linux/arch/arm/kvm/arm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu.h>
  20#include <linux/errno.h>
  21#include <linux/err.h>
  22#include <linux/kvm_host.h>
  23#include <linux/module.h>
  24#include <linux/vmalloc.h>
  25#include <linux/fs.h>
  26#include <linux/mman.h>
  27#include <linux/sched.h>
  28#include <linux/kvm.h>
  29#include <trace/events/kvm.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include "trace.h"
  33
  34#include <asm/uaccess.h>
  35#include <asm/ptrace.h>
  36#include <asm/mman.h>
  37#include <asm/tlbflush.h>
  38#include <asm/cacheflush.h>
  39#include <asm/virt.h>
  40#include <asm/kvm_arm.h>
  41#include <asm/kvm_asm.h>
  42#include <asm/kvm_mmu.h>
  43#include <asm/kvm_emulate.h>
  44#include <asm/kvm_coproc.h>
  45#include <asm/kvm_psci.h>
  46
  47#ifdef REQUIRES_VIRT
  48__asm__(".arch_extension        virt");
  49#endif
  50
  51static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  52static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
  53static unsigned long hyp_default_vectors;
  54
  55/* Per-CPU variable containing the currently running vcpu. */
  56static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  57
  58/* The VMID used in the VTTBR */
  59static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  60static u8 kvm_next_vmid;
  61static DEFINE_SPINLOCK(kvm_vmid_lock);
  62
  63static bool vgic_present;
  64
  65static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  66{
  67        BUG_ON(preemptible());
  68        __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
  69}
  70
  71/**
  72 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  73 * Must be called from non-preemptible context
  74 */
  75struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  76{
  77        BUG_ON(preemptible());
  78        return __get_cpu_var(kvm_arm_running_vcpu);
  79}
  80
  81/**
  82 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  83 */
  84struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
  85{
  86        return &kvm_arm_running_vcpu;
  87}
  88
  89int kvm_arch_hardware_enable(void *garbage)
  90{
  91        return 0;
  92}
  93
  94int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  95{
  96        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  97}
  98
  99void kvm_arch_hardware_disable(void *garbage)
 100{
 101}
 102
 103int kvm_arch_hardware_setup(void)
 104{
 105        return 0;
 106}
 107
 108void kvm_arch_hardware_unsetup(void)
 109{
 110}
 111
 112void kvm_arch_check_processor_compat(void *rtn)
 113{
 114        *(int *)rtn = 0;
 115}
 116
 117void kvm_arch_sync_events(struct kvm *kvm)
 118{
 119}
 120
 121/**
 122 * kvm_arch_init_vm - initializes a VM data structure
 123 * @kvm:        pointer to the KVM struct
 124 */
 125int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 126{
 127        int ret = 0;
 128
 129        if (type)
 130                return -EINVAL;
 131
 132        ret = kvm_alloc_stage2_pgd(kvm);
 133        if (ret)
 134                goto out_fail_alloc;
 135
 136        ret = create_hyp_mappings(kvm, kvm + 1);
 137        if (ret)
 138                goto out_free_stage2_pgd;
 139
 140        /* Mark the initial VMID generation invalid */
 141        kvm->arch.vmid_gen = 0;
 142
 143        return ret;
 144out_free_stage2_pgd:
 145        kvm_free_stage2_pgd(kvm);
 146out_fail_alloc:
 147        return ret;
 148}
 149
 150int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 151{
 152        return VM_FAULT_SIGBUS;
 153}
 154
 155void kvm_arch_free_memslot(struct kvm_memory_slot *free,
 156                           struct kvm_memory_slot *dont)
 157{
 158}
 159
 160int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
 161{
 162        return 0;
 163}
 164
 165/**
 166 * kvm_arch_destroy_vm - destroy the VM data structure
 167 * @kvm:        pointer to the KVM struct
 168 */
 169void kvm_arch_destroy_vm(struct kvm *kvm)
 170{
 171        int i;
 172
 173        kvm_free_stage2_pgd(kvm);
 174
 175        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 176                if (kvm->vcpus[i]) {
 177                        kvm_arch_vcpu_free(kvm->vcpus[i]);
 178                        kvm->vcpus[i] = NULL;
 179                }
 180        }
 181}
 182
 183int kvm_dev_ioctl_check_extension(long ext)
 184{
 185        int r;
 186        switch (ext) {
 187        case KVM_CAP_IRQCHIP:
 188                r = vgic_present;
 189                break;
 190        case KVM_CAP_USER_MEMORY:
 191        case KVM_CAP_SYNC_MMU:
 192        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 193        case KVM_CAP_ONE_REG:
 194        case KVM_CAP_ARM_PSCI:
 195                r = 1;
 196                break;
 197        case KVM_CAP_COALESCED_MMIO:
 198                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 199                break;
 200        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 201                r = 1;
 202                break;
 203        case KVM_CAP_NR_VCPUS:
 204                r = num_online_cpus();
 205                break;
 206        case KVM_CAP_MAX_VCPUS:
 207                r = KVM_MAX_VCPUS;
 208                break;
 209        default:
 210                r = kvm_arch_dev_ioctl_check_extension(ext);
 211                break;
 212        }
 213        return r;
 214}
 215
 216long kvm_arch_dev_ioctl(struct file *filp,
 217                        unsigned int ioctl, unsigned long arg)
 218{
 219        return -EINVAL;
 220}
 221
 222int kvm_arch_prepare_memory_region(struct kvm *kvm,
 223                                   struct kvm_memory_slot *memslot,
 224                                   struct kvm_userspace_memory_region *mem,
 225                                   enum kvm_mr_change change)
 226{
 227        return 0;
 228}
 229
 230void kvm_arch_commit_memory_region(struct kvm *kvm,
 231                                   struct kvm_userspace_memory_region *mem,
 232                                   const struct kvm_memory_slot *old,
 233                                   enum kvm_mr_change change)
 234{
 235}
 236
 237void kvm_arch_flush_shadow_all(struct kvm *kvm)
 238{
 239}
 240
 241void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 242                                   struct kvm_memory_slot *slot)
 243{
 244}
 245
 246struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 247{
 248        int err;
 249        struct kvm_vcpu *vcpu;
 250
 251        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 252        if (!vcpu) {
 253                err = -ENOMEM;
 254                goto out;
 255        }
 256
 257        err = kvm_vcpu_init(vcpu, kvm, id);
 258        if (err)
 259                goto free_vcpu;
 260
 261        err = create_hyp_mappings(vcpu, vcpu + 1);
 262        if (err)
 263                goto vcpu_uninit;
 264
 265        return vcpu;
 266vcpu_uninit:
 267        kvm_vcpu_uninit(vcpu);
 268free_vcpu:
 269        kmem_cache_free(kvm_vcpu_cache, vcpu);
 270out:
 271        return ERR_PTR(err);
 272}
 273
 274int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 275{
 276        return 0;
 277}
 278
 279void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 280{
 281        kvm_mmu_free_memory_caches(vcpu);
 282        kvm_timer_vcpu_terminate(vcpu);
 283        kmem_cache_free(kvm_vcpu_cache, vcpu);
 284}
 285
 286void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 287{
 288        kvm_arch_vcpu_free(vcpu);
 289}
 290
 291int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 292{
 293        return 0;
 294}
 295
 296int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 297{
 298        int ret;
 299
 300        /* Force users to call KVM_ARM_VCPU_INIT */
 301        vcpu->arch.target = -1;
 302
 303        /* Set up VGIC */
 304        ret = kvm_vgic_vcpu_init(vcpu);
 305        if (ret)
 306                return ret;
 307
 308        /* Set up the timer */
 309        kvm_timer_vcpu_init(vcpu);
 310
 311        return 0;
 312}
 313
 314void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
 315{
 316}
 317
 318void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 319{
 320        vcpu->cpu = cpu;
 321        vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
 322
 323        /*
 324         * Check whether this vcpu requires the cache to be flushed on
 325         * this physical CPU. This is a consequence of doing dcache
 326         * operations by set/way on this vcpu. We do it here to be in
 327         * a non-preemptible section.
 328         */
 329        if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
 330                flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
 331
 332        kvm_arm_set_running_vcpu(vcpu);
 333}
 334
 335void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 336{
 337        kvm_arm_set_running_vcpu(NULL);
 338}
 339
 340int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 341                                        struct kvm_guest_debug *dbg)
 342{
 343        return -EINVAL;
 344}
 345
 346
 347int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 348                                    struct kvm_mp_state *mp_state)
 349{
 350        return -EINVAL;
 351}
 352
 353int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 354                                    struct kvm_mp_state *mp_state)
 355{
 356        return -EINVAL;
 357}
 358
 359/**
 360 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 361 * @v:          The VCPU pointer
 362 *
 363 * If the guest CPU is not waiting for interrupts or an interrupt line is
 364 * asserted, the CPU is by definition runnable.
 365 */
 366int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 367{
 368        return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
 369}
 370
 371/* Just ensure a guest exit from a particular CPU */
 372static void exit_vm_noop(void *info)
 373{
 374}
 375
 376void force_vm_exit(const cpumask_t *mask)
 377{
 378        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 379}
 380
 381/**
 382 * need_new_vmid_gen - check that the VMID is still valid
 383 * @kvm: The VM's VMID to checkt
 384 *
 385 * return true if there is a new generation of VMIDs being used
 386 *
 387 * The hardware supports only 256 values with the value zero reserved for the
 388 * host, so we check if an assigned value belongs to a previous generation,
 389 * which which requires us to assign a new value. If we're the first to use a
 390 * VMID for the new generation, we must flush necessary caches and TLBs on all
 391 * CPUs.
 392 */
 393static bool need_new_vmid_gen(struct kvm *kvm)
 394{
 395        return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 396}
 397
 398/**
 399 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 400 * @kvm The guest that we are about to run
 401 *
 402 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 403 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 404 * caches and TLBs.
 405 */
 406static void update_vttbr(struct kvm *kvm)
 407{
 408        phys_addr_t pgd_phys;
 409        u64 vmid;
 410
 411        if (!need_new_vmid_gen(kvm))
 412                return;
 413
 414        spin_lock(&kvm_vmid_lock);
 415
 416        /*
 417         * We need to re-check the vmid_gen here to ensure that if another vcpu
 418         * already allocated a valid vmid for this vm, then this vcpu should
 419         * use the same vmid.
 420         */
 421        if (!need_new_vmid_gen(kvm)) {
 422                spin_unlock(&kvm_vmid_lock);
 423                return;
 424        }
 425
 426        /* First user of a new VMID generation? */
 427        if (unlikely(kvm_next_vmid == 0)) {
 428                atomic64_inc(&kvm_vmid_gen);
 429                kvm_next_vmid = 1;
 430
 431                /*
 432                 * On SMP we know no other CPUs can use this CPU's or each
 433                 * other's VMID after force_vm_exit returns since the
 434                 * kvm_vmid_lock blocks them from reentry to the guest.
 435                 */
 436                force_vm_exit(cpu_all_mask);
 437                /*
 438                 * Now broadcast TLB + ICACHE invalidation over the inner
 439                 * shareable domain to make sure all data structures are
 440                 * clean.
 441                 */
 442                kvm_call_hyp(__kvm_flush_vm_context);
 443        }
 444
 445        kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 446        kvm->arch.vmid = kvm_next_vmid;
 447        kvm_next_vmid++;
 448
 449        /* update vttbr to be used with the new vmid */
 450        pgd_phys = virt_to_phys(kvm->arch.pgd);
 451        vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
 452        kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
 453        kvm->arch.vttbr |= vmid;
 454
 455        spin_unlock(&kvm_vmid_lock);
 456}
 457
 458static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 459{
 460        if (likely(vcpu->arch.has_run_once))
 461                return 0;
 462
 463        vcpu->arch.has_run_once = true;
 464
 465        /*
 466         * Initialize the VGIC before running a vcpu the first time on
 467         * this VM.
 468         */
 469        if (irqchip_in_kernel(vcpu->kvm) &&
 470            unlikely(!vgic_initialized(vcpu->kvm))) {
 471                int ret = kvm_vgic_init(vcpu->kvm);
 472                if (ret)
 473                        return ret;
 474        }
 475
 476        /*
 477         * Handle the "start in power-off" case by calling into the
 478         * PSCI code.
 479         */
 480        if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
 481                *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
 482                kvm_psci_call(vcpu);
 483        }
 484
 485        return 0;
 486}
 487
 488static void vcpu_pause(struct kvm_vcpu *vcpu)
 489{
 490        wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
 491
 492        wait_event_interruptible(*wq, !vcpu->arch.pause);
 493}
 494
 495static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 496{
 497        return vcpu->arch.target >= 0;
 498}
 499
 500/**
 501 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 502 * @vcpu:       The VCPU pointer
 503 * @run:        The kvm_run structure pointer used for userspace state exchange
 504 *
 505 * This function is called through the VCPU_RUN ioctl called from user space. It
 506 * will execute VM code in a loop until the time slice for the process is used
 507 * or some emulation is needed from user space in which case the function will
 508 * return with return value 0 and with the kvm_run structure filled in with the
 509 * required data for the requested emulation.
 510 */
 511int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 512{
 513        int ret;
 514        sigset_t sigsaved;
 515
 516        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 517                return -ENOEXEC;
 518
 519        ret = kvm_vcpu_first_run_init(vcpu);
 520        if (ret)
 521                return ret;
 522
 523        if (run->exit_reason == KVM_EXIT_MMIO) {
 524                ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 525                if (ret)
 526                        return ret;
 527        }
 528
 529        if (vcpu->sigset_active)
 530                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 531
 532        ret = 1;
 533        run->exit_reason = KVM_EXIT_UNKNOWN;
 534        while (ret > 0) {
 535                /*
 536                 * Check conditions before entering the guest
 537                 */
 538                cond_resched();
 539
 540                update_vttbr(vcpu->kvm);
 541
 542                if (vcpu->arch.pause)
 543                        vcpu_pause(vcpu);
 544
 545                kvm_vgic_flush_hwstate(vcpu);
 546                kvm_timer_flush_hwstate(vcpu);
 547
 548                local_irq_disable();
 549
 550                /*
 551                 * Re-check atomic conditions
 552                 */
 553                if (signal_pending(current)) {
 554                        ret = -EINTR;
 555                        run->exit_reason = KVM_EXIT_INTR;
 556                }
 557
 558                if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
 559                        local_irq_enable();
 560                        kvm_timer_sync_hwstate(vcpu);
 561                        kvm_vgic_sync_hwstate(vcpu);
 562                        continue;
 563                }
 564
 565                /**************************************************************
 566                 * Enter the guest
 567                 */
 568                trace_kvm_entry(*vcpu_pc(vcpu));
 569                kvm_guest_enter();
 570                vcpu->mode = IN_GUEST_MODE;
 571
 572                ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 573
 574                vcpu->mode = OUTSIDE_GUEST_MODE;
 575                vcpu->arch.last_pcpu = smp_processor_id();
 576                kvm_guest_exit();
 577                trace_kvm_exit(*vcpu_pc(vcpu));
 578                /*
 579                 * We may have taken a host interrupt in HYP mode (ie
 580                 * while executing the guest). This interrupt is still
 581                 * pending, as we haven't serviced it yet!
 582                 *
 583                 * We're now back in SVC mode, with interrupts
 584                 * disabled.  Enabling the interrupts now will have
 585                 * the effect of taking the interrupt again, in SVC
 586                 * mode this time.
 587                 */
 588                local_irq_enable();
 589
 590                /*
 591                 * Back from guest
 592                 *************************************************************/
 593
 594                kvm_timer_sync_hwstate(vcpu);
 595                kvm_vgic_sync_hwstate(vcpu);
 596
 597                ret = handle_exit(vcpu, run, ret);
 598        }
 599
 600        if (vcpu->sigset_active)
 601                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 602        return ret;
 603}
 604
 605static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 606{
 607        int bit_index;
 608        bool set;
 609        unsigned long *ptr;
 610
 611        if (number == KVM_ARM_IRQ_CPU_IRQ)
 612                bit_index = __ffs(HCR_VI);
 613        else /* KVM_ARM_IRQ_CPU_FIQ */
 614                bit_index = __ffs(HCR_VF);
 615
 616        ptr = (unsigned long *)&vcpu->arch.irq_lines;
 617        if (level)
 618                set = test_and_set_bit(bit_index, ptr);
 619        else
 620                set = test_and_clear_bit(bit_index, ptr);
 621
 622        /*
 623         * If we didn't change anything, no need to wake up or kick other CPUs
 624         */
 625        if (set == level)
 626                return 0;
 627
 628        /*
 629         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 630         * trigger a world-switch round on the running physical CPU to set the
 631         * virtual IRQ/FIQ fields in the HCR appropriately.
 632         */
 633        kvm_vcpu_kick(vcpu);
 634
 635        return 0;
 636}
 637
 638int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 639                          bool line_status)
 640{
 641        u32 irq = irq_level->irq;
 642        unsigned int irq_type, vcpu_idx, irq_num;
 643        int nrcpus = atomic_read(&kvm->online_vcpus);
 644        struct kvm_vcpu *vcpu = NULL;
 645        bool level = irq_level->level;
 646
 647        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 648        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 649        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 650
 651        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 652
 653        switch (irq_type) {
 654        case KVM_ARM_IRQ_TYPE_CPU:
 655                if (irqchip_in_kernel(kvm))
 656                        return -ENXIO;
 657
 658                if (vcpu_idx >= nrcpus)
 659                        return -EINVAL;
 660
 661                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 662                if (!vcpu)
 663                        return -EINVAL;
 664
 665                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 666                        return -EINVAL;
 667
 668                return vcpu_interrupt_line(vcpu, irq_num, level);
 669        case KVM_ARM_IRQ_TYPE_PPI:
 670                if (!irqchip_in_kernel(kvm))
 671                        return -ENXIO;
 672
 673                if (vcpu_idx >= nrcpus)
 674                        return -EINVAL;
 675
 676                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 677                if (!vcpu)
 678                        return -EINVAL;
 679
 680                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 681                        return -EINVAL;
 682
 683                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
 684        case KVM_ARM_IRQ_TYPE_SPI:
 685                if (!irqchip_in_kernel(kvm))
 686                        return -ENXIO;
 687
 688                if (irq_num < VGIC_NR_PRIVATE_IRQS ||
 689                    irq_num > KVM_ARM_IRQ_GIC_MAX)
 690                        return -EINVAL;
 691
 692                return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
 693        }
 694
 695        return -EINVAL;
 696}
 697
 698long kvm_arch_vcpu_ioctl(struct file *filp,
 699                         unsigned int ioctl, unsigned long arg)
 700{
 701        struct kvm_vcpu *vcpu = filp->private_data;
 702        void __user *argp = (void __user *)arg;
 703
 704        switch (ioctl) {
 705        case KVM_ARM_VCPU_INIT: {
 706                struct kvm_vcpu_init init;
 707
 708                if (copy_from_user(&init, argp, sizeof(init)))
 709                        return -EFAULT;
 710
 711                return kvm_vcpu_set_target(vcpu, &init);
 712
 713        }
 714        case KVM_SET_ONE_REG:
 715        case KVM_GET_ONE_REG: {
 716                struct kvm_one_reg reg;
 717
 718                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 719                        return -ENOEXEC;
 720
 721                if (copy_from_user(&reg, argp, sizeof(reg)))
 722                        return -EFAULT;
 723                if (ioctl == KVM_SET_ONE_REG)
 724                        return kvm_arm_set_reg(vcpu, &reg);
 725                else
 726                        return kvm_arm_get_reg(vcpu, &reg);
 727        }
 728        case KVM_GET_REG_LIST: {
 729                struct kvm_reg_list __user *user_list = argp;
 730                struct kvm_reg_list reg_list;
 731                unsigned n;
 732
 733                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 734                        return -ENOEXEC;
 735
 736                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 737                        return -EFAULT;
 738                n = reg_list.n;
 739                reg_list.n = kvm_arm_num_regs(vcpu);
 740                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 741                        return -EFAULT;
 742                if (n < reg_list.n)
 743                        return -E2BIG;
 744                return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
 745        }
 746        default:
 747                return -EINVAL;
 748        }
 749}
 750
 751int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 752{
 753        return -EINVAL;
 754}
 755
 756static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
 757                                        struct kvm_arm_device_addr *dev_addr)
 758{
 759        unsigned long dev_id, type;
 760
 761        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
 762                KVM_ARM_DEVICE_ID_SHIFT;
 763        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
 764                KVM_ARM_DEVICE_TYPE_SHIFT;
 765
 766        switch (dev_id) {
 767        case KVM_ARM_DEVICE_VGIC_V2:
 768                if (!vgic_present)
 769                        return -ENXIO;
 770                return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
 771        default:
 772                return -ENODEV;
 773        }
 774}
 775
 776long kvm_arch_vm_ioctl(struct file *filp,
 777                       unsigned int ioctl, unsigned long arg)
 778{
 779        struct kvm *kvm = filp->private_data;
 780        void __user *argp = (void __user *)arg;
 781
 782        switch (ioctl) {
 783        case KVM_CREATE_IRQCHIP: {
 784                if (vgic_present)
 785                        return kvm_vgic_create(kvm);
 786                else
 787                        return -ENXIO;
 788        }
 789        case KVM_ARM_SET_DEVICE_ADDR: {
 790                struct kvm_arm_device_addr dev_addr;
 791
 792                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
 793                        return -EFAULT;
 794                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
 795        }
 796        default:
 797                return -EINVAL;
 798        }
 799}
 800
 801static void cpu_init_hyp_mode(void *dummy)
 802{
 803        phys_addr_t boot_pgd_ptr;
 804        phys_addr_t pgd_ptr;
 805        unsigned long hyp_stack_ptr;
 806        unsigned long stack_page;
 807        unsigned long vector_ptr;
 808
 809        /* Switch from the HYP stub to our own HYP init vector */
 810        __hyp_set_vectors(kvm_get_idmap_vector());
 811
 812        boot_pgd_ptr = kvm_mmu_get_boot_httbr();
 813        pgd_ptr = kvm_mmu_get_httbr();
 814        stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
 815        hyp_stack_ptr = stack_page + PAGE_SIZE;
 816        vector_ptr = (unsigned long)__kvm_hyp_vector;
 817
 818        __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
 819}
 820
 821static int hyp_init_cpu_notify(struct notifier_block *self,
 822                               unsigned long action, void *cpu)
 823{
 824        switch (action) {
 825        case CPU_STARTING:
 826        case CPU_STARTING_FROZEN:
 827                cpu_init_hyp_mode(NULL);
 828                break;
 829        }
 830
 831        return NOTIFY_OK;
 832}
 833
 834static struct notifier_block hyp_init_cpu_nb = {
 835        .notifier_call = hyp_init_cpu_notify,
 836};
 837
 838/**
 839 * Inits Hyp-mode on all online CPUs
 840 */
 841static int init_hyp_mode(void)
 842{
 843        int cpu;
 844        int err = 0;
 845
 846        /*
 847         * Allocate Hyp PGD and setup Hyp identity mapping
 848         */
 849        err = kvm_mmu_init();
 850        if (err)
 851                goto out_err;
 852
 853        /*
 854         * It is probably enough to obtain the default on one
 855         * CPU. It's unlikely to be different on the others.
 856         */
 857        hyp_default_vectors = __hyp_get_vectors();
 858
 859        /*
 860         * Allocate stack pages for Hypervisor-mode
 861         */
 862        for_each_possible_cpu(cpu) {
 863                unsigned long stack_page;
 864
 865                stack_page = __get_free_page(GFP_KERNEL);
 866                if (!stack_page) {
 867                        err = -ENOMEM;
 868                        goto out_free_stack_pages;
 869                }
 870
 871                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
 872        }
 873
 874        /*
 875         * Map the Hyp-code called directly from the host
 876         */
 877        err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
 878        if (err) {
 879                kvm_err("Cannot map world-switch code\n");
 880                goto out_free_mappings;
 881        }
 882
 883        /*
 884         * Map the Hyp stack pages
 885         */
 886        for_each_possible_cpu(cpu) {
 887                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
 888                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
 889
 890                if (err) {
 891                        kvm_err("Cannot map hyp stack\n");
 892                        goto out_free_mappings;
 893                }
 894        }
 895
 896        /*
 897         * Map the host CPU structures
 898         */
 899        kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
 900        if (!kvm_host_cpu_state) {
 901                err = -ENOMEM;
 902                kvm_err("Cannot allocate host CPU state\n");
 903                goto out_free_mappings;
 904        }
 905
 906        for_each_possible_cpu(cpu) {
 907                kvm_cpu_context_t *cpu_ctxt;
 908
 909                cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
 910                err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
 911
 912                if (err) {
 913                        kvm_err("Cannot map host CPU state: %d\n", err);
 914                        goto out_free_context;
 915                }
 916        }
 917
 918        /*
 919         * Execute the init code on each CPU.
 920         */
 921        on_each_cpu(cpu_init_hyp_mode, NULL, 1);
 922
 923        /*
 924         * Init HYP view of VGIC
 925         */
 926        err = kvm_vgic_hyp_init();
 927        if (err)
 928                goto out_free_context;
 929
 930#ifdef CONFIG_KVM_ARM_VGIC
 931                vgic_present = true;
 932#endif
 933
 934        /*
 935         * Init HYP architected timer support
 936         */
 937        err = kvm_timer_hyp_init();
 938        if (err)
 939                goto out_free_mappings;
 940
 941#ifndef CONFIG_HOTPLUG_CPU
 942        free_boot_hyp_pgd();
 943#endif
 944
 945        kvm_perf_init();
 946
 947        kvm_info("Hyp mode initialized successfully\n");
 948
 949        return 0;
 950out_free_context:
 951        free_percpu(kvm_host_cpu_state);
 952out_free_mappings:
 953        free_hyp_pgds();
 954out_free_stack_pages:
 955        for_each_possible_cpu(cpu)
 956                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
 957out_err:
 958        kvm_err("error initializing Hyp mode: %d\n", err);
 959        return err;
 960}
 961
 962static void check_kvm_target_cpu(void *ret)
 963{
 964        *(int *)ret = kvm_target_cpu();
 965}
 966
 967/**
 968 * Initialize Hyp-mode and memory mappings on all CPUs.
 969 */
 970int kvm_arch_init(void *opaque)
 971{
 972        int err;
 973        int ret, cpu;
 974
 975        if (!is_hyp_mode_available()) {
 976                kvm_err("HYP mode not available\n");
 977                return -ENODEV;
 978        }
 979
 980        for_each_online_cpu(cpu) {
 981                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
 982                if (ret < 0) {
 983                        kvm_err("Error, CPU %d not supported!\n", cpu);
 984                        return -ENODEV;
 985                }
 986        }
 987
 988        err = init_hyp_mode();
 989        if (err)
 990                goto out_err;
 991
 992        err = register_cpu_notifier(&hyp_init_cpu_nb);
 993        if (err) {
 994                kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
 995                goto out_err;
 996        }
 997
 998        kvm_coproc_table_init();
 999        return 0;
1000out_err:
1001        return err;
1002}
1003
1004/* NOP: Compiling as a module not supported */
1005void kvm_arch_exit(void)
1006{
1007        kvm_perf_teardown();
1008}
1009
1010static int arm_init(void)
1011{
1012        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1013        return rc;
1014}
1015
1016module_init(arm_init);
1017