linux/arch/ia64/kernel/efi.c
<<
>>
Prefs
   1/*
   2 * Extensible Firmware Interface
   3 *
   4 * Based on Extensible Firmware Interface Specification version 0.9
   5 * April 30, 1999
   6 *
   7 * Copyright (C) 1999 VA Linux Systems
   8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10 *      David Mosberger-Tang <davidm@hpl.hp.com>
  11 *      Stephane Eranian <eranian@hpl.hp.com>
  12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  14 *
  15 * All EFI Runtime Services are not implemented yet as EFI only
  16 * supports physical mode addressing on SoftSDV. This is to be fixed
  17 * in a future version.  --drummond 1999-07-20
  18 *
  19 * Implemented EFI runtime services and virtual mode calls.  --davidm
  20 *
  21 * Goutham Rao: <goutham.rao@intel.com>
  22 *      Skip non-WB memory and ignore empty memory ranges.
  23 */
  24#include <linux/module.h>
  25#include <linux/bootmem.h>
  26#include <linux/crash_dump.h>
  27#include <linux/kernel.h>
  28#include <linux/init.h>
  29#include <linux/types.h>
  30#include <linux/slab.h>
  31#include <linux/time.h>
  32#include <linux/efi.h>
  33#include <linux/kexec.h>
  34#include <linux/mm.h>
  35
  36#include <asm/io.h>
  37#include <asm/kregs.h>
  38#include <asm/meminit.h>
  39#include <asm/pgtable.h>
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG       0
  46
  47extern efi_status_t efi_call_phys (void *, ...);
  48
  49struct efi efi;
  50EXPORT_SYMBOL(efi);
  51static efi_runtime_services_t *runtime;
  52static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  53
  54#define efi_call_virt(f, args...)       (*(f))(args)
  55
  56#define STUB_GET_TIME(prefix, adjust_arg)                                      \
  57static efi_status_t                                                            \
  58prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
  59{                                                                              \
  60        struct ia64_fpreg fr[6];                                               \
  61        efi_time_cap_t *atc = NULL;                                            \
  62        efi_status_t ret;                                                      \
  63                                                                               \
  64        if (tc)                                                                \
  65                atc = adjust_arg(tc);                                          \
  66        ia64_save_scratch_fpregs(fr);                                          \
  67        ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  68                                adjust_arg(tm), atc);                          \
  69        ia64_load_scratch_fpregs(fr);                                          \
  70        return ret;                                                            \
  71}
  72
  73#define STUB_SET_TIME(prefix, adjust_arg)                                      \
  74static efi_status_t                                                            \
  75prefix##_set_time (efi_time_t *tm)                                             \
  76{                                                                              \
  77        struct ia64_fpreg fr[6];                                               \
  78        efi_status_t ret;                                                      \
  79                                                                               \
  80        ia64_save_scratch_fpregs(fr);                                          \
  81        ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
  82                                adjust_arg(tm));                               \
  83        ia64_load_scratch_fpregs(fr);                                          \
  84        return ret;                                                            \
  85}
  86
  87#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
  88static efi_status_t                                                            \
  89prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
  90                          efi_time_t *tm)                                      \
  91{                                                                              \
  92        struct ia64_fpreg fr[6];                                               \
  93        efi_status_t ret;                                                      \
  94                                                                               \
  95        ia64_save_scratch_fpregs(fr);                                          \
  96        ret = efi_call_##prefix(                                               \
  97                (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
  98                adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
  99        ia64_load_scratch_fpregs(fr);                                          \
 100        return ret;                                                            \
 101}
 102
 103#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
 104static efi_status_t                                                            \
 105prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
 106{                                                                              \
 107        struct ia64_fpreg fr[6];                                               \
 108        efi_time_t *atm = NULL;                                                \
 109        efi_status_t ret;                                                      \
 110                                                                               \
 111        if (tm)                                                                \
 112                atm = adjust_arg(tm);                                          \
 113        ia64_save_scratch_fpregs(fr);                                          \
 114        ret = efi_call_##prefix(                                               \
 115                (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 116                enabled, atm);                                                 \
 117        ia64_load_scratch_fpregs(fr);                                          \
 118        return ret;                                                            \
 119}
 120
 121#define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
 122static efi_status_t                                                            \
 123prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 124                       unsigned long *data_size, void *data)                   \
 125{                                                                              \
 126        struct ia64_fpreg fr[6];                                               \
 127        u32 *aattr = NULL;                                                     \
 128        efi_status_t ret;                                                      \
 129                                                                               \
 130        if (attr)                                                              \
 131                aattr = adjust_arg(attr);                                      \
 132        ia64_save_scratch_fpregs(fr);                                          \
 133        ret = efi_call_##prefix(                                               \
 134                (efi_get_variable_t *) __va(runtime->get_variable),            \
 135                adjust_arg(name), adjust_arg(vendor), aattr,                   \
 136                adjust_arg(data_size), adjust_arg(data));                      \
 137        ia64_load_scratch_fpregs(fr);                                          \
 138        return ret;                                                            \
 139}
 140
 141#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
 142static efi_status_t                                                            \
 143prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 144                            efi_guid_t *vendor)                                \
 145{                                                                              \
 146        struct ia64_fpreg fr[6];                                               \
 147        efi_status_t ret;                                                      \
 148                                                                               \
 149        ia64_save_scratch_fpregs(fr);                                          \
 150        ret = efi_call_##prefix(                                               \
 151                (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 152                adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 153        ia64_load_scratch_fpregs(fr);                                          \
 154        return ret;                                                            \
 155}
 156
 157#define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
 158static efi_status_t                                                            \
 159prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
 160                       u32 attr, unsigned long data_size,                      \
 161                       void *data)                                             \
 162{                                                                              \
 163        struct ia64_fpreg fr[6];                                               \
 164        efi_status_t ret;                                                      \
 165                                                                               \
 166        ia64_save_scratch_fpregs(fr);                                          \
 167        ret = efi_call_##prefix(                                               \
 168                (efi_set_variable_t *) __va(runtime->set_variable),            \
 169                adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
 170                adjust_arg(data));                                             \
 171        ia64_load_scratch_fpregs(fr);                                          \
 172        return ret;                                                            \
 173}
 174
 175#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
 176static efi_status_t                                                            \
 177prefix##_get_next_high_mono_count (u32 *count)                                 \
 178{                                                                              \
 179        struct ia64_fpreg fr[6];                                               \
 180        efi_status_t ret;                                                      \
 181                                                                               \
 182        ia64_save_scratch_fpregs(fr);                                          \
 183        ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
 184                                __va(runtime->get_next_high_mono_count),       \
 185                                adjust_arg(count));                            \
 186        ia64_load_scratch_fpregs(fr);                                          \
 187        return ret;                                                            \
 188}
 189
 190#define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
 191static void                                                                    \
 192prefix##_reset_system (int reset_type, efi_status_t status,                    \
 193                       unsigned long data_size, efi_char16_t *data)            \
 194{                                                                              \
 195        struct ia64_fpreg fr[6];                                               \
 196        efi_char16_t *adata = NULL;                                            \
 197                                                                               \
 198        if (data)                                                              \
 199                adata = adjust_arg(data);                                      \
 200                                                                               \
 201        ia64_save_scratch_fpregs(fr);                                          \
 202        efi_call_##prefix(                                                     \
 203                (efi_reset_system_t *) __va(runtime->reset_system),            \
 204                reset_type, status, data_size, adata);                         \
 205        /* should not return, but just in case... */                           \
 206        ia64_load_scratch_fpregs(fr);                                          \
 207}
 208
 209#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 210
 211STUB_GET_TIME(phys, phys_ptr)
 212STUB_SET_TIME(phys, phys_ptr)
 213STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 214STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 215STUB_GET_VARIABLE(phys, phys_ptr)
 216STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 217STUB_SET_VARIABLE(phys, phys_ptr)
 218STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 219STUB_RESET_SYSTEM(phys, phys_ptr)
 220
 221#define id(arg) arg
 222
 223STUB_GET_TIME(virt, id)
 224STUB_SET_TIME(virt, id)
 225STUB_GET_WAKEUP_TIME(virt, id)
 226STUB_SET_WAKEUP_TIME(virt, id)
 227STUB_GET_VARIABLE(virt, id)
 228STUB_GET_NEXT_VARIABLE(virt, id)
 229STUB_SET_VARIABLE(virt, id)
 230STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 231STUB_RESET_SYSTEM(virt, id)
 232
 233void
 234efi_gettimeofday (struct timespec *ts)
 235{
 236        efi_time_t tm;
 237
 238        if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 239                memset(ts, 0, sizeof(*ts));
 240                return;
 241        }
 242
 243        ts->tv_sec = mktime(tm.year, tm.month, tm.day,
 244                            tm.hour, tm.minute, tm.second);
 245        ts->tv_nsec = tm.nanosecond;
 246}
 247
 248static int
 249is_memory_available (efi_memory_desc_t *md)
 250{
 251        if (!(md->attribute & EFI_MEMORY_WB))
 252                return 0;
 253
 254        switch (md->type) {
 255              case EFI_LOADER_CODE:
 256              case EFI_LOADER_DATA:
 257              case EFI_BOOT_SERVICES_CODE:
 258              case EFI_BOOT_SERVICES_DATA:
 259              case EFI_CONVENTIONAL_MEMORY:
 260                return 1;
 261        }
 262        return 0;
 263}
 264
 265typedef struct kern_memdesc {
 266        u64 attribute;
 267        u64 start;
 268        u64 num_pages;
 269} kern_memdesc_t;
 270
 271static kern_memdesc_t *kern_memmap;
 272
 273#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 274
 275static inline u64
 276kmd_end(kern_memdesc_t *kmd)
 277{
 278        return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 279}
 280
 281static inline u64
 282efi_md_end(efi_memory_desc_t *md)
 283{
 284        return (md->phys_addr + efi_md_size(md));
 285}
 286
 287static inline int
 288efi_wb(efi_memory_desc_t *md)
 289{
 290        return (md->attribute & EFI_MEMORY_WB);
 291}
 292
 293static inline int
 294efi_uc(efi_memory_desc_t *md)
 295{
 296        return (md->attribute & EFI_MEMORY_UC);
 297}
 298
 299static void
 300walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 301{
 302        kern_memdesc_t *k;
 303        u64 start, end, voff;
 304
 305        voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 306        for (k = kern_memmap; k->start != ~0UL; k++) {
 307                if (k->attribute != attr)
 308                        continue;
 309                start = PAGE_ALIGN(k->start);
 310                end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 311                if (start < end)
 312                        if ((*callback)(start + voff, end + voff, arg) < 0)
 313                                return;
 314        }
 315}
 316
 317/*
 318 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 319 * descriptor that has memory that is available for OS use.
 320 */
 321void
 322efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 323{
 324        walk(callback, arg, EFI_MEMORY_WB);
 325}
 326
 327/*
 328 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 329 * descriptor that has memory that is available for uncached allocator.
 330 */
 331void
 332efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 333{
 334        walk(callback, arg, EFI_MEMORY_UC);
 335}
 336
 337/*
 338 * Look for the PAL_CODE region reported by EFI and map it using an
 339 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 340 * Abstraction Layer chapter 11 in ADAG
 341 */
 342void *
 343efi_get_pal_addr (void)
 344{
 345        void *efi_map_start, *efi_map_end, *p;
 346        efi_memory_desc_t *md;
 347        u64 efi_desc_size;
 348        int pal_code_count = 0;
 349        u64 vaddr, mask;
 350
 351        efi_map_start = __va(ia64_boot_param->efi_memmap);
 352        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 353        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 354
 355        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 356                md = p;
 357                if (md->type != EFI_PAL_CODE)
 358                        continue;
 359
 360                if (++pal_code_count > 1) {
 361                        printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 362                               "dropped @ %llx\n", md->phys_addr);
 363                        continue;
 364                }
 365                /*
 366                 * The only ITLB entry in region 7 that is used is the one
 367                 * installed by __start().  That entry covers a 64MB range.
 368                 */
 369                mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 370                vaddr = PAGE_OFFSET + md->phys_addr;
 371
 372                /*
 373                 * We must check that the PAL mapping won't overlap with the
 374                 * kernel mapping.
 375                 *
 376                 * PAL code is guaranteed to be aligned on a power of 2 between
 377                 * 4k and 256KB and that only one ITR is needed to map it. This
 378                 * implies that the PAL code is always aligned on its size,
 379                 * i.e., the closest matching page size supported by the TLB.
 380                 * Therefore PAL code is guaranteed never to cross a 64MB unless
 381                 * it is bigger than 64MB (very unlikely!).  So for now the
 382                 * following test is enough to determine whether or not we need
 383                 * a dedicated ITR for the PAL code.
 384                 */
 385                if ((vaddr & mask) == (KERNEL_START & mask)) {
 386                        printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 387                               __func__);
 388                        continue;
 389                }
 390
 391                if (efi_md_size(md) > IA64_GRANULE_SIZE)
 392                        panic("Whoa!  PAL code size bigger than a granule!");
 393
 394#if EFI_DEBUG
 395                mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 396
 397                printk(KERN_INFO "CPU %d: mapping PAL code "
 398                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 399                       smp_processor_id(), md->phys_addr,
 400                       md->phys_addr + efi_md_size(md),
 401                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 402#endif
 403                return __va(md->phys_addr);
 404        }
 405        printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 406               __func__);
 407        return NULL;
 408}
 409
 410
 411static u8 __init palo_checksum(u8 *buffer, u32 length)
 412{
 413        u8 sum = 0;
 414        u8 *end = buffer + length;
 415
 416        while (buffer < end)
 417                sum = (u8) (sum + *(buffer++));
 418
 419        return sum;
 420}
 421
 422/*
 423 * Parse and handle PALO table which is published at:
 424 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 425 */
 426static void __init handle_palo(unsigned long palo_phys)
 427{
 428        struct palo_table *palo = __va(palo_phys);
 429        u8  checksum;
 430
 431        if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 432                printk(KERN_INFO "PALO signature incorrect.\n");
 433                return;
 434        }
 435
 436        checksum = palo_checksum((u8 *)palo, palo->length);
 437        if (checksum) {
 438                printk(KERN_INFO "PALO checksum incorrect.\n");
 439                return;
 440        }
 441
 442        setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 443}
 444
 445void
 446efi_map_pal_code (void)
 447{
 448        void *pal_vaddr = efi_get_pal_addr ();
 449        u64 psr;
 450
 451        if (!pal_vaddr)
 452                return;
 453
 454        /*
 455         * Cannot write to CRx with PSR.ic=1
 456         */
 457        psr = ia64_clear_ic();
 458        ia64_itr(0x1, IA64_TR_PALCODE,
 459                 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 460                 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 461                 IA64_GRANULE_SHIFT);
 462        paravirt_dv_serialize_data();
 463        ia64_set_psr(psr);              /* restore psr */
 464}
 465
 466void __init
 467efi_init (void)
 468{
 469        void *efi_map_start, *efi_map_end;
 470        efi_config_table_t *config_tables;
 471        efi_char16_t *c16;
 472        u64 efi_desc_size;
 473        char *cp, vendor[100] = "unknown";
 474        int i;
 475        unsigned long palo_phys;
 476
 477        /*
 478         * It's too early to be able to use the standard kernel command line
 479         * support...
 480         */
 481        for (cp = boot_command_line; *cp; ) {
 482                if (memcmp(cp, "mem=", 4) == 0) {
 483                        mem_limit = memparse(cp + 4, &cp);
 484                } else if (memcmp(cp, "max_addr=", 9) == 0) {
 485                        max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 486                } else if (memcmp(cp, "min_addr=", 9) == 0) {
 487                        min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 488                } else {
 489                        while (*cp != ' ' && *cp)
 490                                ++cp;
 491                        while (*cp == ' ')
 492                                ++cp;
 493                }
 494        }
 495        if (min_addr != 0UL)
 496                printk(KERN_INFO "Ignoring memory below %lluMB\n",
 497                       min_addr >> 20);
 498        if (max_addr != ~0UL)
 499                printk(KERN_INFO "Ignoring memory above %lluMB\n",
 500                       max_addr >> 20);
 501
 502        efi.systab = __va(ia64_boot_param->efi_systab);
 503
 504        /*
 505         * Verify the EFI Table
 506         */
 507        if (efi.systab == NULL)
 508                panic("Whoa! Can't find EFI system table.\n");
 509        if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 510                panic("Whoa! EFI system table signature incorrect\n");
 511        if ((efi.systab->hdr.revision >> 16) == 0)
 512                printk(KERN_WARNING "Warning: EFI system table version "
 513                       "%d.%02d, expected 1.00 or greater\n",
 514                       efi.systab->hdr.revision >> 16,
 515                       efi.systab->hdr.revision & 0xffff);
 516
 517        config_tables = __va(efi.systab->tables);
 518
 519        /* Show what we know for posterity */
 520        c16 = __va(efi.systab->fw_vendor);
 521        if (c16) {
 522                for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 523                        vendor[i] = *c16++;
 524                vendor[i] = '\0';
 525        }
 526
 527        printk(KERN_INFO "EFI v%u.%.02u by %s:",
 528               efi.systab->hdr.revision >> 16,
 529               efi.systab->hdr.revision & 0xffff, vendor);
 530
 531        efi.mps        = EFI_INVALID_TABLE_ADDR;
 532        efi.acpi       = EFI_INVALID_TABLE_ADDR;
 533        efi.acpi20     = EFI_INVALID_TABLE_ADDR;
 534        efi.smbios     = EFI_INVALID_TABLE_ADDR;
 535        efi.sal_systab = EFI_INVALID_TABLE_ADDR;
 536        efi.boot_info  = EFI_INVALID_TABLE_ADDR;
 537        efi.hcdp       = EFI_INVALID_TABLE_ADDR;
 538        efi.uga        = EFI_INVALID_TABLE_ADDR;
 539
 540        palo_phys      = EFI_INVALID_TABLE_ADDR;
 541
 542        for (i = 0; i < (int) efi.systab->nr_tables; i++) {
 543                if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
 544                        efi.mps = config_tables[i].table;
 545                        printk(" MPS=0x%lx", config_tables[i].table);
 546                } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
 547                        efi.acpi20 = config_tables[i].table;
 548                        printk(" ACPI 2.0=0x%lx", config_tables[i].table);
 549                } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
 550                        efi.acpi = config_tables[i].table;
 551                        printk(" ACPI=0x%lx", config_tables[i].table);
 552                } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
 553                        efi.smbios = config_tables[i].table;
 554                        printk(" SMBIOS=0x%lx", config_tables[i].table);
 555                } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
 556                        efi.sal_systab = config_tables[i].table;
 557                        printk(" SALsystab=0x%lx", config_tables[i].table);
 558                } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
 559                        efi.hcdp = config_tables[i].table;
 560                        printk(" HCDP=0x%lx", config_tables[i].table);
 561                } else if (efi_guidcmp(config_tables[i].guid,
 562                         PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
 563                        palo_phys = config_tables[i].table;
 564                        printk(" PALO=0x%lx", config_tables[i].table);
 565                }
 566        }
 567        printk("\n");
 568
 569        if (palo_phys != EFI_INVALID_TABLE_ADDR)
 570                handle_palo(palo_phys);
 571
 572        runtime = __va(efi.systab->runtime);
 573        efi.get_time = phys_get_time;
 574        efi.set_time = phys_set_time;
 575        efi.get_wakeup_time = phys_get_wakeup_time;
 576        efi.set_wakeup_time = phys_set_wakeup_time;
 577        efi.get_variable = phys_get_variable;
 578        efi.get_next_variable = phys_get_next_variable;
 579        efi.set_variable = phys_set_variable;
 580        efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 581        efi.reset_system = phys_reset_system;
 582
 583        efi_map_start = __va(ia64_boot_param->efi_memmap);
 584        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 585        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 586
 587#if EFI_DEBUG
 588        /* print EFI memory map: */
 589        {
 590                efi_memory_desc_t *md;
 591                void *p;
 592
 593                for (i = 0, p = efi_map_start; p < efi_map_end;
 594                     ++i, p += efi_desc_size)
 595                {
 596                        const char *unit;
 597                        unsigned long size;
 598
 599                        md = p;
 600                        size = md->num_pages << EFI_PAGE_SHIFT;
 601
 602                        if ((size >> 40) > 0) {
 603                                size >>= 40;
 604                                unit = "TB";
 605                        } else if ((size >> 30) > 0) {
 606                                size >>= 30;
 607                                unit = "GB";
 608                        } else if ((size >> 20) > 0) {
 609                                size >>= 20;
 610                                unit = "MB";
 611                        } else {
 612                                size >>= 10;
 613                                unit = "KB";
 614                        }
 615
 616                        printk("mem%02d: type=%2u, attr=0x%016lx, "
 617                               "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 618                               i, md->type, md->attribute, md->phys_addr,
 619                               md->phys_addr + efi_md_size(md), size, unit);
 620                }
 621        }
 622#endif
 623
 624        efi_map_pal_code();
 625        efi_enter_virtual_mode();
 626}
 627
 628void
 629efi_enter_virtual_mode (void)
 630{
 631        void *efi_map_start, *efi_map_end, *p;
 632        efi_memory_desc_t *md;
 633        efi_status_t status;
 634        u64 efi_desc_size;
 635
 636        efi_map_start = __va(ia64_boot_param->efi_memmap);
 637        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 638        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 639
 640        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 641                md = p;
 642                if (md->attribute & EFI_MEMORY_RUNTIME) {
 643                        /*
 644                         * Some descriptors have multiple bits set, so the
 645                         * order of the tests is relevant.
 646                         */
 647                        if (md->attribute & EFI_MEMORY_WB) {
 648                                md->virt_addr = (u64) __va(md->phys_addr);
 649                        } else if (md->attribute & EFI_MEMORY_UC) {
 650                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 651                        } else if (md->attribute & EFI_MEMORY_WC) {
 652#if 0
 653                                md->virt_addr = ia64_remap(md->phys_addr,
 654                                                           (_PAGE_A |
 655                                                            _PAGE_P |
 656                                                            _PAGE_D |
 657                                                            _PAGE_MA_WC |
 658                                                            _PAGE_PL_0 |
 659                                                            _PAGE_AR_RW));
 660#else
 661                                printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 662                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 663#endif
 664                        } else if (md->attribute & EFI_MEMORY_WT) {
 665#if 0
 666                                md->virt_addr = ia64_remap(md->phys_addr,
 667                                                           (_PAGE_A |
 668                                                            _PAGE_P |
 669                                                            _PAGE_D |
 670                                                            _PAGE_MA_WT |
 671                                                            _PAGE_PL_0 |
 672                                                            _PAGE_AR_RW));
 673#else
 674                                printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 675                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 676#endif
 677                        }
 678                }
 679        }
 680
 681        status = efi_call_phys(__va(runtime->set_virtual_address_map),
 682                               ia64_boot_param->efi_memmap_size,
 683                               efi_desc_size,
 684                               ia64_boot_param->efi_memdesc_version,
 685                               ia64_boot_param->efi_memmap);
 686        if (status != EFI_SUCCESS) {
 687                printk(KERN_WARNING "warning: unable to switch EFI into "
 688                       "virtual mode (status=%lu)\n", status);
 689                return;
 690        }
 691
 692        /*
 693         * Now that EFI is in virtual mode, we call the EFI functions more
 694         * efficiently:
 695         */
 696        efi.get_time = virt_get_time;
 697        efi.set_time = virt_set_time;
 698        efi.get_wakeup_time = virt_get_wakeup_time;
 699        efi.set_wakeup_time = virt_set_wakeup_time;
 700        efi.get_variable = virt_get_variable;
 701        efi.get_next_variable = virt_get_next_variable;
 702        efi.set_variable = virt_set_variable;
 703        efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 704        efi.reset_system = virt_reset_system;
 705}
 706
 707/*
 708 * Walk the EFI memory map looking for the I/O port range.  There can only be
 709 * one entry of this type, other I/O port ranges should be described via ACPI.
 710 */
 711u64
 712efi_get_iobase (void)
 713{
 714        void *efi_map_start, *efi_map_end, *p;
 715        efi_memory_desc_t *md;
 716        u64 efi_desc_size;
 717
 718        efi_map_start = __va(ia64_boot_param->efi_memmap);
 719        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 720        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 721
 722        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 723                md = p;
 724                if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 725                        if (md->attribute & EFI_MEMORY_UC)
 726                                return md->phys_addr;
 727                }
 728        }
 729        return 0;
 730}
 731
 732static struct kern_memdesc *
 733kern_memory_descriptor (unsigned long phys_addr)
 734{
 735        struct kern_memdesc *md;
 736
 737        for (md = kern_memmap; md->start != ~0UL; md++) {
 738                if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 739                         return md;
 740        }
 741        return NULL;
 742}
 743
 744static efi_memory_desc_t *
 745efi_memory_descriptor (unsigned long phys_addr)
 746{
 747        void *efi_map_start, *efi_map_end, *p;
 748        efi_memory_desc_t *md;
 749        u64 efi_desc_size;
 750
 751        efi_map_start = __va(ia64_boot_param->efi_memmap);
 752        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 753        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 754
 755        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 756                md = p;
 757
 758                if (phys_addr - md->phys_addr < efi_md_size(md))
 759                         return md;
 760        }
 761        return NULL;
 762}
 763
 764static int
 765efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 766{
 767        void *efi_map_start, *efi_map_end, *p;
 768        efi_memory_desc_t *md;
 769        u64 efi_desc_size;
 770        unsigned long end;
 771
 772        efi_map_start = __va(ia64_boot_param->efi_memmap);
 773        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 774        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 775
 776        end = phys_addr + size;
 777
 778        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 779                md = p;
 780                if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 781                        return 1;
 782        }
 783        return 0;
 784}
 785
 786u32
 787efi_mem_type (unsigned long phys_addr)
 788{
 789        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 790
 791        if (md)
 792                return md->type;
 793        return 0;
 794}
 795
 796u64
 797efi_mem_attributes (unsigned long phys_addr)
 798{
 799        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 800
 801        if (md)
 802                return md->attribute;
 803        return 0;
 804}
 805EXPORT_SYMBOL(efi_mem_attributes);
 806
 807u64
 808efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 809{
 810        unsigned long end = phys_addr + size;
 811        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 812        u64 attr;
 813
 814        if (!md)
 815                return 0;
 816
 817        /*
 818         * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 819         * the kernel that firmware needs this region mapped.
 820         */
 821        attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 822        do {
 823                unsigned long md_end = efi_md_end(md);
 824
 825                if (end <= md_end)
 826                        return attr;
 827
 828                md = efi_memory_descriptor(md_end);
 829                if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 830                        return 0;
 831        } while (md);
 832        return 0;       /* never reached */
 833}
 834
 835u64
 836kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 837{
 838        unsigned long end = phys_addr + size;
 839        struct kern_memdesc *md;
 840        u64 attr;
 841
 842        /*
 843         * This is a hack for ioremap calls before we set up kern_memmap.
 844         * Maybe we should do efi_memmap_init() earlier instead.
 845         */
 846        if (!kern_memmap) {
 847                attr = efi_mem_attribute(phys_addr, size);
 848                if (attr & EFI_MEMORY_WB)
 849                        return EFI_MEMORY_WB;
 850                return 0;
 851        }
 852
 853        md = kern_memory_descriptor(phys_addr);
 854        if (!md)
 855                return 0;
 856
 857        attr = md->attribute;
 858        do {
 859                unsigned long md_end = kmd_end(md);
 860
 861                if (end <= md_end)
 862                        return attr;
 863
 864                md = kern_memory_descriptor(md_end);
 865                if (!md || md->attribute != attr)
 866                        return 0;
 867        } while (md);
 868        return 0;       /* never reached */
 869}
 870EXPORT_SYMBOL(kern_mem_attribute);
 871
 872int
 873valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 874{
 875        u64 attr;
 876
 877        /*
 878         * /dev/mem reads and writes use copy_to_user(), which implicitly
 879         * uses a granule-sized kernel identity mapping.  It's really
 880         * only safe to do this for regions in kern_memmap.  For more
 881         * details, see Documentation/ia64/aliasing.txt.
 882         */
 883        attr = kern_mem_attribute(phys_addr, size);
 884        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 885                return 1;
 886        return 0;
 887}
 888
 889int
 890valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 891{
 892        unsigned long phys_addr = pfn << PAGE_SHIFT;
 893        u64 attr;
 894
 895        attr = efi_mem_attribute(phys_addr, size);
 896
 897        /*
 898         * /dev/mem mmap uses normal user pages, so we don't need the entire
 899         * granule, but the entire region we're mapping must support the same
 900         * attribute.
 901         */
 902        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 903                return 1;
 904
 905        /*
 906         * Intel firmware doesn't tell us about all the MMIO regions, so
 907         * in general we have to allow mmap requests.  But if EFI *does*
 908         * tell us about anything inside this region, we should deny it.
 909         * The user can always map a smaller region to avoid the overlap.
 910         */
 911        if (efi_memmap_intersects(phys_addr, size))
 912                return 0;
 913
 914        return 1;
 915}
 916
 917pgprot_t
 918phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 919                     pgprot_t vma_prot)
 920{
 921        unsigned long phys_addr = pfn << PAGE_SHIFT;
 922        u64 attr;
 923
 924        /*
 925         * For /dev/mem mmap, we use user mappings, but if the region is
 926         * in kern_memmap (and hence may be covered by a kernel mapping),
 927         * we must use the same attribute as the kernel mapping.
 928         */
 929        attr = kern_mem_attribute(phys_addr, size);
 930        if (attr & EFI_MEMORY_WB)
 931                return pgprot_cacheable(vma_prot);
 932        else if (attr & EFI_MEMORY_UC)
 933                return pgprot_noncached(vma_prot);
 934
 935        /*
 936         * Some chipsets don't support UC access to memory.  If
 937         * WB is supported, we prefer that.
 938         */
 939        if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 940                return pgprot_cacheable(vma_prot);
 941
 942        return pgprot_noncached(vma_prot);
 943}
 944
 945int __init
 946efi_uart_console_only(void)
 947{
 948        efi_status_t status;
 949        char *s, name[] = "ConOut";
 950        efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 951        efi_char16_t *utf16, name_utf16[32];
 952        unsigned char data[1024];
 953        unsigned long size = sizeof(data);
 954        struct efi_generic_dev_path *hdr, *end_addr;
 955        int uart = 0;
 956
 957        /* Convert to UTF-16 */
 958        utf16 = name_utf16;
 959        s = name;
 960        while (*s)
 961                *utf16++ = *s++ & 0x7f;
 962        *utf16 = 0;
 963
 964        status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 965        if (status != EFI_SUCCESS) {
 966                printk(KERN_ERR "No EFI %s variable?\n", name);
 967                return 0;
 968        }
 969
 970        hdr = (struct efi_generic_dev_path *) data;
 971        end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 972        while (hdr < end_addr) {
 973                if (hdr->type == EFI_DEV_MSG &&
 974                    hdr->sub_type == EFI_DEV_MSG_UART)
 975                        uart = 1;
 976                else if (hdr->type == EFI_DEV_END_PATH ||
 977                          hdr->type == EFI_DEV_END_PATH2) {
 978                        if (!uart)
 979                                return 0;
 980                        if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 981                                return 1;
 982                        uart = 0;
 983                }
 984                hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 985        }
 986        printk(KERN_ERR "Malformed %s value\n", name);
 987        return 0;
 988}
 989
 990/*
 991 * Look for the first granule aligned memory descriptor memory
 992 * that is big enough to hold EFI memory map. Make sure this
 993 * descriptor is atleast granule sized so it does not get trimmed
 994 */
 995struct kern_memdesc *
 996find_memmap_space (void)
 997{
 998        u64     contig_low=0, contig_high=0;
 999        u64     as = 0, ae;
1000        void *efi_map_start, *efi_map_end, *p, *q;
1001        efi_memory_desc_t *md, *pmd = NULL, *check_md;
1002        u64     space_needed, efi_desc_size;
1003        unsigned long total_mem = 0;
1004
1005        efi_map_start = __va(ia64_boot_param->efi_memmap);
1006        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1007        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1008
1009        /*
1010         * Worst case: we need 3 kernel descriptors for each efi descriptor
1011         * (if every entry has a WB part in the middle, and UC head and tail),
1012         * plus one for the end marker.
1013         */
1014        space_needed = sizeof(kern_memdesc_t) *
1015                (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1016
1017        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1018                md = p;
1019                if (!efi_wb(md)) {
1020                        continue;
1021                }
1022                if (pmd == NULL || !efi_wb(pmd) ||
1023                    efi_md_end(pmd) != md->phys_addr) {
1024                        contig_low = GRANULEROUNDUP(md->phys_addr);
1025                        contig_high = efi_md_end(md);
1026                        for (q = p + efi_desc_size; q < efi_map_end;
1027                             q += efi_desc_size) {
1028                                check_md = q;
1029                                if (!efi_wb(check_md))
1030                                        break;
1031                                if (contig_high != check_md->phys_addr)
1032                                        break;
1033                                contig_high = efi_md_end(check_md);
1034                        }
1035                        contig_high = GRANULEROUNDDOWN(contig_high);
1036                }
1037                if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1038                        continue;
1039
1040                /* Round ends inward to granule boundaries */
1041                as = max(contig_low, md->phys_addr);
1042                ae = min(contig_high, efi_md_end(md));
1043
1044                /* keep within max_addr= and min_addr= command line arg */
1045                as = max(as, min_addr);
1046                ae = min(ae, max_addr);
1047                if (ae <= as)
1048                        continue;
1049
1050                /* avoid going over mem= command line arg */
1051                if (total_mem + (ae - as) > mem_limit)
1052                        ae -= total_mem + (ae - as) - mem_limit;
1053
1054                if (ae <= as)
1055                        continue;
1056
1057                if (ae - as > space_needed)
1058                        break;
1059        }
1060        if (p >= efi_map_end)
1061                panic("Can't allocate space for kernel memory descriptors");
1062
1063        return __va(as);
1064}
1065
1066/*
1067 * Walk the EFI memory map and gather all memory available for kernel
1068 * to use.  We can allocate partial granules only if the unavailable
1069 * parts exist, and are WB.
1070 */
1071unsigned long
1072efi_memmap_init(u64 *s, u64 *e)
1073{
1074        struct kern_memdesc *k, *prev = NULL;
1075        u64     contig_low=0, contig_high=0;
1076        u64     as, ae, lim;
1077        void *efi_map_start, *efi_map_end, *p, *q;
1078        efi_memory_desc_t *md, *pmd = NULL, *check_md;
1079        u64     efi_desc_size;
1080        unsigned long total_mem = 0;
1081
1082        k = kern_memmap = find_memmap_space();
1083
1084        efi_map_start = __va(ia64_boot_param->efi_memmap);
1085        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1086        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1087
1088        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1089                md = p;
1090                if (!efi_wb(md)) {
1091                        if (efi_uc(md) &&
1092                            (md->type == EFI_CONVENTIONAL_MEMORY ||
1093                             md->type == EFI_BOOT_SERVICES_DATA)) {
1094                                k->attribute = EFI_MEMORY_UC;
1095                                k->start = md->phys_addr;
1096                                k->num_pages = md->num_pages;
1097                                k++;
1098                        }
1099                        continue;
1100                }
1101                if (pmd == NULL || !efi_wb(pmd) ||
1102                    efi_md_end(pmd) != md->phys_addr) {
1103                        contig_low = GRANULEROUNDUP(md->phys_addr);
1104                        contig_high = efi_md_end(md);
1105                        for (q = p + efi_desc_size; q < efi_map_end;
1106                             q += efi_desc_size) {
1107                                check_md = q;
1108                                if (!efi_wb(check_md))
1109                                        break;
1110                                if (contig_high != check_md->phys_addr)
1111                                        break;
1112                                contig_high = efi_md_end(check_md);
1113                        }
1114                        contig_high = GRANULEROUNDDOWN(contig_high);
1115                }
1116                if (!is_memory_available(md))
1117                        continue;
1118
1119                /*
1120                 * Round ends inward to granule boundaries
1121                 * Give trimmings to uncached allocator
1122                 */
1123                if (md->phys_addr < contig_low) {
1124                        lim = min(efi_md_end(md), contig_low);
1125                        if (efi_uc(md)) {
1126                                if (k > kern_memmap &&
1127                                    (k-1)->attribute == EFI_MEMORY_UC &&
1128                                    kmd_end(k-1) == md->phys_addr) {
1129                                        (k-1)->num_pages +=
1130                                                (lim - md->phys_addr)
1131                                                >> EFI_PAGE_SHIFT;
1132                                } else {
1133                                        k->attribute = EFI_MEMORY_UC;
1134                                        k->start = md->phys_addr;
1135                                        k->num_pages = (lim - md->phys_addr)
1136                                                >> EFI_PAGE_SHIFT;
1137                                        k++;
1138                                }
1139                        }
1140                        as = contig_low;
1141                } else
1142                        as = md->phys_addr;
1143
1144                if (efi_md_end(md) > contig_high) {
1145                        lim = max(md->phys_addr, contig_high);
1146                        if (efi_uc(md)) {
1147                                if (lim == md->phys_addr && k > kern_memmap &&
1148                                    (k-1)->attribute == EFI_MEMORY_UC &&
1149                                    kmd_end(k-1) == md->phys_addr) {
1150                                        (k-1)->num_pages += md->num_pages;
1151                                } else {
1152                                        k->attribute = EFI_MEMORY_UC;
1153                                        k->start = lim;
1154                                        k->num_pages = (efi_md_end(md) - lim)
1155                                                >> EFI_PAGE_SHIFT;
1156                                        k++;
1157                                }
1158                        }
1159                        ae = contig_high;
1160                } else
1161                        ae = efi_md_end(md);
1162
1163                /* keep within max_addr= and min_addr= command line arg */
1164                as = max(as, min_addr);
1165                ae = min(ae, max_addr);
1166                if (ae <= as)
1167                        continue;
1168
1169                /* avoid going over mem= command line arg */
1170                if (total_mem + (ae - as) > mem_limit)
1171                        ae -= total_mem + (ae - as) - mem_limit;
1172
1173                if (ae <= as)
1174                        continue;
1175                if (prev && kmd_end(prev) == md->phys_addr) {
1176                        prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1177                        total_mem += ae - as;
1178                        continue;
1179                }
1180                k->attribute = EFI_MEMORY_WB;
1181                k->start = as;
1182                k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1183                total_mem += ae - as;
1184                prev = k++;
1185        }
1186        k->start = ~0L; /* end-marker */
1187
1188        /* reserve the memory we are using for kern_memmap */
1189        *s = (u64)kern_memmap;
1190        *e = (u64)++k;
1191
1192        return total_mem;
1193}
1194
1195void
1196efi_initialize_iomem_resources(struct resource *code_resource,
1197                               struct resource *data_resource,
1198                               struct resource *bss_resource)
1199{
1200        struct resource *res;
1201        void *efi_map_start, *efi_map_end, *p;
1202        efi_memory_desc_t *md;
1203        u64 efi_desc_size;
1204        char *name;
1205        unsigned long flags;
1206
1207        efi_map_start = __va(ia64_boot_param->efi_memmap);
1208        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1209        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1210
1211        res = NULL;
1212
1213        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1214                md = p;
1215
1216                if (md->num_pages == 0) /* should not happen */
1217                        continue;
1218
1219                flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1220                switch (md->type) {
1221
1222                        case EFI_MEMORY_MAPPED_IO:
1223                        case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1224                                continue;
1225
1226                        case EFI_LOADER_CODE:
1227                        case EFI_LOADER_DATA:
1228                        case EFI_BOOT_SERVICES_DATA:
1229                        case EFI_BOOT_SERVICES_CODE:
1230                        case EFI_CONVENTIONAL_MEMORY:
1231                                if (md->attribute & EFI_MEMORY_WP) {
1232                                        name = "System ROM";
1233                                        flags |= IORESOURCE_READONLY;
1234                                } else if (md->attribute == EFI_MEMORY_UC)
1235                                        name = "Uncached RAM";
1236                                else
1237                                        name = "System RAM";
1238                                break;
1239
1240                        case EFI_ACPI_MEMORY_NVS:
1241                                name = "ACPI Non-volatile Storage";
1242                                break;
1243
1244                        case EFI_UNUSABLE_MEMORY:
1245                                name = "reserved";
1246                                flags |= IORESOURCE_DISABLED;
1247                                break;
1248
1249                        case EFI_RESERVED_TYPE:
1250                        case EFI_RUNTIME_SERVICES_CODE:
1251                        case EFI_RUNTIME_SERVICES_DATA:
1252                        case EFI_ACPI_RECLAIM_MEMORY:
1253                        default:
1254                                name = "reserved";
1255                                break;
1256                }
1257
1258                if ((res = kzalloc(sizeof(struct resource),
1259                                   GFP_KERNEL)) == NULL) {
1260                        printk(KERN_ERR
1261                               "failed to allocate resource for iomem\n");
1262                        return;
1263                }
1264
1265                res->name = name;
1266                res->start = md->phys_addr;
1267                res->end = md->phys_addr + efi_md_size(md) - 1;
1268                res->flags = flags;
1269
1270                if (insert_resource(&iomem_resource, res) < 0)
1271                        kfree(res);
1272                else {
1273                        /*
1274                         * We don't know which region contains
1275                         * kernel data so we try it repeatedly and
1276                         * let the resource manager test it.
1277                         */
1278                        insert_resource(res, code_resource);
1279                        insert_resource(res, data_resource);
1280                        insert_resource(res, bss_resource);
1281#ifdef CONFIG_KEXEC
1282                        insert_resource(res, &efi_memmap_res);
1283                        insert_resource(res, &boot_param_res);
1284                        if (crashk_res.end > crashk_res.start)
1285                                insert_resource(res, &crashk_res);
1286#endif
1287                }
1288        }
1289}
1290
1291#ifdef CONFIG_KEXEC
1292/* find a block of memory aligned to 64M exclude reserved regions
1293   rsvd_regions are sorted
1294 */
1295unsigned long __init
1296kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1297{
1298        int i;
1299        u64 start, end;
1300        u64 alignment = 1UL << _PAGE_SIZE_64M;
1301        void *efi_map_start, *efi_map_end, *p;
1302        efi_memory_desc_t *md;
1303        u64 efi_desc_size;
1304
1305        efi_map_start = __va(ia64_boot_param->efi_memmap);
1306        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1307        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1308
1309        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1310                md = p;
1311                if (!efi_wb(md))
1312                        continue;
1313                start = ALIGN(md->phys_addr, alignment);
1314                end = efi_md_end(md);
1315                for (i = 0; i < n; i++) {
1316                        if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1317                                if (__pa(r[i].start) > start + size)
1318                                        return start;
1319                                start = ALIGN(__pa(r[i].end), alignment);
1320                                if (i < n-1 &&
1321                                    __pa(r[i+1].start) < start + size)
1322                                        continue;
1323                                else
1324                                        break;
1325                        }
1326                }
1327                if (end > start + size)
1328                        return start;
1329        }
1330
1331        printk(KERN_WARNING
1332               "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1333        return ~0UL;
1334}
1335#endif
1336
1337#ifdef CONFIG_CRASH_DUMP
1338/* locate the size find a the descriptor at a certain address */
1339unsigned long __init
1340vmcore_find_descriptor_size (unsigned long address)
1341{
1342        void *efi_map_start, *efi_map_end, *p;
1343        efi_memory_desc_t *md;
1344        u64 efi_desc_size;
1345        unsigned long ret = 0;
1346
1347        efi_map_start = __va(ia64_boot_param->efi_memmap);
1348        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1349        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1350
1351        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1352                md = p;
1353                if (efi_wb(md) && md->type == EFI_LOADER_DATA
1354                    && md->phys_addr == address) {
1355                        ret = efi_md_size(md);
1356                        break;
1357                }
1358        }
1359
1360        if (ret == 0)
1361                printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1362
1363        return ret;
1364}
1365#endif
1366