linux/arch/hexagon/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 * Page table support for the Hexagon architecture
   3 *
   4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 and
   8 * only version 2 as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  18 * 02110-1301, USA.
  19 */
  20
  21#ifndef _ASM_PGTABLE_H
  22#define _ASM_PGTABLE_H
  23
  24/*
  25 * Page table definitions for Qualcomm Hexagon processor.
  26 */
  27#include <linux/swap.h>
  28#include <asm/page.h>
  29#include <asm-generic/pgtable-nopmd.h>
  30
  31/* A handy thing to have if one has the RAM. Declared in head.S */
  32extern unsigned long empty_zero_page;
  33extern unsigned long zero_page_mask;
  34
  35/*
  36 * The PTE model described here is that of the Hexagon Virtual Machine,
  37 * which autonomously walks 2-level page tables.  At a lower level, we
  38 * also describe the RISCish software-loaded TLB entry structure of
  39 * the underlying Hexagon processor. A kernel built to run on the
  40 * virtual machine has no need to know about the underlying hardware.
  41 */
  42#include <asm/vm_mmu.h>
  43
  44/*
  45 * To maximize the comfort level for the PTE manipulation macros,
  46 * define the "well known" architecture-specific bits.
  47 */
  48#define _PAGE_READ      __HVM_PTE_R
  49#define _PAGE_WRITE     __HVM_PTE_W
  50#define _PAGE_EXECUTE   __HVM_PTE_X
  51#define _PAGE_USER      __HVM_PTE_U
  52
  53/*
  54 * We have a total of 4 "soft" bits available in the abstract PTE.
  55 * The two mandatory software bits are Dirty and Accessed.
  56 * To make nonlinear swap work according to the more recent
  57 * model, we want a low order "Present" bit to indicate whether
  58 * the PTE describes MMU programming or swap space.
  59 */
  60#define _PAGE_PRESENT   (1<<0)
  61#define _PAGE_DIRTY     (1<<1)
  62#define _PAGE_ACCESSED  (1<<2)
  63
  64/*
  65 * _PAGE_FILE is only meaningful if _PAGE_PRESENT is false, while
  66 * _PAGE_DIRTY is only meaningful if _PAGE_PRESENT is true.
  67 * So we can overload the bit...
  68 */
  69#define _PAGE_FILE      _PAGE_DIRTY /* set:  pagecache, unset = swap */
  70
  71/*
  72 * For now, let's say that Valid and Present are the same thing.
  73 * Alternatively, we could say that it's the "or" of R, W, and X
  74 * permissions.
  75 */
  76#define _PAGE_VALID     _PAGE_PRESENT
  77
  78/*
  79 * We're not defining _PAGE_GLOBAL here, since there's no concept
  80 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
  81 * and we want to use the same page table structures and macros in
  82 * the native kernel as we do in the virtual machine kernel.
  83 * So we'll put up with a bit of inefficiency for now...
  84 */
  85
  86/*
  87 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
  88 * only the second from the bottom, pgd and pud both being collapsed.
  89 * Each entry represents 4MB of virtual address space, 4K of table
  90 * thus maps the full 4GB.
  91 */
  92#define PGDIR_SHIFT 22
  93#define PTRS_PER_PGD 1024
  94
  95#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  96#define PGDIR_MASK (~(PGDIR_SIZE-1))
  97
  98#ifdef CONFIG_PAGE_SIZE_4KB
  99#define PTRS_PER_PTE 1024
 100#endif
 101
 102#ifdef CONFIG_PAGE_SIZE_16KB
 103#define PTRS_PER_PTE 256
 104#endif
 105
 106#ifdef CONFIG_PAGE_SIZE_64KB
 107#define PTRS_PER_PTE 64
 108#endif
 109
 110#ifdef CONFIG_PAGE_SIZE_256KB
 111#define PTRS_PER_PTE 16
 112#endif
 113
 114#ifdef CONFIG_PAGE_SIZE_1MB
 115#define PTRS_PER_PTE 4
 116#endif
 117
 118/*  Any bigger and the PTE disappears.  */
 119#define pgd_ERROR(e) \
 120        printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
 121                pgd_val(e))
 122
 123/*
 124 * Page Protection Constants. Includes (in this variant) cache attributes.
 125 */
 126extern unsigned long _dflt_cache_att;
 127
 128#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 129                                _dflt_cache_att)
 130#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 131                                _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
 132#define PAGE_COPY       PAGE_READONLY
 133#define PAGE_EXEC       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 134                                _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
 135#define PAGE_COPY_EXEC  PAGE_EXEC
 136#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 137                                _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
 138#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 139                                _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
 140
 141
 142/*
 143 * Aliases for mapping mmap() protection bits to page protections.
 144 * These get used for static initialization, so using the _dflt_cache_att
 145 * variable for the default cache attribute isn't workable. If the
 146 * default gets changed at boot time, the boot option code has to
 147 * update data structures like the protaction_map[] array.
 148 */
 149#define CACHEDEF        (CACHE_DEFAULT << 6)
 150
 151/* Private (copy-on-write) page protections. */
 152#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
 153#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
 154#define __P010 __P000   /* Write-only copy-on-write */
 155#define __P011 __P001   /* Read/Write copy-on-write */
 156#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 157                        _PAGE_EXECUTE | CACHEDEF)
 158#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
 159                        _PAGE_READ | CACHEDEF)
 160#define __P110 __P100   /* Write/execute copy-on-write */
 161#define __P111 __P101   /* Read/Write/Execute, copy-on-write */
 162
 163/* Shared page protections. */
 164#define __S000 __P000
 165#define __S001 __P001
 166#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 167                        _PAGE_WRITE | CACHEDEF)
 168#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 169                        _PAGE_WRITE | CACHEDEF)
 170#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 171                        _PAGE_EXECUTE | CACHEDEF)
 172#define __S101 __P101
 173#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 174                        _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
 175#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 176                        _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
 177
 178extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
 179
 180/* Seems to be zero even in architectures where the zero page is firewalled? */
 181#define FIRST_USER_ADDRESS 0
 182#define pte_special(pte)        0
 183#define pte_mkspecial(pte)      (pte)
 184
 185/*  HUGETLB not working currently  */
 186#ifdef CONFIG_HUGETLB_PAGE
 187#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
 188#endif
 189
 190/*
 191 * For now, assume that higher-level code will do TLB/MMU invalidations
 192 * and don't insert that overhead into this low-level function.
 193 */
 194extern void sync_icache_dcache(pte_t pte);
 195
 196#define pte_present_exec_user(pte) \
 197        ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
 198        (_PAGE_EXECUTE | _PAGE_USER))
 199
 200static inline void set_pte(pte_t *ptep, pte_t pteval)
 201{
 202        /*  should really be using pte_exec, if it weren't declared later. */
 203        if (pte_present_exec_user(pteval))
 204                sync_icache_dcache(pteval);
 205
 206        *ptep = pteval;
 207}
 208
 209/*
 210 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
 211 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
 212 * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
 213 * as a universal null entry, but some of those least significant bits
 214 * are interpreted by software.
 215 */
 216#define _NULL_PMD       0x7
 217#define _NULL_PTE       0x0
 218
 219static inline void pmd_clear(pmd_t *pmd_entry_ptr)
 220{
 221         pmd_val(*pmd_entry_ptr) = _NULL_PMD;
 222}
 223
 224/*
 225 * Conveniently, a null PTE value is invalid.
 226 */
 227static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 228                                pte_t *ptep)
 229{
 230        pte_val(*ptep) = _NULL_PTE;
 231}
 232
 233#ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
 234/**
 235 * pmd_index - returns the index of the entry in the PMD page
 236 * which would control the given virtual address
 237 */
 238#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 239
 240#endif
 241
 242/**
 243 * pgd_index - returns the index of the entry in the PGD page
 244 * which would control the given virtual address
 245 *
 246 * This returns the *index* for the address in the pgd_t
 247 */
 248#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 249
 250/*
 251 * pgd_offset - find an offset in a page-table-directory
 252 */
 253#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
 254
 255/*
 256 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
 257 */
 258#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 259
 260/**
 261 * pmd_none - check if pmd_entry is mapped
 262 * @pmd_entry:  pmd entry
 263 *
 264 * MIPS checks it against that "invalid pte table" thing.
 265 */
 266static inline int pmd_none(pmd_t pmd)
 267{
 268        return pmd_val(pmd) == _NULL_PMD;
 269}
 270
 271/**
 272 * pmd_present - is there a page table behind this?
 273 * Essentially the inverse of pmd_none.  We maybe
 274 * save an inline instruction by defining it this
 275 * way, instead of simply "!pmd_none".
 276 */
 277static inline int pmd_present(pmd_t pmd)
 278{
 279        return pmd_val(pmd) != (unsigned long)_NULL_PMD;
 280}
 281
 282/**
 283 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
 284 * As we have no known cause of badness, it's null, as it is for many
 285 * architectures.
 286 */
 287static inline int pmd_bad(pmd_t pmd)
 288{
 289        return 0;
 290}
 291
 292/*
 293 * pmd_page - converts a PMD entry to a page pointer
 294 */
 295#define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 296#define pmd_pgtable(pmd) pmd_page(pmd)
 297
 298/**
 299 * pte_none - check if pte is mapped
 300 * @pte: pte_t entry
 301 */
 302static inline int pte_none(pte_t pte)
 303{
 304        return pte_val(pte) == _NULL_PTE;
 305};
 306
 307/*
 308 * pte_present - check if page is present
 309 */
 310static inline int pte_present(pte_t pte)
 311{
 312        return pte_val(pte) & _PAGE_PRESENT;
 313}
 314
 315/* mk_pte - make a PTE out of a page pointer and protection bits */
 316#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
 317
 318/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
 319#define pte_page(x) pfn_to_page(pte_pfn(x))
 320
 321/* pte_mkold - mark PTE as not recently accessed */
 322static inline pte_t pte_mkold(pte_t pte)
 323{
 324        pte_val(pte) &= ~_PAGE_ACCESSED;
 325        return pte;
 326}
 327
 328/* pte_mkyoung - mark PTE as recently accessed */
 329static inline pte_t pte_mkyoung(pte_t pte)
 330{
 331        pte_val(pte) |= _PAGE_ACCESSED;
 332        return pte;
 333}
 334
 335/* pte_mkclean - mark page as in sync with backing store */
 336static inline pte_t pte_mkclean(pte_t pte)
 337{
 338        pte_val(pte) &= ~_PAGE_DIRTY;
 339        return pte;
 340}
 341
 342/* pte_mkdirty - mark page as modified */
 343static inline pte_t pte_mkdirty(pte_t pte)
 344{
 345        pte_val(pte) |= _PAGE_DIRTY;
 346        return pte;
 347}
 348
 349/* pte_young - "is PTE marked as accessed"? */
 350static inline int pte_young(pte_t pte)
 351{
 352        return pte_val(pte) & _PAGE_ACCESSED;
 353}
 354
 355/* pte_dirty - "is PTE dirty?" */
 356static inline int pte_dirty(pte_t pte)
 357{
 358        return pte_val(pte) & _PAGE_DIRTY;
 359}
 360
 361/* pte_modify - set protection bits on PTE */
 362static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
 363{
 364        pte_val(pte) &= PAGE_MASK;
 365        pte_val(pte) |= pgprot_val(prot);
 366        return pte;
 367}
 368
 369/* pte_wrprotect - mark page as not writable */
 370static inline pte_t pte_wrprotect(pte_t pte)
 371{
 372        pte_val(pte) &= ~_PAGE_WRITE;
 373        return pte;
 374}
 375
 376/* pte_mkwrite - mark page as writable */
 377static inline pte_t pte_mkwrite(pte_t pte)
 378{
 379        pte_val(pte) |= _PAGE_WRITE;
 380        return pte;
 381}
 382
 383/* pte_mkexec - mark PTE as executable */
 384static inline pte_t pte_mkexec(pte_t pte)
 385{
 386        pte_val(pte) |= _PAGE_EXECUTE;
 387        return pte;
 388}
 389
 390/* pte_read - "is PTE marked as readable?" */
 391static inline int pte_read(pte_t pte)
 392{
 393        return pte_val(pte) & _PAGE_READ;
 394}
 395
 396/* pte_write - "is PTE marked as writable?" */
 397static inline int pte_write(pte_t pte)
 398{
 399        return pte_val(pte) & _PAGE_WRITE;
 400}
 401
 402
 403/* pte_exec - "is PTE marked as executable?" */
 404static inline int pte_exec(pte_t pte)
 405{
 406        return pte_val(pte) & _PAGE_EXECUTE;
 407}
 408
 409/* __pte_to_swp_entry - extract swap entry from PTE */
 410#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 411
 412/* __swp_entry_to_pte - extract PTE from swap entry */
 413#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
 414
 415/* pfn_pte - convert page number and protection value to page table entry */
 416#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
 417
 418/* pte_pfn - convert pte to page frame number */
 419#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
 420#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
 421
 422/*
 423 * set_pte_at - update page table and do whatever magic may be
 424 * necessary to make the underlying hardware/firmware take note.
 425 *
 426 * VM may require a virtual instruction to alert the MMU.
 427 */
 428#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
 429
 430/*
 431 * May need to invoke the virtual machine as well...
 432 */
 433#define pte_unmap(pte)          do { } while (0)
 434#define pte_unmap_nested(pte)   do { } while (0)
 435
 436/*
 437 * pte_offset_map - returns the linear address of the page table entry
 438 * corresponding to an address
 439 */
 440#define pte_offset_map(dir, address)                                    \
 441        ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
 442
 443#define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
 444
 445/* pte_offset_kernel - kernel version of pte_offset */
 446#define pte_offset_kernel(dir, address) \
 447        ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
 448                                +  __pte_offset(address))
 449
 450/* ZERO_PAGE - returns the globally shared zero page */
 451#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
 452
 453#define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 454
 455/*  I think this is in case we have page table caches; needed by init/main.c  */
 456#define pgtable_cache_init()    do { } while (0)
 457
 458/*
 459 * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the
 460 * PTE is interpreted as swap information.  Depending on the _PAGE_FILE
 461 * bit, the remaining free bits are eitehr interpreted as a file offset
 462 * or a swap type/offset tuple.  Rather than have the TLB fill handler
 463 * test _PAGE_PRESENT, we're going to reserve the permissions bits
 464 * and set them to all zeros for swap entries, which speeds up the
 465 * miss handler at the cost of 3 bits of offset.  That trade-off can
 466 * be revisited if necessary, but Hexagon processor architecture and
 467 * target applications suggest a lot of TLB misses and not much swap space.
 468 *
 469 * Format of swap PTE:
 470 *      bit     0:      Present (zero)
 471 *      bit     1:      _PAGE_FILE (zero)
 472 *      bits    2-6:    swap type (arch independent layer uses 5 bits max)
 473 *      bits    7-9:    bits 2:0 of offset
 474 *      bits 10-12:     effectively _PAGE_PROTNONE (all zero)
 475 *      bits 13-31:  bits 21:3 of swap offset
 476 *
 477 * Format of file PTE:
 478 *      bit     0:      Present (zero)
 479 *      bit     1:      _PAGE_FILE (zero)
 480 *      bits    2-9:    bits 7:0 of offset
 481 *      bits 10-12:     effectively _PAGE_PROTNONE (all zero)
 482 *      bits 13-31:  bits 26:8 of swap offset
 483 *
 484 * The split offset makes some of the following macros a little gnarly,
 485 * but there's plenty of precedent for this sort of thing.
 486 */
 487#define PTE_FILE_MAX_BITS     27
 488
 489/* Used for swap PTEs */
 490#define __swp_type(swp_pte)             (((swp_pte).val >> 2) & 0x1f)
 491
 492#define __swp_offset(swp_pte) \
 493        ((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x003ffff8))
 494
 495#define __swp_entry(type, offset) \
 496        ((swp_entry_t)  { \
 497                ((type << 2) | \
 498                 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) })
 499
 500/* Used for file PTEs */
 501#define pte_file(pte) \
 502        ((pte_val(pte) & (_PAGE_FILE | _PAGE_PRESENT)) == _PAGE_FILE)
 503
 504#define pte_to_pgoff(pte) \
 505        (((pte_val(pte) >> 2) & 0xff) | ((pte_val(pte) >> 5) & 0x07ffff00))
 506
 507#define pgoff_to_pte(off) \
 508        ((pte_t) { ((((off) & 0x7ffff00) << 5) | (((off) & 0xff) << 2)\
 509        | _PAGE_FILE) })
 510
 511/*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
 512#include <asm-generic/pgtable.h>
 513
 514#endif
 515