
 832
 833        /* Free page dirty bitmap if unneeded */
 834        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 835                new.dirty_bitmap = NULL;
 836
 837        r = -ENOMEM;
 838        if (change == KVM_MR_CREATE) {
 839                new.userspace_addr = mem->userspace_addr;
 840
 841                if (kvm_arch_create_memslot(&new, npages))
 842                        goto out_free;
 843        }
 844
 845        /* Allocate page dirty bitmap if needed */
 846        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 847                if (kvm_create_dirty_bitmap(&new) < 0)
 848                        goto out_free;
 849        }
 850
 851        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
 852                r = -ENOMEM;
 853                slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 854                                GFP_KERNEL);
 855                if (!slots)
 856                        goto out_free;
 857                slot = id_to_memslot(slots, mem->slot);
 858                slot->flags |= KVM_MEMSLOT_INVALID;
 859
 860                old_memslots = install_new_memslots(kvm, slots, NULL);
 861
 862                /* slot was deleted or moved, clear iommu mapping */
 863                kvm_iommu_unmap_pages(kvm, &old);
 864                /* From this point no new shadow pages pointing to a deleted,
 865                 * or moved, memslot will be created.
 866                 *
 867                 * validation of sp->gfn happens in:
 868                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 869                 *      - kvm_is_visible_gfn (mmu_check_roots)
 870                 */
 871                kvm_arch_flush_shadow_memslot(kvm, slot);
 872                slots = old_memslots;
 873        }
 874
 875        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
 876        if (r)
 877                goto out_slots;
 878
 879        r = -ENOMEM;
 880        /*
 881         * We can re-use the old_memslots from above, the only difference
 882         * from the currently installed memslots is the invalid flag.  This
 883         * will get overwritten by update_memslots anyway.
 884         */
 885        if (!slots) {
 886                slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 887                                GFP_KERNEL);
 888                if (!slots)
 889                        goto out_free;
 890        }
 891
 892        /*
 893         * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
 894         * un-mapped and re-mapped if their base changes.  Since base change
 895         * unmapping is handled above with slot deletion, mapping alone is
 896         * needed here.  Anything else the iommu might care about for existing
 897         * slots (size changes, userspace addr changes and read-only flag
 898         * changes) is disallowed above, so any other attribute changes getting
 899         * here can be skipped.
 900         */
 901        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 902                r = kvm_iommu_map_pages(kvm, &new);
 903                if (r)
 904                        goto out_slots;
 905        }
 906
 907        /* actual memory is freed via old in kvm_free_physmem_slot below */
 908        if (change == KVM_MR_DELETE) {
 909                new.dirty_bitmap = NULL;
 910                memset(&new.arch, 0, sizeof(new.arch));
 911        }
 912
 913        old_memslots = install_new_memslots(kvm, slots, &new);
 914
 915        kvm_arch_commit_memory_region(kvm, mem, &old, change);
 916
 917        kvm_free_physmem_slot(&old, &new);
 918        kfree(old_memslots);
 919
 920        return 0;
 921
 922out_slots:
 923        kfree(slots);
 924out_free:
 925        kvm_free_physmem_slot(&new, &old);
 926out:
 927        return r;
 928}
 929EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 930
 931int kvm_set_memory_region(struct kvm *kvm,
 932                          struct kvm_userspace_memory_region *mem)
 933{
 934        int r;
 935
 936        mutex_lock(&kvm->slots_lock);
 937        r = __kvm_set_memory_region(kvm, mem);
 938        mutex_unlock(&kvm->slots_lock);
 939        return r;
 940}
 941EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 942
 943int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 944                                   struct kvm_userspace_memory_region *mem)
 945{
 946        if (mem->slot >= KVM_USER_MEM_SLOTS)
 947                return -EINVAL;
 948        return kvm_set_memory_region(kvm, mem);
 949}
 950
 951int kvm_get_dirty_log(struct kvm *kvm,
 952                        struct kvm_dirty_log *log, int *is_dirty)
 953{
 954        struct kvm_memory_slot *memslot;
 955        int r, i;
 956        unsigned long n;
 957        unsigned long any = 0;
 958
 959        r = -EINVAL;
 960        if (log->slot >= KVM_USER_MEM_SLOTS)
 961                goto out;
 962
 963        memslot = id_to_memslot(kvm->memslots, log->slot);
 964        r = -ENOENT;
 965        if (!memslot->dirty_bitmap)
 966                goto out;
 967
 968        n = kvm_dirty_bitmap_bytes(memslot);
 969
 970        for (i = 0; !any && i < n/sizeof(long); ++i)
 971                any = memslot->dirty_bitmap[i];
 972
 973        r = -EFAULT;
 974        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 975                goto out;
 976
 977        if (any)
 978                *is_dirty = 1;
 979
 980        r = 0;
 981out:
 982        return r;
 983}
 984
 985bool kvm_largepages_enabled(void)
 986{
 987        return largepages_enabled;
 988}
 989
 990void kvm_disable_largepages(void)
 991{
 992        largepages_enabled = false;
 993}
 994EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 995
 996struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 997{
 998        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 999}
1000EXPORT_SYMBOL_GPL(gfn_to_memslot);
1001
1002int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1003{
1004        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1005
1006        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1007              memslot->flags & KVM_MEMSLOT_INVALID)
1008                return 0;
1009
1010        return 1;
1011}
1012EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1013
1014unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1015{
1016        struct vm_area_struct *vma;
1017        unsigned long addr, size;
1018
1019        size = PAGE_SIZE;
1020
1021        addr = gfn_to_hva(kvm, gfn);
1022        if (kvm_is_error_hva(addr))
1023                return PAGE_SIZE;
1024
1025        down_read(&current->mm->mmap_sem);
1026        vma = find_vma(current->mm, addr);
1027        if (!vma)
1028                goto out;
1029
1030        size = vma_kernel_pagesize(vma);
1031
1032out:
1033        up_read(&current->mm->mmap_sem);
1034
1035        return size;
1036}
1037
1038static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1039{
1040        return slot->flags & KVM_MEM_READONLY;
1041}
1042
1043static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044                                       gfn_t *nr_pages, bool write)
1045{
1046        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1047                return KVM_HVA_ERR_BAD;
1048
1049        if (memslot_is_readonly(slot) && write)
1050                return KVM_HVA_ERR_RO_BAD;
1051
1052        if (nr_pages)
1053                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1054
1055        return __gfn_to_hva_memslot(slot, gfn);
1056}
1057
1058static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1059                                     gfn_t *nr_pages)
1060{
1061        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1062}
1063
1064unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1065                                 gfn_t gfn)
1066{
1067        return gfn_to_hva_many(slot, gfn, NULL);
1068}
1069EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1070
1071unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1072{
1073        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1074}
1075EXPORT_SYMBOL_GPL(gfn_to_hva);
1076
1077/*
1078 * The hva returned by this function is only allowed to be read.
1079 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1080 */
1081static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1082{
1083        return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1084}
1085
1086static int kvm_read_hva(void *data, void __user *hva, int len)
1087{
1088        return __copy_from_user(data, hva, len);
1089}
1090
1091static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1092{
1093        return __copy_from_user_inatomic(data, hva, len);
1094}
1095
1096static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1097        unsigned long start, int write, struct page **page)
1098{
1099        int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1100
1101        if (write)
1102                flags |= FOLL_WRITE;
1103
1104        return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1105}
1106
1107static inline int check_user_page_hwpoison(unsigned long addr)
1108{
1109        int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1110
1111        rc = __get_user_pages(current, current->mm, addr, 1,
1112                              flags, NULL, NULL, NULL);
1113        return rc == -EHWPOISON;
1114}
1115
1116/*
1117 * The atomic path to get the writable pfn which will be stored in @pfn,
1118 * true indicates success, otherwise false is returned.
1119 */
1120static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1121                            bool write_fault, bool *writable, pfn_t *pfn)
1122{
1123        struct page *page[1];
1124        int npages;
1125
1126        if (!(async || atomic))
1127                return false;
1128
1129        /*
1130         * Fast pin a writable pfn only if it is a write fault request
1131         * or the caller allows to map a writable pfn for a read fault
1132         * request.
1133         */
1134        if (!(write_fault || writable))
1135                return false;
1136
1137        npages = __get_user_pages_fast(addr, 1, 1, page);
1138        if (npages == 1) {
1139                *pfn = page_to_pfn(page[0]);
1140
1141                if (writable)
1142                        *writable = true;
1143                return true;
1144        }
1145
1146        return false;
1147}
1148
1149/*
1150 * The slow path to get the pfn of the specified host virtual address,
1151 * 1 indicates success, -errno is returned if error is detected.
1152 */
1153static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1154                           bool *writable, pfn_t *pfn)
1155{
1156        struct page *page[1];
1157        int npages = 0;
1158
1159        might_sleep();
1160
1161        if (writable)
1162                *writable = write_fault;
1163
1164        if (async) {
1165                down_read(&current->mm->mmap_sem);
1166                npages = get_user_page_nowait(current, current->mm,
1167                                              addr, write_fault, page);
1168                up_read(&current->mm->mmap_sem);
1169        } else
1170                npages = get_user_pages_fast(addr, 1, write_fault,
1171                                             page);
1172        if (npages != 1)
1173                return npages;
1174
1175        /* map read fault as writable if possible */
1176        if (unlikely(!write_fault) && writable) {
1177                struct page *wpage[1];
1178
1179                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1180                if (npages == 1) {
1181                        *writable = true;
1182                        put_page(page[0]);
1183                        page[0] = wpage[0];
1184                }
1185
1186                npages = 1;
1187        }
1188        *pfn = page_to_pfn(page[0]);
1189        return npages;
1190}
1191
1192static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1193{
1194        if (unlikely(!(vma->vm_flags & VM_READ)))
1195                return false;
1196
1197        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1198                return false;
1199
1200        return true;
1201}
1202
1203/*
1204 * Pin guest page in memory and return its pfn.
1205 * @addr: host virtual address which maps memory to the guest
1206 * @atomic: whether this function can sleep
1207 * @async: whether this function need to wait IO complete if the
1208 *         host page is not in the memory
1209 * @write_fault: whether we should get a writable host page
1210 * @writable: whether it allows to map a writable host page for !@write_fault
1211 *
1212 * The function will map a writable host page for these two cases:
1213 * 1): @write_fault = true
1214 * 2): @write_fault = false && @writable, @writable will tell the caller
1215 *     whether the mapping is writable.
1216 */
1217static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1218                        bool write_fault, bool *writable)
1219{
1220        struct vm_area_struct *vma;
1221        pfn_t pfn = 0;
1222        int npages;
1223
1224        /* we can do it either atomically or asynchronously, not both */
1225        BUG_ON(atomic && async);
1226
1227        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1228                return pfn;
1229
1230        if (atomic)
1231                return KVM_PFN_ERR_FAULT;
1232
1233        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1234        if (npages == 1)
1235                return pfn;
1236
1237        down_read(&current->mm->mmap_sem);
1238        if (npages == -EHWPOISON ||
1239              (!async && check_user_page_hwpoison(addr))) {
1240                pfn = KVM_PFN_ERR_HWPOISON;
1241                goto exit;
1242        }
1243
1244        vma = find_vma_intersection(current->mm, addr, addr + 1);
1245
1246        if (vma == NULL)
1247                pfn = KVM_PFN_ERR_FAULT;
1248        else if ((vma->vm_flags & VM_PFNMAP)) {
1249                pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1250                        vma->vm_pgoff;
1251                BUG_ON(!kvm_is_mmio_pfn(pfn));
1252        } else {
1253                if (async && vma_is_valid(vma, write_fault))
1254                        *async = true;
1255                pfn = KVM_PFN_ERR_FAULT;
1256        }
1257exit:
1258        up_read(&current->mm->mmap_sem);
1259        return pfn;
1260}
1261
1262static pfn_t
1263__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1264                     bool *async, bool write_fault, bool *writable)
1265{
1266        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1267
1268        if (addr == KVM_HVA_ERR_RO_BAD)
1269                return KVM_PFN_ERR_RO_FAULT;
1270
1271        if (kvm_is_error_hva(addr))
1272                return KVM_PFN_NOSLOT;
1273
1274        /* Do not map writable pfn in the readonly memslot. */
1275        if (writable && memslot_is_readonly(slot)) {
1276                *writable = false;
1277                writable = NULL;
1278        }
1279
1280        return hva_to_pfn(addr, atomic, async, write_fault,
1281                          writable);
1282}
1283
1284static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1285                          bool write_fault, bool *writable)
1286{
1287        struct kvm_memory_slot *slot;
1288
1289        if (async)
1290                *async = false;
1291
1292        slot = gfn_to_memslot(kvm, gfn);
1293
1294        return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1295                                    writable);
1296}
1297
1298pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1299{
1300        return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1301}
1302EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1303
1304pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1305                       bool write_fault, bool *writable)
1306{
1307        return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1308}
1309EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1310
1311pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1312{
1313        return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1314}
1315EXPORT_SYMBOL_GPL(gfn_to_pfn);
1316
1317pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1318                      bool *writable)
1319{
1320        return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1321}
1322EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1323
1324pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1325{
1326        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1327}
1328
1329pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1330{
1331        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1332}
1333EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1334
1335int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1336                                                                  int nr_pages)
1337{
1338        unsigned long addr;
1339        gfn_t entry;
1340
1341        addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1342        if (kvm_is_error_hva(addr))
1343                return -1;
1344
1345        if (entry < nr_pages)
1346                return 0;
1347
1348        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1349}
1350EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1351
1352static struct page *kvm_pfn_to_page(pfn_t pfn)
1353{
1354        if (is_error_noslot_pfn(pfn))
1355                return KVM_ERR_PTR_BAD_PAGE;
1356
1357        if (kvm_is_mmio_pfn(pfn)) {
1358                WARN_ON(1);
1359                return KVM_ERR_PTR_BAD_PAGE;
1360        }
1361
1362        return pfn_to_page(pfn);
1363}
1364
1365struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1366{
1367        pfn_t pfn;
1368
1369        pfn = gfn_to_pfn(kvm, gfn);
1370
1371        return kvm_pfn_to_page(pfn);
1372}
1373
1374EXPORT_SYMBOL_GPL(gfn_to_page);
1375
1376void kvm_release_page_clean(struct page *page)
1377{
1378        WARN_ON(is_error_page(page));
1379
1380        kvm_release_pfn_clean(page_to_pfn(page));
1381}
1382EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1383
1384void kvm_release_pfn_clean(pfn_t pfn)
1385{
1386        if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1387                put_page(pfn_to_page(pfn));
1388}
1389EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1390
1391void kvm_release_page_dirty(struct page *page)
1392{
1393        WARN_ON(is_error_page(page));
1394
1395        kvm_release_pfn_dirty(page_to_pfn(page));
1396}
1397EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1398
1399void kvm_release_pfn_dirty(pfn_t pfn)
1400{
1401        kvm_set_pfn_dirty(pfn);
1402        kvm_release_pfn_clean(pfn);
1403}
1404EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1405
1406void kvm_set_page_dirty(struct page *page)
1407{
1408        kvm_set_pfn_dirty(page_to_pfn(page));
1409}
1410EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1411
1412void kvm_set_pfn_dirty(pfn_t pfn)
1413{
1414        if (!kvm_is_mmio_pfn(pfn)) {
1415                struct page *page = pfn_to_page(pfn);
1416                if (!PageReserved(page))
1417                        SetPageDirty(page);
1418        }
1419}
1420EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1421
1422void kvm_set_pfn_accessed(pfn_t pfn)
1423{
1424        if (!kvm_is_mmio_pfn(pfn))
1425                mark_page_accessed(pfn_to_page(pfn));
1426}
1427EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1428
1429void kvm_get_pfn(pfn_t pfn)
1430{
1431        if (!kvm_is_mmio_pfn(pfn))
1432                get_page(pfn_to_page(pfn));
1433}
1434EXPORT_SYMBOL_GPL(kvm_get_pfn);
1435
1436static int next_segment(unsigned long len, int offset)
1437{
1438        if (len > PAGE_SIZE - offset)
1439                return PAGE_SIZE - offset;
1440        else
1441                return len;
1442}
1443
1444int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1445                        int len)
1446{
1447        int r;
1448        unsigned long addr;
1449
1450        addr = gfn_to_hva_read(kvm, gfn);
1451        if (kvm_is_error_hva(addr))
1452                return -EFAULT;
1453        r = kvm_read_hva(data, (void __user *)addr + offset, len);
1454        if (r)
1455                return -EFAULT;
1456        return 0;
1457}
1458EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1459
1460int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1461{
1462        gfn_t gfn = gpa >> PAGE_SHIFT;
1463        int seg;
1464        int offset = offset_in_page(gpa);
1465        int ret;
1466
1467        while ((seg = next_segment(len, offset)) != 0) {
1468                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1469                if (ret < 0)
1470                        return ret;
1471                offset = 0;
1472                len -= seg;
1473                data += seg;
1474                ++gfn;
1475        }
1476        return 0;
1477}
1478EXPORT_SYMBOL_GPL(kvm_read_guest);
1479
1480int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1481                          unsigned long len)
1482{
1483        int r;
1484        unsigned long addr;
1485        gfn_t gfn = gpa >> PAGE_SHIFT;
1486        int offset = offset_in_page(gpa);
1487
1488        addr = gfn_to_hva_read(kvm, gfn);
1489        if (kvm_is_error_hva(addr))
1490                return -EFAULT;
1491        pagefault_disable();
1492        r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1493        pagefault_enable();
1494        if (r)
1495                return -EFAULT;
1496        return 0;
1497}
1498EXPORT_SYMBOL(kvm_read_guest_atomic);
1499
1500int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1501                         int offset, int len)
1502{
1503        int r;
1504        unsigned long addr;
1505
1506        addr = gfn_to_hva(kvm, gfn);
1507        if (kvm_is_error_hva(addr))
1508                return -EFAULT;
1509        r = __copy_to_user((void __user *)addr + offset, data, len);
1510        if (r)
1511                return -EFAULT;
1512        mark_page_dirty(kvm, gfn);
1513        return 0;
1514}
1515EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1516
1517int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1518                    unsigned long len)
1519{
1520        gfn_t gfn = gpa >> PAGE_SHIFT;
1521        int seg;
1522        int offset = offset_in_page(gpa);
1523        int ret;
1524
1525        while ((seg = next_segment(len, offset)) != 0) {
1526                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1527                if (ret < 0)
1528                        return ret;
1529                offset = 0;
1530                len -= seg;
1531                data += seg;
1532                ++gfn;
1533        }
1534        return 0;
1535}
1536
1537int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1538                              gpa_t gpa, unsigned long len)
1539{
1540        struct kvm_memslots *slots = kvm_memslots(kvm);
1541        int offset = offset_in_page(gpa);
1542        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1543        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1544        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1545        gfn_t nr_pages_avail;
1546
1547        ghc->gpa = gpa;
1548        ghc->generation = slots->generation;
1549        ghc->len = len;
1550        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1551        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1552        if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1553                ghc->hva += offset;
1554        } else {
1555                /*
1556                 * If the requested region crosses two memslots, we still
1557                 * verify that the entire region is valid here.
1558                 */
1559                while (start_gfn <= end_gfn) {
1560                        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1561                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1562                                                   &nr_pages_avail);
1563                        if (kvm_is_error_hva(ghc->hva))
1564                                return -EFAULT;
1565                        start_gfn += nr_pages_avail;
1566                }
1567                /* Use the slow path for cross page reads and writes. */
1568                ghc->memslot = NULL;
1569        }
1570        return 0;
1571}
1572EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1573
1574int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1575                           void *data, unsigned long len)
1576{
1577        struct kvm_memslots *slots = kvm_memslots(kvm);
1578        int r;
1579
1580        BUG_ON(len > ghc->len);
1581
1582        if (slots->generation != ghc->generation)
1583                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1584
1585        if (unlikely(!ghc->memslot))
1586                return kvm_write_guest(kvm, ghc->gpa, data, len);
1587
1588        if (kvm_is_error_hva(ghc->hva))
1589                return -EFAULT;
1590
1591        r = __copy_to_user((void __user *)ghc->hva, data, len);
1592        if (r)
1593                return -EFAULT;
1594        mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1595
1596        return 0;
1597}
1598EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1599
1600int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1601                           void *data, unsigned long len)
1602{
1603        struct kvm_memslots *slots = kvm_memslots(kvm);
1604        int r;
1605
1606        BUG_ON(len > ghc->len);
1607
1608        if (slots->generation != ghc->generation)
1609                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1610
1611        if (unlikely(!ghc->memslot))
1612                return kvm_read_guest(kvm, ghc->gpa, data, len);
1613
1614        if (kvm_is_error_hva(ghc->hva))
1615                return -EFAULT;
1616
1617        r = __copy_from_user(data, (void __user *)ghc->hva, len);
1618        if (r)
1619                return -EFAULT;
1620
1621        return 0;
1622}
1623EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1624
1625int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1626{
1627        return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1628                                    offset, len);
1629}
1630EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1631
1632int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1633{
1634        gfn_t gfn = gpa >> PAGE_SHIFT;
1635        int seg;
1636        int offset = offset_in_page(gpa);
1637        int ret;
1638
1639        while ((seg = next_segment(len, offset)) != 0) {
1640                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1641                if (ret < 0)
1642                        return ret;
1643                offset = 0;
1644                len -= seg;
1645                ++gfn;
1646        }
1647        return 0;
1648}
1649EXPORT_SYMBOL_GPL(kvm_clear_guest);
1650
1651void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1652                             gfn_t gfn)
1653{
1654        if (memslot && memslot->dirty_bitmap) {
1655                unsigned long rel_gfn = gfn - memslot->base_gfn;
1656
1657                set_bit_le(rel_gfn, memslot->dirty_bitmap);
1658        }
1659}
1660
1661void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1662{
1663        struct kvm_memory_slot *memslot;
1664
1665        memslot = gfn_to_memslot(kvm, gfn);
1666        mark_page_dirty_in_slot(kvm, memslot, gfn);
1667}
1668
1669/*
1670 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1671 */
1672void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1673{
1674        DEFINE_WAIT(wait);
1675
1676        for (;;) {
1677                prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1678
1679                if (kvm_arch_vcpu_runnable(vcpu)) {
1680                        kvm_make_request(KVM_REQ_UNHALT, vcpu);
1681                        break;
1682                }
1683                if (kvm_cpu_has_pending_timer(vcpu))
1684                        break;
1685                if (signal_pending(current))
1686                        break;
1687
1688                schedule();
1689        }
1690
1691        finish_wait(&vcpu->wq, &wait);
1692}
1693
1694#ifndef CONFIG_S390
1695/*
1696 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1697 */
1698void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1699{
1700        int me;
1701        int cpu = vcpu->cpu;
1702        wait_queue_head_t *wqp;
1703
1704        wqp = kvm_arch_vcpu_wq(vcpu);
1705        if (waitqueue_active(wqp)) {
1706                wake_up_interruptible(wqp);
1707                ++vcpu->stat.halt_wakeup;
1708        }
1709
1710        me = get_cpu();
1711        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1712                if (kvm_arch_vcpu_should_kick(vcpu))
1713                        smp_send_reschedule(cpu);
1714        put_cpu();
1715}
1716EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1717#endif /* !CONFIG_S390 */
1718
1719void kvm_resched(struct kvm_vcpu *vcpu)
1720{
1721        if (!need_resched())
1722                return;
1723        cond_resched();
1724}
1725EXPORT_SYMBOL_GPL(kvm_resched);
1726
1727bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1728{
1729        struct pid *pid;
1730        struct task_struct *task = NULL;
1731        bool ret = false;
1732
1733        rcu_read_lock();
1734        pid = rcu_dereference(target->pid);
1735        if (pid)
1736                task = get_pid_task(target->pid, PIDTYPE_PID);
1737        rcu_read_unlock();
1738        if (!task)
1739                return ret;
1740        if (task->flags & PF_VCPU) {
1741                put_task_struct(task);
1742                return ret;
1743        }
1744        ret = yield_to(task, 1);
1745        put_task_struct(task);
1746
1747        return ret;
1748}
1749EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1750
1751#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1752/*
1753 * Helper that checks whether a VCPU is eligible for directed yield.
1754 * Most eligible candidate to yield is decided by following heuristics:
1755 *
1756 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1757 *  (preempted lock holder), indicated by @in_spin_loop.
1758 *  Set at the beiginning and cleared at the end of interception/PLE handler.
1759 *
1760 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1761 *  chance last time (mostly it has become eligible now since we have probably
1762 *  yielded to lockholder in last iteration. This is done by toggling
1763 *  @dy_eligible each time a VCPU checked for eligibility.)
1764 *
1765 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1766 *  to preempted lock-holder could result in wrong VCPU selection and CPU
1767 *  burning. Giving priority for a potential lock-holder increases lock
1768 *  progress.
1769 *
1770 *  Since algorithm is based on heuristics, accessing another VCPU data without
1771 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1772 *  and continue with next VCPU and so on.
1773 */
1774bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1775{
1776        bool eligible;
1777
1778        eligible = !vcpu->spin_loop.in_spin_loop ||
1779                        (vcpu->spin_loop.in_spin_loop &&
1780                         vcpu->spin_loop.dy_eligible);
1781
1782        if (vcpu->spin_loop.in_spin_loop)
1783                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1784
1785        return eligible;
1786}
1787#endif
1788
1789void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1790{
1791        struct kvm *kvm = me->kvm;
1792        struct kvm_vcpu *vcpu;
1793        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1794        int yielded = 0;
1795        int try = 3;
1796        int pass;
1797        int i;
1798
1799        kvm_vcpu_set_in_spin_loop(me, true);
1800        /*
1801         * We boost the priority of a VCPU that is runnable but not
1802         * currently running, because it got preempted by something
1803         * else and called schedule in __vcpu_run.  Hopefully that
1804         * VCPU is holding the lock that we need and will release it.
1805         * We approximate round-robin by starting at the last boosted VCPU.
1806         */
1807        for (pass = 0; pass < 2 && !yielded && try; pass++) {
1808                kvm_for_each_vcpu(i, vcpu, kvm) {
1809                        if (!pass && i <= last_boosted_vcpu) {
1810                                i = last_boosted_vcpu;
1811                                continue;
1812                        } else if (pass && i > last_boosted_vcpu)
1813                                break;
1814                        if (!ACCESS_ONCE(vcpu->preempted))
1815                                continue;
1816                        if (vcpu == me)
1817                                continue;
1818                        if (waitqueue_active(&vcpu->wq))
1819                                continue;
1820                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1821                                continue;
1822
1823                        yielded = kvm_vcpu_yield_to(vcpu);
1824                        if (yielded > 0) {
1825                                kvm->last_boosted_vcpu = i;
1826                                break;
1827                        } else if (yielded < 0) {
1828                                try--;
1829                                if (!try)
1830                                        break;
1831                        }
1832                }
1833        }
1834        kvm_vcpu_set_in_spin_loop(me, false);
1835
1836        /* Ensure vcpu is not eligible during next spinloop */
1837        kvm_vcpu_set_dy_eligible(me, false);
1838}
1839EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1840
1841static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1842{
1843        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1844        struct page *page;
1845
1846        if (vmf->pgoff == 0)
1847                page = virt_to_page(vcpu->run);
1848#ifdef CONFIG_X86
1849        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1850                page = virt_to_page(vcpu->arch.pio_data);
1851#endif
1852#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1853        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1854                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1855#endif
1856        else
1857                return kvm_arch_vcpu_fault(vcpu, vmf);
1858        get_page(page);
1859        vmf->page = page;
1860        return 0;
1861}
1862
1863static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1864        .fault = kvm_vcpu_fault,
1865};
1866
1867static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1868{
1869        vma->vm_ops = &kvm_vcpu_vm_ops;
1870        return 0;
1871}
1872
1873static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1874{
1875        struct kvm_vcpu *vcpu = filp->private_data;
1876
1877        kvm_put_kvm(vcpu->kvm);
1878        return 0;
1879}
1880
1881static struct file_operations kvm_vcpu_fops = {
1882        .release        = kvm_vcpu_release,
1883        .unlocked_ioctl = kvm_vcpu_ioctl,
1884#ifdef CONFIG_COMPAT
1885        .compat_ioctl   = kvm_vcpu_compat_ioctl,
1886#endif
1887        .mmap           = kvm_vcpu_mmap,
1888        .llseek         = noop_llseek,
1889};
1890
1891/*
1892 * Allocates an inode for the vcpu.
1893 */
1894static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1895{
1896        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1897}
1898
1899/*
1900 * Creates some virtual cpus.  Good luck creating more than one.
1901 */
1902static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1903{
1904        int r;
1905        struct kvm_vcpu *vcpu, *v;
1906
1907        vcpu = kvm_arch_vcpu_create(kvm, id);
1908        if (IS_ERR(vcpu))
1909                return PTR_ERR(vcpu);
1910
1911        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1912
1913        r = kvm_arch_vcpu_setup(vcpu);
1914        if (r)
1915                goto vcpu_destroy;
1916
1917        mutex_lock(&kvm->lock);
1918        if (!kvm_vcpu_compatible(vcpu)) {
1919                r = -EINVAL;
1920                goto unlock_vcpu_destroy;
1921        }
1922        if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1923                r = -EINVAL;
1924                goto unlock_vcpu_destroy;
1925        }
1926
1927        kvm_for_each_vcpu(r, v, kvm)
1928                if (v->vcpu_id == id) {
1929                        r = -EEXIST;
1930                        goto unlock_vcpu_destroy;
1931                }
1932
1933        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1934
1935        /* Now it's all set up, let userspace reach it */
1936        kvm_get_kvm(kvm);
1937        r = create_vcpu_fd(vcpu);
1938        if (r < 0) {
1939                kvm_put_kvm(kvm);
1940                goto unlock_vcpu_destroy;
1941        }
1942
1943        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1944        smp_wmb();
1945        atomic_inc(&kvm->online_vcpus);
1946
1947        mutex_unlock(&kvm->lock);
1948        kvm_arch_vcpu_postcreate(vcpu);
1949        return r;
1950
1951unlock_vcpu_destroy:
1952        mutex_unlock(&kvm->lock);
1953vcpu_destroy:
1954        kvm_arch_vcpu_destroy(vcpu);
1955        return r;
1956}
1957
1958static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1959{
1960        if (sigset) {
1961                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1962                vcpu->sigset_active = 1;
1963                vcpu->sigset = *sigset;
1964        } else
1965                vcpu->sigset_active = 0;
1966        return 0;
1967}
1968
1969static long kvm_vcpu_ioctl(struct file *filp,
1970                           unsigned int ioctl, unsigned long arg)
1971{
1972        struct kvm_vcpu *vcpu = filp->private_data;
1973        void __user *argp = (void __user *)arg;
1974        int r;
1975        struct kvm_fpu *fpu = NULL;
1976        struct kvm_sregs *kvm_sregs = NULL;
1977
1978        if (vcpu->kvm->mm != current->mm)
1979                return -EIO;
1980
1981#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1982        /*
1983         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1984         * so vcpu_load() would break it.
1985         */
1986        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1987                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1988#endif
1989
1990
1991        r = vcpu_load(vcpu);
1992        if (r)
1993                return r;
1994        switch (ioctl) {
1995        case KVM_RUN:
1996                r = -EINVAL;
1997                if (arg)
1998                        goto out;
1999                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2000                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2001                break;
2002        case KVM_GET_REGS: {
2003                struct kvm_regs *kvm_regs;
2004
2005                r = -ENOMEM;
2006                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2007                if (!kvm_regs)
2008                        goto out;
2009                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2010                if (r)
2011                        goto out_free1;
2012                r = -EFAULT;
2013                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2014                        goto out_free1;
2015                r = 0;
2016out_free1:
2017                kfree(kvm_regs);
2018                break;
2019        }
2020        case KVM_SET_REGS: {
2021                struct kvm_regs *kvm_regs;
2022
2023                r = -ENOMEM;
2024                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2025                if (IS_ERR(kvm_regs)) {
2026                        r = PTR_ERR(kvm_regs);
2027                        goto out;
2028                }
2029                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2030                kfree(kvm_regs);
2031                break;
2032        }
2033        case KVM_GET_SREGS: {
2034                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2035                r = -ENOMEM;
2036                if (!kvm_sregs)
2037                        goto out;
2038                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2039                if (r)
2040                        goto out;
2041                r = -EFAULT;
2042                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2043                        goto out;
2044                r = 0;
2045                break;
2046        }
2047        case KVM_SET_SREGS: {
2048                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2049                if (IS_ERR(kvm_sregs)) {
2050                        r = PTR_ERR(kvm_sregs);
2051                        kvm_sregs = NULL;
2052                        goto out;
2053                }
2054                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2055                break;
2056        }
2057        case KVM_GET_MP_STATE: {
2058                struct kvm_mp_state mp_state;
2059
2060                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2061                if (r)
2062                        goto out;
2063                r = -EFAULT;
2064                if (copy_to_user(argp, &mp_state, sizeof mp_state))
2065                        goto out;
2066                r = 0;
2067                break;
2068        }
2069        case KVM_SET_MP_STATE: {
2070                struct kvm_mp_state mp_state;
2071
2072                r = -EFAULT;
2073                if (copy_from_user(&mp_state, argp, sizeof mp_state))
2074                        goto out;
2075                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2076                break;
2077        }
2078        case KVM_TRANSLATE: {
2079                struct kvm_translation tr;
2080
2081                r = -EFAULT;
2082                if (copy_from_user(&tr, argp, sizeof tr))
2083                        goto out;
2084                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2085                if (r)
2086                        goto out;
2087                r = -EFAULT;
2088                if (copy_to_user(argp, &tr, sizeof tr))
2089                        goto out;
2090                r = 0;
2091                break;
2092        }
2093        case KVM_SET_GUEST_DEBUG: {
2094                struct kvm_guest_debug dbg;
2095
2096                r = -EFAULT;
2097                if (copy_from_user(&dbg, argp, sizeof dbg))
2098                        goto out;
2099                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2100                break;
2101        }
2102        case KVM_SET_SIGNAL_MASK: {
2103                struct kvm_signal_mask __user *sigmask_arg = argp;
2104                struct kvm_signal_mask kvm_sigmask;
2105                sigset_t sigset, *p;
2106
2107                p = NULL;
2108                if (argp) {
2109                        r = -EFAULT;
2110                        if (copy_from_user(&kvm_sigmask, argp,
2111                                           sizeof kvm_sigmask))
2112                                goto out;
2113                        r = -EINVAL;
2114                        if (kvm_sigmask.len != sizeof sigset)
2115                                goto out;
2116                        r = -EFAULT;
2117                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2118                                           sizeof sigset))
2119                                goto out;
2120                        p = &sigset;
2121                }
2122                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2123                break;
2124        }
2125        case KVM_GET_FPU: {
2126                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2127                r = -ENOMEM;
2128                if (!fpu)
2129                        goto out;
2130                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2131                if (r)
2132                        goto out;
2133                r = -EFAULT;
2134                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2135                        goto out;
2136                r = 0;
2137                break;
2138        }
2139        case KVM_SET_FPU: {
2140                fpu = memdup_user(argp, sizeof(*fpu));
2141                if (IS_ERR(fpu)) {
2142                        r = PTR_ERR(fpu);
2143                        fpu = NULL;
2144                        goto out;
2145                }
2146                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2147                break;
2148        }
2149        default:
2150                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2151        }
2152out:
2153        vcpu_put(vcpu);
2154        kfree(fpu);
2155        kfree(kvm_sregs);
2156        return r;
2157}
2158
2159#ifdef CONFIG_COMPAT
2160static long kvm_vcpu_compat_ioctl(struct file *filp,
2161                                  unsigned int ioctl, unsigned long arg)
2162{
2163        struct kvm_vcpu *vcpu = filp->private_data;
2164        void __user *argp = compat_ptr(arg);
2165        int r;
2166
2167        if (vcpu->kvm->mm != current->mm)
2168                return -EIO;
2169
2170        switch (ioctl) {
2171        case KVM_SET_SIGNAL_MASK: {
2172                struct kvm_signal_mask __user *sigmask_arg = argp;
2173                struct kvm_signal_mask kvm_sigmask;
2174                compat_sigset_t csigset;
2175                sigset_t sigset;
2176
2177                if (argp) {
2178                        r = -EFAULT;
2179                        if (copy_from_user(&kvm_sigmask, argp,
2180                                           sizeof kvm_sigmask))
2181                                goto out;
2182                        r = -EINVAL;
2183                        if (kvm_sigmask.len != sizeof csigset)
2184                                goto out;
2185                        r = -EFAULT;
2186                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2187                                           sizeof csigset))
2188                                goto out;
2189                        sigset_from_compat(&sigset, &csigset);
2190                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2191                } else
2192                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2193                break;
2194        }
2195        default:
2196                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2197        }
2198
2199out:
2200        return r;
2201}
2202#endif
2203
2204static int kvm_device_ioctl_attr(struct kvm_device *dev,
2205                                 int (*accessor)(struct kvm_device *dev,
2206                                                 struct kvm_device_attr *attr),
2207                                 unsigned long arg)
2208{
2209        struct kvm_device_attr attr;
2210
2211        if (!accessor)
2212                return -EPERM;
2213
2214        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2215                return -EFAULT;
2216
2217        return accessor(dev, &attr);
2218}
2219
2220static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2221                             unsigned long arg)
2222{
2223        struct kvm_device *dev = filp->private_data;
2224
2225        switch (ioctl) {
2226        case KVM_SET_DEVICE_ATTR:
2227                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2228        case KVM_GET_DEVICE_ATTR:
2229                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2230        case KVM_HAS_DEVICE_ATTR:
2231                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2232        default:
2233                if (dev->ops->ioctl)
2234                        return dev->ops->ioctl(dev, ioctl, arg);
2235
2236                return -ENOTTY;
2237        }
2238}
2239
2240static int kvm_device_release(struct inode *inode, struct file *filp)
2241{
2242        struct kvm_device *dev = filp->private_data;
2243        struct kvm *kvm = dev->kvm;
2244
2245        kvm_put_kvm(kvm);
2246        return 0;
2247}
2248
2249static const struct file_operations kvm_device_fops = {
2250        .unlocked_ioctl = kvm_device_ioctl,
2251#ifdef CONFIG_COMPAT
2252        .compat_ioctl = kvm_device_ioctl,
2253#endif
2254        .release = kvm_device_release,
2255};
2256
2257struct kvm_device *kvm_device_from_filp(struct file *filp)
2258{
2259        if (filp->f_op != &kvm_device_fops)
2260                return NULL;
2261
2262        return filp->private_data;
2263}
2264
2265static int kvm_ioctl_create_device(struct kvm *kvm,
2266                                   struct kvm_create_device *cd)
2267{
2268        struct kvm_device_ops *ops = NULL;
2269        struct kvm_device *dev;
2270        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2271        int ret;
2272
2273        switch (cd->type) {
2274#ifdef CONFIG_KVM_MPIC
2275        case KVM_DEV_TYPE_FSL_MPIC_20:
2276        case KVM_DEV_TYPE_FSL_MPIC_42:
2277                ops = &kvm_mpic_ops;
2278                break;
2279#endif
2280#ifdef CONFIG_KVM_XICS
2281        case KVM_DEV_TYPE_XICS:
2282                ops = &kvm_xics_ops;
2283                break;
2284#endif
2285        default:
2286                return -ENODEV;
2287        }
2288
2289        if (test)
2290                return 0;
2291
2292        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2293        if (!dev)
2294                return -ENOMEM;
2295
2296        dev->ops = ops;
2297        dev->kvm = kvm;
2298
2299        ret = ops->create(dev, cd->type);
2300        if (ret < 0) {
2301                kfree(dev);
2302                return ret;
2303        }
2304
2305        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
2306        if (ret < 0) {
2307                ops->destroy(dev);
2308                return ret;
2309        }
2310
2311        list_add(&dev->vm_node, &kvm->devices);
2312        kvm_get_kvm(kvm);
2313        cd->fd = ret;
2314        return 0;
2315}
2316
2317static long kvm_vm_ioctl(struct file *filp,
2318                           unsigned int ioctl, unsigned long arg)
2319{
2320        struct kvm *kvm = filp->private_data;
2321        void __user *argp = (void __user *)arg;
2322        int r;
2323
2324        if (kvm->mm != current->mm)
2325                return -EIO;
2326        switch (ioctl) {
2327        case KVM_CREATE_VCPU:
2328                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2329                break;
2330        case KVM_SET_USER_MEMORY_REGION: {
2331                struct kvm_userspace_memory_region kvm_userspace_mem;
2332
2333                r = -EFAULT;
2334                if (copy_from_user(&kvm_userspace_mem, argp,
2335                                                sizeof kvm_userspace_mem))
2336                        goto out;
2337
2338                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2339                break;
2340        }
2341        case KVM_GET_DIRTY_LOG: {
2342                struct kvm_dirty_log log;
2343
2344                r = -EFAULT;
2345                if (copy_from_user(&log, argp, sizeof log))
2346                        goto out;
2347                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2348                break;
2349        }
2350#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2351        case KVM_REGISTER_COALESCED_MMIO: {
2352                struct kvm_coalesced_mmio_zone zone;
2353                r = -EFAULT;
2354                if (copy_from_user(&zone, argp, sizeof zone))
2355                        goto out;
2356                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2357                break;
2358        }
2359        case KVM_UNREGISTER_COALESCED_MMIO: {
2360                struct kvm_coalesced_mmio_zone zone;
2361                r = -EFAULT;
2362                if (copy_from_user(&zone, argp, sizeof zone))
2363                        goto out;
2364                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2365                break;
2366        }
2367#endif
2368        case KVM_IRQFD: {
2369                struct kvm_irqfd data;
2370
2371                r = -EFAULT;
2372                if (copy_from_user(&data, argp, sizeof data))
2373                        goto out;
2374                r = kvm_irqfd(kvm, &data);
2375                break;
2376        }
2377        case KVM_IOEVENTFD: {
2378                struct kvm_ioeventfd data;
2379
2380                r = -EFAULT;
2381                if (copy_from_user(&data, argp, sizeof data))
2382                        goto out;
2383                r = kvm_ioeventfd(kvm, &data);
2384                break;
2385        }
2386#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2387        case KVM_SET_BOOT_CPU_ID:
2388                r = 0;
2389                mutex_lock(&kvm->lock);
2390                if (atomic_read(&kvm->online_vcpus) != 0)
2391                        r = -EBUSY;
2392                else
2393                        kvm->bsp_vcpu_id = arg;
2394                mutex_unlock(&kvm->lock);
2395                break;
2396#endif
2397#ifdef CONFIG_HAVE_KVM_MSI
2398        case KVM_SIGNAL_MSI: {
2399                struct kvm_msi msi;
2400
2401                r = -EFAULT;
2402                if (copy_from_user(&msi, argp, sizeof msi))
2403                        goto out;
2404                r = kvm_send_userspace_msi(kvm, &msi);
2405                break;
2406        }
2407#endif
2408#ifdef __KVM_HAVE_IRQ_LINE
2409        case KVM_IRQ_LINE_STATUS:
2410        case KVM_IRQ_LINE: {
2411                struct kvm_irq_level irq_event;
2412
2413                r = -EFAULT;
2414                if (copy_from_user(&irq_event, argp, sizeof irq_event))
2415                        goto out;
2416
2417                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2418                                        ioctl == KVM_IRQ_LINE_STATUS);
2419                if (r)
2420                        goto out;
2421
2422                r = -EFAULT;
2423                if (ioctl == KVM_IRQ_LINE_STATUS) {
2424                        if (copy_to_user(argp, &irq_event, sizeof irq_event))
2425                                goto out;
2426                }
2427
2428                r = 0;
2429                break;
2430        }
2431#endif
2432#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2433        case KVM_SET_GSI_ROUTING: {
2434                struct kvm_irq_routing routing;
2435                struct kvm_irq_routing __user *urouting;
2436                struct kvm_irq_routing_entry *entries;
2437
2438                r = -EFAULT;
2439                if (copy_from_user(&routing, argp, sizeof(routing)))
2440                        goto out;
2441                r = -EINVAL;
2442                if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2443                        goto out;
2444                if (routing.flags)
2445                        goto out;
2446                r = -ENOMEM;
2447                entries = vmalloc(routing.nr * sizeof(*entries));
2448                if (!entries)
2449                        goto out;
2450                r = -EFAULT;
2451                urouting = argp;
2452                if (copy_from_user(entries, urouting->entries,
2453                                   routing.nr * sizeof(*entries)))
2454                        goto out_free_irq_routing;
2455                r = kvm_set_irq_routing(kvm, entries, routing.nr,
2456                                        routing.flags);
2457        out_free_irq_routing:
2458                vfree(entries);
2459                break;
2460        }
2461#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2462        case KVM_CREATE_DEVICE: {
2463                struct kvm_create_device cd;
2464
2465                r = -EFAULT;
2466                if (copy_from_user(&cd, argp, sizeof(cd)))
2467                        goto out;
2468
2469                r = kvm_ioctl_create_device(kvm, &cd);
2470                if (r)
2471                        goto out;
2472
2473                r = -EFAULT;
2474                if (copy_to_user(argp, &cd, sizeof(cd)))
2475                        goto out;
2476
2477                r = 0;
2478                break;
2479        }
2480        default:
2481                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2482                if (r == -ENOTTY)
2483                        r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2484        }
2485out:
2486        return r;
2487}
2488
2489#ifdef CONFIG_COMPAT
2490struct compat_kvm_dirty_log {
2491        __u32 slot;
2492        __u32 padding1;
2493        union {
2494                compat_uptr_t dirty_bitmap; /* one bit per page */
2495                __u64 padding2;
2496        };
2497};
2498
2499static long kvm_vm_compat_ioctl(struct file *filp,
2500                           unsigned int ioctl, unsigned long arg)
2501{
2502        struct kvm *kvm = filp->private_data;
2503        int r;
2504
2505        if (kvm->mm != current->mm)
2506                return -EIO;
2507        switch (ioctl) {
2508        case KVM_GET_DIRTY_LOG: {
2509                struct compat_kvm_dirty_log compat_log;
2510                struct kvm_dirty_log log;
2511
2512                r = -EFAULT;
2513                if (copy_from_user(&compat_log, (void __user *)arg,
2514                                   sizeof(compat_log)))
2515                        goto out;
2516                log.slot         = compat_log.slot;
2517                log.padding1     = compat_log.padding1;
2518                log.padding2     = compat_log.padding2;
2519                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2520
2521                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2522                break;
2523        }
2524        default:
2525                r = kvm_vm_ioctl(filp, ioctl, arg);
2526        }
2527
2528out:
2529        return r;
2530}
2531#endif
2532
2533static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2534{
2535        struct page *page[1];
2536        unsigned long addr;
2537        int npages;
2538        gfn_t gfn = vmf->pgoff;
2539        struct kvm *kvm = vma->vm_file->private_data;
2540
2541        addr = gfn_to_hva(kvm, gfn);
2542        if (kvm_is_error_hva(addr))
2543                return VM_FAULT_SIGBUS;
2544
2545        npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2546                                NULL);
2547        if (unlikely(npages != 1))
2548                return VM_FAULT_SIGBUS;
2549
2550        vmf->page = page[0];
2551        return 0;
2552}
2553
2554static const struct vm_operations_struct kvm_vm_vm_ops = {
2555        .fault = kvm_vm_fault,
2556};
2557
2558static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2559{
2560        vma->vm_ops = &kvm_vm_vm_ops;
2561        return 0;
2562}
2563
2564static struct file_operations kvm_vm_fops = {
2565        .release        = kvm_vm_release,
2566        .unlocked_ioctl = kvm_vm_ioctl,
2567#ifdef CONFIG_COMPAT
2568        .compat_ioctl   = kvm_vm_compat_ioctl,
2569#endif
2570        .mmap           = kvm_vm_mmap,
2571        .llseek         = noop_llseek,
2572};
2573
2574static int kvm_dev_ioctl_create_vm(unsigned long type)
2575{
2576        int r;
2577        struct kvm *kvm;
2578
2579        kvm = kvm_create_vm(type);
2580        if (IS_ERR(kvm))
2581                return PTR_ERR(kvm);
2582#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2583        r = kvm_coalesced_mmio_init(kvm);
2584        if (r < 0) {
2585                kvm_put_kvm(kvm);
2586                return r;
2587        }
2588#endif
2589        r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2590        if (r < 0)
2591                kvm_put_kvm(kvm);
2592
2593        return r;
2594}
2595
2596static long kvm_dev_ioctl_check_extension_generic(long arg)
2597{
2598        switch (arg) {
2599        case KVM_CAP_USER_MEMORY:
2600        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2601        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2602#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2603        case KVM_CAP_SET_BOOT_CPU_ID:
2604#endif
2605        case KVM_CAP_INTERNAL_ERROR_DATA:
2606#ifdef CONFIG_HAVE_KVM_MSI
2607        case KVM_CAP_SIGNAL_MSI:
2608#endif
2609#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2610        case KVM_CAP_IRQFD_RESAMPLE:
2611#endif
2612                return 1;
2613#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2614        case KVM_CAP_IRQ_ROUTING:
2615                return KVM_MAX_IRQ_ROUTES;
2616#endif
2617        default:
2618                break;
2619        }
2620        return kvm_dev_ioctl_check_extension(arg);
2621}
2622
2623static long kvm_dev_ioctl(struct file *filp,
2624                          unsigned int ioctl, unsigned long arg)
2625{
2626        long r = -EINVAL;
2627
2628        switch (ioctl) {
2629        case KVM_GET_API_VERSION:
2630                r = -EINVAL;
2631                if (arg)
2632                        goto out;
2633                r = KVM_API_VERSION;
2634                break;
2635        case KVM_CREATE_VM:
2636                r = kvm_dev_ioctl_create_vm(arg);
2637                break;
2638        case KVM_CHECK_EXTENSION:
2639                r = kvm_dev_ioctl_check_extension_generic(arg);
2640                break;
2641        case KVM_GET_VCPU_MMAP_SIZE:
2642                r = -EINVAL;
2643                if (arg)
2644                        goto out;
2645                r = PAGE_SIZE;     /* struct kvm_run */
2646#ifdef CONFIG_X86
2647                r += PAGE_SIZE;    /* pio data page */
2648#endif
2649#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2650                r += PAGE_SIZE;    /* coalesced mmio ring page */
2651#endif
2652                break;
2653        case KVM_TRACE_ENABLE:
2654        case KVM_TRACE_PAUSE:
2655        case KVM_TRACE_DISABLE:
2656                r = -EOPNOTSUPP;
2657                break;
2658        default:
2659                return kvm_arch_dev_ioctl(filp, ioctl, arg);
2660        }
2661out:
2662        return r;
2663}
2664
2665static struct file_operations kvm_chardev_ops = {
2666        .unlocked_ioctl = kvm_dev_ioctl,
2667        .compat_ioctl   = kvm_dev_ioctl,
2668        .llseek         = noop_llseek,
2669};
2670
2671static struct miscdevice kvm_dev = {
2672        KVM_MINOR,
2673        "kvm",
2674        &kvm_chardev_ops,
2675};
2676
2677static void hardware_enable_nolock(void *junk)
2678{
2679        int cpu = raw_smp_processor_id();
2680        int r;
2681
2682        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2683                return;
2684
2685        cpumask_set_cpu(cpu, cpus_hardware_enabled);
2686
2687        r = kvm_arch_hardware_enable(NULL);
2688
2689        if (r) {
2690                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2691                atomic_inc(&hardware_enable_failed);
2692                printk(KERN_INFO "kvm: enabling virtualization on "
2693                                 "CPU%d failed\n", cpu);
2694        }
2695}
2696
2697static void hardware_enable(void *junk)
2698{
2699        raw_spin_lock(&kvm_lock);
2700        hardware_enable_nolock(junk);
2701        raw_spin_unlock(&kvm_lock);
2702}
2703
2704static void hardware_disable_nolock(void *junk)
2705{
2706        int cpu = raw_smp_processor_id();
2707
2708        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2709                return;
2710        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2711        kvm_arch_hardware_disable(NULL);
2712}
2713
2714static void hardware_disable(void *junk)
2715{
2716        raw_spin_lock(&kvm_lock);
2717        hardware_disable_nolock(junk);
2718        raw_spin_unlock(&kvm_lock);
2719}
2720
2721static void hardware_disable_all_nolock(void)
2722{
2723        BUG_ON(!kvm_usage_count);
2724
2725        kvm_usage_count--;
2726        if (!kvm_usage_count)
2727                on_each_cpu(hardware_disable_nolock, NULL, 1);
2728}
2729
2730static void hardware_disable_all(void)
2731{
2732        raw_spin_lock(&kvm_lock);
2733        hardware_disable_all_nolock();
2734        raw_spin_unlock(&kvm_lock);
2735}
2736
2737static int hardware_enable_all(void)
2738{
2739        int r = 0;
2740
2741        raw_spin_lock(&kvm_lock);
2742
2743        kvm_usage_count++;
2744        if (kvm_usage_count == 1) {
2745                atomic_set(&hardware_enable_failed, 0);
2746                on_each_cpu(hardware_enable_nolock, NULL, 1);
2747
2748                if (atomic_read(&hardware_enable_failed)) {
2749                        hardware_disable_all_nolock();
2750                        r = -EBUSY;
2751                }
2752        }
2753
2754        raw_spin_unlock(&kvm_lock);
2755
2756        return r;
2757}
2758
2759static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2760                           void *v)
2761{
2762        int cpu = (long)v;
2763
2764        if (!kvm_usage_count)
2765                return NOTIFY_OK;
2766
2767        val &= ~CPU_TASKS_FROZEN;
2768        switch (val) {
2769        case CPU_DYING:
2770                printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2771                       cpu);
2772                hardware_disable(NULL);
2773                break;
2774        case CPU_STARTING:
2775                printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2776                       cpu);
2777                hardware_enable(NULL);
2778                break;
2779        }
2780        return NOTIFY_OK;
2781}
2782
2783static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2784                      void *v)
2785{
2786        /*
2787         * Some (well, at least mine) BIOSes hang on reboot if
2788         * in vmx root mode.
2789         *
2790         * And Intel TXT required VMX off for all cpu when system shutdown.
2791         */
2792        printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2793        kvm_rebooting = true;
2794        on_each_cpu(hardware_disable_nolock, NULL, 1);
2795        return NOTIFY_OK;
2796}
2797
2798static struct notifier_block kvm_reboot_notifier = {
2799        .notifier_call = kvm_reboot,
2800        .priority = 0,
2801};
2802
2803static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2804{
2805        int i;
2806
2807        for (i = 0; i < bus->dev_count; i++) {
2808                struct kvm_io_device *pos = bus->range[i].dev;
2809
2810                kvm_iodevice_destructor(pos);
2811        }
2812        kfree(bus);
2813}
2814
2815static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2816{
2817        const struct kvm_io_range *r1 = p1;
2818        const struct kvm_io_range *r2 = p2;
2819
2820        if (r1->addr < r2->addr)
2821                return -1;
2822        if (r1->addr + r1->len > r2->addr + r2->len)
2823                return 1;
2824        return 0;
2825}
2826
2827static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2828                          gpa_t addr, int len)
2829{
2830        bus->range[bus->dev_count++] = (struct kvm_io_range) {
2831                .addr = addr,
2832                .len = len,
2833                .dev = dev,
2834        };
2835
2836        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2837                kvm_io_bus_sort_cmp, NULL);
2838
2839        return 0;
2840}
2841
2842static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2843                             gpa_t addr, int len)
2844{
2845        struct kvm_io_range *range, key;
2846        int off;
2847
2848        key = (struct kvm_io_range) {
2849                .addr = addr,
2850                .len = len,
2851        };
2852
2853        range = bsearch(&key, bus->range, bus->dev_count,
2854                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2855        if (range == NULL)
2856                return -ENOENT;
2857
2858        off = range - bus->range;
2859
2860        while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2861                off--;
2862
2863        return off;
2864}
2865
2866/* kvm_io_bus_write - called under kvm->slots_lock */
2867int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2868                     int len, const void *val)
2869{
2870        int idx;
2871        struct kvm_io_bus *bus;
2872        struct kvm_io_range range;
2873
2874        range = (struct kvm_io_range) {
2875                .addr = addr,
2876                .len = len,
2877        };
2878
2879        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2880        idx = kvm_io_bus_get_first_dev(bus, addr, len);
2881        if (idx < 0)
2882                return -EOPNOTSUPP;
2883
2884        while (idx < bus->dev_count &&
2885                kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2886                if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2887                        return 0;
2888                idx++;
2889        }
2890
2891        return -EOPNOTSUPP;
2892}
2893
2894/* kvm_io_bus_read - called under kvm->slots_lock */
2895int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2896                    int len, void *val)
2897{
2898        int idx;
2899        struct kvm_io_bus *bus;
2900        struct kvm_io_range range;
2901
2902        range = (struct kvm_io_range) {
2903                .addr = addr,
2904                .len = len,
2905        };
2906
2907        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2908        idx = kvm_io_bus_get_first_dev(bus, addr, len);
2909        if (idx < 0)
2910                return -EOPNOTSUPP;
2911
2912        while (idx < bus->dev_count &&
2913                kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2914                if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2915                        return 0;
2916                idx++;
2917        }
2918
2919        return -EOPNOTSUPP;
2920}
2921
2922/* Caller must hold slots_lock. */
2923int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2924                            int len, struct kvm_io_device *dev)
2925{
2926        struct kvm_io_bus *new_bus, *bus;
2927
2928        bus = kvm->buses[bus_idx];
2929        if (bus->dev_count > NR_IOBUS_DEVS - 1)
2930                return -ENOSPC;
2931
2932        new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2933                          sizeof(struct kvm_io_range)), GFP_KERNEL);
2934        if (!new_bus)
2935                return -ENOMEM;
2936        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2937               sizeof(struct kvm_io_range)));
2938        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2939        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2940        synchronize_srcu_expedited(&kvm->srcu);
2941        kfree(bus);
2942
2943        return 0;
2944}
2945
2946/* Caller must hold slots_lock. */
2947int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2948                              struct kvm_io_device *dev)
2949{
2950        int i, r;
2951        struct kvm_io_bus *new_bus, *bus;
2952
2953        bus = kvm->buses[bus_idx];
2954        r = -ENOENT;
2955        for (i = 0; i < bus->dev_count; i++)
2956                if (bus->range[i].dev == dev) {
2957                        r = 0;
2958                        break;
2959                }
2960
2961        if (r)
2962                return r;
2963
2964        new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2965                          sizeof(struct kvm_io_range)), GFP_KERNEL);
2966        if (!new_bus)
2967                return -ENOMEM;
2968
2969        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2970        new_bus->dev_count--;
2971        memcpy(new_bus->range + i, bus->range + i + 1,
2972               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2973
2974        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2975        synchronize_srcu_expedited(&kvm->srcu);
2976        kfree(bus);
2977        return r;
2978}
2979
2980static struct notifier_block kvm_cpu_notifier = {
2981        .notifier_call = kvm_cpu_hotplug,
2982};
2983
2984static int vm_stat_get(void *_offset, u64 *val)
2985{
2986        unsigned offset = (long)_offset;
2987        struct kvm *kvm;
2988
2989        *val = 0;
2990        raw_spin_lock(&kvm_lock);
2991        list_for_each_entry(kvm, &vm_list, vm_list)
2992                *val += *(u32 *)((void *)kvm + offset);
2993        raw_spin_unlock(&kvm_lock);
2994        return 0;
2995}
2996
2997DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2998
2999static int vcpu_stat_get(void *_offset, u64 *val)
3000{
3001        unsigned offset = (long)_offset;
3002        struct kvm *kvm;
3003        struct kvm_vcpu *vcpu;
3004        int i;
3005
3006        *val = 0;
3007        raw_spin_lock(&kvm_lock);
3008        list_for_each_entry(kvm, &vm_list, vm_list)
3009                kvm_for_each_vcpu(i, vcpu, kvm)
3010                        *val += *(u32 *)((void *)vcpu + offset);
3011
3012        raw_spin_unlock(&kvm_lock);
3013        return 0;
3014}
3015
3016DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3017
3018static const struct file_operations *stat_fops[] = {
3019        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3020        [KVM_STAT_VM]   = &vm_stat_fops,
3021};
3022
3023static int kvm_init_debug(void)
3024{
3025        int r = -EFAULT;
3026        struct kvm_stats_debugfs_item *p;
3027
3028        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3029        if (kvm_debugfs_dir == NULL)
3030                goto out;
3031
3032        for (p = debugfs_entries; p->name; ++p) {
3033                p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3034                                                (void *)(long)p->offset,
3035                                                stat_fops[p->kind]);
3036                if (p->dentry == NULL)
3037                        goto out_dir;
3038        }
3039
3040        return 0;
3041
3042out_dir:
3043        debugfs_remove_recursive(kvm_debugfs_dir);
3044out:
3045        return r;
3046}
3047
3048static void kvm_exit_debug(void)
3049{
3050        struct kvm_stats_debugfs_item *p;
3051
3052        for (p = debugfs_entries; p->name; ++p)
3053                debugfs_remove(p->dentry);
3054        debugfs_remove(kvm_debugfs_dir);
3055}
3056
3057static int kvm_suspend(void)
3058{
3059        if (kvm_usage_count)
3060                hardware_disable_nolock(NULL);
3061        return 0;
3062}
3063
3064static void kvm_resume(void)
3065{
3066        if (kvm_usage_count) {
3067                WARN_ON(raw_spin_is_locked(&kvm_lock));
3068                hardware_enable_nolock(NULL);
3069        }
3070}
3071
3072static struct syscore_ops kvm_syscore_ops = {
3073        .suspend = kvm_suspend,
3074        .resume = kvm_resume,
3075};
3076
3077static inline
3078struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3079{
3080        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3081}
3082
3083static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3084{
3085        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3086        if (vcpu->preempted)
3087                vcpu->preempted = false;
3088
3089        kvm_arch_vcpu_load(vcpu, cpu);
3090}
3091
3092static void kvm_sched_out(struct preempt_notifier *pn,
3093                          struct task_struct *next)
3094{
3095        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3096
3097        if (current->state == TASK_RUNNING)
3098                vcpu->preempted = true;
3099        kvm_arch_vcpu_put(vcpu);
3100}
3101
3102int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3103                  struct module *module)
3104{
3105        int r;
3106        int cpu;
3107
3108        r = kvm_arch_init(opaque);
3109        if (r)
3110                goto out_fail;
3111
3112        /*
3113         * kvm_arch_init makes sure there's at most one caller
3114         * for architectures that support multiple implementations,
3115         * like intel and amd on x86.
3116         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3117         * conflicts in case kvm is already setup for another implementation.
3118         */
3119        r = kvm_irqfd_init();
3120        if (r)
3121                goto out_irqfd;
3122
3123        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3124                r = -ENOMEM;
3125                goto out_free_0;
3126        }
3127
3128        r = kvm_arch_hardware_setup();
3129        if (r < 0)
3130                goto out_free_0a;
3131
3132        for_each_online_cpu(cpu) {
3133                smp_call_function_single(cpu,
3134                                kvm_arch_check_processor_compat,
3135                                &r, 1);
3136                if (r < 0)
3137                        goto out_free_1;
3138        }
3139
3140        r = register_cpu_notifier(&kvm_cpu_notifier);
3141        if (r)
3142                goto out_free_2;
3143        register_reboot_notifier(&kvm_reboot_notifier);
3144
3145        /* A kmem cache lets us meet the alignment requirements of fx_save. */
3146        if (!vcpu_align)
3147                vcpu_align = __alignof__(struct kvm_vcpu);
3148        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3149                                           0, NULL);
3150        if (!kvm_vcpu_cache) {
3151                r = -ENOMEM;
3152                goto out_free_3;
3153        }
3154
3155        r = kvm_async_pf_init();
3156        if (r)
3157                goto out_free;
3158
3159        kvm_chardev_ops.owner = module;
3160        kvm_vm_fops.owner = module;
3161        kvm_vcpu_fops.owner = module;
3162
3163        r = misc_register(&kvm_dev);
3164        if (r) {
3165                printk(KERN_ERR "kvm: misc device register failed\n");
3166                goto out_unreg;
3167        }
3168
3169        register_syscore_ops(&kvm_syscore_ops);
3170
3171        kvm_preempt_ops.sched_in = kvm_sched_in;
3172        kvm_preempt_ops.sched_out = kvm_sched_out;
3173
3174        r = kvm_init_debug();
3175        if (r) {
3176                printk(KERN_ERR "kvm: create debugfs files failed\n");
3177                goto out_undebugfs;
3178        }
3179
3180        return 0;
3181
3182out_undebugfs:
3183        unregister_syscore_ops(&kvm_syscore_ops);
3184out_unreg:
3185        kvm_async_pf_deinit();
3186out_free:
3187        kmem_cache_destroy(kvm_vcpu_cache);
3188out_free_3:
3189        unregister_reboot_notifier(&kvm_reboot_notifier);
3190        unregister_cpu_notifier(&kvm_cpu_notifier);
3191out_free_2:
3192out_free_1:
3193        kvm_arch_hardware_unsetup();
3194out_free_0a:
3195        free_cpumask_var(cpus_hardware_enabled);
3196out_free_0:
3197        kvm_irqfd_exit();
3198out_irqfd:
3199        kvm_arch_exit();
3200out_fail:
3201        return r;
3202}
3203EXPORT_SYMBOL_GPL(kvm_init);
3204
3205void kvm_exit(void)
3206{
3207        kvm_exit_debug();
3208        misc_deregister(&kvm_dev);
3209        kmem_cache_destroy(kvm_vcpu_cache);
3210        kvm_async_pf_deinit();
3211        unregister_syscore_ops(&kvm_syscore_ops);
3212        unregister_reboot_notifier(&kvm_reboot_notifier);
3213        unregister_cpu_notifier(&kvm_cpu_notifier);
3214        on_each_cpu(hardware_disable_nolock, NULL, 1);
3215        kvm_arch_hardware_unsetup();
3216        kvm_arch_exit();
3217        kvm_irqfd_exit();
3218        free_cpumask_var(cpus_hardware_enabled);
3219}
3220EXPORT_SYMBOL_GPL(kvm_exit);
3221