linux/arch/arc/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * vineetg: May 2011
   9 *  -Folded PAGE_PRESENT (used by VM) and PAGE_VALID (used by MMU) into 1.
  10 *     They are semantically the same although in different contexts
  11 *     VALID marks a TLB entry exists and it will only happen if PRESENT
  12 *  - Utilise some unused free bits to confine PTE flags to 12 bits
  13 *     This is a must for 4k pg-sz
  14 *
  15 * vineetg: Mar 2011 - changes to accomodate MMU TLB Page Descriptor mods
  16 *  -TLB Locking never really existed, except for initial specs
  17 *  -SILENT_xxx not needed for our port
  18 *  -Per my request, MMU V3 changes the layout of some of the bits
  19 *     to avoid a few shifts in TLB Miss handlers.
  20 *
  21 * vineetg: April 2010
  22 *  -PGD entry no longer contains any flags. If empty it is 0, otherwise has
  23 *   Pg-Tbl ptr. Thus pmd_present(), pmd_valid(), pmd_set( ) become simpler
  24 *
  25 * vineetg: April 2010
  26 *  -Switched form 8:11:13 split for page table lookup to 11:8:13
  27 *  -this speeds up page table allocation itself as we now have to memset 1K
  28 *    instead of 8k per page table.
  29 * -TODO: Right now page table alloc is 8K and rest 7K is unused
  30 *    need to optimise it
  31 *
  32 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
  33 */
  34
  35#ifndef _ASM_ARC_PGTABLE_H
  36#define _ASM_ARC_PGTABLE_H
  37
  38#include <asm/page.h>
  39#include <asm/mmu.h>
  40#include <asm-generic/pgtable-nopmd.h>
  41
  42/**************************************************************************
  43 * Page Table Flags
  44 *
  45 * ARC700 MMU only deals with softare managed TLB entries.
  46 * Page Tables are purely for Linux VM's consumption and the bits below are
  47 * suited to that (uniqueness). Hence some are not implemented in the TLB and
  48 * some have different value in TLB.
  49 * e.g. MMU v2: K_READ bit is 8 and so is GLOBAL (possible becoz they live in
  50 *      seperate PD0 and PD1, which combined forms a translation entry)
  51 *      while for PTE perspective, they are 8 and 9 respectively
  52 * with MMU v3: Most bits (except SHARED) represent the exact hardware pos
  53 *      (saves some bit shift ops in TLB Miss hdlrs)
  54 */
  55
  56#if (CONFIG_ARC_MMU_VER <= 2)
  57
  58#define _PAGE_ACCESSED      (1<<1)      /* Page is accessed (S) */
  59#define _PAGE_CACHEABLE     (1<<2)      /* Page is cached (H) */
  60#define _PAGE_U_EXECUTE     (1<<3)      /* Page has user execute perm (H) */
  61#define _PAGE_U_WRITE       (1<<4)      /* Page has user write perm (H) */
  62#define _PAGE_U_READ        (1<<5)      /* Page has user read perm (H) */
  63#define _PAGE_K_EXECUTE     (1<<6)      /* Page has kernel execute perm (H) */
  64#define _PAGE_K_WRITE       (1<<7)      /* Page has kernel write perm (H) */
  65#define _PAGE_K_READ        (1<<8)      /* Page has kernel perm (H) */
  66#define _PAGE_GLOBAL        (1<<9)      /* Page is global (H) */
  67#define _PAGE_MODIFIED      (1<<10)     /* Page modified (dirty) (S) */
  68#define _PAGE_FILE          (1<<10)     /* page cache/ swap (S) */
  69#define _PAGE_PRESENT       (1<<11)     /* TLB entry is valid (H) */
  70
  71#else
  72
  73/* PD1 */
  74#define _PAGE_CACHEABLE     (1<<0)      /* Page is cached (H) */
  75#define _PAGE_U_EXECUTE     (1<<1)      /* Page has user execute perm (H) */
  76#define _PAGE_U_WRITE       (1<<2)      /* Page has user write perm (H) */
  77#define _PAGE_U_READ        (1<<3)      /* Page has user read perm (H) */
  78#define _PAGE_K_EXECUTE     (1<<4)      /* Page has kernel execute perm (H) */
  79#define _PAGE_K_WRITE       (1<<5)      /* Page has kernel write perm (H) */
  80#define _PAGE_K_READ        (1<<6)      /* Page has kernel perm (H) */
  81#define _PAGE_ACCESSED      (1<<7)      /* Page is accessed (S) */
  82
  83/* PD0 */
  84#define _PAGE_GLOBAL        (1<<8)      /* Page is global (H) */
  85#define _PAGE_PRESENT       (1<<9)      /* TLB entry is valid (H) */
  86#define _PAGE_SHARED_CODE   (1<<10)     /* Shared Code page with cmn vaddr
  87                                           usable for shared TLB entries (H) */
  88
  89#define _PAGE_MODIFIED      (1<<11)     /* Page modified (dirty) (S) */
  90#define _PAGE_FILE          (1<<12)     /* page cache/ swap (S) */
  91
  92#define _PAGE_SHARED_CODE_H (1<<31)     /* Hardware counterpart of above */
  93#endif
  94
  95/* Kernel allowed all permissions for all pages */
  96#define _K_PAGE_PERMS  (_PAGE_K_EXECUTE | _PAGE_K_WRITE | _PAGE_K_READ | \
  97                        _PAGE_GLOBAL | _PAGE_PRESENT)
  98
  99#ifdef CONFIG_ARC_CACHE_PAGES
 100#define _PAGE_DEF_CACHEABLE _PAGE_CACHEABLE
 101#else
 102#define _PAGE_DEF_CACHEABLE (0)
 103#endif
 104
 105/* Helper for every "user" page
 106 * -kernel can R/W/X
 107 * -by default cached, unless config otherwise
 108 * -present in memory
 109 */
 110#define ___DEF (_PAGE_PRESENT | _PAGE_DEF_CACHEABLE)
 111
 112#define _PAGE_READ      (_PAGE_U_READ    | _PAGE_K_READ)
 113#define _PAGE_WRITE     (_PAGE_U_WRITE   | _PAGE_K_WRITE)
 114#define _PAGE_EXECUTE   (_PAGE_U_EXECUTE | _PAGE_K_EXECUTE)
 115
 116/* Set of bits not changed in pte_modify */
 117#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED)
 118
 119/* More Abbrevaited helpers */
 120#define PAGE_U_NONE     __pgprot(___DEF)
 121#define PAGE_U_R        __pgprot(___DEF | _PAGE_READ)
 122#define PAGE_U_W_R      __pgprot(___DEF | _PAGE_READ | _PAGE_WRITE)
 123#define PAGE_U_X_R      __pgprot(___DEF | _PAGE_READ | _PAGE_EXECUTE)
 124#define PAGE_U_X_W_R    __pgprot(___DEF | _PAGE_READ | _PAGE_WRITE | \
 125                                                       _PAGE_EXECUTE)
 126
 127#define PAGE_SHARED     PAGE_U_W_R
 128
 129/* While kernel runs out of unstrslated space, vmalloc/modules use a chunk of
 130 * kernel vaddr space - visible in all addr spaces, but kernel mode only
 131 * Thus Global, all-kernel-access, no-user-access, cached
 132 */
 133#define PAGE_KERNEL          __pgprot(_K_PAGE_PERMS | _PAGE_DEF_CACHEABLE)
 134
 135/* ioremap */
 136#define PAGE_KERNEL_NO_CACHE __pgprot(_K_PAGE_PERMS)
 137
 138/* Masks for actual TLB "PD"s */
 139#define PTE_BITS_IN_PD0 (_PAGE_GLOBAL | _PAGE_PRESENT)
 140#define PTE_BITS_IN_PD1 (PAGE_MASK | _PAGE_CACHEABLE | \
 141                         _PAGE_U_EXECUTE | _PAGE_U_WRITE | _PAGE_U_READ | \
 142                         _PAGE_K_EXECUTE | _PAGE_K_WRITE | _PAGE_K_READ)
 143
 144/**************************************************************************
 145 * Mapping of vm_flags (Generic VM) to PTE flags (arch specific)
 146 *
 147 * Certain cases have 1:1 mapping
 148 *  e.g. __P101 means VM_READ, VM_EXEC and !VM_SHARED
 149 *       which directly corresponds to  PAGE_U_X_R
 150 *
 151 * Other rules which cause the divergence from 1:1 mapping
 152 *
 153 *  1. Although ARC700 can do exclusive execute/write protection (meaning R
 154 *     can be tracked independet of X/W unlike some other CPUs), still to
 155 *     keep things consistent with other archs:
 156 *      -Write implies Read:   W => R
 157 *      -Execute implies Read: X => R
 158 *
 159 *  2. Pvt Writable doesn't have Write Enabled initially: Pvt-W => !W
 160 *     This is to enable COW mechanism
 161 */
 162        /* xwr */
 163#define __P000  PAGE_U_NONE
 164#define __P001  PAGE_U_R
 165#define __P010  PAGE_U_R        /* Pvt-W => !W */
 166#define __P011  PAGE_U_R        /* Pvt-W => !W */
 167#define __P100  PAGE_U_X_R      /* X => R */
 168#define __P101  PAGE_U_X_R
 169#define __P110  PAGE_U_X_R      /* Pvt-W => !W and X => R */
 170#define __P111  PAGE_U_X_R      /* Pvt-W => !W */
 171
 172#define __S000  PAGE_U_NONE
 173#define __S001  PAGE_U_R
 174#define __S010  PAGE_U_W_R      /* W => R */
 175#define __S011  PAGE_U_W_R
 176#define __S100  PAGE_U_X_R      /* X => R */
 177#define __S101  PAGE_U_X_R
 178#define __S110  PAGE_U_X_W_R    /* X => R */
 179#define __S111  PAGE_U_X_W_R
 180
 181/****************************************************************
 182 * Page Table Lookup split
 183 *
 184 * We implement 2 tier paging and since this is all software, we are free
 185 * to customize the span of a PGD / PTE entry to suit us
 186 *
 187 *                      32 bit virtual address
 188 * -------------------------------------------------------
 189 * | BITS_FOR_PGD    |  BITS_FOR_PTE    |  BITS_IN_PAGE  |
 190 * -------------------------------------------------------
 191 *       |                  |                |
 192 *       |                  |                --> off in page frame
 193 *       |                  |
 194 *       |                  ---> index into Page Table
 195 *       |
 196 *       ----> index into Page Directory
 197 */
 198
 199#define BITS_IN_PAGE    PAGE_SHIFT
 200
 201/* Optimal Sizing of Pg Tbl - based on MMU page size */
 202#if defined(CONFIG_ARC_PAGE_SIZE_8K)
 203#define BITS_FOR_PTE    8
 204#elif defined(CONFIG_ARC_PAGE_SIZE_16K)
 205#define BITS_FOR_PTE    8
 206#elif defined(CONFIG_ARC_PAGE_SIZE_4K)
 207#define BITS_FOR_PTE    9
 208#endif
 209
 210#define BITS_FOR_PGD    (32 - BITS_FOR_PTE - BITS_IN_PAGE)
 211
 212#define PGDIR_SHIFT     (BITS_FOR_PTE + BITS_IN_PAGE)
 213#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)    /* vaddr span, not PDG sz */
 214#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 215
 216#ifdef __ASSEMBLY__
 217#define PTRS_PER_PTE    (1 << BITS_FOR_PTE)
 218#define PTRS_PER_PGD    (1 << BITS_FOR_PGD)
 219#else
 220#define PTRS_PER_PTE    (1UL << BITS_FOR_PTE)
 221#define PTRS_PER_PGD    (1UL << BITS_FOR_PGD)
 222#endif
 223/*
 224 * Number of entries a user land program use.
 225 * TASK_SIZE is the maximum vaddr that can be used by a userland program.
 226 */
 227#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
 228
 229/*
 230 * No special requirements for lowest virtual address we permit any user space
 231 * mapping to be mapped at.
 232 */
 233#define FIRST_USER_ADDRESS      0
 234
 235
 236/****************************************************************
 237 * Bucket load of VM Helpers
 238 */
 239
 240#ifndef __ASSEMBLY__
 241
 242#define pte_ERROR(e) \
 243        pr_crit("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 244#define pgd_ERROR(e) \
 245        pr_crit("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 246
 247/* the zero page used for uninitialized and anonymous pages */
 248extern char empty_zero_page[PAGE_SIZE];
 249#define ZERO_PAGE(vaddr)        (virt_to_page(empty_zero_page))
 250
 251#define pte_unmap(pte)          do { } while (0)
 252#define pte_unmap_nested(pte)           do { } while (0)
 253
 254#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
 255#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
 256
 257/* find the page descriptor of the Page Tbl ref by PMD entry */
 258#define pmd_page(pmd)           virt_to_page(pmd_val(pmd) & PAGE_MASK)
 259
 260/* find the logical addr (phy for ARC) of the Page Tbl ref by PMD entry */
 261#define pmd_page_vaddr(pmd)     (pmd_val(pmd) & PAGE_MASK)
 262
 263/* In a 2 level sys, setup the PGD entry with PTE value */
 264static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
 265{
 266        pmd_val(*pmdp) = (unsigned long)ptep;
 267}
 268
 269#define pte_none(x)                     (!pte_val(x))
 270#define pte_present(x)                  (pte_val(x) & _PAGE_PRESENT)
 271#define pte_clear(mm, addr, ptep)       set_pte_at(mm, addr, ptep, __pte(0))
 272
 273#define pmd_none(x)                     (!pmd_val(x))
 274#define pmd_bad(x)                      ((pmd_val(x) & ~PAGE_MASK))
 275#define pmd_present(x)                  (pmd_val(x))
 276#define pmd_clear(xp)                   do { pmd_val(*(xp)) = 0; } while (0)
 277
 278#define pte_page(x) (mem_map + \
 279                (unsigned long)(((pte_val(x) - PAGE_OFFSET) >> PAGE_SHIFT)))
 280
 281#define mk_pte(page, pgprot)                                            \
 282({                                                                      \
 283        pte_t pte;                                                      \
 284        pte_val(pte) = __pa(page_address(page)) + pgprot_val(pgprot);   \
 285        pte;                                                            \
 286})
 287
 288/* TBD: Non linear mapping stuff */
 289static inline int pte_file(pte_t pte)
 290{
 291        return pte_val(pte) & _PAGE_FILE;
 292}
 293
 294#define PTE_FILE_MAX_BITS       30
 295#define pgoff_to_pte(x)         __pte(x)
 296#define pte_to_pgoff(x)         (pte_val(x) >> 2)
 297#define pte_pfn(pte)            (pte_val(pte) >> PAGE_SHIFT)
 298#define pfn_pte(pfn, prot)      (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
 299#define __pte_index(addr)       (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 300
 301/*
 302 * pte_offset gets a @ptr to PMD entry (PGD in our 2-tier paging system)
 303 * and returns ptr to PTE entry corresponding to @addr
 304 */
 305#define pte_offset(dir, addr) ((pte_t *)(pmd_page_vaddr(*dir)) +\
 306                                         __pte_index(addr))
 307
 308/* No mapping of Page Tables in high mem etc, so following same as above */
 309#define pte_offset_kernel(dir, addr)            pte_offset(dir, addr)
 310#define pte_offset_map(dir, addr)               pte_offset(dir, addr)
 311
 312/* Zoo of pte_xxx function */
 313#define pte_read(pte)           (pte_val(pte) & _PAGE_READ)
 314#define pte_write(pte)          (pte_val(pte) & _PAGE_WRITE)
 315#define pte_dirty(pte)          (pte_val(pte) & _PAGE_MODIFIED)
 316#define pte_young(pte)          (pte_val(pte) & _PAGE_ACCESSED)
 317#define pte_special(pte)        (0)
 318
 319#define PTE_BIT_FUNC(fn, op) \
 320        static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
 321
 322PTE_BIT_FUNC(wrprotect, &= ~(_PAGE_WRITE));
 323PTE_BIT_FUNC(mkwrite,   |= (_PAGE_WRITE));
 324PTE_BIT_FUNC(mkclean,   &= ~(_PAGE_MODIFIED));
 325PTE_BIT_FUNC(mkdirty,   |= (_PAGE_MODIFIED));
 326PTE_BIT_FUNC(mkold,     &= ~(_PAGE_ACCESSED));
 327PTE_BIT_FUNC(mkyoung,   |= (_PAGE_ACCESSED));
 328PTE_BIT_FUNC(exprotect, &= ~(_PAGE_EXECUTE));
 329PTE_BIT_FUNC(mkexec,    |= (_PAGE_EXECUTE));
 330
 331static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 332
 333static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 334{
 335        return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 336}
 337
 338/* Macro to mark a page protection as uncacheable */
 339#define pgprot_noncached(prot)  (__pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE))
 340
 341static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 342                              pte_t *ptep, pte_t pteval)
 343{
 344        set_pte(ptep, pteval);
 345}
 346
 347/*
 348 * All kernel related VM pages are in init's mm.
 349 */
 350#define pgd_offset_k(address)   pgd_offset(&init_mm, address)
 351#define pgd_index(addr)         ((addr) >> PGDIR_SHIFT)
 352#define pgd_offset(mm, addr)    (((mm)->pgd)+pgd_index(addr))
 353
 354/*
 355 * Macro to quickly access the PGD entry, utlising the fact that some
 356 * arch may cache the pointer to Page Directory of "current" task
 357 * in a MMU register
 358 *
 359 * Thus task->mm->pgd (3 pointer dereferences, cache misses etc simply
 360 * becomes read a register
 361 *
 362 * ********CAUTION*******:
 363 * Kernel code might be dealing with some mm_struct of NON "current"
 364 * Thus use this macro only when you are certain that "current" is current
 365 * e.g. when dealing with signal frame setup code etc
 366 */
 367#ifndef CONFIG_SMP
 368#define pgd_offset_fast(mm, addr)       \
 369({                                      \
 370        pgd_t *pgd_base = (pgd_t *) read_aux_reg(ARC_REG_SCRATCH_DATA0);  \
 371        pgd_base + pgd_index(addr);     \
 372})
 373#else
 374#define pgd_offset_fast(mm, addr)       pgd_offset(mm, addr)
 375#endif
 376
 377extern void paging_init(void);
 378extern pgd_t swapper_pg_dir[] __aligned(PAGE_SIZE);
 379void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
 380                      pte_t *ptep);
 381
 382/* Encode swap {type,off} tuple into PTE
 383 * We reserve 13 bits for 5-bit @type, keeping bits 12-5 zero, ensuring that
 384 * both PAGE_FILE and PAGE_PRESENT are zero in a PTE holding swap "identifier"
 385 */
 386#define __swp_entry(type, off)  ((swp_entry_t) { \
 387                                        ((type) & 0x1f) | ((off) << 13) })
 388
 389/* Decode a PTE containing swap "identifier "into constituents */
 390#define __swp_type(pte_lookalike)       (((pte_lookalike).val) & 0x1f)
 391#define __swp_offset(pte_lookalike)     ((pte_lookalike).val << 13)
 392
 393/* NOPs, to keep generic kernel happy */
 394#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 395#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
 396
 397#define kern_addr_valid(addr)   (1)
 398
 399/*
 400 * remap a physical page `pfn' of size `size' with page protection `prot'
 401 * into virtual address `from'
 402 */
 403#include <asm-generic/pgtable.h>
 404
 405/* to cope with aliasing VIPT cache */
 406#define HAVE_ARCH_UNMAPPED_AREA
 407
 408/*
 409 * No page table caches to initialise
 410 */
 411#define pgtable_cache_init()   do { } while (0)
 412
 413#endif /* __ASSEMBLY__ */
 414
 415#endif
 416