linux/arch/blackfin/kernel/perf_event.c
<<
>>
Prefs
   1/*
   2 * Blackfin performance counters
   3 *
   4 * Copyright 2011 Analog Devices Inc.
   5 *
   6 * Ripped from SuperH version:
   7 *
   8 *  Copyright (C) 2009  Paul Mundt
   9 *
  10 * Heavily based on the x86 and PowerPC implementations.
  11 *
  12 * x86:
  13 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  14 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  15 *  Copyright (C) 2009 Jaswinder Singh Rajput
  16 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  17 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  18 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  19 *
  20 * ppc:
  21 *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  22 *
  23 * Licensed under the GPL-2 or later.
  24 */
  25
  26#include <linux/kernel.h>
  27#include <linux/export.h>
  28#include <linux/init.h>
  29#include <linux/perf_event.h>
  30#include <asm/bfin_pfmon.h>
  31
  32/*
  33 * We have two counters, and each counter can support an event type.
  34 * The 'o' is PFCNTx=1 and 's' is PFCNTx=0
  35 *
  36 * 0x04 o pc invariant branches
  37 * 0x06 o mispredicted branches
  38 * 0x09 o predicted branches taken
  39 * 0x0B o EXCPT insn
  40 * 0x0C o CSYNC/SSYNC insn
  41 * 0x0D o Insns committed
  42 * 0x0E o Interrupts taken
  43 * 0x0F o Misaligned address exceptions
  44 * 0x80 o Code memory fetches stalled due to DMA
  45 * 0x83 o 64bit insn fetches delivered
  46 * 0x9A o data cache fills (bank a)
  47 * 0x9B o data cache fills (bank b)
  48 * 0x9C o data cache lines evicted (bank a)
  49 * 0x9D o data cache lines evicted (bank b)
  50 * 0x9E o data cache high priority fills
  51 * 0x9F o data cache low priority fills
  52 * 0x00 s loop 0 iterations
  53 * 0x01 s loop 1 iterations
  54 * 0x0A s CSYNC/SSYNC stalls
  55 * 0x10 s DAG read/after write hazards
  56 * 0x13 s RAW data hazards
  57 * 0x81 s code TAG stalls
  58 * 0x82 s code fill stalls
  59 * 0x90 s processor to memory stalls
  60 * 0x91 s data memory stalls not hidden by 0x90
  61 * 0x92 s data store buffer full stalls
  62 * 0x93 s data memory write buffer full stalls due to high->low priority
  63 * 0x95 s data memory fill buffer stalls
  64 * 0x96 s data TAG collision stalls
  65 * 0x97 s data collision stalls
  66 * 0x98 s data stalls
  67 * 0x99 s data stalls sent to processor
  68 */
  69
  70static const int event_map[] = {
  71        /* use CYCLES cpu register */
  72        [PERF_COUNT_HW_CPU_CYCLES]          = -1,
  73        [PERF_COUNT_HW_INSTRUCTIONS]        = 0x0D,
  74        [PERF_COUNT_HW_CACHE_REFERENCES]    = -1,
  75        [PERF_COUNT_HW_CACHE_MISSES]        = 0x83,
  76        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09,
  77        [PERF_COUNT_HW_BRANCH_MISSES]       = 0x06,
  78        [PERF_COUNT_HW_BUS_CYCLES]          = -1,
  79};
  80
  81#define C(x)    PERF_COUNT_HW_CACHE_##x
  82
  83static const int cache_events[PERF_COUNT_HW_CACHE_MAX]
  84                             [PERF_COUNT_HW_CACHE_OP_MAX]
  85                             [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  86{
  87        [C(L1D)] = {    /* Data bank A */
  88                [C(OP_READ)] = {
  89                        [C(RESULT_ACCESS)] = 0,
  90                        [C(RESULT_MISS)  ] = 0x9A,
  91                },
  92                [C(OP_WRITE)] = {
  93                        [C(RESULT_ACCESS)] = 0,
  94                        [C(RESULT_MISS)  ] = 0,
  95                },
  96                [C(OP_PREFETCH)] = {
  97                        [C(RESULT_ACCESS)] = 0,
  98                        [C(RESULT_MISS)  ] = 0,
  99                },
 100        },
 101
 102        [C(L1I)] = {
 103                [C(OP_READ)] = {
 104                        [C(RESULT_ACCESS)] = 0,
 105                        [C(RESULT_MISS)  ] = 0x83,
 106                },
 107                [C(OP_WRITE)] = {
 108                        [C(RESULT_ACCESS)] = -1,
 109                        [C(RESULT_MISS)  ] = -1,
 110                },
 111                [C(OP_PREFETCH)] = {
 112                        [C(RESULT_ACCESS)] = 0,
 113                        [C(RESULT_MISS)  ] = 0,
 114                },
 115        },
 116
 117        [C(LL)] = {
 118                [C(OP_READ)] = {
 119                        [C(RESULT_ACCESS)] = -1,
 120                        [C(RESULT_MISS)  ] = -1,
 121                },
 122                [C(OP_WRITE)] = {
 123                        [C(RESULT_ACCESS)] = -1,
 124                        [C(RESULT_MISS)  ] = -1,
 125                },
 126                [C(OP_PREFETCH)] = {
 127                        [C(RESULT_ACCESS)] = -1,
 128                        [C(RESULT_MISS)  ] = -1,
 129                },
 130        },
 131
 132        [C(DTLB)] = {
 133                [C(OP_READ)] = {
 134                        [C(RESULT_ACCESS)] = -1,
 135                        [C(RESULT_MISS)  ] = -1,
 136                },
 137                [C(OP_WRITE)] = {
 138                        [C(RESULT_ACCESS)] = -1,
 139                        [C(RESULT_MISS)  ] = -1,
 140                },
 141                [C(OP_PREFETCH)] = {
 142                        [C(RESULT_ACCESS)] = -1,
 143                        [C(RESULT_MISS)  ] = -1,
 144                },
 145        },
 146
 147        [C(ITLB)] = {
 148                [C(OP_READ)] = {
 149                        [C(RESULT_ACCESS)] = -1,
 150                        [C(RESULT_MISS)  ] = -1,
 151                },
 152                [C(OP_WRITE)] = {
 153                        [C(RESULT_ACCESS)] = -1,
 154                        [C(RESULT_MISS)  ] = -1,
 155                },
 156                [C(OP_PREFETCH)] = {
 157                        [C(RESULT_ACCESS)] = -1,
 158                        [C(RESULT_MISS)  ] = -1,
 159                },
 160        },
 161
 162        [C(BPU)] = {
 163                [C(OP_READ)] = {
 164                        [C(RESULT_ACCESS)] = -1,
 165                        [C(RESULT_MISS)  ] = -1,
 166                },
 167                [C(OP_WRITE)] = {
 168                        [C(RESULT_ACCESS)] = -1,
 169                        [C(RESULT_MISS)  ] = -1,
 170                },
 171                [C(OP_PREFETCH)] = {
 172                        [C(RESULT_ACCESS)] = -1,
 173                        [C(RESULT_MISS)  ] = -1,
 174                },
 175        },
 176};
 177
 178const char *perf_pmu_name(void)
 179{
 180        return "bfin";
 181}
 182EXPORT_SYMBOL(perf_pmu_name);
 183
 184int perf_num_counters(void)
 185{
 186        return ARRAY_SIZE(event_map);
 187}
 188EXPORT_SYMBOL(perf_num_counters);
 189
 190static u64 bfin_pfmon_read(int idx)
 191{
 192        return bfin_read32(PFCNTR0 + (idx * 4));
 193}
 194
 195static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx)
 196{
 197        bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK));
 198}
 199
 200static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx)
 201{
 202        u32 val, mask;
 203
 204        val = PFPWR;
 205        if (idx) {
 206                mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1);
 207                /* The packed config is for event0, so shift it to event1 slots */
 208                val |= (hwc->config << (PFMON1_P - PFMON0_P));
 209                val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P);
 210                bfin_write_PFCNTR1(0);
 211        } else {
 212                mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0);
 213                val |= hwc->config;
 214                bfin_write_PFCNTR0(0);
 215        }
 216
 217        bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val);
 218}
 219
 220static void bfin_pfmon_disable_all(void)
 221{
 222        bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR);
 223}
 224
 225static void bfin_pfmon_enable_all(void)
 226{
 227        bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR);
 228}
 229
 230struct cpu_hw_events {
 231        struct perf_event *events[MAX_HWEVENTS];
 232        unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
 233};
 234DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 235
 236static int hw_perf_cache_event(int config, int *evp)
 237{
 238        unsigned long type, op, result;
 239        int ev;
 240
 241        /* unpack config */
 242        type = config & 0xff;
 243        op = (config >> 8) & 0xff;
 244        result = (config >> 16) & 0xff;
 245
 246        if (type >= PERF_COUNT_HW_CACHE_MAX ||
 247            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
 248            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 249                return -EINVAL;
 250
 251        ev = cache_events[type][op][result];
 252        if (ev == 0)
 253                return -EOPNOTSUPP;
 254        if (ev == -1)
 255                return -EINVAL;
 256        *evp = ev;
 257        return 0;
 258}
 259
 260static void bfin_perf_event_update(struct perf_event *event,
 261                                   struct hw_perf_event *hwc, int idx)
 262{
 263        u64 prev_raw_count, new_raw_count;
 264        s64 delta;
 265        int shift = 0;
 266
 267        /*
 268         * Depending on the counter configuration, they may or may not
 269         * be chained, in which case the previous counter value can be
 270         * updated underneath us if the lower-half overflows.
 271         *
 272         * Our tactic to handle this is to first atomically read and
 273         * exchange a new raw count - then add that new-prev delta
 274         * count to the generic counter atomically.
 275         *
 276         * As there is no interrupt associated with the overflow events,
 277         * this is the simplest approach for maintaining consistency.
 278         */
 279again:
 280        prev_raw_count = local64_read(&hwc->prev_count);
 281        new_raw_count = bfin_pfmon_read(idx);
 282
 283        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 284                             new_raw_count) != prev_raw_count)
 285                goto again;
 286
 287        /*
 288         * Now we have the new raw value and have updated the prev
 289         * timestamp already. We can now calculate the elapsed delta
 290         * (counter-)time and add that to the generic counter.
 291         *
 292         * Careful, not all hw sign-extends above the physical width
 293         * of the count.
 294         */
 295        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 296        delta >>= shift;
 297
 298        local64_add(delta, &event->count);
 299}
 300
 301static void bfin_pmu_stop(struct perf_event *event, int flags)
 302{
 303        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 304        struct hw_perf_event *hwc = &event->hw;
 305        int idx = hwc->idx;
 306
 307        if (!(event->hw.state & PERF_HES_STOPPED)) {
 308                bfin_pfmon_disable(hwc, idx);
 309                cpuc->events[idx] = NULL;
 310                event->hw.state |= PERF_HES_STOPPED;
 311        }
 312
 313        if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
 314                bfin_perf_event_update(event, &event->hw, idx);
 315                event->hw.state |= PERF_HES_UPTODATE;
 316        }
 317}
 318
 319static void bfin_pmu_start(struct perf_event *event, int flags)
 320{
 321        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 322        struct hw_perf_event *hwc = &event->hw;
 323        int idx = hwc->idx;
 324
 325        if (WARN_ON_ONCE(idx == -1))
 326                return;
 327
 328        if (flags & PERF_EF_RELOAD)
 329                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 330
 331        cpuc->events[idx] = event;
 332        event->hw.state = 0;
 333        bfin_pfmon_enable(hwc, idx);
 334}
 335
 336static void bfin_pmu_del(struct perf_event *event, int flags)
 337{
 338        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 339
 340        bfin_pmu_stop(event, PERF_EF_UPDATE);
 341        __clear_bit(event->hw.idx, cpuc->used_mask);
 342
 343        perf_event_update_userpage(event);
 344}
 345
 346static int bfin_pmu_add(struct perf_event *event, int flags)
 347{
 348        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 349        struct hw_perf_event *hwc = &event->hw;
 350        int idx = hwc->idx;
 351        int ret = -EAGAIN;
 352
 353        perf_pmu_disable(event->pmu);
 354
 355        if (__test_and_set_bit(idx, cpuc->used_mask)) {
 356                idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS);
 357                if (idx == MAX_HWEVENTS)
 358                        goto out;
 359
 360                __set_bit(idx, cpuc->used_mask);
 361                hwc->idx = idx;
 362        }
 363
 364        bfin_pfmon_disable(hwc, idx);
 365
 366        event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
 367        if (flags & PERF_EF_START)
 368                bfin_pmu_start(event, PERF_EF_RELOAD);
 369
 370        perf_event_update_userpage(event);
 371        ret = 0;
 372out:
 373        perf_pmu_enable(event->pmu);
 374        return ret;
 375}
 376
 377static void bfin_pmu_read(struct perf_event *event)
 378{
 379        bfin_perf_event_update(event, &event->hw, event->hw.idx);
 380}
 381
 382static int bfin_pmu_event_init(struct perf_event *event)
 383{
 384        struct perf_event_attr *attr = &event->attr;
 385        struct hw_perf_event *hwc = &event->hw;
 386        int config = -1;
 387        int ret;
 388
 389        if (attr->exclude_hv || attr->exclude_idle)
 390                return -EPERM;
 391
 392        /*
 393         * All of the on-chip counters are "limited", in that they have
 394         * no interrupts, and are therefore unable to do sampling without
 395         * further work and timer assistance.
 396         */
 397        if (hwc->sample_period)
 398                return -EINVAL;
 399
 400        ret = 0;
 401        switch (attr->type) {
 402        case PERF_TYPE_RAW:
 403                config = PFMON(0, attr->config & PFMON_MASK) |
 404                        PFCNT(0, !(attr->config & 0x100));
 405                break;
 406        case PERF_TYPE_HW_CACHE:
 407                ret = hw_perf_cache_event(attr->config, &config);
 408                break;
 409        case PERF_TYPE_HARDWARE:
 410                if (attr->config >= ARRAY_SIZE(event_map))
 411                        return -EINVAL;
 412
 413                config = event_map[attr->config];
 414                break;
 415        }
 416
 417        if (config == -1)
 418                return -EINVAL;
 419
 420        if (!attr->exclude_kernel)
 421                config |= PFCEN(0, PFCEN_ENABLE_SUPV);
 422        if (!attr->exclude_user)
 423                config |= PFCEN(0, PFCEN_ENABLE_USER);
 424
 425        hwc->config |= config;
 426
 427        return ret;
 428}
 429
 430static void bfin_pmu_enable(struct pmu *pmu)
 431{
 432        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 433        struct perf_event *event;
 434        struct hw_perf_event *hwc;
 435        int i;
 436
 437        for (i = 0; i < MAX_HWEVENTS; ++i) {
 438                event = cpuc->events[i];
 439                if (!event)
 440                        continue;
 441                hwc = &event->hw;
 442                bfin_pfmon_enable(hwc, hwc->idx);
 443        }
 444
 445        bfin_pfmon_enable_all();
 446}
 447
 448static void bfin_pmu_disable(struct pmu *pmu)
 449{
 450        bfin_pfmon_disable_all();
 451}
 452
 453static struct pmu pmu = {
 454        .pmu_enable  = bfin_pmu_enable,
 455        .pmu_disable = bfin_pmu_disable,
 456        .event_init  = bfin_pmu_event_init,
 457        .add         = bfin_pmu_add,
 458        .del         = bfin_pmu_del,
 459        .start       = bfin_pmu_start,
 460        .stop        = bfin_pmu_stop,
 461        .read        = bfin_pmu_read,
 462};
 463
 464static void bfin_pmu_setup(int cpu)
 465{
 466        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
 467
 468        memset(cpuhw, 0, sizeof(struct cpu_hw_events));
 469}
 470
 471static int
 472bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
 473{
 474        unsigned int cpu = (long)hcpu;
 475
 476        switch (action & ~CPU_TASKS_FROZEN) {
 477        case CPU_UP_PREPARE:
 478                bfin_write_PFCTL(0);
 479                bfin_pmu_setup(cpu);
 480                break;
 481
 482        default:
 483                break;
 484        }
 485
 486        return NOTIFY_OK;
 487}
 488
 489static int __init bfin_pmu_init(void)
 490{
 491        int ret;
 492
 493        ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
 494        if (!ret)
 495                perf_cpu_notifier(bfin_pmu_notifier);
 496
 497        return ret;
 498}
 499early_initcall(bfin_pmu_init);
 500