linux/arch/cris/arch-v10/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/cris/kernel/process.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright (C) 2000-2002  Axis Communications AB
   6 *
   7 *  Authors:   Bjorn Wesen (bjornw@axis.com)
   8 *             Mikael Starvik (starvik@axis.com)
   9 *
  10 * This file handles the architecture-dependent parts of process handling..
  11 */
  12
  13#include <linux/sched.h>
  14#include <linux/slab.h>
  15#include <linux/err.h>
  16#include <linux/fs.h>
  17#include <arch/svinto.h>
  18#include <linux/init.h>
  19#include <arch/system.h>
  20#include <linux/ptrace.h>
  21
  22#ifdef CONFIG_ETRAX_GPIO
  23void etrax_gpio_wake_up_check(void); /* drivers/gpio.c */
  24#endif
  25
  26/*
  27 * We use this if we don't have any better
  28 * idle routine..
  29 */
  30void default_idle(void)
  31{
  32#ifdef CONFIG_ETRAX_GPIO
  33        etrax_gpio_wake_up_check();
  34#endif
  35        local_irq_enable();
  36}
  37
  38/*
  39 * Free current thread data structures etc..
  40 */
  41
  42void exit_thread(void)
  43{
  44        /* Nothing needs to be done.  */
  45}
  46
  47/* if the watchdog is enabled, we can simply disable interrupts and go
  48 * into an eternal loop, and the watchdog will reset the CPU after 0.1s
  49 * if on the other hand the watchdog wasn't enabled, we just enable it and wait
  50 */
  51
  52void hard_reset_now (void)
  53{
  54        /*
  55         * Don't declare this variable elsewhere.  We don't want any other
  56         * code to know about it than the watchdog handler in entry.S and
  57         * this code, implementing hard reset through the watchdog.
  58         */
  59#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
  60        extern int cause_of_death;
  61#endif
  62
  63        printk("*** HARD RESET ***\n");
  64        local_irq_disable();
  65
  66#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
  67        cause_of_death = 0xbedead;
  68#else
  69        /* Since we dont plan to keep on resetting the watchdog,
  70           the key can be arbitrary hence three */
  71        *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, 3) |
  72                IO_STATE(R_WATCHDOG, enable, start);
  73#endif
  74
  75        while(1) /* waiting for RETRIBUTION! */ ;
  76}
  77
  78/*
  79 * Return saved PC of a blocked thread.
  80 */
  81unsigned long thread_saved_pc(struct task_struct *t)
  82{
  83        return task_pt_regs(t)->irp;
  84}
  85
  86/* setup the child's kernel stack with a pt_regs and switch_stack on it.
  87 * it will be un-nested during _resume and _ret_from_sys_call when the
  88 * new thread is scheduled.
  89 *
  90 * also setup the thread switching structure which is used to keep
  91 * thread-specific data during _resumes.
  92 *
  93 */
  94asmlinkage void ret_from_fork(void);
  95asmlinkage void ret_from_kernel_thread(void);
  96
  97int copy_thread(unsigned long clone_flags, unsigned long usp,
  98                unsigned long arg, struct task_struct *p)
  99{
 100        struct pt_regs *childregs = task_pt_regs(p);
 101        struct switch_stack *swstack = ((struct switch_stack *)childregs) - 1;
 102        
 103        /* put the pt_regs structure at the end of the new kernel stack page and fix it up
 104         * remember that the task_struct doubles as the kernel stack for the task
 105         */
 106
 107        if (unlikely(p->flags & PF_KTHREAD)) {
 108                memset(swstack, 0,
 109                        sizeof(struct switch_stack) + sizeof(struct pt_regs));
 110                swstack->r1 = usp;
 111                swstack->r2 = arg;
 112                childregs->dccr = 1 << I_DCCR_BITNR;
 113                swstack->return_ip = (unsigned long) ret_from_kernel_thread;
 114                p->thread.ksp = (unsigned long) swstack;
 115                p->thread.usp = 0;
 116                return 0;
 117        }
 118        *childregs = *current_pt_regs();  /* struct copy of pt_regs */
 119
 120        childregs->r10 = 0;  /* child returns 0 after a fork/clone */
 121
 122        /* put the switch stack right below the pt_regs */
 123
 124        swstack->r9 = 0; /* parameter to ret_from_sys_call, 0 == dont restart the syscall */
 125
 126        /* we want to return into ret_from_sys_call after the _resume */
 127
 128        swstack->return_ip = (unsigned long) ret_from_fork; /* Will call ret_from_sys_call */
 129        
 130        /* fix the user-mode stackpointer */
 131
 132        p->thread.usp = usp ?: rdusp();
 133
 134        /* and the kernel-mode one */
 135
 136        p->thread.ksp = (unsigned long) swstack;
 137
 138#ifdef DEBUG
 139        printk("copy_thread: new regs at 0x%p, as shown below:\n", childregs);
 140        show_registers(childregs);
 141#endif
 142
 143        return 0;
 144}
 145
 146unsigned long get_wchan(struct task_struct *p)
 147{
 148#if 0
 149        /* YURGH. TODO. */
 150
 151        unsigned long ebp, esp, eip;
 152        unsigned long stack_page;
 153        int count = 0;
 154        if (!p || p == current || p->state == TASK_RUNNING)
 155                return 0;
 156        stack_page = (unsigned long)p;
 157        esp = p->thread.esp;
 158        if (!stack_page || esp < stack_page || esp > 8188+stack_page)
 159                return 0;
 160        /* include/asm-i386/system.h:switch_to() pushes ebp last. */
 161        ebp = *(unsigned long *) esp;
 162        do {
 163                if (ebp < stack_page || ebp > 8184+stack_page)
 164                        return 0;
 165                eip = *(unsigned long *) (ebp+4);
 166                if (!in_sched_functions(eip))
 167                        return eip;
 168                ebp = *(unsigned long *) ebp;
 169        } while (count++ < 16);
 170#endif
 171        return 0;
 172}
 173#undef last_sched
 174#undef first_sched
 175
 176void show_regs(struct pt_regs * regs)
 177{
 178        unsigned long usp = rdusp();
 179
 180        show_regs_print_info(KERN_DEFAULT);
 181
 182        printk("IRP: %08lx SRP: %08lx DCCR: %08lx USP: %08lx MOF: %08lx\n",
 183               regs->irp, regs->srp, regs->dccr, usp, regs->mof );
 184        printk(" r0: %08lx  r1: %08lx   r2: %08lx  r3: %08lx\n",
 185               regs->r0, regs->r1, regs->r2, regs->r3);
 186        printk(" r4: %08lx  r5: %08lx   r6: %08lx  r7: %08lx\n",
 187               regs->r4, regs->r5, regs->r6, regs->r7);
 188        printk(" r8: %08lx  r9: %08lx  r10: %08lx r11: %08lx\n",
 189               regs->r8, regs->r9, regs->r10, regs->r11);
 190        printk("r12: %08lx r13: %08lx oR10: %08lx\n",
 191               regs->r12, regs->r13, regs->orig_r10);
 192}
 193
 194