linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/gfp.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28
  29#include <asm/memory.h>
  30#include <asm/highmem.h>
  31#include <asm/cacheflush.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mach/arch.h>
  34#include <asm/dma-iommu.h>
  35#include <asm/mach/map.h>
  36#include <asm/system_info.h>
  37#include <asm/dma-contiguous.h>
  38
  39#include "mm.h"
  40
  41/*
  42 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  43 * is either exclusively owned by the CPU (and therefore may be accessed
  44 * by it) or exclusively owned by the DMA device.  These helper functions
  45 * represent the transitions between these two ownership states.
  46 *
  47 * Note, however, that on later ARMs, this notion does not work due to
  48 * speculative prefetches.  We model our approach on the assumption that
  49 * the CPU does do speculative prefetches, which means we clean caches
  50 * before transfers and delay cache invalidation until transfer completion.
  51 *
  52 */
  53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  54                size_t, enum dma_data_direction);
  55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  56                size_t, enum dma_data_direction);
  57
  58/**
  59 * arm_dma_map_page - map a portion of a page for streaming DMA
  60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  61 * @page: page that buffer resides in
  62 * @offset: offset into page for start of buffer
  63 * @size: size of buffer to map
  64 * @dir: DMA transfer direction
  65 *
  66 * Ensure that any data held in the cache is appropriately discarded
  67 * or written back.
  68 *
  69 * The device owns this memory once this call has completed.  The CPU
  70 * can regain ownership by calling dma_unmap_page().
  71 */
  72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  73             unsigned long offset, size_t size, enum dma_data_direction dir,
  74             struct dma_attrs *attrs)
  75{
  76        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  77                __dma_page_cpu_to_dev(page, offset, size, dir);
  78        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  79}
  80
  81static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  82             unsigned long offset, size_t size, enum dma_data_direction dir,
  83             struct dma_attrs *attrs)
  84{
  85        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  86}
  87
  88/**
  89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  91 * @handle: DMA address of buffer
  92 * @size: size of buffer (same as passed to dma_map_page)
  93 * @dir: DMA transfer direction (same as passed to dma_map_page)
  94 *
  95 * Unmap a page streaming mode DMA translation.  The handle and size
  96 * must match what was provided in the previous dma_map_page() call.
  97 * All other usages are undefined.
  98 *
  99 * After this call, reads by the CPU to the buffer are guaranteed to see
 100 * whatever the device wrote there.
 101 */
 102static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 103                size_t size, enum dma_data_direction dir,
 104                struct dma_attrs *attrs)
 105{
 106        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 107                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 108                                      handle & ~PAGE_MASK, size, dir);
 109}
 110
 111static void arm_dma_sync_single_for_cpu(struct device *dev,
 112                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 113{
 114        unsigned int offset = handle & (PAGE_SIZE - 1);
 115        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 116        __dma_page_dev_to_cpu(page, offset, size, dir);
 117}
 118
 119static void arm_dma_sync_single_for_device(struct device *dev,
 120                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 121{
 122        unsigned int offset = handle & (PAGE_SIZE - 1);
 123        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 124        __dma_page_cpu_to_dev(page, offset, size, dir);
 125}
 126
 127struct dma_map_ops arm_dma_ops = {
 128        .alloc                  = arm_dma_alloc,
 129        .free                   = arm_dma_free,
 130        .mmap                   = arm_dma_mmap,
 131        .get_sgtable            = arm_dma_get_sgtable,
 132        .map_page               = arm_dma_map_page,
 133        .unmap_page             = arm_dma_unmap_page,
 134        .map_sg                 = arm_dma_map_sg,
 135        .unmap_sg               = arm_dma_unmap_sg,
 136        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 137        .sync_single_for_device = arm_dma_sync_single_for_device,
 138        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 139        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 140        .set_dma_mask           = arm_dma_set_mask,
 141};
 142EXPORT_SYMBOL(arm_dma_ops);
 143
 144static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 145        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 146static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 147                                  dma_addr_t handle, struct dma_attrs *attrs);
 148
 149struct dma_map_ops arm_coherent_dma_ops = {
 150        .alloc                  = arm_coherent_dma_alloc,
 151        .free                   = arm_coherent_dma_free,
 152        .mmap                   = arm_dma_mmap,
 153        .get_sgtable            = arm_dma_get_sgtable,
 154        .map_page               = arm_coherent_dma_map_page,
 155        .map_sg                 = arm_dma_map_sg,
 156        .set_dma_mask           = arm_dma_set_mask,
 157};
 158EXPORT_SYMBOL(arm_coherent_dma_ops);
 159
 160static u64 get_coherent_dma_mask(struct device *dev)
 161{
 162        u64 mask = (u64)arm_dma_limit;
 163
 164        if (dev) {
 165                mask = dev->coherent_dma_mask;
 166
 167                /*
 168                 * Sanity check the DMA mask - it must be non-zero, and
 169                 * must be able to be satisfied by a DMA allocation.
 170                 */
 171                if (mask == 0) {
 172                        dev_warn(dev, "coherent DMA mask is unset\n");
 173                        return 0;
 174                }
 175
 176                if ((~mask) & (u64)arm_dma_limit) {
 177                        dev_warn(dev, "coherent DMA mask %#llx is smaller "
 178                                 "than system GFP_DMA mask %#llx\n",
 179                                 mask, (u64)arm_dma_limit);
 180                        return 0;
 181                }
 182        }
 183
 184        return mask;
 185}
 186
 187static void __dma_clear_buffer(struct page *page, size_t size)
 188{
 189        /*
 190         * Ensure that the allocated pages are zeroed, and that any data
 191         * lurking in the kernel direct-mapped region is invalidated.
 192         */
 193        if (PageHighMem(page)) {
 194                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 195                phys_addr_t end = base + size;
 196                while (size > 0) {
 197                        void *ptr = kmap_atomic(page);
 198                        memset(ptr, 0, PAGE_SIZE);
 199                        dmac_flush_range(ptr, ptr + PAGE_SIZE);
 200                        kunmap_atomic(ptr);
 201                        page++;
 202                        size -= PAGE_SIZE;
 203                }
 204                outer_flush_range(base, end);
 205        } else {
 206                void *ptr = page_address(page);
 207                memset(ptr, 0, size);
 208                dmac_flush_range(ptr, ptr + size);
 209                outer_flush_range(__pa(ptr), __pa(ptr) + size);
 210        }
 211}
 212
 213/*
 214 * Allocate a DMA buffer for 'dev' of size 'size' using the
 215 * specified gfp mask.  Note that 'size' must be page aligned.
 216 */
 217static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 218{
 219        unsigned long order = get_order(size);
 220        struct page *page, *p, *e;
 221
 222        page = alloc_pages(gfp, order);
 223        if (!page)
 224                return NULL;
 225
 226        /*
 227         * Now split the huge page and free the excess pages
 228         */
 229        split_page(page, order);
 230        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 231                __free_page(p);
 232
 233        __dma_clear_buffer(page, size);
 234
 235        return page;
 236}
 237
 238/*
 239 * Free a DMA buffer.  'size' must be page aligned.
 240 */
 241static void __dma_free_buffer(struct page *page, size_t size)
 242{
 243        struct page *e = page + (size >> PAGE_SHIFT);
 244
 245        while (page < e) {
 246                __free_page(page);
 247                page++;
 248        }
 249}
 250
 251#ifdef CONFIG_MMU
 252#ifdef CONFIG_HUGETLB_PAGE
 253#warning ARM Coherent DMA allocator does not (yet) support huge TLB
 254#endif
 255
 256static void *__alloc_from_contiguous(struct device *dev, size_t size,
 257                                     pgprot_t prot, struct page **ret_page,
 258                                     const void *caller);
 259
 260static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 261                                 pgprot_t prot, struct page **ret_page,
 262                                 const void *caller);
 263
 264static void *
 265__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 266        const void *caller)
 267{
 268        struct vm_struct *area;
 269        unsigned long addr;
 270
 271        /*
 272         * DMA allocation can be mapped to user space, so lets
 273         * set VM_USERMAP flags too.
 274         */
 275        area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 276                                  caller);
 277        if (!area)
 278                return NULL;
 279        addr = (unsigned long)area->addr;
 280        area->phys_addr = __pfn_to_phys(page_to_pfn(page));
 281
 282        if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
 283                vunmap((void *)addr);
 284                return NULL;
 285        }
 286        return (void *)addr;
 287}
 288
 289static void __dma_free_remap(void *cpu_addr, size_t size)
 290{
 291        unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
 292        struct vm_struct *area = find_vm_area(cpu_addr);
 293        if (!area || (area->flags & flags) != flags) {
 294                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 295                return;
 296        }
 297        unmap_kernel_range((unsigned long)cpu_addr, size);
 298        vunmap(cpu_addr);
 299}
 300
 301#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 302
 303struct dma_pool {
 304        size_t size;
 305        spinlock_t lock;
 306        unsigned long *bitmap;
 307        unsigned long nr_pages;
 308        void *vaddr;
 309        struct page **pages;
 310};
 311
 312static struct dma_pool atomic_pool = {
 313        .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
 314};
 315
 316static int __init early_coherent_pool(char *p)
 317{
 318        atomic_pool.size = memparse(p, &p);
 319        return 0;
 320}
 321early_param("coherent_pool", early_coherent_pool);
 322
 323void __init init_dma_coherent_pool_size(unsigned long size)
 324{
 325        /*
 326         * Catch any attempt to set the pool size too late.
 327         */
 328        BUG_ON(atomic_pool.vaddr);
 329
 330        /*
 331         * Set architecture specific coherent pool size only if
 332         * it has not been changed by kernel command line parameter.
 333         */
 334        if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 335                atomic_pool.size = size;
 336}
 337
 338/*
 339 * Initialise the coherent pool for atomic allocations.
 340 */
 341static int __init atomic_pool_init(void)
 342{
 343        struct dma_pool *pool = &atomic_pool;
 344        pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
 345        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 346        unsigned long nr_pages = pool->size >> PAGE_SHIFT;
 347        unsigned long *bitmap;
 348        struct page *page;
 349        struct page **pages;
 350        void *ptr;
 351        int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
 352
 353        bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 354        if (!bitmap)
 355                goto no_bitmap;
 356
 357        pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
 358        if (!pages)
 359                goto no_pages;
 360
 361        if (IS_ENABLED(CONFIG_CMA))
 362                ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
 363                                              atomic_pool_init);
 364        else
 365                ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
 366                                           atomic_pool_init);
 367        if (ptr) {
 368                int i;
 369
 370                for (i = 0; i < nr_pages; i++)
 371                        pages[i] = page + i;
 372
 373                spin_lock_init(&pool->lock);
 374                pool->vaddr = ptr;
 375                pool->pages = pages;
 376                pool->bitmap = bitmap;
 377                pool->nr_pages = nr_pages;
 378                pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 379                       (unsigned)pool->size / 1024);
 380                return 0;
 381        }
 382
 383        kfree(pages);
 384no_pages:
 385        kfree(bitmap);
 386no_bitmap:
 387        pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 388               (unsigned)pool->size / 1024);
 389        return -ENOMEM;
 390}
 391/*
 392 * CMA is activated by core_initcall, so we must be called after it.
 393 */
 394postcore_initcall(atomic_pool_init);
 395
 396struct dma_contig_early_reserve {
 397        phys_addr_t base;
 398        unsigned long size;
 399};
 400
 401static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 402
 403static int dma_mmu_remap_num __initdata;
 404
 405void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 406{
 407        dma_mmu_remap[dma_mmu_remap_num].base = base;
 408        dma_mmu_remap[dma_mmu_remap_num].size = size;
 409        dma_mmu_remap_num++;
 410}
 411
 412void __init dma_contiguous_remap(void)
 413{
 414        int i;
 415        for (i = 0; i < dma_mmu_remap_num; i++) {
 416                phys_addr_t start = dma_mmu_remap[i].base;
 417                phys_addr_t end = start + dma_mmu_remap[i].size;
 418                struct map_desc map;
 419                unsigned long addr;
 420
 421                if (end > arm_lowmem_limit)
 422                        end = arm_lowmem_limit;
 423                if (start >= end)
 424                        continue;
 425
 426                map.pfn = __phys_to_pfn(start);
 427                map.virtual = __phys_to_virt(start);
 428                map.length = end - start;
 429                map.type = MT_MEMORY_DMA_READY;
 430
 431                /*
 432                 * Clear previous low-memory mapping
 433                 */
 434                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 435                     addr += PMD_SIZE)
 436                        pmd_clear(pmd_off_k(addr));
 437
 438                iotable_init(&map, 1);
 439        }
 440}
 441
 442static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 443                            void *data)
 444{
 445        struct page *page = virt_to_page(addr);
 446        pgprot_t prot = *(pgprot_t *)data;
 447
 448        set_pte_ext(pte, mk_pte(page, prot), 0);
 449        return 0;
 450}
 451
 452static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 453{
 454        unsigned long start = (unsigned long) page_address(page);
 455        unsigned end = start + size;
 456
 457        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 458        dsb();
 459        flush_tlb_kernel_range(start, end);
 460}
 461
 462static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 463                                 pgprot_t prot, struct page **ret_page,
 464                                 const void *caller)
 465{
 466        struct page *page;
 467        void *ptr;
 468        page = __dma_alloc_buffer(dev, size, gfp);
 469        if (!page)
 470                return NULL;
 471
 472        ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 473        if (!ptr) {
 474                __dma_free_buffer(page, size);
 475                return NULL;
 476        }
 477
 478        *ret_page = page;
 479        return ptr;
 480}
 481
 482static void *__alloc_from_pool(size_t size, struct page **ret_page)
 483{
 484        struct dma_pool *pool = &atomic_pool;
 485        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 486        unsigned int pageno;
 487        unsigned long flags;
 488        void *ptr = NULL;
 489        unsigned long align_mask;
 490
 491        if (!pool->vaddr) {
 492                WARN(1, "coherent pool not initialised!\n");
 493                return NULL;
 494        }
 495
 496        /*
 497         * Align the region allocation - allocations from pool are rather
 498         * small, so align them to their order in pages, minimum is a page
 499         * size. This helps reduce fragmentation of the DMA space.
 500         */
 501        align_mask = (1 << get_order(size)) - 1;
 502
 503        spin_lock_irqsave(&pool->lock, flags);
 504        pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
 505                                            0, count, align_mask);
 506        if (pageno < pool->nr_pages) {
 507                bitmap_set(pool->bitmap, pageno, count);
 508                ptr = pool->vaddr + PAGE_SIZE * pageno;
 509                *ret_page = pool->pages[pageno];
 510        } else {
 511                pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
 512                            "Please increase it with coherent_pool= kernel parameter!\n",
 513                            (unsigned)pool->size / 1024);
 514        }
 515        spin_unlock_irqrestore(&pool->lock, flags);
 516
 517        return ptr;
 518}
 519
 520static bool __in_atomic_pool(void *start, size_t size)
 521{
 522        struct dma_pool *pool = &atomic_pool;
 523        void *end = start + size;
 524        void *pool_start = pool->vaddr;
 525        void *pool_end = pool->vaddr + pool->size;
 526
 527        if (start < pool_start || start >= pool_end)
 528                return false;
 529
 530        if (end <= pool_end)
 531                return true;
 532
 533        WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
 534             start, end - 1, pool_start, pool_end - 1);
 535
 536        return false;
 537}
 538
 539static int __free_from_pool(void *start, size_t size)
 540{
 541        struct dma_pool *pool = &atomic_pool;
 542        unsigned long pageno, count;
 543        unsigned long flags;
 544
 545        if (!__in_atomic_pool(start, size))
 546                return 0;
 547
 548        pageno = (start - pool->vaddr) >> PAGE_SHIFT;
 549        count = size >> PAGE_SHIFT;
 550
 551        spin_lock_irqsave(&pool->lock, flags);
 552        bitmap_clear(pool->bitmap, pageno, count);
 553        spin_unlock_irqrestore(&pool->lock, flags);
 554
 555        return 1;
 556}
 557
 558static void *__alloc_from_contiguous(struct device *dev, size_t size,
 559                                     pgprot_t prot, struct page **ret_page,
 560                                     const void *caller)
 561{
 562        unsigned long order = get_order(size);
 563        size_t count = size >> PAGE_SHIFT;
 564        struct page *page;
 565        void *ptr;
 566
 567        page = dma_alloc_from_contiguous(dev, count, order);
 568        if (!page)
 569                return NULL;
 570
 571        __dma_clear_buffer(page, size);
 572
 573        if (PageHighMem(page)) {
 574                ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 575                if (!ptr) {
 576                        dma_release_from_contiguous(dev, page, count);
 577                        return NULL;
 578                }
 579        } else {
 580                __dma_remap(page, size, prot);
 581                ptr = page_address(page);
 582        }
 583        *ret_page = page;
 584        return ptr;
 585}
 586
 587static void __free_from_contiguous(struct device *dev, struct page *page,
 588                                   void *cpu_addr, size_t size)
 589{
 590        if (PageHighMem(page))
 591                __dma_free_remap(cpu_addr, size);
 592        else
 593                __dma_remap(page, size, pgprot_kernel);
 594        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 595}
 596
 597static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 598{
 599        prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 600                            pgprot_writecombine(prot) :
 601                            pgprot_dmacoherent(prot);
 602        return prot;
 603}
 604
 605#define nommu() 0
 606
 607#else   /* !CONFIG_MMU */
 608
 609#define nommu() 1
 610
 611#define __get_dma_pgprot(attrs, prot)   __pgprot(0)
 612#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)      NULL
 613#define __alloc_from_pool(size, ret_page)                       NULL
 614#define __alloc_from_contiguous(dev, size, prot, ret, c)        NULL
 615#define __free_from_pool(cpu_addr, size)                        0
 616#define __free_from_contiguous(dev, page, cpu_addr, size)       do { } while (0)
 617#define __dma_free_remap(cpu_addr, size)                        do { } while (0)
 618
 619#endif  /* CONFIG_MMU */
 620
 621static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 622                                   struct page **ret_page)
 623{
 624        struct page *page;
 625        page = __dma_alloc_buffer(dev, size, gfp);
 626        if (!page)
 627                return NULL;
 628
 629        *ret_page = page;
 630        return page_address(page);
 631}
 632
 633
 634
 635static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 636                         gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
 637{
 638        u64 mask = get_coherent_dma_mask(dev);
 639        struct page *page = NULL;
 640        void *addr;
 641
 642#ifdef CONFIG_DMA_API_DEBUG
 643        u64 limit = (mask + 1) & ~mask;
 644        if (limit && size >= limit) {
 645                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 646                        size, mask);
 647                return NULL;
 648        }
 649#endif
 650
 651        if (!mask)
 652                return NULL;
 653
 654        if (mask < 0xffffffffULL)
 655                gfp |= GFP_DMA;
 656
 657        /*
 658         * Following is a work-around (a.k.a. hack) to prevent pages
 659         * with __GFP_COMP being passed to split_page() which cannot
 660         * handle them.  The real problem is that this flag probably
 661         * should be 0 on ARM as it is not supported on this
 662         * platform; see CONFIG_HUGETLBFS.
 663         */
 664        gfp &= ~(__GFP_COMP);
 665
 666        *handle = DMA_ERROR_CODE;
 667        size = PAGE_ALIGN(size);
 668
 669        if (is_coherent || nommu())
 670                addr = __alloc_simple_buffer(dev, size, gfp, &page);
 671        else if (!(gfp & __GFP_WAIT))
 672                addr = __alloc_from_pool(size, &page);
 673        else if (!IS_ENABLED(CONFIG_CMA))
 674                addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 675        else
 676                addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
 677
 678        if (addr)
 679                *handle = pfn_to_dma(dev, page_to_pfn(page));
 680
 681        return addr;
 682}
 683
 684/*
 685 * Allocate DMA-coherent memory space and return both the kernel remapped
 686 * virtual and bus address for that space.
 687 */
 688void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 689                    gfp_t gfp, struct dma_attrs *attrs)
 690{
 691        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 692        void *memory;
 693
 694        if (dma_alloc_from_coherent(dev, size, handle, &memory))
 695                return memory;
 696
 697        return __dma_alloc(dev, size, handle, gfp, prot, false,
 698                           __builtin_return_address(0));
 699}
 700
 701static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 702        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 703{
 704        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 705        void *memory;
 706
 707        if (dma_alloc_from_coherent(dev, size, handle, &memory))
 708                return memory;
 709
 710        return __dma_alloc(dev, size, handle, gfp, prot, true,
 711                           __builtin_return_address(0));
 712}
 713
 714/*
 715 * Create userspace mapping for the DMA-coherent memory.
 716 */
 717int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 718                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 719                 struct dma_attrs *attrs)
 720{
 721        int ret = -ENXIO;
 722#ifdef CONFIG_MMU
 723        unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 724        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 725        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 726        unsigned long off = vma->vm_pgoff;
 727
 728        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 729
 730        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 731                return ret;
 732
 733        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 734                ret = remap_pfn_range(vma, vma->vm_start,
 735                                      pfn + off,
 736                                      vma->vm_end - vma->vm_start,
 737                                      vma->vm_page_prot);
 738        }
 739#endif  /* CONFIG_MMU */
 740
 741        return ret;
 742}
 743
 744/*
 745 * Free a buffer as defined by the above mapping.
 746 */
 747static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 748                           dma_addr_t handle, struct dma_attrs *attrs,
 749                           bool is_coherent)
 750{
 751        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 752
 753        if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 754                return;
 755
 756        size = PAGE_ALIGN(size);
 757
 758        if (is_coherent || nommu()) {
 759                __dma_free_buffer(page, size);
 760        } else if (__free_from_pool(cpu_addr, size)) {
 761                return;
 762        } else if (!IS_ENABLED(CONFIG_CMA)) {
 763                __dma_free_remap(cpu_addr, size);
 764                __dma_free_buffer(page, size);
 765        } else {
 766                /*
 767                 * Non-atomic allocations cannot be freed with IRQs disabled
 768                 */
 769                WARN_ON(irqs_disabled());
 770                __free_from_contiguous(dev, page, cpu_addr, size);
 771        }
 772}
 773
 774void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 775                  dma_addr_t handle, struct dma_attrs *attrs)
 776{
 777        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 778}
 779
 780static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 781                                  dma_addr_t handle, struct dma_attrs *attrs)
 782{
 783        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 784}
 785
 786int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 787                 void *cpu_addr, dma_addr_t handle, size_t size,
 788                 struct dma_attrs *attrs)
 789{
 790        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 791        int ret;
 792
 793        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 794        if (unlikely(ret))
 795                return ret;
 796
 797        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 798        return 0;
 799}
 800
 801static void dma_cache_maint_page(struct page *page, unsigned long offset,
 802        size_t size, enum dma_data_direction dir,
 803        void (*op)(const void *, size_t, int))
 804{
 805        unsigned long pfn;
 806        size_t left = size;
 807
 808        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 809        offset %= PAGE_SIZE;
 810
 811        /*
 812         * A single sg entry may refer to multiple physically contiguous
 813         * pages.  But we still need to process highmem pages individually.
 814         * If highmem is not configured then the bulk of this loop gets
 815         * optimized out.
 816         */
 817        do {
 818                size_t len = left;
 819                void *vaddr;
 820
 821                page = pfn_to_page(pfn);
 822
 823                if (PageHighMem(page)) {
 824                        if (len + offset > PAGE_SIZE)
 825                                len = PAGE_SIZE - offset;
 826
 827                        if (cache_is_vipt_nonaliasing()) {
 828                                vaddr = kmap_atomic(page);
 829                                op(vaddr + offset, len, dir);
 830                                kunmap_atomic(vaddr);
 831                        } else {
 832                                vaddr = kmap_high_get(page);
 833                                if (vaddr) {
 834                                        op(vaddr + offset, len, dir);
 835                                        kunmap_high(page);
 836                                }
 837                        }
 838                } else {
 839                        vaddr = page_address(page) + offset;
 840                        op(vaddr, len, dir);
 841                }
 842                offset = 0;
 843                pfn++;
 844                left -= len;
 845        } while (left);
 846}
 847
 848/*
 849 * Make an area consistent for devices.
 850 * Note: Drivers should NOT use this function directly, as it will break
 851 * platforms with CONFIG_DMABOUNCE.
 852 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 853 */
 854static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 855        size_t size, enum dma_data_direction dir)
 856{
 857        unsigned long paddr;
 858
 859        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 860
 861        paddr = page_to_phys(page) + off;
 862        if (dir == DMA_FROM_DEVICE) {
 863                outer_inv_range(paddr, paddr + size);
 864        } else {
 865                outer_clean_range(paddr, paddr + size);
 866        }
 867        /* FIXME: non-speculating: flush on bidirectional mappings? */
 868}
 869
 870static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 871        size_t size, enum dma_data_direction dir)
 872{
 873        unsigned long paddr = page_to_phys(page) + off;
 874
 875        /* FIXME: non-speculating: not required */
 876        /* don't bother invalidating if DMA to device */
 877        if (dir != DMA_TO_DEVICE)
 878                outer_inv_range(paddr, paddr + size);
 879
 880        dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 881
 882        /*
 883         * Mark the D-cache clean for these pages to avoid extra flushing.
 884         */
 885        if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 886                unsigned long pfn;
 887                size_t left = size;
 888
 889                pfn = page_to_pfn(page) + off / PAGE_SIZE;
 890                off %= PAGE_SIZE;
 891                if (off) {
 892                        pfn++;
 893                        left -= PAGE_SIZE - off;
 894                }
 895                while (left >= PAGE_SIZE) {
 896                        page = pfn_to_page(pfn++);
 897                        set_bit(PG_dcache_clean, &page->flags);
 898                        left -= PAGE_SIZE;
 899                }
 900        }
 901}
 902
 903/**
 904 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 905 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 906 * @sg: list of buffers
 907 * @nents: number of buffers to map
 908 * @dir: DMA transfer direction
 909 *
 910 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 911 * This is the scatter-gather version of the dma_map_single interface.
 912 * Here the scatter gather list elements are each tagged with the
 913 * appropriate dma address and length.  They are obtained via
 914 * sg_dma_{address,length}.
 915 *
 916 * Device ownership issues as mentioned for dma_map_single are the same
 917 * here.
 918 */
 919int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 920                enum dma_data_direction dir, struct dma_attrs *attrs)
 921{
 922        struct dma_map_ops *ops = get_dma_ops(dev);
 923        struct scatterlist *s;
 924        int i, j;
 925
 926        for_each_sg(sg, s, nents, i) {
 927#ifdef CONFIG_NEED_SG_DMA_LENGTH
 928                s->dma_length = s->length;
 929#endif
 930                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 931                                                s->length, dir, attrs);
 932                if (dma_mapping_error(dev, s->dma_address))
 933                        goto bad_mapping;
 934        }
 935        return nents;
 936
 937 bad_mapping:
 938        for_each_sg(sg, s, i, j)
 939                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 940        return 0;
 941}
 942
 943/**
 944 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 945 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 946 * @sg: list of buffers
 947 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 948 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 949 *
 950 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 951 * rules concerning calls here are the same as for dma_unmap_single().
 952 */
 953void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 954                enum dma_data_direction dir, struct dma_attrs *attrs)
 955{
 956        struct dma_map_ops *ops = get_dma_ops(dev);
 957        struct scatterlist *s;
 958
 959        int i;
 960
 961        for_each_sg(sg, s, nents, i)
 962                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 963}
 964
 965/**
 966 * arm_dma_sync_sg_for_cpu
 967 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 968 * @sg: list of buffers
 969 * @nents: number of buffers to map (returned from dma_map_sg)
 970 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 971 */
 972void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 973                        int nents, enum dma_data_direction dir)
 974{
 975        struct dma_map_ops *ops = get_dma_ops(dev);
 976        struct scatterlist *s;
 977        int i;
 978
 979        for_each_sg(sg, s, nents, i)
 980                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 981                                         dir);
 982}
 983
 984/**
 985 * arm_dma_sync_sg_for_device
 986 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 987 * @sg: list of buffers
 988 * @nents: number of buffers to map (returned from dma_map_sg)
 989 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 990 */
 991void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 992                        int nents, enum dma_data_direction dir)
 993{
 994        struct dma_map_ops *ops = get_dma_ops(dev);
 995        struct scatterlist *s;
 996        int i;
 997
 998        for_each_sg(sg, s, nents, i)
 999                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1000                                            dir);
1001}
1002
1003/*
1004 * Return whether the given device DMA address mask can be supported
1005 * properly.  For example, if your device can only drive the low 24-bits
1006 * during bus mastering, then you would pass 0x00ffffff as the mask
1007 * to this function.
1008 */
1009int dma_supported(struct device *dev, u64 mask)
1010{
1011        if (mask < (u64)arm_dma_limit)
1012                return 0;
1013        return 1;
1014}
1015EXPORT_SYMBOL(dma_supported);
1016
1017int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1018{
1019        if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1020                return -EIO;
1021
1022        *dev->dma_mask = dma_mask;
1023
1024        return 0;
1025}
1026
1027#define PREALLOC_DMA_DEBUG_ENTRIES      4096
1028
1029static int __init dma_debug_do_init(void)
1030{
1031        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1032        return 0;
1033}
1034fs_initcall(dma_debug_do_init);
1035
1036#ifdef CONFIG_ARM_DMA_USE_IOMMU
1037
1038/* IOMMU */
1039
1040static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1041                                      size_t size)
1042{
1043        unsigned int order = get_order(size);
1044        unsigned int align = 0;
1045        unsigned int count, start;
1046        unsigned long flags;
1047
1048        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1049                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1050
1051        count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1052                 (1 << mapping->order) - 1) >> mapping->order;
1053
1054        if (order > mapping->order)
1055                align = (1 << (order - mapping->order)) - 1;
1056
1057        spin_lock_irqsave(&mapping->lock, flags);
1058        start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1059                                           count, align);
1060        if (start > mapping->bits) {
1061                spin_unlock_irqrestore(&mapping->lock, flags);
1062                return DMA_ERROR_CODE;
1063        }
1064
1065        bitmap_set(mapping->bitmap, start, count);
1066        spin_unlock_irqrestore(&mapping->lock, flags);
1067
1068        return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1069}
1070
1071static inline void __free_iova(struct dma_iommu_mapping *mapping,
1072                               dma_addr_t addr, size_t size)
1073{
1074        unsigned int start = (addr - mapping->base) >>
1075                             (mapping->order + PAGE_SHIFT);
1076        unsigned int count = ((size >> PAGE_SHIFT) +
1077                              (1 << mapping->order) - 1) >> mapping->order;
1078        unsigned long flags;
1079
1080        spin_lock_irqsave(&mapping->lock, flags);
1081        bitmap_clear(mapping->bitmap, start, count);
1082        spin_unlock_irqrestore(&mapping->lock, flags);
1083}
1084
1085static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1086                                          gfp_t gfp, struct dma_attrs *attrs)
1087{
1088        struct page **pages;
1089        int count = size >> PAGE_SHIFT;
1090        int array_size = count * sizeof(struct page *);
1091        int i = 0;
1092
1093        if (array_size <= PAGE_SIZE)
1094                pages = kzalloc(array_size, gfp);
1095        else
1096                pages = vzalloc(array_size);
1097        if (!pages)
1098                return NULL;
1099
1100        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1101        {
1102                unsigned long order = get_order(size);
1103                struct page *page;
1104
1105                page = dma_alloc_from_contiguous(dev, count, order);
1106                if (!page)
1107                        goto error;
1108
1109                __dma_clear_buffer(page, size);
1110
1111                for (i = 0; i < count; i++)
1112                        pages[i] = page + i;
1113
1114                return pages;
1115        }
1116
1117        /*
1118         * IOMMU can map any pages, so himem can also be used here
1119         */
1120        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1121
1122        while (count) {
1123                int j, order = __fls(count);
1124
1125                pages[i] = alloc_pages(gfp, order);
1126                while (!pages[i] && order)
1127                        pages[i] = alloc_pages(gfp, --order);
1128                if (!pages[i])
1129                        goto error;
1130
1131                if (order) {
1132                        split_page(pages[i], order);
1133                        j = 1 << order;
1134                        while (--j)
1135                                pages[i + j] = pages[i] + j;
1136                }
1137
1138                __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1139                i += 1 << order;
1140                count -= 1 << order;
1141        }
1142
1143        return pages;
1144error:
1145        while (i--)
1146                if (pages[i])
1147                        __free_pages(pages[i], 0);
1148        if (array_size <= PAGE_SIZE)
1149                kfree(pages);
1150        else
1151                vfree(pages);
1152        return NULL;
1153}
1154
1155static int __iommu_free_buffer(struct device *dev, struct page **pages,
1156                               size_t size, struct dma_attrs *attrs)
1157{
1158        int count = size >> PAGE_SHIFT;
1159        int array_size = count * sizeof(struct page *);
1160        int i;
1161
1162        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1163                dma_release_from_contiguous(dev, pages[0], count);
1164        } else {
1165                for (i = 0; i < count; i++)
1166                        if (pages[i])
1167                                __free_pages(pages[i], 0);
1168        }
1169
1170        if (array_size <= PAGE_SIZE)
1171                kfree(pages);
1172        else
1173                vfree(pages);
1174        return 0;
1175}
1176
1177/*
1178 * Create a CPU mapping for a specified pages
1179 */
1180static void *
1181__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1182                    const void *caller)
1183{
1184        unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1185        struct vm_struct *area;
1186        unsigned long p;
1187
1188        area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1189                                  caller);
1190        if (!area)
1191                return NULL;
1192
1193        area->pages = pages;
1194        area->nr_pages = nr_pages;
1195        p = (unsigned long)area->addr;
1196
1197        for (i = 0; i < nr_pages; i++) {
1198                phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1199                if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1200                        goto err;
1201                p += PAGE_SIZE;
1202        }
1203        return area->addr;
1204err:
1205        unmap_kernel_range((unsigned long)area->addr, size);
1206        vunmap(area->addr);
1207        return NULL;
1208}
1209
1210/*
1211 * Create a mapping in device IO address space for specified pages
1212 */
1213static dma_addr_t
1214__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1215{
1216        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1217        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1218        dma_addr_t dma_addr, iova;
1219        int i, ret = DMA_ERROR_CODE;
1220
1221        dma_addr = __alloc_iova(mapping, size);
1222        if (dma_addr == DMA_ERROR_CODE)
1223                return dma_addr;
1224
1225        iova = dma_addr;
1226        for (i = 0; i < count; ) {
1227                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1228                phys_addr_t phys = page_to_phys(pages[i]);
1229                unsigned int len, j;
1230
1231                for (j = i + 1; j < count; j++, next_pfn++)
1232                        if (page_to_pfn(pages[j]) != next_pfn)
1233                                break;
1234
1235                len = (j - i) << PAGE_SHIFT;
1236                ret = iommu_map(mapping->domain, iova, phys, len, 0);
1237                if (ret < 0)
1238                        goto fail;
1239                iova += len;
1240                i = j;
1241        }
1242        return dma_addr;
1243fail:
1244        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1245        __free_iova(mapping, dma_addr, size);
1246        return DMA_ERROR_CODE;
1247}
1248
1249static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1250{
1251        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1252
1253        /*
1254         * add optional in-page offset from iova to size and align
1255         * result to page size
1256         */
1257        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1258        iova &= PAGE_MASK;
1259
1260        iommu_unmap(mapping->domain, iova, size);
1261        __free_iova(mapping, iova, size);
1262        return 0;
1263}
1264
1265static struct page **__atomic_get_pages(void *addr)
1266{
1267        struct dma_pool *pool = &atomic_pool;
1268        struct page **pages = pool->pages;
1269        int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1270
1271        return pages + offs;
1272}
1273
1274static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1275{
1276        struct vm_struct *area;
1277
1278        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1279                return __atomic_get_pages(cpu_addr);
1280
1281        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1282                return cpu_addr;
1283
1284        area = find_vm_area(cpu_addr);
1285        if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1286                return area->pages;
1287        return NULL;
1288}
1289
1290static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1291                                  dma_addr_t *handle)
1292{
1293        struct page *page;
1294        void *addr;
1295
1296        addr = __alloc_from_pool(size, &page);
1297        if (!addr)
1298                return NULL;
1299
1300        *handle = __iommu_create_mapping(dev, &page, size);
1301        if (*handle == DMA_ERROR_CODE)
1302                goto err_mapping;
1303
1304        return addr;
1305
1306err_mapping:
1307        __free_from_pool(addr, size);
1308        return NULL;
1309}
1310
1311static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1312                                dma_addr_t handle, size_t size)
1313{
1314        __iommu_remove_mapping(dev, handle, size);
1315        __free_from_pool(cpu_addr, size);
1316}
1317
1318static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1319            dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1320{
1321        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1322        struct page **pages;
1323        void *addr = NULL;
1324
1325        *handle = DMA_ERROR_CODE;
1326        size = PAGE_ALIGN(size);
1327
1328        if (gfp & GFP_ATOMIC)
1329                return __iommu_alloc_atomic(dev, size, handle);
1330
1331        /*
1332         * Following is a work-around (a.k.a. hack) to prevent pages
1333         * with __GFP_COMP being passed to split_page() which cannot
1334         * handle them.  The real problem is that this flag probably
1335         * should be 0 on ARM as it is not supported on this
1336         * platform; see CONFIG_HUGETLBFS.
1337         */
1338        gfp &= ~(__GFP_COMP);
1339
1340        pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1341        if (!pages)
1342                return NULL;
1343
1344        *handle = __iommu_create_mapping(dev, pages, size);
1345        if (*handle == DMA_ERROR_CODE)
1346                goto err_buffer;
1347
1348        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1349                return pages;
1350
1351        addr = __iommu_alloc_remap(pages, size, gfp, prot,
1352                                   __builtin_return_address(0));
1353        if (!addr)
1354                goto err_mapping;
1355
1356        return addr;
1357
1358err_mapping:
1359        __iommu_remove_mapping(dev, *handle, size);
1360err_buffer:
1361        __iommu_free_buffer(dev, pages, size, attrs);
1362        return NULL;
1363}
1364
1365static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1366                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1367                    struct dma_attrs *attrs)
1368{
1369        unsigned long uaddr = vma->vm_start;
1370        unsigned long usize = vma->vm_end - vma->vm_start;
1371        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1372
1373        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1374
1375        if (!pages)
1376                return -ENXIO;
1377
1378        do {
1379                int ret = vm_insert_page(vma, uaddr, *pages++);
1380                if (ret) {
1381                        pr_err("Remapping memory failed: %d\n", ret);
1382                        return ret;
1383                }
1384                uaddr += PAGE_SIZE;
1385                usize -= PAGE_SIZE;
1386        } while (usize > 0);
1387
1388        return 0;
1389}
1390
1391/*
1392 * free a page as defined by the above mapping.
1393 * Must not be called with IRQs disabled.
1394 */
1395void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1396                          dma_addr_t handle, struct dma_attrs *attrs)
1397{
1398        struct page **pages;
1399        size = PAGE_ALIGN(size);
1400
1401        if (__in_atomic_pool(cpu_addr, size)) {
1402                __iommu_free_atomic(dev, cpu_addr, handle, size);
1403                return;
1404        }
1405
1406        pages = __iommu_get_pages(cpu_addr, attrs);
1407        if (!pages) {
1408                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1409                return;
1410        }
1411
1412        if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1413                unmap_kernel_range((unsigned long)cpu_addr, size);
1414                vunmap(cpu_addr);
1415        }
1416
1417        __iommu_remove_mapping(dev, handle, size);
1418        __iommu_free_buffer(dev, pages, size, attrs);
1419}
1420
1421static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1422                                 void *cpu_addr, dma_addr_t dma_addr,
1423                                 size_t size, struct dma_attrs *attrs)
1424{
1425        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1426        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1427
1428        if (!pages)
1429                return -ENXIO;
1430
1431        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1432                                         GFP_KERNEL);
1433}
1434
1435/*
1436 * Map a part of the scatter-gather list into contiguous io address space
1437 */
1438static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1439                          size_t size, dma_addr_t *handle,
1440                          enum dma_data_direction dir, struct dma_attrs *attrs,
1441                          bool is_coherent)
1442{
1443        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1444        dma_addr_t iova, iova_base;
1445        int ret = 0;
1446        unsigned int count;
1447        struct scatterlist *s;
1448
1449        size = PAGE_ALIGN(size);
1450        *handle = DMA_ERROR_CODE;
1451
1452        iova_base = iova = __alloc_iova(mapping, size);
1453        if (iova == DMA_ERROR_CODE)
1454                return -ENOMEM;
1455
1456        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1457                phys_addr_t phys = page_to_phys(sg_page(s));
1458                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1459
1460                if (!is_coherent &&
1461                        !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1462                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1463
1464                ret = iommu_map(mapping->domain, iova, phys, len, 0);
1465                if (ret < 0)
1466                        goto fail;
1467                count += len >> PAGE_SHIFT;
1468                iova += len;
1469        }
1470        *handle = iova_base;
1471
1472        return 0;
1473fail:
1474        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1475        __free_iova(mapping, iova_base, size);
1476        return ret;
1477}
1478
1479static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1480                     enum dma_data_direction dir, struct dma_attrs *attrs,
1481                     bool is_coherent)
1482{
1483        struct scatterlist *s = sg, *dma = sg, *start = sg;
1484        int i, count = 0;
1485        unsigned int offset = s->offset;
1486        unsigned int size = s->offset + s->length;
1487        unsigned int max = dma_get_max_seg_size(dev);
1488
1489        for (i = 1; i < nents; i++) {
1490                s = sg_next(s);
1491
1492                s->dma_address = DMA_ERROR_CODE;
1493                s->dma_length = 0;
1494
1495                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1496                        if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1497                            dir, attrs, is_coherent) < 0)
1498                                goto bad_mapping;
1499
1500                        dma->dma_address += offset;
1501                        dma->dma_length = size - offset;
1502
1503                        size = offset = s->offset;
1504                        start = s;
1505                        dma = sg_next(dma);
1506                        count += 1;
1507                }
1508                size += s->length;
1509        }
1510        if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1511                is_coherent) < 0)
1512                goto bad_mapping;
1513
1514        dma->dma_address += offset;
1515        dma->dma_length = size - offset;
1516
1517        return count+1;
1518
1519bad_mapping:
1520        for_each_sg(sg, s, count, i)
1521                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1522        return 0;
1523}
1524
1525/**
1526 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1527 * @dev: valid struct device pointer
1528 * @sg: list of buffers
1529 * @nents: number of buffers to map
1530 * @dir: DMA transfer direction
1531 *
1532 * Map a set of i/o coherent buffers described by scatterlist in streaming
1533 * mode for DMA. The scatter gather list elements are merged together (if
1534 * possible) and tagged with the appropriate dma address and length. They are
1535 * obtained via sg_dma_{address,length}.
1536 */
1537int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1538                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1539{
1540        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1541}
1542
1543/**
1544 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1545 * @dev: valid struct device pointer
1546 * @sg: list of buffers
1547 * @nents: number of buffers to map
1548 * @dir: DMA transfer direction
1549 *
1550 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1551 * The scatter gather list elements are merged together (if possible) and
1552 * tagged with the appropriate dma address and length. They are obtained via
1553 * sg_dma_{address,length}.
1554 */
1555int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1556                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1557{
1558        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1559}
1560
1561static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1562                int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1563                bool is_coherent)
1564{
1565        struct scatterlist *s;
1566        int i;
1567
1568        for_each_sg(sg, s, nents, i) {
1569                if (sg_dma_len(s))
1570                        __iommu_remove_mapping(dev, sg_dma_address(s),
1571                                               sg_dma_len(s));
1572                if (!is_coherent &&
1573                    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1574                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1575                                              s->length, dir);
1576        }
1577}
1578
1579/**
1580 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1581 * @dev: valid struct device pointer
1582 * @sg: list of buffers
1583 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1584 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1585 *
1586 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1587 * rules concerning calls here are the same as for dma_unmap_single().
1588 */
1589void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1590                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1591{
1592        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1593}
1594
1595/**
1596 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1597 * @dev: valid struct device pointer
1598 * @sg: list of buffers
1599 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1600 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1601 *
1602 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1603 * rules concerning calls here are the same as for dma_unmap_single().
1604 */
1605void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1606                        enum dma_data_direction dir, struct dma_attrs *attrs)
1607{
1608        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1609}
1610
1611/**
1612 * arm_iommu_sync_sg_for_cpu
1613 * @dev: valid struct device pointer
1614 * @sg: list of buffers
1615 * @nents: number of buffers to map (returned from dma_map_sg)
1616 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1617 */
1618void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1619                        int nents, enum dma_data_direction dir)
1620{
1621        struct scatterlist *s;
1622        int i;
1623
1624        for_each_sg(sg, s, nents, i)
1625                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1626
1627}
1628
1629/**
1630 * arm_iommu_sync_sg_for_device
1631 * @dev: valid struct device pointer
1632 * @sg: list of buffers
1633 * @nents: number of buffers to map (returned from dma_map_sg)
1634 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1635 */
1636void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1637                        int nents, enum dma_data_direction dir)
1638{
1639        struct scatterlist *s;
1640        int i;
1641
1642        for_each_sg(sg, s, nents, i)
1643                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1644}
1645
1646
1647/**
1648 * arm_coherent_iommu_map_page
1649 * @dev: valid struct device pointer
1650 * @page: page that buffer resides in
1651 * @offset: offset into page for start of buffer
1652 * @size: size of buffer to map
1653 * @dir: DMA transfer direction
1654 *
1655 * Coherent IOMMU aware version of arm_dma_map_page()
1656 */
1657static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1658             unsigned long offset, size_t size, enum dma_data_direction dir,
1659             struct dma_attrs *attrs)
1660{
1661        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1662        dma_addr_t dma_addr;
1663        int ret, prot, len = PAGE_ALIGN(size + offset);
1664
1665        dma_addr = __alloc_iova(mapping, len);
1666        if (dma_addr == DMA_ERROR_CODE)
1667                return dma_addr;
1668
1669        switch (dir) {
1670        case DMA_BIDIRECTIONAL:
1671                prot = IOMMU_READ | IOMMU_WRITE;
1672                break;
1673        case DMA_TO_DEVICE:
1674                prot = IOMMU_READ;
1675                break;
1676        case DMA_FROM_DEVICE:
1677                prot = IOMMU_WRITE;
1678                break;
1679        default:
1680                prot = 0;
1681        }
1682
1683        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1684        if (ret < 0)
1685                goto fail;
1686
1687        return dma_addr + offset;
1688fail:
1689        __free_iova(mapping, dma_addr, len);
1690        return DMA_ERROR_CODE;
1691}
1692
1693/**
1694 * arm_iommu_map_page
1695 * @dev: valid struct device pointer
1696 * @page: page that buffer resides in
1697 * @offset: offset into page for start of buffer
1698 * @size: size of buffer to map
1699 * @dir: DMA transfer direction
1700 *
1701 * IOMMU aware version of arm_dma_map_page()
1702 */
1703static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1704             unsigned long offset, size_t size, enum dma_data_direction dir,
1705             struct dma_attrs *attrs)
1706{
1707        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1708                __dma_page_cpu_to_dev(page, offset, size, dir);
1709
1710        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1711}
1712
1713/**
1714 * arm_coherent_iommu_unmap_page
1715 * @dev: valid struct device pointer
1716 * @handle: DMA address of buffer
1717 * @size: size of buffer (same as passed to dma_map_page)
1718 * @dir: DMA transfer direction (same as passed to dma_map_page)
1719 *
1720 * Coherent IOMMU aware version of arm_dma_unmap_page()
1721 */
1722static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1723                size_t size, enum dma_data_direction dir,
1724                struct dma_attrs *attrs)
1725{
1726        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1727        dma_addr_t iova = handle & PAGE_MASK;
1728        int offset = handle & ~PAGE_MASK;
1729        int len = PAGE_ALIGN(size + offset);
1730
1731        if (!iova)
1732                return;
1733
1734        iommu_unmap(mapping->domain, iova, len);
1735        __free_iova(mapping, iova, len);
1736}
1737
1738/**
1739 * arm_iommu_unmap_page
1740 * @dev: valid struct device pointer
1741 * @handle: DMA address of buffer
1742 * @size: size of buffer (same as passed to dma_map_page)
1743 * @dir: DMA transfer direction (same as passed to dma_map_page)
1744 *
1745 * IOMMU aware version of arm_dma_unmap_page()
1746 */
1747static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1748                size_t size, enum dma_data_direction dir,
1749                struct dma_attrs *attrs)
1750{
1751        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1752        dma_addr_t iova = handle & PAGE_MASK;
1753        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1754        int offset = handle & ~PAGE_MASK;
1755        int len = PAGE_ALIGN(size + offset);
1756
1757        if (!iova)
1758                return;
1759
1760        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1761                __dma_page_dev_to_cpu(page, offset, size, dir);
1762
1763        iommu_unmap(mapping->domain, iova, len);
1764        __free_iova(mapping, iova, len);
1765}
1766
1767static void arm_iommu_sync_single_for_cpu(struct device *dev,
1768                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1769{
1770        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1771        dma_addr_t iova = handle & PAGE_MASK;
1772        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1773        unsigned int offset = handle & ~PAGE_MASK;
1774
1775        if (!iova)
1776                return;
1777
1778        __dma_page_dev_to_cpu(page, offset, size, dir);
1779}
1780
1781static void arm_iommu_sync_single_for_device(struct device *dev,
1782                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1783{
1784        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1785        dma_addr_t iova = handle & PAGE_MASK;
1786        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1787        unsigned int offset = handle & ~PAGE_MASK;
1788
1789        if (!iova)
1790                return;
1791
1792        __dma_page_cpu_to_dev(page, offset, size, dir);
1793}
1794
1795struct dma_map_ops iommu_ops = {
1796        .alloc          = arm_iommu_alloc_attrs,
1797        .free           = arm_iommu_free_attrs,
1798        .mmap           = arm_iommu_mmap_attrs,
1799        .get_sgtable    = arm_iommu_get_sgtable,
1800
1801        .map_page               = arm_iommu_map_page,
1802        .unmap_page             = arm_iommu_unmap_page,
1803        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1804        .sync_single_for_device = arm_iommu_sync_single_for_device,
1805
1806        .map_sg                 = arm_iommu_map_sg,
1807        .unmap_sg               = arm_iommu_unmap_sg,
1808        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
1809        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
1810
1811        .set_dma_mask           = arm_dma_set_mask,
1812};
1813
1814struct dma_map_ops iommu_coherent_ops = {
1815        .alloc          = arm_iommu_alloc_attrs,
1816        .free           = arm_iommu_free_attrs,
1817        .mmap           = arm_iommu_mmap_attrs,
1818        .get_sgtable    = arm_iommu_get_sgtable,
1819
1820        .map_page       = arm_coherent_iommu_map_page,
1821        .unmap_page     = arm_coherent_iommu_unmap_page,
1822
1823        .map_sg         = arm_coherent_iommu_map_sg,
1824        .unmap_sg       = arm_coherent_iommu_unmap_sg,
1825
1826        .set_dma_mask   = arm_dma_set_mask,
1827};
1828
1829/**
1830 * arm_iommu_create_mapping
1831 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1832 * @base: start address of the valid IO address space
1833 * @size: size of the valid IO address space
1834 * @order: accuracy of the IO addresses allocations
1835 *
1836 * Creates a mapping structure which holds information about used/unused
1837 * IO address ranges, which is required to perform memory allocation and
1838 * mapping with IOMMU aware functions.
1839 *
1840 * The client device need to be attached to the mapping with
1841 * arm_iommu_attach_device function.
1842 */
1843struct dma_iommu_mapping *
1844arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1845                         int order)
1846{
1847        unsigned int count = size >> (PAGE_SHIFT + order);
1848        unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1849        struct dma_iommu_mapping *mapping;
1850        int err = -ENOMEM;
1851
1852        if (!count)
1853                return ERR_PTR(-EINVAL);
1854
1855        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1856        if (!mapping)
1857                goto err;
1858
1859        mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1860        if (!mapping->bitmap)
1861                goto err2;
1862
1863        mapping->base = base;
1864        mapping->bits = BITS_PER_BYTE * bitmap_size;
1865        mapping->order = order;
1866        spin_lock_init(&mapping->lock);
1867
1868        mapping->domain = iommu_domain_alloc(bus);
1869        if (!mapping->domain)
1870                goto err3;
1871
1872        kref_init(&mapping->kref);
1873        return mapping;
1874err3:
1875        kfree(mapping->bitmap);
1876err2:
1877        kfree(mapping);
1878err:
1879        return ERR_PTR(err);
1880}
1881EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1882
1883static void release_iommu_mapping(struct kref *kref)
1884{
1885        struct dma_iommu_mapping *mapping =
1886                container_of(kref, struct dma_iommu_mapping, kref);
1887
1888        iommu_domain_free(mapping->domain);
1889        kfree(mapping->bitmap);
1890        kfree(mapping);
1891}
1892
1893void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1894{
1895        if (mapping)
1896                kref_put(&mapping->kref, release_iommu_mapping);
1897}
1898EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1899
1900/**
1901 * arm_iommu_attach_device
1902 * @dev: valid struct device pointer
1903 * @mapping: io address space mapping structure (returned from
1904 *      arm_iommu_create_mapping)
1905 *
1906 * Attaches specified io address space mapping to the provided device,
1907 * this replaces the dma operations (dma_map_ops pointer) with the
1908 * IOMMU aware version. More than one client might be attached to
1909 * the same io address space mapping.
1910 */
1911int arm_iommu_attach_device(struct device *dev,
1912                            struct dma_iommu_mapping *mapping)
1913{
1914        int err;
1915
1916        err = iommu_attach_device(mapping->domain, dev);
1917        if (err)
1918                return err;
1919
1920        kref_get(&mapping->kref);
1921        dev->archdata.mapping = mapping;
1922        set_dma_ops(dev, &iommu_ops);
1923
1924        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1925        return 0;
1926}
1927EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1928
1929/**
1930 * arm_iommu_detach_device
1931 * @dev: valid struct device pointer
1932 *
1933 * Detaches the provided device from a previously attached map.
1934 * This voids the dma operations (dma_map_ops pointer)
1935 */
1936void arm_iommu_detach_device(struct device *dev)
1937{
1938        struct dma_iommu_mapping *mapping;
1939
1940        mapping = to_dma_iommu_mapping(dev);
1941        if (!mapping) {
1942                dev_warn(dev, "Not attached\n");
1943                return;
1944        }
1945
1946        iommu_detach_device(mapping->domain, dev);
1947        kref_put(&mapping->kref, release_iommu_mapping);
1948        dev->archdata.mapping = NULL;
1949        set_dma_ops(dev, NULL);
1950
1951        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1952}
1953EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1954
1955#endif
1956