linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/setup.h>
  26#include <asm/smp_plat.h>
  27#include <asm/tlb.h>
  28#include <asm/highmem.h>
  29#include <asm/system_info.h>
  30#include <asm/traps.h>
  31
  32#include <asm/mach/arch.h>
  33#include <asm/mach/map.h>
  34#include <asm/mach/pci.h>
  35
  36#include "mm.h"
  37#include "tcm.h"
  38
  39/*
  40 * empty_zero_page is a special page that is used for
  41 * zero-initialized data and COW.
  42 */
  43struct page *empty_zero_page;
  44EXPORT_SYMBOL(empty_zero_page);
  45
  46/*
  47 * The pmd table for the upper-most set of pages.
  48 */
  49pmd_t *top_pmd;
  50
  51#define CPOLICY_UNCACHED        0
  52#define CPOLICY_BUFFERED        1
  53#define CPOLICY_WRITETHROUGH    2
  54#define CPOLICY_WRITEBACK       3
  55#define CPOLICY_WRITEALLOC      4
  56
  57static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  58static unsigned int ecc_mask __initdata = 0;
  59pgprot_t pgprot_user;
  60pgprot_t pgprot_kernel;
  61pgprot_t pgprot_hyp_device;
  62pgprot_t pgprot_s2;
  63pgprot_t pgprot_s2_device;
  64
  65EXPORT_SYMBOL(pgprot_user);
  66EXPORT_SYMBOL(pgprot_kernel);
  67
  68struct cachepolicy {
  69        const char      policy[16];
  70        unsigned int    cr_mask;
  71        pmdval_t        pmd;
  72        pteval_t        pte;
  73        pteval_t        pte_s2;
  74};
  75
  76#ifdef CONFIG_ARM_LPAE
  77#define s2_policy(policy)       policy
  78#else
  79#define s2_policy(policy)       0
  80#endif
  81
  82static struct cachepolicy cache_policies[] __initdata = {
  83        {
  84                .policy         = "uncached",
  85                .cr_mask        = CR_W|CR_C,
  86                .pmd            = PMD_SECT_UNCACHED,
  87                .pte            = L_PTE_MT_UNCACHED,
  88                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  89        }, {
  90                .policy         = "buffered",
  91                .cr_mask        = CR_C,
  92                .pmd            = PMD_SECT_BUFFERED,
  93                .pte            = L_PTE_MT_BUFFERABLE,
  94                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  95        }, {
  96                .policy         = "writethrough",
  97                .cr_mask        = 0,
  98                .pmd            = PMD_SECT_WT,
  99                .pte            = L_PTE_MT_WRITETHROUGH,
 100                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 101        }, {
 102                .policy         = "writeback",
 103                .cr_mask        = 0,
 104                .pmd            = PMD_SECT_WB,
 105                .pte            = L_PTE_MT_WRITEBACK,
 106                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 107        }, {
 108                .policy         = "writealloc",
 109                .cr_mask        = 0,
 110                .pmd            = PMD_SECT_WBWA,
 111                .pte            = L_PTE_MT_WRITEALLOC,
 112                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 113        }
 114};
 115
 116#ifdef CONFIG_CPU_CP15
 117/*
 118 * These are useful for identifying cache coherency
 119 * problems by allowing the cache or the cache and
 120 * writebuffer to be turned off.  (Note: the write
 121 * buffer should not be on and the cache off).
 122 */
 123static int __init early_cachepolicy(char *p)
 124{
 125        int i;
 126
 127        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 128                int len = strlen(cache_policies[i].policy);
 129
 130                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 131                        cachepolicy = i;
 132                        cr_alignment &= ~cache_policies[i].cr_mask;
 133                        cr_no_alignment &= ~cache_policies[i].cr_mask;
 134                        break;
 135                }
 136        }
 137        if (i == ARRAY_SIZE(cache_policies))
 138                printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
 139        /*
 140         * This restriction is partly to do with the way we boot; it is
 141         * unpredictable to have memory mapped using two different sets of
 142         * memory attributes (shared, type, and cache attribs).  We can not
 143         * change these attributes once the initial assembly has setup the
 144         * page tables.
 145         */
 146        if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 147                printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
 148                cachepolicy = CPOLICY_WRITEBACK;
 149        }
 150        flush_cache_all();
 151        set_cr(cr_alignment);
 152        return 0;
 153}
 154early_param("cachepolicy", early_cachepolicy);
 155
 156static int __init early_nocache(char *__unused)
 157{
 158        char *p = "buffered";
 159        printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
 160        early_cachepolicy(p);
 161        return 0;
 162}
 163early_param("nocache", early_nocache);
 164
 165static int __init early_nowrite(char *__unused)
 166{
 167        char *p = "uncached";
 168        printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
 169        early_cachepolicy(p);
 170        return 0;
 171}
 172early_param("nowb", early_nowrite);
 173
 174#ifndef CONFIG_ARM_LPAE
 175static int __init early_ecc(char *p)
 176{
 177        if (memcmp(p, "on", 2) == 0)
 178                ecc_mask = PMD_PROTECTION;
 179        else if (memcmp(p, "off", 3) == 0)
 180                ecc_mask = 0;
 181        return 0;
 182}
 183early_param("ecc", early_ecc);
 184#endif
 185
 186static int __init noalign_setup(char *__unused)
 187{
 188        cr_alignment &= ~CR_A;
 189        cr_no_alignment &= ~CR_A;
 190        set_cr(cr_alignment);
 191        return 1;
 192}
 193__setup("noalign", noalign_setup);
 194
 195#ifndef CONFIG_SMP
 196void adjust_cr(unsigned long mask, unsigned long set)
 197{
 198        unsigned long flags;
 199
 200        mask &= ~CR_A;
 201
 202        set &= mask;
 203
 204        local_irq_save(flags);
 205
 206        cr_no_alignment = (cr_no_alignment & ~mask) | set;
 207        cr_alignment = (cr_alignment & ~mask) | set;
 208
 209        set_cr((get_cr() & ~mask) | set);
 210
 211        local_irq_restore(flags);
 212}
 213#endif
 214
 215#else /* ifdef CONFIG_CPU_CP15 */
 216
 217static int __init early_cachepolicy(char *p)
 218{
 219        pr_warning("cachepolicy kernel parameter not supported without cp15\n");
 220}
 221early_param("cachepolicy", early_cachepolicy);
 222
 223static int __init noalign_setup(char *__unused)
 224{
 225        pr_warning("noalign kernel parameter not supported without cp15\n");
 226}
 227__setup("noalign", noalign_setup);
 228
 229#endif /* ifdef CONFIG_CPU_CP15 / else */
 230
 231#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 232#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 233
 234static struct mem_type mem_types[] = {
 235        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 236                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 237                                  L_PTE_SHARED,
 238                .prot_l1        = PMD_TYPE_TABLE,
 239                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 240                .domain         = DOMAIN_IO,
 241        },
 242        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 243                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 244                .prot_l1        = PMD_TYPE_TABLE,
 245                .prot_sect      = PROT_SECT_DEVICE,
 246                .domain         = DOMAIN_IO,
 247        },
 248        [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 249                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 250                .prot_l1        = PMD_TYPE_TABLE,
 251                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 252                .domain         = DOMAIN_IO,
 253        },
 254        [MT_DEVICE_WC] = {      /* ioremap_wc */
 255                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 256                .prot_l1        = PMD_TYPE_TABLE,
 257                .prot_sect      = PROT_SECT_DEVICE,
 258                .domain         = DOMAIN_IO,
 259        },
 260        [MT_UNCACHED] = {
 261                .prot_pte       = PROT_PTE_DEVICE,
 262                .prot_l1        = PMD_TYPE_TABLE,
 263                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 264                .domain         = DOMAIN_IO,
 265        },
 266        [MT_CACHECLEAN] = {
 267                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 268                .domain    = DOMAIN_KERNEL,
 269        },
 270#ifndef CONFIG_ARM_LPAE
 271        [MT_MINICLEAN] = {
 272                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 273                .domain    = DOMAIN_KERNEL,
 274        },
 275#endif
 276        [MT_LOW_VECTORS] = {
 277                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 278                                L_PTE_RDONLY,
 279                .prot_l1   = PMD_TYPE_TABLE,
 280                .domain    = DOMAIN_USER,
 281        },
 282        [MT_HIGH_VECTORS] = {
 283                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 284                                L_PTE_USER | L_PTE_RDONLY,
 285                .prot_l1   = PMD_TYPE_TABLE,
 286                .domain    = DOMAIN_USER,
 287        },
 288        [MT_MEMORY] = {
 289                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 290                .prot_l1   = PMD_TYPE_TABLE,
 291                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 292                .domain    = DOMAIN_KERNEL,
 293        },
 294        [MT_ROM] = {
 295                .prot_sect = PMD_TYPE_SECT,
 296                .domain    = DOMAIN_KERNEL,
 297        },
 298        [MT_MEMORY_NONCACHED] = {
 299                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 300                                L_PTE_MT_BUFFERABLE,
 301                .prot_l1   = PMD_TYPE_TABLE,
 302                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 303                .domain    = DOMAIN_KERNEL,
 304        },
 305        [MT_MEMORY_DTCM] = {
 306                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 307                                L_PTE_XN,
 308                .prot_l1   = PMD_TYPE_TABLE,
 309                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 310                .domain    = DOMAIN_KERNEL,
 311        },
 312        [MT_MEMORY_ITCM] = {
 313                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 314                .prot_l1   = PMD_TYPE_TABLE,
 315                .domain    = DOMAIN_KERNEL,
 316        },
 317        [MT_MEMORY_SO] = {
 318                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 319                                L_PTE_MT_UNCACHED | L_PTE_XN,
 320                .prot_l1   = PMD_TYPE_TABLE,
 321                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 322                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 323                .domain    = DOMAIN_KERNEL,
 324        },
 325        [MT_MEMORY_DMA_READY] = {
 326                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 327                .prot_l1   = PMD_TYPE_TABLE,
 328                .domain    = DOMAIN_KERNEL,
 329        },
 330};
 331
 332const struct mem_type *get_mem_type(unsigned int type)
 333{
 334        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 335}
 336EXPORT_SYMBOL(get_mem_type);
 337
 338/*
 339 * Adjust the PMD section entries according to the CPU in use.
 340 */
 341static void __init build_mem_type_table(void)
 342{
 343        struct cachepolicy *cp;
 344        unsigned int cr = get_cr();
 345        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 346        pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 347        int cpu_arch = cpu_architecture();
 348        int i;
 349
 350        if (cpu_arch < CPU_ARCH_ARMv6) {
 351#if defined(CONFIG_CPU_DCACHE_DISABLE)
 352                if (cachepolicy > CPOLICY_BUFFERED)
 353                        cachepolicy = CPOLICY_BUFFERED;
 354#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 355                if (cachepolicy > CPOLICY_WRITETHROUGH)
 356                        cachepolicy = CPOLICY_WRITETHROUGH;
 357#endif
 358        }
 359        if (cpu_arch < CPU_ARCH_ARMv5) {
 360                if (cachepolicy >= CPOLICY_WRITEALLOC)
 361                        cachepolicy = CPOLICY_WRITEBACK;
 362                ecc_mask = 0;
 363        }
 364        if (is_smp())
 365                cachepolicy = CPOLICY_WRITEALLOC;
 366
 367        /*
 368         * Strip out features not present on earlier architectures.
 369         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 370         * without extended page tables don't have the 'Shared' bit.
 371         */
 372        if (cpu_arch < CPU_ARCH_ARMv5)
 373                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 374                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 375        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 376                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 377                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 378
 379        /*
 380         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 381         * "update-able on write" bit on ARM610).  However, Xscale and
 382         * Xscale3 require this bit to be cleared.
 383         */
 384        if (cpu_is_xscale() || cpu_is_xsc3()) {
 385                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 386                        mem_types[i].prot_sect &= ~PMD_BIT4;
 387                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 388                }
 389        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 390                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 391                        if (mem_types[i].prot_l1)
 392                                mem_types[i].prot_l1 |= PMD_BIT4;
 393                        if (mem_types[i].prot_sect)
 394                                mem_types[i].prot_sect |= PMD_BIT4;
 395                }
 396        }
 397
 398        /*
 399         * Mark the device areas according to the CPU/architecture.
 400         */
 401        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 402                if (!cpu_is_xsc3()) {
 403                        /*
 404                         * Mark device regions on ARMv6+ as execute-never
 405                         * to prevent speculative instruction fetches.
 406                         */
 407                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 408                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 409                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 410                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 411                }
 412                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 413                        /*
 414                         * For ARMv7 with TEX remapping,
 415                         * - shared device is SXCB=1100
 416                         * - nonshared device is SXCB=0100
 417                         * - write combine device mem is SXCB=0001
 418                         * (Uncached Normal memory)
 419                         */
 420                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 421                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 422                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 423                } else if (cpu_is_xsc3()) {
 424                        /*
 425                         * For Xscale3,
 426                         * - shared device is TEXCB=00101
 427                         * - nonshared device is TEXCB=01000
 428                         * - write combine device mem is TEXCB=00100
 429                         * (Inner/Outer Uncacheable in xsc3 parlance)
 430                         */
 431                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 432                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 433                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 434                } else {
 435                        /*
 436                         * For ARMv6 and ARMv7 without TEX remapping,
 437                         * - shared device is TEXCB=00001
 438                         * - nonshared device is TEXCB=01000
 439                         * - write combine device mem is TEXCB=00100
 440                         * (Uncached Normal in ARMv6 parlance).
 441                         */
 442                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 443                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 444                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 445                }
 446        } else {
 447                /*
 448                 * On others, write combining is "Uncached/Buffered"
 449                 */
 450                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 451        }
 452
 453        /*
 454         * Now deal with the memory-type mappings
 455         */
 456        cp = &cache_policies[cachepolicy];
 457        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 458        s2_pgprot = cp->pte_s2;
 459        hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 460
 461        /*
 462         * ARMv6 and above have extended page tables.
 463         */
 464        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 465#ifndef CONFIG_ARM_LPAE
 466                /*
 467                 * Mark cache clean areas and XIP ROM read only
 468                 * from SVC mode and no access from userspace.
 469                 */
 470                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 471                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 472                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 473#endif
 474
 475                if (is_smp()) {
 476                        /*
 477                         * Mark memory with the "shared" attribute
 478                         * for SMP systems
 479                         */
 480                        user_pgprot |= L_PTE_SHARED;
 481                        kern_pgprot |= L_PTE_SHARED;
 482                        vecs_pgprot |= L_PTE_SHARED;
 483                        s2_pgprot |= L_PTE_SHARED;
 484                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 485                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 486                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 487                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 488                        mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
 489                        mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
 490                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 491                        mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
 492                        mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
 493                }
 494        }
 495
 496        /*
 497         * Non-cacheable Normal - intended for memory areas that must
 498         * not cause dirty cache line writebacks when used
 499         */
 500        if (cpu_arch >= CPU_ARCH_ARMv6) {
 501                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 502                        /* Non-cacheable Normal is XCB = 001 */
 503                        mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 504                                PMD_SECT_BUFFERED;
 505                } else {
 506                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 507                        mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 508                                PMD_SECT_TEX(1);
 509                }
 510        } else {
 511                mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 512        }
 513
 514#ifdef CONFIG_ARM_LPAE
 515        /*
 516         * Do not generate access flag faults for the kernel mappings.
 517         */
 518        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 519                mem_types[i].prot_pte |= PTE_EXT_AF;
 520                if (mem_types[i].prot_sect)
 521                        mem_types[i].prot_sect |= PMD_SECT_AF;
 522        }
 523        kern_pgprot |= PTE_EXT_AF;
 524        vecs_pgprot |= PTE_EXT_AF;
 525#endif
 526
 527        for (i = 0; i < 16; i++) {
 528                pteval_t v = pgprot_val(protection_map[i]);
 529                protection_map[i] = __pgprot(v | user_pgprot);
 530        }
 531
 532        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 533        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 534
 535        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 536        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 537                                 L_PTE_DIRTY | kern_pgprot);
 538        pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 539        pgprot_s2_device  = __pgprot(s2_device_pgprot);
 540        pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 541
 542        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 543        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 544        mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
 545        mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
 546        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 547        mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
 548        mem_types[MT_ROM].prot_sect |= cp->pmd;
 549
 550        switch (cp->pmd) {
 551        case PMD_SECT_WT:
 552                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 553                break;
 554        case PMD_SECT_WB:
 555        case PMD_SECT_WBWA:
 556                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 557                break;
 558        }
 559        printk("Memory policy: ECC %sabled, Data cache %s\n",
 560                ecc_mask ? "en" : "dis", cp->policy);
 561
 562        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 563                struct mem_type *t = &mem_types[i];
 564                if (t->prot_l1)
 565                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 566                if (t->prot_sect)
 567                        t->prot_sect |= PMD_DOMAIN(t->domain);
 568        }
 569}
 570
 571#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 572pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 573                              unsigned long size, pgprot_t vma_prot)
 574{
 575        if (!pfn_valid(pfn))
 576                return pgprot_noncached(vma_prot);
 577        else if (file->f_flags & O_SYNC)
 578                return pgprot_writecombine(vma_prot);
 579        return vma_prot;
 580}
 581EXPORT_SYMBOL(phys_mem_access_prot);
 582#endif
 583
 584#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 585
 586static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 587{
 588        void *ptr = __va(memblock_alloc(sz, align));
 589        memset(ptr, 0, sz);
 590        return ptr;
 591}
 592
 593static void __init *early_alloc(unsigned long sz)
 594{
 595        return early_alloc_aligned(sz, sz);
 596}
 597
 598static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 599{
 600        if (pmd_none(*pmd)) {
 601                pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 602                __pmd_populate(pmd, __pa(pte), prot);
 603        }
 604        BUG_ON(pmd_bad(*pmd));
 605        return pte_offset_kernel(pmd, addr);
 606}
 607
 608static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 609                                  unsigned long end, unsigned long pfn,
 610                                  const struct mem_type *type)
 611{
 612        pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 613        do {
 614                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 615                pfn++;
 616        } while (pte++, addr += PAGE_SIZE, addr != end);
 617}
 618
 619static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 620                        unsigned long end, phys_addr_t phys,
 621                        const struct mem_type *type)
 622{
 623        pmd_t *p = pmd;
 624
 625#ifndef CONFIG_ARM_LPAE
 626        /*
 627         * In classic MMU format, puds and pmds are folded in to
 628         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 629         * group of L1 entries making up one logical pointer to
 630         * an L2 table (2MB), where as PMDs refer to the individual
 631         * L1 entries (1MB). Hence increment to get the correct
 632         * offset for odd 1MB sections.
 633         * (See arch/arm/include/asm/pgtable-2level.h)
 634         */
 635        if (addr & SECTION_SIZE)
 636                pmd++;
 637#endif
 638        do {
 639                *pmd = __pmd(phys | type->prot_sect);
 640                phys += SECTION_SIZE;
 641        } while (pmd++, addr += SECTION_SIZE, addr != end);
 642
 643        flush_pmd_entry(p);
 644}
 645
 646static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 647                                      unsigned long end, phys_addr_t phys,
 648                                      const struct mem_type *type)
 649{
 650        pmd_t *pmd = pmd_offset(pud, addr);
 651        unsigned long next;
 652
 653        do {
 654                /*
 655                 * With LPAE, we must loop over to map
 656                 * all the pmds for the given range.
 657                 */
 658                next = pmd_addr_end(addr, end);
 659
 660                /*
 661                 * Try a section mapping - addr, next and phys must all be
 662                 * aligned to a section boundary.
 663                 */
 664                if (type->prot_sect &&
 665                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 666                        __map_init_section(pmd, addr, next, phys, type);
 667                } else {
 668                        alloc_init_pte(pmd, addr, next,
 669                                                __phys_to_pfn(phys), type);
 670                }
 671
 672                phys += next - addr;
 673
 674        } while (pmd++, addr = next, addr != end);
 675}
 676
 677static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 678                                  unsigned long end, phys_addr_t phys,
 679                                  const struct mem_type *type)
 680{
 681        pud_t *pud = pud_offset(pgd, addr);
 682        unsigned long next;
 683
 684        do {
 685                next = pud_addr_end(addr, end);
 686                alloc_init_pmd(pud, addr, next, phys, type);
 687                phys += next - addr;
 688        } while (pud++, addr = next, addr != end);
 689}
 690
 691#ifndef CONFIG_ARM_LPAE
 692static void __init create_36bit_mapping(struct map_desc *md,
 693                                        const struct mem_type *type)
 694{
 695        unsigned long addr, length, end;
 696        phys_addr_t phys;
 697        pgd_t *pgd;
 698
 699        addr = md->virtual;
 700        phys = __pfn_to_phys(md->pfn);
 701        length = PAGE_ALIGN(md->length);
 702
 703        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 704                printk(KERN_ERR "MM: CPU does not support supersection "
 705                       "mapping for 0x%08llx at 0x%08lx\n",
 706                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 707                return;
 708        }
 709
 710        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 711         *      Since domain assignments can in fact be arbitrary, the
 712         *      'domain == 0' check below is required to insure that ARMv6
 713         *      supersections are only allocated for domain 0 regardless
 714         *      of the actual domain assignments in use.
 715         */
 716        if (type->domain) {
 717                printk(KERN_ERR "MM: invalid domain in supersection "
 718                       "mapping for 0x%08llx at 0x%08lx\n",
 719                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 720                return;
 721        }
 722
 723        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 724                printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
 725                       " at 0x%08lx invalid alignment\n",
 726                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 727                return;
 728        }
 729
 730        /*
 731         * Shift bits [35:32] of address into bits [23:20] of PMD
 732         * (See ARMv6 spec).
 733         */
 734        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 735
 736        pgd = pgd_offset_k(addr);
 737        end = addr + length;
 738        do {
 739                pud_t *pud = pud_offset(pgd, addr);
 740                pmd_t *pmd = pmd_offset(pud, addr);
 741                int i;
 742
 743                for (i = 0; i < 16; i++)
 744                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 745
 746                addr += SUPERSECTION_SIZE;
 747                phys += SUPERSECTION_SIZE;
 748                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 749        } while (addr != end);
 750}
 751#endif  /* !CONFIG_ARM_LPAE */
 752
 753/*
 754 * Create the page directory entries and any necessary
 755 * page tables for the mapping specified by `md'.  We
 756 * are able to cope here with varying sizes and address
 757 * offsets, and we take full advantage of sections and
 758 * supersections.
 759 */
 760static void __init create_mapping(struct map_desc *md)
 761{
 762        unsigned long addr, length, end;
 763        phys_addr_t phys;
 764        const struct mem_type *type;
 765        pgd_t *pgd;
 766
 767        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 768                printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
 769                       " at 0x%08lx in user region\n",
 770                       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 771                return;
 772        }
 773
 774        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 775            md->virtual >= PAGE_OFFSET &&
 776            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 777                printk(KERN_WARNING "BUG: mapping for 0x%08llx"
 778                       " at 0x%08lx out of vmalloc space\n",
 779                       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 780        }
 781
 782        type = &mem_types[md->type];
 783
 784#ifndef CONFIG_ARM_LPAE
 785        /*
 786         * Catch 36-bit addresses
 787         */
 788        if (md->pfn >= 0x100000) {
 789                create_36bit_mapping(md, type);
 790                return;
 791        }
 792#endif
 793
 794        addr = md->virtual & PAGE_MASK;
 795        phys = __pfn_to_phys(md->pfn);
 796        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 797
 798        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 799                printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
 800                       "be mapped using pages, ignoring.\n",
 801                       (long long)__pfn_to_phys(md->pfn), addr);
 802                return;
 803        }
 804
 805        pgd = pgd_offset_k(addr);
 806        end = addr + length;
 807        do {
 808                unsigned long next = pgd_addr_end(addr, end);
 809
 810                alloc_init_pud(pgd, addr, next, phys, type);
 811
 812                phys += next - addr;
 813                addr = next;
 814        } while (pgd++, addr != end);
 815}
 816
 817/*
 818 * Create the architecture specific mappings
 819 */
 820void __init iotable_init(struct map_desc *io_desc, int nr)
 821{
 822        struct map_desc *md;
 823        struct vm_struct *vm;
 824        struct static_vm *svm;
 825
 826        if (!nr)
 827                return;
 828
 829        svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 830
 831        for (md = io_desc; nr; md++, nr--) {
 832                create_mapping(md);
 833
 834                vm = &svm->vm;
 835                vm->addr = (void *)(md->virtual & PAGE_MASK);
 836                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 837                vm->phys_addr = __pfn_to_phys(md->pfn);
 838                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
 839                vm->flags |= VM_ARM_MTYPE(md->type);
 840                vm->caller = iotable_init;
 841                add_static_vm_early(svm++);
 842        }
 843}
 844
 845void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
 846                                  void *caller)
 847{
 848        struct vm_struct *vm;
 849        struct static_vm *svm;
 850
 851        svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 852
 853        vm = &svm->vm;
 854        vm->addr = (void *)addr;
 855        vm->size = size;
 856        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 857        vm->caller = caller;
 858        add_static_vm_early(svm);
 859}
 860
 861#ifndef CONFIG_ARM_LPAE
 862
 863/*
 864 * The Linux PMD is made of two consecutive section entries covering 2MB
 865 * (see definition in include/asm/pgtable-2level.h).  However a call to
 866 * create_mapping() may optimize static mappings by using individual
 867 * 1MB section mappings.  This leaves the actual PMD potentially half
 868 * initialized if the top or bottom section entry isn't used, leaving it
 869 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 870 * the virtual space left free by that unused section entry.
 871 *
 872 * Let's avoid the issue by inserting dummy vm entries covering the unused
 873 * PMD halves once the static mappings are in place.
 874 */
 875
 876static void __init pmd_empty_section_gap(unsigned long addr)
 877{
 878        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
 879}
 880
 881static void __init fill_pmd_gaps(void)
 882{
 883        struct static_vm *svm;
 884        struct vm_struct *vm;
 885        unsigned long addr, next = 0;
 886        pmd_t *pmd;
 887
 888        list_for_each_entry(svm, &static_vmlist, list) {
 889                vm = &svm->vm;
 890                addr = (unsigned long)vm->addr;
 891                if (addr < next)
 892                        continue;
 893
 894                /*
 895                 * Check if this vm starts on an odd section boundary.
 896                 * If so and the first section entry for this PMD is free
 897                 * then we block the corresponding virtual address.
 898                 */
 899                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 900                        pmd = pmd_off_k(addr);
 901                        if (pmd_none(*pmd))
 902                                pmd_empty_section_gap(addr & PMD_MASK);
 903                }
 904
 905                /*
 906                 * Then check if this vm ends on an odd section boundary.
 907                 * If so and the second section entry for this PMD is empty
 908                 * then we block the corresponding virtual address.
 909                 */
 910                addr += vm->size;
 911                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 912                        pmd = pmd_off_k(addr) + 1;
 913                        if (pmd_none(*pmd))
 914                                pmd_empty_section_gap(addr);
 915                }
 916
 917                /* no need to look at any vm entry until we hit the next PMD */
 918                next = (addr + PMD_SIZE - 1) & PMD_MASK;
 919        }
 920}
 921
 922#else
 923#define fill_pmd_gaps() do { } while (0)
 924#endif
 925
 926#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
 927static void __init pci_reserve_io(void)
 928{
 929        struct static_vm *svm;
 930
 931        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
 932        if (svm)
 933                return;
 934
 935        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
 936}
 937#else
 938#define pci_reserve_io() do { } while (0)
 939#endif
 940
 941#ifdef CONFIG_DEBUG_LL
 942void __init debug_ll_io_init(void)
 943{
 944        struct map_desc map;
 945
 946        debug_ll_addr(&map.pfn, &map.virtual);
 947        if (!map.pfn || !map.virtual)
 948                return;
 949        map.pfn = __phys_to_pfn(map.pfn);
 950        map.virtual &= PAGE_MASK;
 951        map.length = PAGE_SIZE;
 952        map.type = MT_DEVICE;
 953        iotable_init(&map, 1);
 954}
 955#endif
 956
 957static void * __initdata vmalloc_min =
 958        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
 959
 960/*
 961 * vmalloc=size forces the vmalloc area to be exactly 'size'
 962 * bytes. This can be used to increase (or decrease) the vmalloc
 963 * area - the default is 240m.
 964 */
 965static int __init early_vmalloc(char *arg)
 966{
 967        unsigned long vmalloc_reserve = memparse(arg, NULL);
 968
 969        if (vmalloc_reserve < SZ_16M) {
 970                vmalloc_reserve = SZ_16M;
 971                printk(KERN_WARNING
 972                        "vmalloc area too small, limiting to %luMB\n",
 973                        vmalloc_reserve >> 20);
 974        }
 975
 976        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
 977                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
 978                printk(KERN_WARNING
 979                        "vmalloc area is too big, limiting to %luMB\n",
 980                        vmalloc_reserve >> 20);
 981        }
 982
 983        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
 984        return 0;
 985}
 986early_param("vmalloc", early_vmalloc);
 987
 988phys_addr_t arm_lowmem_limit __initdata = 0;
 989
 990void __init sanity_check_meminfo(void)
 991{
 992        phys_addr_t memblock_limit = 0;
 993        int i, j, highmem = 0;
 994        phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
 995
 996        for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
 997                struct membank *bank = &meminfo.bank[j];
 998                phys_addr_t size_limit;
 999
1000                *bank = meminfo.bank[i];
1001                size_limit = bank->size;
1002
1003                if (bank->start >= vmalloc_limit)
1004                        highmem = 1;
1005                else
1006                        size_limit = vmalloc_limit - bank->start;
1007
1008                bank->highmem = highmem;
1009
1010#ifdef CONFIG_HIGHMEM
1011                /*
1012                 * Split those memory banks which are partially overlapping
1013                 * the vmalloc area greatly simplifying things later.
1014                 */
1015                if (!highmem && bank->size > size_limit) {
1016                        if (meminfo.nr_banks >= NR_BANKS) {
1017                                printk(KERN_CRIT "NR_BANKS too low, "
1018                                                 "ignoring high memory\n");
1019                        } else {
1020                                memmove(bank + 1, bank,
1021                                        (meminfo.nr_banks - i) * sizeof(*bank));
1022                                meminfo.nr_banks++;
1023                                i++;
1024                                bank[1].size -= size_limit;
1025                                bank[1].start = vmalloc_limit;
1026                                bank[1].highmem = highmem = 1;
1027                                j++;
1028                        }
1029                        bank->size = size_limit;
1030                }
1031#else
1032                /*
1033                 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1034                 */
1035                if (highmem) {
1036                        printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1037                               "(!CONFIG_HIGHMEM).\n",
1038                               (unsigned long long)bank->start,
1039                               (unsigned long long)bank->start + bank->size - 1);
1040                        continue;
1041                }
1042
1043                /*
1044                 * Check whether this memory bank would partially overlap
1045                 * the vmalloc area.
1046                 */
1047                if (bank->size > size_limit) {
1048                        printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1049                               "to -%.8llx (vmalloc region overlap).\n",
1050                               (unsigned long long)bank->start,
1051                               (unsigned long long)bank->start + bank->size - 1,
1052                               (unsigned long long)bank->start + size_limit - 1);
1053                        bank->size = size_limit;
1054                }
1055#endif
1056                if (!bank->highmem) {
1057                        phys_addr_t bank_end = bank->start + bank->size;
1058
1059                        if (bank_end > arm_lowmem_limit)
1060                                arm_lowmem_limit = bank_end;
1061
1062                        /*
1063                         * Find the first non-section-aligned page, and point
1064                         * memblock_limit at it. This relies on rounding the
1065                         * limit down to be section-aligned, which happens at
1066                         * the end of this function.
1067                         *
1068                         * With this algorithm, the start or end of almost any
1069                         * bank can be non-section-aligned. The only exception
1070                         * is that the start of the bank 0 must be section-
1071                         * aligned, since otherwise memory would need to be
1072                         * allocated when mapping the start of bank 0, which
1073                         * occurs before any free memory is mapped.
1074                         */
1075                        if (!memblock_limit) {
1076                                if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1077                                        memblock_limit = bank->start;
1078                                else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1079                                        memblock_limit = bank_end;
1080                        }
1081                }
1082                j++;
1083        }
1084#ifdef CONFIG_HIGHMEM
1085        if (highmem) {
1086                const char *reason = NULL;
1087
1088                if (cache_is_vipt_aliasing()) {
1089                        /*
1090                         * Interactions between kmap and other mappings
1091                         * make highmem support with aliasing VIPT caches
1092                         * rather difficult.
1093                         */
1094                        reason = "with VIPT aliasing cache";
1095                }
1096                if (reason) {
1097                        printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1098                                reason);
1099                        while (j > 0 && meminfo.bank[j - 1].highmem)
1100                                j--;
1101                }
1102        }
1103#endif
1104        meminfo.nr_banks = j;
1105        high_memory = __va(arm_lowmem_limit - 1) + 1;
1106
1107        /*
1108         * Round the memblock limit down to a section size.  This
1109         * helps to ensure that we will allocate memory from the
1110         * last full section, which should be mapped.
1111         */
1112        if (memblock_limit)
1113                memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1114        if (!memblock_limit)
1115                memblock_limit = arm_lowmem_limit;
1116
1117        memblock_set_current_limit(memblock_limit);
1118}
1119
1120static inline void prepare_page_table(void)
1121{
1122        unsigned long addr;
1123        phys_addr_t end;
1124
1125        /*
1126         * Clear out all the mappings below the kernel image.
1127         */
1128        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1129                pmd_clear(pmd_off_k(addr));
1130
1131#ifdef CONFIG_XIP_KERNEL
1132        /* The XIP kernel is mapped in the module area -- skip over it */
1133        addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1134#endif
1135        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1136                pmd_clear(pmd_off_k(addr));
1137
1138        /*
1139         * Find the end of the first block of lowmem.
1140         */
1141        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1142        if (end >= arm_lowmem_limit)
1143                end = arm_lowmem_limit;
1144
1145        /*
1146         * Clear out all the kernel space mappings, except for the first
1147         * memory bank, up to the vmalloc region.
1148         */
1149        for (addr = __phys_to_virt(end);
1150             addr < VMALLOC_START; addr += PMD_SIZE)
1151                pmd_clear(pmd_off_k(addr));
1152}
1153
1154#ifdef CONFIG_ARM_LPAE
1155/* the first page is reserved for pgd */
1156#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1157                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1158#else
1159#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1160#endif
1161
1162/*
1163 * Reserve the special regions of memory
1164 */
1165void __init arm_mm_memblock_reserve(void)
1166{
1167        /*
1168         * Reserve the page tables.  These are already in use,
1169         * and can only be in node 0.
1170         */
1171        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1172
1173#ifdef CONFIG_SA1111
1174        /*
1175         * Because of the SA1111 DMA bug, we want to preserve our
1176         * precious DMA-able memory...
1177         */
1178        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1179#endif
1180}
1181
1182/*
1183 * Set up the device mappings.  Since we clear out the page tables for all
1184 * mappings above VMALLOC_START, we will remove any debug device mappings.
1185 * This means you have to be careful how you debug this function, or any
1186 * called function.  This means you can't use any function or debugging
1187 * method which may touch any device, otherwise the kernel _will_ crash.
1188 */
1189static void __init devicemaps_init(struct machine_desc *mdesc)
1190{
1191        struct map_desc map;
1192        unsigned long addr;
1193        void *vectors;
1194
1195        /*
1196         * Allocate the vector page early.
1197         */
1198        vectors = early_alloc(PAGE_SIZE * 2);
1199
1200        early_trap_init(vectors);
1201
1202        for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1203                pmd_clear(pmd_off_k(addr));
1204
1205        /*
1206         * Map the kernel if it is XIP.
1207         * It is always first in the modulearea.
1208         */
1209#ifdef CONFIG_XIP_KERNEL
1210        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1211        map.virtual = MODULES_VADDR;
1212        map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1213        map.type = MT_ROM;
1214        create_mapping(&map);
1215#endif
1216
1217        /*
1218         * Map the cache flushing regions.
1219         */
1220#ifdef FLUSH_BASE
1221        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1222        map.virtual = FLUSH_BASE;
1223        map.length = SZ_1M;
1224        map.type = MT_CACHECLEAN;
1225        create_mapping(&map);
1226#endif
1227#ifdef FLUSH_BASE_MINICACHE
1228        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1229        map.virtual = FLUSH_BASE_MINICACHE;
1230        map.length = SZ_1M;
1231        map.type = MT_MINICLEAN;
1232        create_mapping(&map);
1233#endif
1234
1235        /*
1236         * Create a mapping for the machine vectors at the high-vectors
1237         * location (0xffff0000).  If we aren't using high-vectors, also
1238         * create a mapping at the low-vectors virtual address.
1239         */
1240        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1241        map.virtual = 0xffff0000;
1242        map.length = PAGE_SIZE;
1243#ifdef CONFIG_KUSER_HELPERS
1244        map.type = MT_HIGH_VECTORS;
1245#else
1246        map.type = MT_LOW_VECTORS;
1247#endif
1248        create_mapping(&map);
1249
1250        if (!vectors_high()) {
1251                map.virtual = 0;
1252                map.length = PAGE_SIZE * 2;
1253                map.type = MT_LOW_VECTORS;
1254                create_mapping(&map);
1255        }
1256
1257        /* Now create a kernel read-only mapping */
1258        map.pfn += 1;
1259        map.virtual = 0xffff0000 + PAGE_SIZE;
1260        map.length = PAGE_SIZE;
1261        map.type = MT_LOW_VECTORS;
1262        create_mapping(&map);
1263
1264        /*
1265         * Ask the machine support to map in the statically mapped devices.
1266         */
1267        if (mdesc->map_io)
1268                mdesc->map_io();
1269        else
1270                debug_ll_io_init();
1271        fill_pmd_gaps();
1272
1273        /* Reserve fixed i/o space in VMALLOC region */
1274        pci_reserve_io();
1275
1276        /*
1277         * Finally flush the caches and tlb to ensure that we're in a
1278         * consistent state wrt the writebuffer.  This also ensures that
1279         * any write-allocated cache lines in the vector page are written
1280         * back.  After this point, we can start to touch devices again.
1281         */
1282        local_flush_tlb_all();
1283        flush_cache_all();
1284}
1285
1286static void __init kmap_init(void)
1287{
1288#ifdef CONFIG_HIGHMEM
1289        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1290                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1291#endif
1292}
1293
1294static void __init map_lowmem(void)
1295{
1296        struct memblock_region *reg;
1297
1298        /* Map all the lowmem memory banks. */
1299        for_each_memblock(memory, reg) {
1300                phys_addr_t start = reg->base;
1301                phys_addr_t end = start + reg->size;
1302                struct map_desc map;
1303
1304                if (end > arm_lowmem_limit)
1305                        end = arm_lowmem_limit;
1306                if (start >= end)
1307                        break;
1308
1309                map.pfn = __phys_to_pfn(start);
1310                map.virtual = __phys_to_virt(start);
1311                map.length = end - start;
1312                map.type = MT_MEMORY;
1313
1314                create_mapping(&map);
1315        }
1316}
1317
1318/*
1319 * paging_init() sets up the page tables, initialises the zone memory
1320 * maps, and sets up the zero page, bad page and bad page tables.
1321 */
1322void __init paging_init(struct machine_desc *mdesc)
1323{
1324        void *zero_page;
1325
1326        build_mem_type_table();
1327        prepare_page_table();
1328        map_lowmem();
1329        dma_contiguous_remap();
1330        devicemaps_init(mdesc);
1331        kmap_init();
1332        tcm_init();
1333
1334        top_pmd = pmd_off_k(0xffff0000);
1335
1336        /* allocate the zero page. */
1337        zero_page = early_alloc(PAGE_SIZE);
1338
1339        bootmem_init();
1340
1341        empty_zero_page = virt_to_page(zero_page);
1342        __flush_dcache_page(NULL, empty_zero_page);
1343}
1344