linux/arch/alpha/mm/numa.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/alpha/mm/numa.c
   3 *
   4 *  DISCONTIGMEM NUMA alpha support.
   5 *
   6 *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
   7 */
   8
   9#include <linux/types.h>
  10#include <linux/kernel.h>
  11#include <linux/mm.h>
  12#include <linux/bootmem.h>
  13#include <linux/swap.h>
  14#include <linux/initrd.h>
  15#include <linux/pfn.h>
  16#include <linux/module.h>
  17
  18#include <asm/hwrpb.h>
  19#include <asm/pgalloc.h>
  20#include <asm/sections.h>
  21
  22pg_data_t node_data[MAX_NUMNODES];
  23EXPORT_SYMBOL(node_data);
  24
  25#undef DEBUG_DISCONTIG
  26#ifdef DEBUG_DISCONTIG
  27#define DBGDCONT(args...) printk(args)
  28#else
  29#define DBGDCONT(args...)
  30#endif
  31
  32#define for_each_mem_cluster(memdesc, _cluster, i)              \
  33        for ((_cluster) = (memdesc)->cluster, (i) = 0;          \
  34             (i) < (memdesc)->numclusters; (i)++, (_cluster)++)
  35
  36static void __init show_mem_layout(void)
  37{
  38        struct memclust_struct * cluster;
  39        struct memdesc_struct * memdesc;
  40        int i;
  41
  42        /* Find free clusters, and init and free the bootmem accordingly.  */
  43        memdesc = (struct memdesc_struct *)
  44          (hwrpb->mddt_offset + (unsigned long) hwrpb);
  45
  46        printk("Raw memory layout:\n");
  47        for_each_mem_cluster(memdesc, cluster, i) {
  48                printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
  49                       i, cluster->usage, cluster->start_pfn,
  50                       cluster->start_pfn + cluster->numpages);
  51        }
  52}
  53
  54static void __init
  55setup_memory_node(int nid, void *kernel_end)
  56{
  57        extern unsigned long mem_size_limit;
  58        struct memclust_struct * cluster;
  59        struct memdesc_struct * memdesc;
  60        unsigned long start_kernel_pfn, end_kernel_pfn;
  61        unsigned long bootmap_size, bootmap_pages, bootmap_start;
  62        unsigned long start, end;
  63        unsigned long node_pfn_start, node_pfn_end;
  64        unsigned long node_min_pfn, node_max_pfn;
  65        int i;
  66        unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
  67        int show_init = 0;
  68
  69        /* Find the bounds of current node */
  70        node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
  71        node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
  72        
  73        /* Find free clusters, and init and free the bootmem accordingly.  */
  74        memdesc = (struct memdesc_struct *)
  75          (hwrpb->mddt_offset + (unsigned long) hwrpb);
  76
  77        /* find the bounds of this node (node_min_pfn/node_max_pfn) */
  78        node_min_pfn = ~0UL;
  79        node_max_pfn = 0UL;
  80        for_each_mem_cluster(memdesc, cluster, i) {
  81                /* Bit 0 is console/PALcode reserved.  Bit 1 is
  82                   non-volatile memory -- we might want to mark
  83                   this for later.  */
  84                if (cluster->usage & 3)
  85                        continue;
  86
  87                start = cluster->start_pfn;
  88                end = start + cluster->numpages;
  89
  90                if (start >= node_pfn_end || end <= node_pfn_start)
  91                        continue;
  92
  93                if (!show_init) {
  94                        show_init = 1;
  95                        printk("Initializing bootmem allocator on Node ID %d\n", nid);
  96                }
  97                printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
  98                       i, cluster->usage, cluster->start_pfn,
  99                       cluster->start_pfn + cluster->numpages);
 100
 101                if (start < node_pfn_start)
 102                        start = node_pfn_start;
 103                if (end > node_pfn_end)
 104                        end = node_pfn_end;
 105
 106                if (start < node_min_pfn)
 107                        node_min_pfn = start;
 108                if (end > node_max_pfn)
 109                        node_max_pfn = end;
 110        }
 111
 112        if (mem_size_limit && node_max_pfn > mem_size_limit) {
 113                static int msg_shown = 0;
 114                if (!msg_shown) {
 115                        msg_shown = 1;
 116                        printk("setup: forcing memory size to %ldK (from %ldK).\n",
 117                               mem_size_limit << (PAGE_SHIFT - 10),
 118                               node_max_pfn    << (PAGE_SHIFT - 10));
 119                }
 120                node_max_pfn = mem_size_limit;
 121        }
 122
 123        if (node_min_pfn >= node_max_pfn)
 124                return;
 125
 126        /* Update global {min,max}_low_pfn from node information. */
 127        if (node_min_pfn < min_low_pfn)
 128                min_low_pfn = node_min_pfn;
 129        if (node_max_pfn > max_low_pfn)
 130                max_pfn = max_low_pfn = node_max_pfn;
 131
 132#if 0 /* we'll try this one again in a little while */
 133        /* Cute trick to make sure our local node data is on local memory */
 134        node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
 135#endif
 136        /* Quasi-mark the pg_data_t as in-use */
 137        node_min_pfn += node_datasz;
 138        if (node_min_pfn >= node_max_pfn) {
 139                printk(" not enough mem to reserve NODE_DATA");
 140                return;
 141        }
 142        NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 143
 144        printk(" Detected node memory:   start %8lu, end %8lu\n",
 145               node_min_pfn, node_max_pfn);
 146
 147        DBGDCONT(" DISCONTIG: node_data[%d]   is at 0x%p\n", nid, NODE_DATA(nid));
 148        DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
 149
 150        /* Find the bounds of kernel memory.  */
 151        start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
 152        end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
 153        bootmap_start = -1;
 154
 155        if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
 156                panic("kernel loaded out of ram");
 157
 158        /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
 159           Note that we round this down, not up - node memory
 160           has much larger alignment than 8Mb, so it's safe. */
 161        node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
 162
 163        /* We need to know how many physically contiguous pages
 164           we'll need for the bootmap.  */
 165        bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
 166
 167        /* Now find a good region where to allocate the bootmap.  */
 168        for_each_mem_cluster(memdesc, cluster, i) {
 169                if (cluster->usage & 3)
 170                        continue;
 171
 172                start = cluster->start_pfn;
 173                end = start + cluster->numpages;
 174
 175                if (start >= node_max_pfn || end <= node_min_pfn)
 176                        continue;
 177
 178                if (end > node_max_pfn)
 179                        end = node_max_pfn;
 180                if (start < node_min_pfn)
 181                        start = node_min_pfn;
 182
 183                if (start < start_kernel_pfn) {
 184                        if (end > end_kernel_pfn
 185                            && end - end_kernel_pfn >= bootmap_pages) {
 186                                bootmap_start = end_kernel_pfn;
 187                                break;
 188                        } else if (end > start_kernel_pfn)
 189                                end = start_kernel_pfn;
 190                } else if (start < end_kernel_pfn)
 191                        start = end_kernel_pfn;
 192                if (end - start >= bootmap_pages) {
 193                        bootmap_start = start;
 194                        break;
 195                }
 196        }
 197
 198        if (bootmap_start == -1)
 199                panic("couldn't find a contiguous place for the bootmap");
 200
 201        /* Allocate the bootmap and mark the whole MM as reserved.  */
 202        bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
 203                                         node_min_pfn, node_max_pfn);
 204        DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
 205                 bootmap_start, bootmap_size, bootmap_pages);
 206
 207        /* Mark the free regions.  */
 208        for_each_mem_cluster(memdesc, cluster, i) {
 209                if (cluster->usage & 3)
 210                        continue;
 211
 212                start = cluster->start_pfn;
 213                end = cluster->start_pfn + cluster->numpages;
 214
 215                if (start >= node_max_pfn || end <= node_min_pfn)
 216                        continue;
 217
 218                if (end > node_max_pfn)
 219                        end = node_max_pfn;
 220                if (start < node_min_pfn)
 221                        start = node_min_pfn;
 222
 223                if (start < start_kernel_pfn) {
 224                        if (end > end_kernel_pfn) {
 225                                free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
 226                                             (PFN_PHYS(start_kernel_pfn)
 227                                              - PFN_PHYS(start)));
 228                                printk(" freeing pages %ld:%ld\n",
 229                                       start, start_kernel_pfn);
 230                                start = end_kernel_pfn;
 231                        } else if (end > start_kernel_pfn)
 232                                end = start_kernel_pfn;
 233                } else if (start < end_kernel_pfn)
 234                        start = end_kernel_pfn;
 235                if (start >= end)
 236                        continue;
 237
 238                free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
 239                printk(" freeing pages %ld:%ld\n", start, end);
 240        }
 241
 242        /* Reserve the bootmap memory.  */
 243        reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start),
 244                        bootmap_size, BOOTMEM_DEFAULT);
 245        printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
 246
 247        node_set_online(nid);
 248}
 249
 250void __init
 251setup_memory(void *kernel_end)
 252{
 253        int nid;
 254
 255        show_mem_layout();
 256
 257        nodes_clear(node_online_map);
 258
 259        min_low_pfn = ~0UL;
 260        max_low_pfn = 0UL;
 261        for (nid = 0; nid < MAX_NUMNODES; nid++)
 262                setup_memory_node(nid, kernel_end);
 263
 264#ifdef CONFIG_BLK_DEV_INITRD
 265        initrd_start = INITRD_START;
 266        if (initrd_start) {
 267                extern void *move_initrd(unsigned long);
 268
 269                initrd_end = initrd_start+INITRD_SIZE;
 270                printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
 271                       (void *) initrd_start, INITRD_SIZE);
 272
 273                if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
 274                        if (!move_initrd(PFN_PHYS(max_low_pfn)))
 275                                printk("initrd extends beyond end of memory "
 276                                       "(0x%08lx > 0x%p)\ndisabling initrd\n",
 277                                       initrd_end,
 278                                       phys_to_virt(PFN_PHYS(max_low_pfn)));
 279                } else {
 280                        nid = kvaddr_to_nid(initrd_start);
 281                        reserve_bootmem_node(NODE_DATA(nid),
 282                                             virt_to_phys((void *)initrd_start),
 283                                             INITRD_SIZE, BOOTMEM_DEFAULT);
 284                }
 285        }
 286#endif /* CONFIG_BLK_DEV_INITRD */
 287}
 288
 289void __init paging_init(void)
 290{
 291        unsigned int    nid;
 292        unsigned long   zones_size[MAX_NR_ZONES] = {0, };
 293        unsigned long   dma_local_pfn;
 294
 295        /*
 296         * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
 297         * in the NUMA model, for now we convert it to a pfn and
 298         * we interpret this pfn as a local per-node information.
 299         * This issue isn't very important since none of these machines
 300         * have legacy ISA slots anyways.
 301         */
 302        dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
 303
 304        for_each_online_node(nid) {
 305                bootmem_data_t *bdata = &bootmem_node_data[nid];
 306                unsigned long start_pfn = bdata->node_min_pfn;
 307                unsigned long end_pfn = bdata->node_low_pfn;
 308
 309                if (dma_local_pfn >= end_pfn - start_pfn)
 310                        zones_size[ZONE_DMA] = end_pfn - start_pfn;
 311                else {
 312                        zones_size[ZONE_DMA] = dma_local_pfn;
 313                        zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
 314                }
 315                node_set_state(nid, N_NORMAL_MEMORY);
 316                free_area_init_node(nid, zones_size, start_pfn, NULL);
 317        }
 318
 319        /* Initialize the kernel's ZERO_PGE. */
 320        memset((void *)ZERO_PGE, 0, PAGE_SIZE);
 321}
 322