linux/arch/arm/include/asm/pgtable-2level.h
<<
>>
Prefs
   1/*
   2 *  arch/arm/include/asm/pgtable-2level.h
   3 *
   4 *  Copyright (C) 1995-2002 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#ifndef _ASM_PGTABLE_2LEVEL_H
  11#define _ASM_PGTABLE_2LEVEL_H
  12
  13/*
  14 * Hardware-wise, we have a two level page table structure, where the first
  15 * level has 4096 entries, and the second level has 256 entries.  Each entry
  16 * is one 32-bit word.  Most of the bits in the second level entry are used
  17 * by hardware, and there aren't any "accessed" and "dirty" bits.
  18 *
  19 * Linux on the other hand has a three level page table structure, which can
  20 * be wrapped to fit a two level page table structure easily - using the PGD
  21 * and PTE only.  However, Linux also expects one "PTE" table per page, and
  22 * at least a "dirty" bit.
  23 *
  24 * Therefore, we tweak the implementation slightly - we tell Linux that we
  25 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  26 * hardware pointers to the second level.)  The second level contains two
  27 * hardware PTE tables arranged contiguously, preceded by Linux versions
  28 * which contain the state information Linux needs.  We, therefore, end up
  29 * with 512 entries in the "PTE" level.
  30 *
  31 * This leads to the page tables having the following layout:
  32 *
  33 *    pgd             pte
  34 * |        |
  35 * +--------+
  36 * |        |       +------------+ +0
  37 * +- - - - +       | Linux pt 0 |
  38 * |        |       +------------+ +1024
  39 * +--------+ +0    | Linux pt 1 |
  40 * |        |-----> +------------+ +2048
  41 * +- - - - + +4    |  h/w pt 0  |
  42 * |        |-----> +------------+ +3072
  43 * +--------+ +8    |  h/w pt 1  |
  44 * |        |       +------------+ +4096
  45 *
  46 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  47 * PTE_xxx for definitions of bits appearing in the "h/w pt".
  48 *
  49 * PMD_xxx definitions refer to bits in the first level page table.
  50 *
  51 * The "dirty" bit is emulated by only granting hardware write permission
  52 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
  53 * means that a write to a clean page will cause a permission fault, and
  54 * the Linux MM layer will mark the page dirty via handle_pte_fault().
  55 * For the hardware to notice the permission change, the TLB entry must
  56 * be flushed, and ptep_set_access_flags() does that for us.
  57 *
  58 * The "accessed" or "young" bit is emulated by a similar method; we only
  59 * allow accesses to the page if the "young" bit is set.  Accesses to the
  60 * page will cause a fault, and handle_pte_fault() will set the young bit
  61 * for us as long as the page is marked present in the corresponding Linux
  62 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
  63 * up to date.
  64 *
  65 * However, when the "young" bit is cleared, we deny access to the page
  66 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
  67 * for us in this case, which means the TLB will retain the transation
  68 * until either the TLB entry is evicted under pressure, or a context
  69 * switch which changes the user space mapping occurs.
  70 */
  71#define PTRS_PER_PTE            512
  72#define PTRS_PER_PMD            1
  73#define PTRS_PER_PGD            2048
  74
  75#define PTE_HWTABLE_PTRS        (PTRS_PER_PTE)
  76#define PTE_HWTABLE_OFF         (PTE_HWTABLE_PTRS * sizeof(pte_t))
  77#define PTE_HWTABLE_SIZE        (PTRS_PER_PTE * sizeof(u32))
  78
  79/*
  80 * PMD_SHIFT determines the size of the area a second-level page table can map
  81 * PGDIR_SHIFT determines what a third-level page table entry can map
  82 */
  83#define PMD_SHIFT               21
  84#define PGDIR_SHIFT             21
  85
  86#define PMD_SIZE                (1UL << PMD_SHIFT)
  87#define PMD_MASK                (~(PMD_SIZE-1))
  88#define PGDIR_SIZE              (1UL << PGDIR_SHIFT)
  89#define PGDIR_MASK              (~(PGDIR_SIZE-1))
  90
  91/*
  92 * section address mask and size definitions.
  93 */
  94#define SECTION_SHIFT           20
  95#define SECTION_SIZE            (1UL << SECTION_SHIFT)
  96#define SECTION_MASK            (~(SECTION_SIZE-1))
  97
  98/*
  99 * ARMv6 supersection address mask and size definitions.
 100 */
 101#define SUPERSECTION_SHIFT      24
 102#define SUPERSECTION_SIZE       (1UL << SUPERSECTION_SHIFT)
 103#define SUPERSECTION_MASK       (~(SUPERSECTION_SIZE-1))
 104
 105#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
 106
 107/*
 108 * "Linux" PTE definitions.
 109 *
 110 * We keep two sets of PTEs - the hardware and the linux version.
 111 * This allows greater flexibility in the way we map the Linux bits
 112 * onto the hardware tables, and allows us to have YOUNG and DIRTY
 113 * bits.
 114 *
 115 * The PTE table pointer refers to the hardware entries; the "Linux"
 116 * entries are stored 1024 bytes below.
 117 */
 118#define L_PTE_VALID             (_AT(pteval_t, 1) << 0)         /* Valid */
 119#define L_PTE_PRESENT           (_AT(pteval_t, 1) << 0)
 120#define L_PTE_YOUNG             (_AT(pteval_t, 1) << 1)
 121#define L_PTE_FILE              (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
 122#define L_PTE_DIRTY             (_AT(pteval_t, 1) << 6)
 123#define L_PTE_RDONLY            (_AT(pteval_t, 1) << 7)
 124#define L_PTE_USER              (_AT(pteval_t, 1) << 8)
 125#define L_PTE_XN                (_AT(pteval_t, 1) << 9)
 126#define L_PTE_SHARED            (_AT(pteval_t, 1) << 10)        /* shared(v6), coherent(xsc3) */
 127#define L_PTE_NONE              (_AT(pteval_t, 1) << 11)
 128
 129/*
 130 * These are the memory types, defined to be compatible with
 131 * pre-ARMv6 CPUs cacheable and bufferable bits:   XXCB
 132 */
 133#define L_PTE_MT_UNCACHED       (_AT(pteval_t, 0x00) << 2)      /* 0000 */
 134#define L_PTE_MT_BUFFERABLE     (_AT(pteval_t, 0x01) << 2)      /* 0001 */
 135#define L_PTE_MT_WRITETHROUGH   (_AT(pteval_t, 0x02) << 2)      /* 0010 */
 136#define L_PTE_MT_WRITEBACK      (_AT(pteval_t, 0x03) << 2)      /* 0011 */
 137#define L_PTE_MT_MINICACHE      (_AT(pteval_t, 0x06) << 2)      /* 0110 (sa1100, xscale) */
 138#define L_PTE_MT_WRITEALLOC     (_AT(pteval_t, 0x07) << 2)      /* 0111 */
 139#define L_PTE_MT_DEV_SHARED     (_AT(pteval_t, 0x04) << 2)      /* 0100 */
 140#define L_PTE_MT_DEV_NONSHARED  (_AT(pteval_t, 0x0c) << 2)      /* 1100 */
 141#define L_PTE_MT_DEV_WC         (_AT(pteval_t, 0x09) << 2)      /* 1001 */
 142#define L_PTE_MT_DEV_CACHED     (_AT(pteval_t, 0x0b) << 2)      /* 1011 */
 143#define L_PTE_MT_MASK           (_AT(pteval_t, 0x0f) << 2)
 144
 145#ifndef __ASSEMBLY__
 146
 147/*
 148 * The "pud_xxx()" functions here are trivial when the pmd is folded into
 149 * the pud: the pud entry is never bad, always exists, and can't be set or
 150 * cleared.
 151 */
 152#define pud_none(pud)           (0)
 153#define pud_bad(pud)            (0)
 154#define pud_present(pud)        (1)
 155#define pud_clear(pudp)         do { } while (0)
 156#define set_pud(pud,pudp)       do { } while (0)
 157
 158static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
 159{
 160        return (pmd_t *)pud;
 161}
 162
 163#define pmd_bad(pmd)            (pmd_val(pmd) & 2)
 164
 165#define copy_pmd(pmdpd,pmdps)           \
 166        do {                            \
 167                pmdpd[0] = pmdps[0];    \
 168                pmdpd[1] = pmdps[1];    \
 169                flush_pmd_entry(pmdpd); \
 170        } while (0)
 171
 172#define pmd_clear(pmdp)                 \
 173        do {                            \
 174                pmdp[0] = __pmd(0);     \
 175                pmdp[1] = __pmd(0);     \
 176                clean_pmd_entry(pmdp);  \
 177        } while (0)
 178
 179/* we don't need complex calculations here as the pmd is folded into the pgd */
 180#define pmd_addr_end(addr,end) (end)
 181
 182#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
 183
 184#endif /* __ASSEMBLY__ */
 185
 186#endif /* _ASM_PGTABLE_2LEVEL_H */
 187