linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45#include <linux/cpu.h>
  46
  47#include <asm/errno.h>
  48#include <asm/intrinsics.h>
  49#include <asm/page.h>
  50#include <asm/perfmon.h>
  51#include <asm/processor.h>
  52#include <asm/signal.h>
  53#include <asm/uaccess.h>
  54#include <asm/delay.h>
  55
  56#ifdef CONFIG_PERFMON
  57/*
  58 * perfmon context state
  59 */
  60#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  61#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  62#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  63#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  64
  65#define PFM_INVALID_ACTIVATION  (~0UL)
  66
  67#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  68#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  69
  70/*
  71 * depth of message queue
  72 */
  73#define PFM_MAX_MSGS            32
  74#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  75
  76/*
  77 * type of a PMU register (bitmask).
  78 * bitmask structure:
  79 *      bit0   : register implemented
  80 *      bit1   : end marker
  81 *      bit2-3 : reserved
  82 *      bit4   : pmc has pmc.pm
  83 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  84 *      bit6-7 : register type
  85 *      bit8-31: reserved
  86 */
  87#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  88#define PFM_REG_IMPL            0x1 /* register implemented */
  89#define PFM_REG_END             0x2 /* end marker */
  90#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  91#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  92#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  93#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  94#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  95
  96#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  97#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  98
  99#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 100
 101/* i assumed unsigned */
 102#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 103#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 104
 105/* XXX: these assume that register i is implemented */
 106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 110
 111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 113#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 114#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 115
 116#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 117#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 118
 119#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 120#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 121#define PFM_CTX_TASK(h)         (h)->ctx_task
 122
 123#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 124
 125/* XXX: does not support more than 64 PMDs */
 126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 128
 129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 130
 131#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 133#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 134#define PFM_CODE_RR     0       /* requesting code range restriction */
 135#define PFM_DATA_RR     1       /* requestion data range restriction */
 136
 137#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 138#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 139#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 140
 141#define RDEP(x) (1UL<<(x))
 142
 143/*
 144 * context protection macros
 145 * in SMP:
 146 *      - we need to protect against CPU concurrency (spin_lock)
 147 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 148 * in UP:
 149 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 150 *
 151 * spin_lock_irqsave()/spin_unlock_irqrestore():
 152 *      in SMP: local_irq_disable + spin_lock
 153 *      in UP : local_irq_disable
 154 *
 155 * spin_lock()/spin_lock():
 156 *      in UP : removed automatically
 157 *      in SMP: protect against context accesses from other CPU. interrupts
 158 *              are not masked. This is useful for the PMU interrupt handler
 159 *              because we know we will not get PMU concurrency in that code.
 160 */
 161#define PROTECT_CTX(c, f) \
 162        do {  \
 163                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 164                spin_lock_irqsave(&(c)->ctx_lock, f); \
 165                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 166        } while(0)
 167
 168#define UNPROTECT_CTX(c, f) \
 169        do { \
 170                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 171                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 172        } while(0)
 173
 174#define PROTECT_CTX_NOPRINT(c, f) \
 175        do {  \
 176                spin_lock_irqsave(&(c)->ctx_lock, f); \
 177        } while(0)
 178
 179
 180#define UNPROTECT_CTX_NOPRINT(c, f) \
 181        do { \
 182                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 183        } while(0)
 184
 185
 186#define PROTECT_CTX_NOIRQ(c) \
 187        do {  \
 188                spin_lock(&(c)->ctx_lock); \
 189        } while(0)
 190
 191#define UNPROTECT_CTX_NOIRQ(c) \
 192        do { \
 193                spin_unlock(&(c)->ctx_lock); \
 194        } while(0)
 195
 196
 197#ifdef CONFIG_SMP
 198
 199#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 200#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 201#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 202
 203#else /* !CONFIG_SMP */
 204#define SET_ACTIVATION(t)       do {} while(0)
 205#define GET_ACTIVATION(t)       do {} while(0)
 206#define INC_ACTIVATION(t)       do {} while(0)
 207#endif /* CONFIG_SMP */
 208
 209#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 210#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 211#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 212
 213#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 214#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 215
 216#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 217
 218/*
 219 * cmp0 must be the value of pmc0
 220 */
 221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 222
 223#define PFMFS_MAGIC 0xa0b4d889
 224
 225/*
 226 * debugging
 227 */
 228#define PFM_DEBUGGING 1
 229#ifdef PFM_DEBUGGING
 230#define DPRINT(a) \
 231        do { \
 232                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 233        } while (0)
 234
 235#define DPRINT_ovfl(a) \
 236        do { \
 237                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 238        } while (0)
 239#endif
 240
 241/*
 242 * 64-bit software counter structure
 243 *
 244 * the next_reset_type is applied to the next call to pfm_reset_regs()
 245 */
 246typedef struct {
 247        unsigned long   val;            /* virtual 64bit counter value */
 248        unsigned long   lval;           /* last reset value */
 249        unsigned long   long_reset;     /* reset value on sampling overflow */
 250        unsigned long   short_reset;    /* reset value on overflow */
 251        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 252        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 253        unsigned long   seed;           /* seed for random-number generator */
 254        unsigned long   mask;           /* mask for random-number generator */
 255        unsigned int    flags;          /* notify/do not notify */
 256        unsigned long   eventid;        /* overflow event identifier */
 257} pfm_counter_t;
 258
 259/*
 260 * context flags
 261 */
 262typedef struct {
 263        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 264        unsigned int system:1;          /* do system wide monitoring */
 265        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 266        unsigned int is_sampling:1;     /* true if using a custom format */
 267        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 268        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 269        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 270        unsigned int no_msg:1;          /* no message sent on overflow */
 271        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 272        unsigned int reserved:22;
 273} pfm_context_flags_t;
 274
 275#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 276#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 277#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 278
 279
 280/*
 281 * perfmon context: encapsulates all the state of a monitoring session
 282 */
 283
 284typedef struct pfm_context {
 285        spinlock_t              ctx_lock;               /* context protection */
 286
 287        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 288        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 289
 290        struct task_struct      *ctx_task;              /* task to which context is attached */
 291
 292        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 293
 294        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 295
 296        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 297        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 298        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 299
 300        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 301        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 302        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 303
 304        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 305
 306        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 307        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 308        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 309        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 310
 311        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 312
 313        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 314        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 315
 316        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 317
 318        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 319        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 320        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 321
 322        int                     ctx_fd;                 /* file descriptor used my this context */
 323        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 324
 325        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 326        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 327        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 328        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 329
 330        wait_queue_head_t       ctx_msgq_wait;
 331        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 332        int                     ctx_msgq_head;
 333        int                     ctx_msgq_tail;
 334        struct fasync_struct    *ctx_async_queue;
 335
 336        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 337} pfm_context_t;
 338
 339/*
 340 * magic number used to verify that structure is really
 341 * a perfmon context
 342 */
 343#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 344
 345#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 346
 347#ifdef CONFIG_SMP
 348#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 349#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 350#else
 351#define SET_LAST_CPU(ctx, v)    do {} while(0)
 352#define GET_LAST_CPU(ctx)       do {} while(0)
 353#endif
 354
 355
 356#define ctx_fl_block            ctx_flags.block
 357#define ctx_fl_system           ctx_flags.system
 358#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 359#define ctx_fl_is_sampling      ctx_flags.is_sampling
 360#define ctx_fl_excl_idle        ctx_flags.excl_idle
 361#define ctx_fl_going_zombie     ctx_flags.going_zombie
 362#define ctx_fl_trap_reason      ctx_flags.trap_reason
 363#define ctx_fl_no_msg           ctx_flags.no_msg
 364#define ctx_fl_can_restart      ctx_flags.can_restart
 365
 366#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 367#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 368
 369/*
 370 * global information about all sessions
 371 * mostly used to synchronize between system wide and per-process
 372 */
 373typedef struct {
 374        spinlock_t              pfs_lock;                  /* lock the structure */
 375
 376        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 377        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 378        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 379        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 380        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 381} pfm_session_t;
 382
 383/*
 384 * information about a PMC or PMD.
 385 * dep_pmd[]: a bitmask of dependent PMD registers
 386 * dep_pmc[]: a bitmask of dependent PMC registers
 387 */
 388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 389typedef struct {
 390        unsigned int            type;
 391        int                     pm_pos;
 392        unsigned long           default_value;  /* power-on default value */
 393        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 394        pfm_reg_check_t         read_check;
 395        pfm_reg_check_t         write_check;
 396        unsigned long           dep_pmd[4];
 397        unsigned long           dep_pmc[4];
 398} pfm_reg_desc_t;
 399
 400/* assume cnum is a valid monitor */
 401#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 402
 403/*
 404 * This structure is initialized at boot time and contains
 405 * a description of the PMU main characteristics.
 406 *
 407 * If the probe function is defined, detection is based
 408 * on its return value: 
 409 *      - 0 means recognized PMU
 410 *      - anything else means not supported
 411 * When the probe function is not defined, then the pmu_family field
 412 * is used and it must match the host CPU family such that:
 413 *      - cpu->family & config->pmu_family != 0
 414 */
 415typedef struct {
 416        unsigned long  ovfl_val;        /* overflow value for counters */
 417
 418        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 419        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 420
 421        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 422        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 423        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 424        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 425
 426        char          *pmu_name;        /* PMU family name */
 427        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 428        unsigned int  flags;            /* pmu specific flags */
 429        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 430        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 431        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 432        int           (*probe)(void);   /* customized probe routine */
 433        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 434} pmu_config_t;
 435/*
 436 * PMU specific flags
 437 */
 438#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 439
 440/*
 441 * debug register related type definitions
 442 */
 443typedef struct {
 444        unsigned long ibr_mask:56;
 445        unsigned long ibr_plm:4;
 446        unsigned long ibr_ig:3;
 447        unsigned long ibr_x:1;
 448} ibr_mask_reg_t;
 449
 450typedef struct {
 451        unsigned long dbr_mask:56;
 452        unsigned long dbr_plm:4;
 453        unsigned long dbr_ig:2;
 454        unsigned long dbr_w:1;
 455        unsigned long dbr_r:1;
 456} dbr_mask_reg_t;
 457
 458typedef union {
 459        unsigned long  val;
 460        ibr_mask_reg_t ibr;
 461        dbr_mask_reg_t dbr;
 462} dbreg_t;
 463
 464
 465/*
 466 * perfmon command descriptions
 467 */
 468typedef struct {
 469        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 470        char            *cmd_name;
 471        int             cmd_flags;
 472        unsigned int    cmd_narg;
 473        size_t          cmd_argsize;
 474        int             (*cmd_getsize)(void *arg, size_t *sz);
 475} pfm_cmd_desc_t;
 476
 477#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 478#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 479#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 480#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 481
 482
 483#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 484#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 485#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 486#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 487#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 488
 489#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 490
 491typedef struct {
 492        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 493        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 498        unsigned long pfm_smpl_handler_calls;
 499        unsigned long pfm_smpl_handler_cycles;
 500        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 501} pfm_stats_t;
 502
 503/*
 504 * perfmon internal variables
 505 */
 506static pfm_stats_t              pfm_stats[NR_CPUS];
 507static pfm_session_t            pfm_sessions;   /* global sessions information */
 508
 509static DEFINE_SPINLOCK(pfm_alt_install_check);
 510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 511
 512static struct proc_dir_entry    *perfmon_dir;
 513static pfm_uuid_t               pfm_null_uuid = {0,};
 514
 515static spinlock_t               pfm_buffer_fmt_lock;
 516static LIST_HEAD(pfm_buffer_fmt_list);
 517
 518static pmu_config_t             *pmu_conf;
 519
 520/* sysctl() controls */
 521pfm_sysctl_t pfm_sysctl;
 522EXPORT_SYMBOL(pfm_sysctl);
 523
 524static ctl_table pfm_ctl_table[]={
 525        {
 526                .procname       = "debug",
 527                .data           = &pfm_sysctl.debug,
 528                .maxlen         = sizeof(int),
 529                .mode           = 0666,
 530                .proc_handler   = proc_dointvec,
 531        },
 532        {
 533                .procname       = "debug_ovfl",
 534                .data           = &pfm_sysctl.debug_ovfl,
 535                .maxlen         = sizeof(int),
 536                .mode           = 0666,
 537                .proc_handler   = proc_dointvec,
 538        },
 539        {
 540                .procname       = "fastctxsw",
 541                .data           = &pfm_sysctl.fastctxsw,
 542                .maxlen         = sizeof(int),
 543                .mode           = 0600,
 544                .proc_handler   = proc_dointvec,
 545        },
 546        {
 547                .procname       = "expert_mode",
 548                .data           = &pfm_sysctl.expert_mode,
 549                .maxlen         = sizeof(int),
 550                .mode           = 0600,
 551                .proc_handler   = proc_dointvec,
 552        },
 553        {}
 554};
 555static ctl_table pfm_sysctl_dir[] = {
 556        {
 557                .procname       = "perfmon",
 558                .mode           = 0555,
 559                .child          = pfm_ctl_table,
 560        },
 561        {}
 562};
 563static ctl_table pfm_sysctl_root[] = {
 564        {
 565                .procname       = "kernel",
 566                .mode           = 0555,
 567                .child          = pfm_sysctl_dir,
 568        },
 569        {}
 570};
 571static struct ctl_table_header *pfm_sysctl_header;
 572
 573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 574
 575#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 576#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 577
 578static inline void
 579pfm_put_task(struct task_struct *task)
 580{
 581        if (task != current) put_task_struct(task);
 582}
 583
 584static inline void
 585pfm_reserve_page(unsigned long a)
 586{
 587        SetPageReserved(vmalloc_to_page((void *)a));
 588}
 589static inline void
 590pfm_unreserve_page(unsigned long a)
 591{
 592        ClearPageReserved(vmalloc_to_page((void*)a));
 593}
 594
 595static inline unsigned long
 596pfm_protect_ctx_ctxsw(pfm_context_t *x)
 597{
 598        spin_lock(&(x)->ctx_lock);
 599        return 0UL;
 600}
 601
 602static inline void
 603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 604{
 605        spin_unlock(&(x)->ctx_lock);
 606}
 607
 608/* forward declaration */
 609static const struct dentry_operations pfmfs_dentry_operations;
 610
 611static struct dentry *
 612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 613{
 614        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 615                        PFMFS_MAGIC);
 616}
 617
 618static struct file_system_type pfm_fs_type = {
 619        .name     = "pfmfs",
 620        .mount    = pfmfs_mount,
 621        .kill_sb  = kill_anon_super,
 622};
 623MODULE_ALIAS_FS("pfmfs");
 624
 625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 627DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 630
 631
 632/* forward declaration */
 633static const struct file_operations pfm_file_ops;
 634
 635/*
 636 * forward declarations
 637 */
 638#ifndef CONFIG_SMP
 639static void pfm_lazy_save_regs (struct task_struct *ta);
 640#endif
 641
 642void dump_pmu_state(const char *);
 643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 644
 645#include "perfmon_itanium.h"
 646#include "perfmon_mckinley.h"
 647#include "perfmon_montecito.h"
 648#include "perfmon_generic.h"
 649
 650static pmu_config_t *pmu_confs[]={
 651        &pmu_conf_mont,
 652        &pmu_conf_mck,
 653        &pmu_conf_ita,
 654        &pmu_conf_gen, /* must be last */
 655        NULL
 656};
 657
 658
 659static int pfm_end_notify_user(pfm_context_t *ctx);
 660
 661static inline void
 662pfm_clear_psr_pp(void)
 663{
 664        ia64_rsm(IA64_PSR_PP);
 665        ia64_srlz_i();
 666}
 667
 668static inline void
 669pfm_set_psr_pp(void)
 670{
 671        ia64_ssm(IA64_PSR_PP);
 672        ia64_srlz_i();
 673}
 674
 675static inline void
 676pfm_clear_psr_up(void)
 677{
 678        ia64_rsm(IA64_PSR_UP);
 679        ia64_srlz_i();
 680}
 681
 682static inline void
 683pfm_set_psr_up(void)
 684{
 685        ia64_ssm(IA64_PSR_UP);
 686        ia64_srlz_i();
 687}
 688
 689static inline unsigned long
 690pfm_get_psr(void)
 691{
 692        unsigned long tmp;
 693        tmp = ia64_getreg(_IA64_REG_PSR);
 694        ia64_srlz_i();
 695        return tmp;
 696}
 697
 698static inline void
 699pfm_set_psr_l(unsigned long val)
 700{
 701        ia64_setreg(_IA64_REG_PSR_L, val);
 702        ia64_srlz_i();
 703}
 704
 705static inline void
 706pfm_freeze_pmu(void)
 707{
 708        ia64_set_pmc(0,1UL);
 709        ia64_srlz_d();
 710}
 711
 712static inline void
 713pfm_unfreeze_pmu(void)
 714{
 715        ia64_set_pmc(0,0UL);
 716        ia64_srlz_d();
 717}
 718
 719static inline void
 720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 721{
 722        int i;
 723
 724        for (i=0; i < nibrs; i++) {
 725                ia64_set_ibr(i, ibrs[i]);
 726                ia64_dv_serialize_instruction();
 727        }
 728        ia64_srlz_i();
 729}
 730
 731static inline void
 732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 733{
 734        int i;
 735
 736        for (i=0; i < ndbrs; i++) {
 737                ia64_set_dbr(i, dbrs[i]);
 738                ia64_dv_serialize_data();
 739        }
 740        ia64_srlz_d();
 741}
 742
 743/*
 744 * PMD[i] must be a counter. no check is made
 745 */
 746static inline unsigned long
 747pfm_read_soft_counter(pfm_context_t *ctx, int i)
 748{
 749        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 750}
 751
 752/*
 753 * PMD[i] must be a counter. no check is made
 754 */
 755static inline void
 756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 757{
 758        unsigned long ovfl_val = pmu_conf->ovfl_val;
 759
 760        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 761        /*
 762         * writing to unimplemented part is ignore, so we do not need to
 763         * mask off top part
 764         */
 765        ia64_set_pmd(i, val & ovfl_val);
 766}
 767
 768static pfm_msg_t *
 769pfm_get_new_msg(pfm_context_t *ctx)
 770{
 771        int idx, next;
 772
 773        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 774
 775        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 776        if (next == ctx->ctx_msgq_head) return NULL;
 777
 778        idx =   ctx->ctx_msgq_tail;
 779        ctx->ctx_msgq_tail = next;
 780
 781        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 782
 783        return ctx->ctx_msgq+idx;
 784}
 785
 786static pfm_msg_t *
 787pfm_get_next_msg(pfm_context_t *ctx)
 788{
 789        pfm_msg_t *msg;
 790
 791        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 792
 793        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 794
 795        /*
 796         * get oldest message
 797         */
 798        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 799
 800        /*
 801         * and move forward
 802         */
 803        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 804
 805        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 806
 807        return msg;
 808}
 809
 810static void
 811pfm_reset_msgq(pfm_context_t *ctx)
 812{
 813        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 814        DPRINT(("ctx=%p msgq reset\n", ctx));
 815}
 816
 817static void *
 818pfm_rvmalloc(unsigned long size)
 819{
 820        void *mem;
 821        unsigned long addr;
 822
 823        size = PAGE_ALIGN(size);
 824        mem  = vzalloc(size);
 825        if (mem) {
 826                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 827                addr = (unsigned long)mem;
 828                while (size > 0) {
 829                        pfm_reserve_page(addr);
 830                        addr+=PAGE_SIZE;
 831                        size-=PAGE_SIZE;
 832                }
 833        }
 834        return mem;
 835}
 836
 837static void
 838pfm_rvfree(void *mem, unsigned long size)
 839{
 840        unsigned long addr;
 841
 842        if (mem) {
 843                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 844                addr = (unsigned long) mem;
 845                while ((long) size > 0) {
 846                        pfm_unreserve_page(addr);
 847                        addr+=PAGE_SIZE;
 848                        size-=PAGE_SIZE;
 849                }
 850                vfree(mem);
 851        }
 852        return;
 853}
 854
 855static pfm_context_t *
 856pfm_context_alloc(int ctx_flags)
 857{
 858        pfm_context_t *ctx;
 859
 860        /* 
 861         * allocate context descriptor 
 862         * must be able to free with interrupts disabled
 863         */
 864        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 865        if (ctx) {
 866                DPRINT(("alloc ctx @%p\n", ctx));
 867
 868                /*
 869                 * init context protection lock
 870                 */
 871                spin_lock_init(&ctx->ctx_lock);
 872
 873                /*
 874                 * context is unloaded
 875                 */
 876                ctx->ctx_state = PFM_CTX_UNLOADED;
 877
 878                /*
 879                 * initialization of context's flags
 880                 */
 881                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 882                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 883                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 884                /*
 885                 * will move to set properties
 886                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 887                 */
 888
 889                /*
 890                 * init restart semaphore to locked
 891                 */
 892                init_completion(&ctx->ctx_restart_done);
 893
 894                /*
 895                 * activation is used in SMP only
 896                 */
 897                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 898                SET_LAST_CPU(ctx, -1);
 899
 900                /*
 901                 * initialize notification message queue
 902                 */
 903                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 904                init_waitqueue_head(&ctx->ctx_msgq_wait);
 905                init_waitqueue_head(&ctx->ctx_zombieq);
 906
 907        }
 908        return ctx;
 909}
 910
 911static void
 912pfm_context_free(pfm_context_t *ctx)
 913{
 914        if (ctx) {
 915                DPRINT(("free ctx @%p\n", ctx));
 916                kfree(ctx);
 917        }
 918}
 919
 920static void
 921pfm_mask_monitoring(struct task_struct *task)
 922{
 923        pfm_context_t *ctx = PFM_GET_CTX(task);
 924        unsigned long mask, val, ovfl_mask;
 925        int i;
 926
 927        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 928
 929        ovfl_mask = pmu_conf->ovfl_val;
 930        /*
 931         * monitoring can only be masked as a result of a valid
 932         * counter overflow. In UP, it means that the PMU still
 933         * has an owner. Note that the owner can be different
 934         * from the current task. However the PMU state belongs
 935         * to the owner.
 936         * In SMP, a valid overflow only happens when task is
 937         * current. Therefore if we come here, we know that
 938         * the PMU state belongs to the current task, therefore
 939         * we can access the live registers.
 940         *
 941         * So in both cases, the live register contains the owner's
 942         * state. We can ONLY touch the PMU registers and NOT the PSR.
 943         *
 944         * As a consequence to this call, the ctx->th_pmds[] array
 945         * contains stale information which must be ignored
 946         * when context is reloaded AND monitoring is active (see
 947         * pfm_restart).
 948         */
 949        mask = ctx->ctx_used_pmds[0];
 950        for (i = 0; mask; i++, mask>>=1) {
 951                /* skip non used pmds */
 952                if ((mask & 0x1) == 0) continue;
 953                val = ia64_get_pmd(i);
 954
 955                if (PMD_IS_COUNTING(i)) {
 956                        /*
 957                         * we rebuild the full 64 bit value of the counter
 958                         */
 959                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 960                } else {
 961                        ctx->ctx_pmds[i].val = val;
 962                }
 963                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 964                        i,
 965                        ctx->ctx_pmds[i].val,
 966                        val & ovfl_mask));
 967        }
 968        /*
 969         * mask monitoring by setting the privilege level to 0
 970         * we cannot use psr.pp/psr.up for this, it is controlled by
 971         * the user
 972         *
 973         * if task is current, modify actual registers, otherwise modify
 974         * thread save state, i.e., what will be restored in pfm_load_regs()
 975         */
 976        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 977        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 978                if ((mask & 0x1) == 0UL) continue;
 979                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 980                ctx->th_pmcs[i] &= ~0xfUL;
 981                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 982        }
 983        /*
 984         * make all of this visible
 985         */
 986        ia64_srlz_d();
 987}
 988
 989/*
 990 * must always be done with task == current
 991 *
 992 * context must be in MASKED state when calling
 993 */
 994static void
 995pfm_restore_monitoring(struct task_struct *task)
 996{
 997        pfm_context_t *ctx = PFM_GET_CTX(task);
 998        unsigned long mask, ovfl_mask;
 999        unsigned long psr, val;
1000        int i, is_system;
1001
1002        is_system = ctx->ctx_fl_system;
1003        ovfl_mask = pmu_conf->ovfl_val;
1004
1005        if (task != current) {
1006                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007                return;
1008        }
1009        if (ctx->ctx_state != PFM_CTX_MASKED) {
1010                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012                return;
1013        }
1014        psr = pfm_get_psr();
1015        /*
1016         * monitoring is masked via the PMC.
1017         * As we restore their value, we do not want each counter to
1018         * restart right away. We stop monitoring using the PSR,
1019         * restore the PMC (and PMD) and then re-establish the psr
1020         * as it was. Note that there can be no pending overflow at
1021         * this point, because monitoring was MASKED.
1022         *
1023         * system-wide session are pinned and self-monitoring
1024         */
1025        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026                /* disable dcr pp */
1027                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028                pfm_clear_psr_pp();
1029        } else {
1030                pfm_clear_psr_up();
1031        }
1032        /*
1033         * first, we restore the PMD
1034         */
1035        mask = ctx->ctx_used_pmds[0];
1036        for (i = 0; mask; i++, mask>>=1) {
1037                /* skip non used pmds */
1038                if ((mask & 0x1) == 0) continue;
1039
1040                if (PMD_IS_COUNTING(i)) {
1041                        /*
1042                         * we split the 64bit value according to
1043                         * counter width
1044                         */
1045                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1046                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047                } else {
1048                        val = ctx->ctx_pmds[i].val;
1049                }
1050                ia64_set_pmd(i, val);
1051
1052                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053                        i,
1054                        ctx->ctx_pmds[i].val,
1055                        val));
1056        }
1057        /*
1058         * restore the PMCs
1059         */
1060        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062                if ((mask & 0x1) == 0UL) continue;
1063                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064                ia64_set_pmc(i, ctx->th_pmcs[i]);
1065                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1067        }
1068        ia64_srlz_d();
1069
1070        /*
1071         * must restore DBR/IBR because could be modified while masked
1072         * XXX: need to optimize 
1073         */
1074        if (ctx->ctx_fl_using_dbreg) {
1075                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077        }
1078
1079        /*
1080         * now restore PSR
1081         */
1082        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083                /* enable dcr pp */
1084                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085                ia64_srlz_i();
1086        }
1087        pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093        int i;
1094
1095        ia64_srlz_d();
1096
1097        for (i=0; mask; i++, mask>>=1) {
1098                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099        }
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108        int i;
1109        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111        for (i=0; mask; i++, mask>>=1) {
1112                if ((mask & 0x1) == 0) continue;
1113                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114                ia64_set_pmd(i, val);
1115        }
1116        ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125        unsigned long ovfl_val = pmu_conf->ovfl_val;
1126        unsigned long mask = ctx->ctx_all_pmds[0];
1127        unsigned long val;
1128        int i;
1129
1130        DPRINT(("mask=0x%lx\n", mask));
1131
1132        for (i=0; mask; i++, mask>>=1) {
1133
1134                val = ctx->ctx_pmds[i].val;
1135
1136                /*
1137                 * We break up the 64 bit value into 2 pieces
1138                 * the lower bits go to the machine state in the
1139                 * thread (will be reloaded on ctxsw in).
1140                 * The upper part stays in the soft-counter.
1141                 */
1142                if (PMD_IS_COUNTING(i)) {
1143                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144                         val &= ovfl_val;
1145                }
1146                ctx->th_pmds[i] = val;
1147
1148                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149                        i,
1150                        ctx->th_pmds[i],
1151                        ctx->ctx_pmds[i].val));
1152        }
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161        unsigned long mask = ctx->ctx_all_pmcs[0];
1162        int i;
1163
1164        DPRINT(("mask=0x%lx\n", mask));
1165
1166        for (i=0; mask; i++, mask>>=1) {
1167                /* masking 0 with ovfl_val yields 0 */
1168                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170        }
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178        int i;
1179
1180        for (i=0; mask; i++, mask>>=1) {
1181                if ((mask & 0x1) == 0) continue;
1182                ia64_set_pmc(i, pmcs[i]);
1183        }
1184        ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190        return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196        int ret = 0;
1197        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198        return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204        int ret = 0;
1205        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206        return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212                     int cpu, void *arg)
1213{
1214        int ret = 0;
1215        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216        return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221                     int cpu, void *arg)
1222{
1223        int ret = 0;
1224        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225        return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231        int ret = 0;
1232        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233        return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239        int ret = 0;
1240        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241        return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247        struct list_head * pos;
1248        pfm_buffer_fmt_t * entry;
1249
1250        list_for_each(pos, &pfm_buffer_fmt_list) {
1251                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253                        return entry;
1254        }
1255        return NULL;
1256}
1257 
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264        pfm_buffer_fmt_t * fmt;
1265        spin_lock(&pfm_buffer_fmt_lock);
1266        fmt = __pfm_find_buffer_fmt(uuid);
1267        spin_unlock(&pfm_buffer_fmt_lock);
1268        return fmt;
1269}
1270 
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274        int ret = 0;
1275
1276        /* some sanity checks */
1277        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279        /* we need at least a handler */
1280        if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282        /*
1283         * XXX: need check validity of fmt_arg_size
1284         */
1285
1286        spin_lock(&pfm_buffer_fmt_lock);
1287
1288        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290                ret = -EBUSY;
1291                goto out;
1292        } 
1293        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297        spin_unlock(&pfm_buffer_fmt_lock);
1298        return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305        pfm_buffer_fmt_t *fmt;
1306        int ret = 0;
1307
1308        spin_lock(&pfm_buffer_fmt_lock);
1309
1310        fmt = __pfm_find_buffer_fmt(uuid);
1311        if (!fmt) {
1312                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313                ret = -EINVAL;
1314                goto out;
1315        }
1316        list_del_init(&fmt->fmt_list);
1317        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320        spin_unlock(&pfm_buffer_fmt_lock);
1321        return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329        unsigned long flags;
1330        /*
1331         * validity checks on cpu_mask have been done upstream
1332         */
1333        LOCK_PFS(flags);
1334
1335        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336                pfm_sessions.pfs_sys_sessions,
1337                pfm_sessions.pfs_task_sessions,
1338                pfm_sessions.pfs_sys_use_dbregs,
1339                is_syswide,
1340                cpu));
1341
1342        if (is_syswide) {
1343                /*
1344                 * cannot mix system wide and per-task sessions
1345                 */
1346                if (pfm_sessions.pfs_task_sessions > 0UL) {
1347                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348                                pfm_sessions.pfs_task_sessions));
1349                        goto abort;
1350                }
1351
1352                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356                pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358                pfm_sessions.pfs_sys_sessions++ ;
1359
1360        } else {
1361                if (pfm_sessions.pfs_sys_sessions) goto abort;
1362                pfm_sessions.pfs_task_sessions++;
1363        }
1364
1365        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366                pfm_sessions.pfs_sys_sessions,
1367                pfm_sessions.pfs_task_sessions,
1368                pfm_sessions.pfs_sys_use_dbregs,
1369                is_syswide,
1370                cpu));
1371
1372        /*
1373         * Force idle() into poll mode
1374         */
1375        cpu_idle_poll_ctrl(true);
1376
1377        UNLOCK_PFS(flags);
1378
1379        return 0;
1380
1381error_conflict:
1382        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384                cpu));
1385abort:
1386        UNLOCK_PFS(flags);
1387
1388        return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395        unsigned long flags;
1396        /*
1397         * validity checks on cpu_mask have been done upstream
1398         */
1399        LOCK_PFS(flags);
1400
1401        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402                pfm_sessions.pfs_sys_sessions,
1403                pfm_sessions.pfs_task_sessions,
1404                pfm_sessions.pfs_sys_use_dbregs,
1405                is_syswide,
1406                cpu));
1407
1408
1409        if (is_syswide) {
1410                pfm_sessions.pfs_sys_session[cpu] = NULL;
1411                /*
1412                 * would not work with perfmon+more than one bit in cpu_mask
1413                 */
1414                if (ctx && ctx->ctx_fl_using_dbreg) {
1415                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417                        } else {
1418                                pfm_sessions.pfs_sys_use_dbregs--;
1419                        }
1420                }
1421                pfm_sessions.pfs_sys_sessions--;
1422        } else {
1423                pfm_sessions.pfs_task_sessions--;
1424        }
1425        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426                pfm_sessions.pfs_sys_sessions,
1427                pfm_sessions.pfs_task_sessions,
1428                pfm_sessions.pfs_sys_use_dbregs,
1429                is_syswide,
1430                cpu));
1431
1432        /* Undo forced polling. Last session reenables pal_halt */
1433        cpu_idle_poll_ctrl(false);
1434
1435        UNLOCK_PFS(flags);
1436
1437        return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448        struct task_struct *task = current;
1449        int r;
1450
1451        /* sanity checks */
1452        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454                return -EINVAL;
1455        }
1456
1457        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459        /*
1460         * does the actual unmapping
1461         */
1462        r = vm_munmap((unsigned long)vaddr, size);
1463
1464        if (r !=0) {
1465                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466        }
1467
1468        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470        return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480        pfm_buffer_fmt_t *fmt;
1481
1482        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484        /*
1485         * we won't use the buffer format anymore
1486         */
1487        fmt = ctx->ctx_buf_fmt;
1488
1489        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490                ctx->ctx_smpl_hdr,
1491                ctx->ctx_smpl_size,
1492                ctx->ctx_smpl_vaddr));
1493
1494        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496        /*
1497         * free the buffer
1498         */
1499        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501        ctx->ctx_smpl_hdr  = NULL;
1502        ctx->ctx_smpl_size = 0UL;
1503
1504        return 0;
1505
1506invalid_free:
1507        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508        return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515        if (fmt == NULL) return;
1516
1517        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532        int err = register_filesystem(&pfm_fs_type);
1533        if (!err) {
1534                pfmfs_mnt = kern_mount(&pfm_fs_type);
1535                err = PTR_ERR(pfmfs_mnt);
1536                if (IS_ERR(pfmfs_mnt))
1537                        unregister_filesystem(&pfm_fs_type);
1538                else
1539                        err = 0;
1540        }
1541        return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547        pfm_context_t *ctx;
1548        pfm_msg_t *msg;
1549        ssize_t ret;
1550        unsigned long flags;
1551        DECLARE_WAITQUEUE(wait, current);
1552        if (PFM_IS_FILE(filp) == 0) {
1553                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554                return -EINVAL;
1555        }
1556
1557        ctx = filp->private_data;
1558        if (ctx == NULL) {
1559                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560                return -EINVAL;
1561        }
1562
1563        /*
1564         * check even when there is no message
1565         */
1566        if (size < sizeof(pfm_msg_t)) {
1567                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568                return -EINVAL;
1569        }
1570
1571        PROTECT_CTX(ctx, flags);
1572
1573        /*
1574         * put ourselves on the wait queue
1575         */
1576        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579        for(;;) {
1580                /*
1581                 * check wait queue
1582                 */
1583
1584                set_current_state(TASK_INTERRUPTIBLE);
1585
1586                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588                ret = 0;
1589                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591                UNPROTECT_CTX(ctx, flags);
1592
1593                /*
1594                 * check non-blocking read
1595                 */
1596                ret = -EAGAIN;
1597                if(filp->f_flags & O_NONBLOCK) break;
1598
1599                /*
1600                 * check pending signals
1601                 */
1602                if(signal_pending(current)) {
1603                        ret = -EINTR;
1604                        break;
1605                }
1606                /*
1607                 * no message, so wait
1608                 */
1609                schedule();
1610
1611                PROTECT_CTX(ctx, flags);
1612        }
1613        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614        set_current_state(TASK_RUNNING);
1615        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617        if (ret < 0) goto abort;
1618
1619        ret = -EINVAL;
1620        msg = pfm_get_next_msg(ctx);
1621        if (msg == NULL) {
1622                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623                goto abort_locked;
1624        }
1625
1626        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628        ret = -EFAULT;
1629        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632        UNPROTECT_CTX(ctx, flags);
1633abort:
1634        return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639                          size_t size, loff_t *ppos)
1640{
1641        DPRINT(("pfm_write called\n"));
1642        return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648        pfm_context_t *ctx;
1649        unsigned long flags;
1650        unsigned int mask = 0;
1651
1652        if (PFM_IS_FILE(filp) == 0) {
1653                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654                return 0;
1655        }
1656
1657        ctx = filp->private_data;
1658        if (ctx == NULL) {
1659                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660                return 0;
1661        }
1662
1663
1664        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668        PROTECT_CTX(ctx, flags);
1669
1670        if (PFM_CTXQ_EMPTY(ctx) == 0)
1671                mask =  POLLIN | POLLRDNORM;
1672
1673        UNPROTECT_CTX(ctx, flags);
1674
1675        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677        return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683        DPRINT(("pfm_ioctl called\n"));
1684        return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693        int ret;
1694
1695        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698                task_pid_nr(current),
1699                fd,
1700                on,
1701                ctx->ctx_async_queue, ret));
1702
1703        return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709        pfm_context_t *ctx;
1710        int ret;
1711
1712        if (PFM_IS_FILE(filp) == 0) {
1713                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714                return -EBADF;
1715        }
1716
1717        ctx = filp->private_data;
1718        if (ctx == NULL) {
1719                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720                return -EBADF;
1721        }
1722        /*
1723         * we cannot mask interrupts during this call because this may
1724         * may go to sleep if memory is not readily avalaible.
1725         *
1726         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727         * done in caller. Serialization of this function is ensured by caller.
1728         */
1729        ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733                fd,
1734                on,
1735                ctx->ctx_async_queue, ret));
1736
1737        return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749        pfm_context_t   *ctx = (pfm_context_t *)info;
1750        struct pt_regs *regs = task_pt_regs(current);
1751        struct task_struct *owner;
1752        unsigned long flags;
1753        int ret;
1754
1755        if (ctx->ctx_cpu != smp_processor_id()) {
1756                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757                        ctx->ctx_cpu,
1758                        smp_processor_id());
1759                return;
1760        }
1761        owner = GET_PMU_OWNER();
1762        if (owner != ctx->ctx_task) {
1763                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764                        smp_processor_id(),
1765                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766                return;
1767        }
1768        if (GET_PMU_CTX() != ctx) {
1769                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770                        smp_processor_id(),
1771                        GET_PMU_CTX(), ctx);
1772                return;
1773        }
1774
1775        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776        /*
1777         * the context is already protected in pfm_close(), we simply
1778         * need to mask interrupts to avoid a PMU interrupt race on
1779         * this CPU
1780         */
1781        local_irq_save(flags);
1782
1783        ret = pfm_context_unload(ctx, NULL, 0, regs);
1784        if (ret) {
1785                DPRINT(("context_unload returned %d\n", ret));
1786        }
1787
1788        /*
1789         * unmask interrupts, PMU interrupts are now spurious here
1790         */
1791        local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797        int ret;
1798
1799        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812        pfm_context_t *ctx;
1813        struct task_struct *task;
1814        struct pt_regs *regs;
1815        unsigned long flags;
1816        unsigned long smpl_buf_size = 0UL;
1817        void *smpl_buf_vaddr = NULL;
1818        int state, is_system;
1819
1820        if (PFM_IS_FILE(filp) == 0) {
1821                DPRINT(("bad magic for\n"));
1822                return -EBADF;
1823        }
1824
1825        ctx = filp->private_data;
1826        if (ctx == NULL) {
1827                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828                return -EBADF;
1829        }
1830
1831        /*
1832         * remove our file from the async queue, if we use this mode.
1833         * This can be done without the context being protected. We come
1834         * here when the context has become unreachable by other tasks.
1835         *
1836         * We may still have active monitoring at this point and we may
1837         * end up in pfm_overflow_handler(). However, fasync_helper()
1838         * operates with interrupts disabled and it cleans up the
1839         * queue. If the PMU handler is called prior to entering
1840         * fasync_helper() then it will send a signal. If it is
1841         * invoked after, it will find an empty queue and no
1842         * signal will be sent. In both case, we are safe
1843         */
1844        PROTECT_CTX(ctx, flags);
1845
1846        state     = ctx->ctx_state;
1847        is_system = ctx->ctx_fl_system;
1848
1849        task = PFM_CTX_TASK(ctx);
1850        regs = task_pt_regs(task);
1851
1852        DPRINT(("ctx_state=%d is_current=%d\n",
1853                state,
1854                task == current ? 1 : 0));
1855
1856        /*
1857         * if state == UNLOADED, then task is NULL
1858         */
1859
1860        /*
1861         * we must stop and unload because we are losing access to the context.
1862         */
1863        if (task == current) {
1864#ifdef CONFIG_SMP
1865                /*
1866                 * the task IS the owner but it migrated to another CPU: that's bad
1867                 * but we must handle this cleanly. Unfortunately, the kernel does
1868                 * not provide a mechanism to block migration (while the context is loaded).
1869                 *
1870                 * We need to release the resource on the ORIGINAL cpu.
1871                 */
1872                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875                        /*
1876                         * keep context protected but unmask interrupt for IPI
1877                         */
1878                        local_irq_restore(flags);
1879
1880                        pfm_syswide_cleanup_other_cpu(ctx);
1881
1882                        /*
1883                         * restore interrupt masking
1884                         */
1885                        local_irq_save(flags);
1886
1887                        /*
1888                         * context is unloaded at this point
1889                         */
1890                } else
1891#endif /* CONFIG_SMP */
1892                {
1893
1894                        DPRINT(("forcing unload\n"));
1895                        /*
1896                        * stop and unload, returning with state UNLOADED
1897                        * and session unreserved.
1898                        */
1899                        pfm_context_unload(ctx, NULL, 0, regs);
1900
1901                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902                }
1903        }
1904
1905        /*
1906         * remove virtual mapping, if any, for the calling task.
1907         * cannot reset ctx field until last user is calling close().
1908         *
1909         * ctx_smpl_vaddr must never be cleared because it is needed
1910         * by every task with access to the context
1911         *
1912         * When called from do_exit(), the mm context is gone already, therefore
1913         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914         * do anything here
1915         */
1916        if (ctx->ctx_smpl_vaddr && current->mm) {
1917                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918                smpl_buf_size  = ctx->ctx_smpl_size;
1919        }
1920
1921        UNPROTECT_CTX(ctx, flags);
1922
1923        /*
1924         * if there was a mapping, then we systematically remove it
1925         * at this point. Cannot be done inside critical section
1926         * because some VM function reenables interrupts.
1927         *
1928         */
1929        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931        return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files(). 
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1939 * (fput()),i.e, last task to access the file. Nobody else can access the 
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context. 
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951        pfm_context_t *ctx;
1952        struct task_struct *task;
1953        struct pt_regs *regs;
1954        DECLARE_WAITQUEUE(wait, current);
1955        unsigned long flags;
1956        unsigned long smpl_buf_size = 0UL;
1957        void *smpl_buf_addr = NULL;
1958        int free_possible = 1;
1959        int state, is_system;
1960
1961        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963        if (PFM_IS_FILE(filp) == 0) {
1964                DPRINT(("bad magic\n"));
1965                return -EBADF;
1966        }
1967        
1968        ctx = filp->private_data;
1969        if (ctx == NULL) {
1970                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971                return -EBADF;
1972        }
1973
1974        PROTECT_CTX(ctx, flags);
1975
1976        state     = ctx->ctx_state;
1977        is_system = ctx->ctx_fl_system;
1978
1979        task = PFM_CTX_TASK(ctx);
1980        regs = task_pt_regs(task);
1981
1982        DPRINT(("ctx_state=%d is_current=%d\n", 
1983                state,
1984                task == current ? 1 : 0));
1985
1986        /*
1987         * if task == current, then pfm_flush() unloaded the context
1988         */
1989        if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991        /*
1992         * context is loaded/masked and task != current, we need to
1993         * either force an unload or go zombie
1994         */
1995
1996        /*
1997         * The task is currently blocked or will block after an overflow.
1998         * we must force it to wakeup to get out of the
1999         * MASKED state and transition to the unloaded state by itself.
2000         *
2001         * This situation is only possible for per-task mode
2002         */
2003        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005                /*
2006                 * set a "partial" zombie state to be checked
2007                 * upon return from down() in pfm_handle_work().
2008                 *
2009                 * We cannot use the ZOMBIE state, because it is checked
2010                 * by pfm_load_regs() which is called upon wakeup from down().
2011                 * In such case, it would free the context and then we would
2012                 * return to pfm_handle_work() which would access the
2013                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014                 * but visible to pfm_handle_work().
2015                 *
2016                 * For some window of time, we have a zombie context with
2017                 * ctx_state = MASKED  and not ZOMBIE
2018                 */
2019                ctx->ctx_fl_going_zombie = 1;
2020
2021                /*
2022                 * force task to wake up from MASKED state
2023                 */
2024                complete(&ctx->ctx_restart_done);
2025
2026                DPRINT(("waking up ctx_state=%d\n", state));
2027
2028                /*
2029                 * put ourself to sleep waiting for the other
2030                 * task to report completion
2031                 *
2032                 * the context is protected by mutex, therefore there
2033                 * is no risk of being notified of completion before
2034                 * begin actually on the waitq.
2035                 */
2036                set_current_state(TASK_INTERRUPTIBLE);
2037                add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039                UNPROTECT_CTX(ctx, flags);
2040
2041                /*
2042                 * XXX: check for signals :
2043                 *      - ok for explicit close
2044                 *      - not ok when coming from exit_files()
2045                 */
2046                schedule();
2047
2048
2049                PROTECT_CTX(ctx, flags);
2050
2051
2052                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053                set_current_state(TASK_RUNNING);
2054
2055                /*
2056                 * context is unloaded at this point
2057                 */
2058                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059        }
2060        else if (task != current) {
2061#ifdef CONFIG_SMP
2062                /*
2063                 * switch context to zombie state
2064                 */
2065                ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068                /*
2069                 * cannot free the context on the spot. deferred until
2070                 * the task notices the ZOMBIE state
2071                 */
2072                free_possible = 0;
2073#else
2074                pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076        }
2077
2078doit:
2079        /* reload state, may have changed during  opening of critical section */
2080        state = ctx->ctx_state;
2081
2082        /*
2083         * the context is still attached to a task (possibly current)
2084         * we cannot destroy it right now
2085         */
2086
2087        /*
2088         * we must free the sampling buffer right here because
2089         * we cannot rely on it being cleaned up later by the
2090         * monitored task. It is not possible to free vmalloc'ed
2091         * memory in pfm_load_regs(). Instead, we remove the buffer
2092         * now. should there be subsequent PMU overflow originally
2093         * meant for sampling, the will be converted to spurious
2094         * and that's fine because the monitoring tools is gone anyway.
2095         */
2096        if (ctx->ctx_smpl_hdr) {
2097                smpl_buf_addr = ctx->ctx_smpl_hdr;
2098                smpl_buf_size = ctx->ctx_smpl_size;
2099                /* no more sampling */
2100                ctx->ctx_smpl_hdr = NULL;
2101                ctx->ctx_fl_is_sampling = 0;
2102        }
2103
2104        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105                state,
2106                free_possible,
2107                smpl_buf_addr,
2108                smpl_buf_size));
2109
2110        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112        /*
2113         * UNLOADED that the session has already been unreserved.
2114         */
2115        if (state == PFM_CTX_ZOMBIE) {
2116                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117        }
2118
2119        /*
2120         * disconnect file descriptor from context must be done
2121         * before we unlock.
2122         */
2123        filp->private_data = NULL;
2124
2125        /*
2126         * if we free on the spot, the context is now completely unreachable
2127         * from the callers side. The monitored task side is also cut, so we
2128         * can freely cut.
2129         *
2130         * If we have a deferred free, only the caller side is disconnected.
2131         */
2132        UNPROTECT_CTX(ctx, flags);
2133
2134        /*
2135         * All memory free operations (especially for vmalloc'ed memory)
2136         * MUST be done with interrupts ENABLED.
2137         */
2138        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140        /*
2141         * return the memory used by the context
2142         */
2143        if (free_possible) pfm_context_free(ctx);
2144
2145        return 0;
2146}
2147
2148static int
2149pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2150{
2151        DPRINT(("pfm_no_open called\n"));
2152        return -ENXIO;
2153}
2154
2155
2156
2157static const struct file_operations pfm_file_ops = {
2158        .llseek         = no_llseek,
2159        .read           = pfm_read,
2160        .write          = pfm_write,
2161        .poll           = pfm_poll,
2162        .unlocked_ioctl = pfm_ioctl,
2163        .open           = pfm_no_open,  /* special open code to disallow open via /proc */
2164        .fasync         = pfm_fasync,
2165        .release        = pfm_close,
2166        .flush          = pfm_flush
2167};
2168
2169static int
2170pfmfs_delete_dentry(const struct dentry *dentry)
2171{
2172        return 1;
2173}
2174
2175static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2176{
2177        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2178                             dentry->d_inode->i_ino);
2179}
2180
2181static const struct dentry_operations pfmfs_dentry_operations = {
2182        .d_delete = pfmfs_delete_dentry,
2183        .d_dname = pfmfs_dname,
2184};
2185
2186
2187static struct file *
2188pfm_alloc_file(pfm_context_t *ctx)
2189{
2190        struct file *file;
2191        struct inode *inode;
2192        struct path path;
2193        struct qstr this = { .name = "" };
2194
2195        /*
2196         * allocate a new inode
2197         */
2198        inode = new_inode(pfmfs_mnt->mnt_sb);
2199        if (!inode)
2200                return ERR_PTR(-ENOMEM);
2201
2202        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2203
2204        inode->i_mode = S_IFCHR|S_IRUGO;
2205        inode->i_uid  = current_fsuid();
2206        inode->i_gid  = current_fsgid();
2207
2208        /*
2209         * allocate a new dcache entry
2210         */
2211        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2212        if (!path.dentry) {
2213                iput(inode);
2214                return ERR_PTR(-ENOMEM);
2215        }
2216        path.mnt = mntget(pfmfs_mnt);
2217
2218        d_add(path.dentry, inode);
2219
2220        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2221        if (IS_ERR(file)) {
2222                path_put(&path);
2223                return file;
2224        }
2225
2226        file->f_flags = O_RDONLY;
2227        file->private_data = ctx;
2228
2229        return file;
2230}
2231
2232static int
2233pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2234{
2235        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2236
2237        while (size > 0) {
2238                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2239
2240
2241                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2242                        return -ENOMEM;
2243
2244                addr  += PAGE_SIZE;
2245                buf   += PAGE_SIZE;
2246                size  -= PAGE_SIZE;
2247        }
2248        return 0;
2249}
2250
2251/*
2252 * allocate a sampling buffer and remaps it into the user address space of the task
2253 */
2254static int
2255pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2256{
2257        struct mm_struct *mm = task->mm;
2258        struct vm_area_struct *vma = NULL;
2259        unsigned long size;
2260        void *smpl_buf;
2261
2262
2263        /*
2264         * the fixed header + requested size and align to page boundary
2265         */
2266        size = PAGE_ALIGN(rsize);
2267
2268        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2269
2270        /*
2271         * check requested size to avoid Denial-of-service attacks
2272         * XXX: may have to refine this test
2273         * Check against address space limit.
2274         *
2275         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2276         *      return -ENOMEM;
2277         */
2278        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2279                return -ENOMEM;
2280
2281        /*
2282         * We do the easy to undo allocations first.
2283         *
2284         * pfm_rvmalloc(), clears the buffer, so there is no leak
2285         */
2286        smpl_buf = pfm_rvmalloc(size);
2287        if (smpl_buf == NULL) {
2288                DPRINT(("Can't allocate sampling buffer\n"));
2289                return -ENOMEM;
2290        }
2291
2292        DPRINT(("smpl_buf @%p\n", smpl_buf));
2293
2294        /* allocate vma */
2295        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2296        if (!vma) {
2297                DPRINT(("Cannot allocate vma\n"));
2298                goto error_kmem;
2299        }
2300        INIT_LIST_HEAD(&vma->anon_vma_chain);
2301
2302        /*
2303         * partially initialize the vma for the sampling buffer
2304         */
2305        vma->vm_mm           = mm;
2306        vma->vm_file         = get_file(filp);
2307        vma->vm_flags        = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2308        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2309
2310        /*
2311         * Now we have everything we need and we can initialize
2312         * and connect all the data structures
2313         */
2314
2315        ctx->ctx_smpl_hdr   = smpl_buf;
2316        ctx->ctx_smpl_size  = size; /* aligned size */
2317
2318        /*
2319         * Let's do the difficult operations next.
2320         *
2321         * now we atomically find some area in the address space and
2322         * remap the buffer in it.
2323         */
2324        down_write(&task->mm->mmap_sem);
2325
2326        /* find some free area in address space, must have mmap sem held */
2327        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2328        if (IS_ERR_VALUE(vma->vm_start)) {
2329                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2330                up_write(&task->mm->mmap_sem);
2331                goto error;
2332        }
2333        vma->vm_end = vma->vm_start + size;
2334        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2335
2336        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2337
2338        /* can only be applied to current task, need to have the mm semaphore held when called */
2339        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2340                DPRINT(("Can't remap buffer\n"));
2341                up_write(&task->mm->mmap_sem);
2342                goto error;
2343        }
2344
2345        /*
2346         * now insert the vma in the vm list for the process, must be
2347         * done with mmap lock held
2348         */
2349        insert_vm_struct(mm, vma);
2350
2351        vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2352                                                        vma_pages(vma));
2353        up_write(&task->mm->mmap_sem);
2354
2355        /*
2356         * keep track of user level virtual address
2357         */
2358        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2359        *(unsigned long *)user_vaddr = vma->vm_start;
2360
2361        return 0;
2362
2363error:
2364        kmem_cache_free(vm_area_cachep, vma);
2365error_kmem:
2366        pfm_rvfree(smpl_buf, size);
2367
2368        return -ENOMEM;
2369}
2370
2371/*
2372 * XXX: do something better here
2373 */
2374static int
2375pfm_bad_permissions(struct task_struct *task)
2376{
2377        const struct cred *tcred;
2378        kuid_t uid = current_uid();
2379        kgid_t gid = current_gid();
2380        int ret;
2381
2382        rcu_read_lock();
2383        tcred = __task_cred(task);
2384
2385        /* inspired by ptrace_attach() */
2386        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2387                from_kuid(&init_user_ns, uid),
2388                from_kgid(&init_user_ns, gid),
2389                from_kuid(&init_user_ns, tcred->euid),
2390                from_kuid(&init_user_ns, tcred->suid),
2391                from_kuid(&init_user_ns, tcred->uid),
2392                from_kgid(&init_user_ns, tcred->egid),
2393                from_kgid(&init_user_ns, tcred->sgid)));
2394
2395        ret = ((!uid_eq(uid, tcred->euid))
2396               || (!uid_eq(uid, tcred->suid))
2397               || (!uid_eq(uid, tcred->uid))
2398               || (!gid_eq(gid, tcred->egid))
2399               || (!gid_eq(gid, tcred->sgid))
2400               || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2401
2402        rcu_read_unlock();
2403        return ret;
2404}
2405
2406static int
2407pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2408{
2409        int ctx_flags;
2410
2411        /* valid signal */
2412
2413        ctx_flags = pfx->ctx_flags;
2414
2415        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2416
2417                /*
2418                 * cannot block in this mode
2419                 */
2420                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2421                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2422                        return -EINVAL;
2423                }
2424        } else {
2425        }
2426        /* probably more to add here */
2427
2428        return 0;
2429}
2430
2431static int
2432pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2433                     unsigned int cpu, pfarg_context_t *arg)
2434{
2435        pfm_buffer_fmt_t *fmt = NULL;
2436        unsigned long size = 0UL;
2437        void *uaddr = NULL;
2438        void *fmt_arg = NULL;
2439        int ret = 0;
2440#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2441
2442        /* invoke and lock buffer format, if found */
2443        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2444        if (fmt == NULL) {
2445                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2446                return -EINVAL;
2447        }
2448
2449        /*
2450         * buffer argument MUST be contiguous to pfarg_context_t
2451         */
2452        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2453
2454        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2455
2456        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2457
2458        if (ret) goto error;
2459
2460        /* link buffer format and context */
2461        ctx->ctx_buf_fmt = fmt;
2462        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2463
2464        /*
2465         * check if buffer format wants to use perfmon buffer allocation/mapping service
2466         */
2467        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2468        if (ret) goto error;
2469
2470        if (size) {
2471                /*
2472                 * buffer is always remapped into the caller's address space
2473                 */
2474                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2475                if (ret) goto error;
2476
2477                /* keep track of user address of buffer */
2478                arg->ctx_smpl_vaddr = uaddr;
2479        }
2480        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2481
2482error:
2483        return ret;
2484}
2485
2486static void
2487pfm_reset_pmu_state(pfm_context_t *ctx)
2488{
2489        int i;
2490
2491        /*
2492         * install reset values for PMC.
2493         */
2494        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2495                if (PMC_IS_IMPL(i) == 0) continue;
2496                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2497                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2498        }
2499        /*
2500         * PMD registers are set to 0UL when the context in memset()
2501         */
2502
2503        /*
2504         * On context switched restore, we must restore ALL pmc and ALL pmd even
2505         * when they are not actively used by the task. In UP, the incoming process
2506         * may otherwise pick up left over PMC, PMD state from the previous process.
2507         * As opposed to PMD, stale PMC can cause harm to the incoming
2508         * process because they may change what is being measured.
2509         * Therefore, we must systematically reinstall the entire
2510         * PMC state. In SMP, the same thing is possible on the
2511         * same CPU but also on between 2 CPUs.
2512         *
2513         * The problem with PMD is information leaking especially
2514         * to user level when psr.sp=0
2515         *
2516         * There is unfortunately no easy way to avoid this problem
2517         * on either UP or SMP. This definitively slows down the
2518         * pfm_load_regs() function.
2519         */
2520
2521         /*
2522          * bitmask of all PMCs accessible to this context
2523          *
2524          * PMC0 is treated differently.
2525          */
2526        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2527
2528        /*
2529         * bitmask of all PMDs that are accessible to this context
2530         */
2531        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2532
2533        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2534
2535        /*
2536         * useful in case of re-enable after disable
2537         */
2538        ctx->ctx_used_ibrs[0] = 0UL;
2539        ctx->ctx_used_dbrs[0] = 0UL;
2540}
2541
2542static int
2543pfm_ctx_getsize(void *arg, size_t *sz)
2544{
2545        pfarg_context_t *req = (pfarg_context_t *)arg;
2546        pfm_buffer_fmt_t *fmt;
2547
2548        *sz = 0;
2549
2550        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2551
2552        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2553        if (fmt == NULL) {
2554                DPRINT(("cannot find buffer format\n"));
2555                return -EINVAL;
2556        }
2557        /* get just enough to copy in user parameters */
2558        *sz = fmt->fmt_arg_size;
2559        DPRINT(("arg_size=%lu\n", *sz));
2560
2561        return 0;
2562}
2563
2564
2565
2566/*
2567 * cannot attach if :
2568 *      - kernel task
2569 *      - task not owned by caller
2570 *      - task incompatible with context mode
2571 */
2572static int
2573pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2574{
2575        /*
2576         * no kernel task or task not owner by caller
2577         */
2578        if (task->mm == NULL) {
2579                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2580                return -EPERM;
2581        }
2582        if (pfm_bad_permissions(task)) {
2583                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2584                return -EPERM;
2585        }
2586        /*
2587         * cannot block in self-monitoring mode
2588         */
2589        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2590                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2591                return -EINVAL;
2592        }
2593
2594        if (task->exit_state == EXIT_ZOMBIE) {
2595                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2596                return -EBUSY;
2597        }
2598
2599        /*
2600         * always ok for self
2601         */
2602        if (task == current) return 0;
2603
2604        if (!task_is_stopped_or_traced(task)) {
2605                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2606                return -EBUSY;
2607        }
2608        /*
2609         * make sure the task is off any CPU
2610         */
2611        wait_task_inactive(task, 0);
2612
2613        /* more to come... */
2614
2615        return 0;
2616}
2617
2618static int
2619pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2620{
2621        struct task_struct *p = current;
2622        int ret;
2623
2624        /* XXX: need to add more checks here */
2625        if (pid < 2) return -EPERM;
2626
2627        if (pid != task_pid_vnr(current)) {
2628
2629                read_lock(&tasklist_lock);
2630
2631                p = find_task_by_vpid(pid);
2632
2633                /* make sure task cannot go away while we operate on it */
2634                if (p) get_task_struct(p);
2635
2636                read_unlock(&tasklist_lock);
2637
2638                if (p == NULL) return -ESRCH;
2639        }
2640
2641        ret = pfm_task_incompatible(ctx, p);
2642        if (ret == 0) {
2643                *task = p;
2644        } else if (p != current) {
2645                pfm_put_task(p);
2646        }
2647        return ret;
2648}
2649
2650
2651
2652static int
2653pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2654{
2655        pfarg_context_t *req = (pfarg_context_t *)arg;
2656        struct file *filp;
2657        struct path path;
2658        int ctx_flags;
2659        int fd;
2660        int ret;
2661
2662        /* let's check the arguments first */
2663        ret = pfarg_is_sane(current, req);
2664        if (ret < 0)
2665                return ret;
2666
2667        ctx_flags = req->ctx_flags;
2668
2669        ret = -ENOMEM;
2670
2671        fd = get_unused_fd();
2672        if (fd < 0)
2673                return fd;
2674
2675        ctx = pfm_context_alloc(ctx_flags);
2676        if (!ctx)
2677                goto error;
2678
2679        filp = pfm_alloc_file(ctx);
2680        if (IS_ERR(filp)) {
2681                ret = PTR_ERR(filp);
2682                goto error_file;
2683        }
2684
2685        req->ctx_fd = ctx->ctx_fd = fd;
2686
2687        /*
2688         * does the user want to sample?
2689         */
2690        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2691                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2692                if (ret)
2693                        goto buffer_error;
2694        }
2695
2696        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2697                ctx,
2698                ctx_flags,
2699                ctx->ctx_fl_system,
2700                ctx->ctx_fl_block,
2701                ctx->ctx_fl_excl_idle,
2702                ctx->ctx_fl_no_msg,
2703                ctx->ctx_fd));
2704
2705        /*
2706         * initialize soft PMU state
2707         */
2708        pfm_reset_pmu_state(ctx);
2709
2710        fd_install(fd, filp);
2711
2712        return 0;
2713
2714buffer_error:
2715        path = filp->f_path;
2716        put_filp(filp);
2717        path_put(&path);
2718
2719        if (ctx->ctx_buf_fmt) {
2720                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2721        }
2722error_file:
2723        pfm_context_free(ctx);
2724
2725error:
2726        put_unused_fd(fd);
2727        return ret;
2728}
2729
2730static inline unsigned long
2731pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2732{
2733        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2734        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2735        extern unsigned long carta_random32 (unsigned long seed);
2736
2737        if (reg->flags & PFM_REGFL_RANDOM) {
2738                new_seed = carta_random32(old_seed);
2739                val -= (old_seed & mask);       /* counter values are negative numbers! */
2740                if ((mask >> 32) != 0)
2741                        /* construct a full 64-bit random value: */
2742                        new_seed |= carta_random32(old_seed >> 32) << 32;
2743                reg->seed = new_seed;
2744        }
2745        reg->lval = val;
2746        return val;
2747}
2748
2749static void
2750pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2751{
2752        unsigned long mask = ovfl_regs[0];
2753        unsigned long reset_others = 0UL;
2754        unsigned long val;
2755        int i;
2756
2757        /*
2758         * now restore reset value on sampling overflowed counters
2759         */
2760        mask >>= PMU_FIRST_COUNTER;
2761        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2762
2763                if ((mask & 0x1UL) == 0UL) continue;
2764
2765                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2766                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2767
2768                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2769        }
2770
2771        /*
2772         * Now take care of resetting the other registers
2773         */
2774        for(i = 0; reset_others; i++, reset_others >>= 1) {
2775
2776                if ((reset_others & 0x1) == 0) continue;
2777
2778                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2779
2780                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2781                          is_long_reset ? "long" : "short", i, val));
2782        }
2783}
2784
2785static void
2786pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2787{
2788        unsigned long mask = ovfl_regs[0];
2789        unsigned long reset_others = 0UL;
2790        unsigned long val;
2791        int i;
2792
2793        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2794
2795        if (ctx->ctx_state == PFM_CTX_MASKED) {
2796                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2797                return;
2798        }
2799
2800        /*
2801         * now restore reset value on sampling overflowed counters
2802         */
2803        mask >>= PMU_FIRST_COUNTER;
2804        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2805
2806                if ((mask & 0x1UL) == 0UL) continue;
2807
2808                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2809                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2810
2811                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2812
2813                pfm_write_soft_counter(ctx, i, val);
2814        }
2815
2816        /*
2817         * Now take care of resetting the other registers
2818         */
2819        for(i = 0; reset_others; i++, reset_others >>= 1) {
2820
2821                if ((reset_others & 0x1) == 0) continue;
2822
2823                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2824
2825                if (PMD_IS_COUNTING(i)) {
2826                        pfm_write_soft_counter(ctx, i, val);
2827                } else {
2828                        ia64_set_pmd(i, val);
2829                }
2830                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2831                          is_long_reset ? "long" : "short", i, val));
2832        }
2833        ia64_srlz_d();
2834}
2835
2836static int
2837pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2838{
2839        struct task_struct *task;
2840        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2841        unsigned long value, pmc_pm;
2842        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2843        unsigned int cnum, reg_flags, flags, pmc_type;
2844        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2845        int is_monitor, is_counting, state;
2846        int ret = -EINVAL;
2847        pfm_reg_check_t wr_func;
2848#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2849
2850        state     = ctx->ctx_state;
2851        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2852        is_system = ctx->ctx_fl_system;
2853        task      = ctx->ctx_task;
2854        impl_pmds = pmu_conf->impl_pmds[0];
2855
2856        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2857
2858        if (is_loaded) {
2859                /*
2860                 * In system wide and when the context is loaded, access can only happen
2861                 * when the caller is running on the CPU being monitored by the session.
2862                 * It does not have to be the owner (ctx_task) of the context per se.
2863                 */
2864                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2865                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2866                        return -EBUSY;
2867                }
2868                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2869        }
2870        expert_mode = pfm_sysctl.expert_mode; 
2871
2872        for (i = 0; i < count; i++, req++) {
2873
2874                cnum       = req->reg_num;
2875                reg_flags  = req->reg_flags;
2876                value      = req->reg_value;
2877                smpl_pmds  = req->reg_smpl_pmds[0];
2878                reset_pmds = req->reg_reset_pmds[0];
2879                flags      = 0;
2880
2881
2882                if (cnum >= PMU_MAX_PMCS) {
2883                        DPRINT(("pmc%u is invalid\n", cnum));
2884                        goto error;
2885                }
2886
2887                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2888                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2889                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2890                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2891
2892                /*
2893                 * we reject all non implemented PMC as well
2894                 * as attempts to modify PMC[0-3] which are used
2895                 * as status registers by the PMU
2896                 */
2897                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2898                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2899                        goto error;
2900                }
2901                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2902                /*
2903                 * If the PMC is a monitor, then if the value is not the default:
2904                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2905                 *      - per-task           : PMCx.pm=0 (user monitor)
2906                 */
2907                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2908                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2909                                cnum,
2910                                pmc_pm,
2911                                is_system));
2912                        goto error;
2913                }
2914
2915                if (is_counting) {
2916                        /*
2917                         * enforce generation of overflow interrupt. Necessary on all
2918                         * CPUs.
2919                         */
2920                        value |= 1 << PMU_PMC_OI;
2921
2922                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2923                                flags |= PFM_REGFL_OVFL_NOTIFY;
2924                        }
2925
2926                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2927
2928                        /* verify validity of smpl_pmds */
2929                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2930                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2931                                goto error;
2932                        }
2933
2934                        /* verify validity of reset_pmds */
2935                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2936                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2937                                goto error;
2938                        }
2939                } else {
2940                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2941                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2942                                goto error;
2943                        }
2944                        /* eventid on non-counting monitors are ignored */
2945                }
2946
2947                /*
2948                 * execute write checker, if any
2949                 */
2950                if (likely(expert_mode == 0 && wr_func)) {
2951                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2952                        if (ret) goto error;
2953                        ret = -EINVAL;
2954                }
2955
2956                /*
2957                 * no error on this register
2958                 */
2959                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2960
2961                /*
2962                 * Now we commit the changes to the software state
2963                 */
2964
2965                /*
2966                 * update overflow information
2967                 */
2968                if (is_counting) {
2969                        /*
2970                         * full flag update each time a register is programmed
2971                         */
2972                        ctx->ctx_pmds[cnum].flags = flags;
2973
2974                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2975                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2976                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2977
2978                        /*
2979                         * Mark all PMDS to be accessed as used.
2980                         *
2981                         * We do not keep track of PMC because we have to
2982                         * systematically restore ALL of them.
2983                         *
2984                         * We do not update the used_monitors mask, because
2985                         * if we have not programmed them, then will be in
2986                         * a quiescent state, therefore we will not need to
2987                         * mask/restore then when context is MASKED.
2988                         */
2989                        CTX_USED_PMD(ctx, reset_pmds);
2990                        CTX_USED_PMD(ctx, smpl_pmds);
2991                        /*
2992                         * make sure we do not try to reset on
2993                         * restart because we have established new values
2994                         */
2995                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2996                }
2997                /*
2998                 * Needed in case the user does not initialize the equivalent
2999                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3000                 * possible leak here.
3001                 */
3002                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3003
3004                /*
3005                 * keep track of the monitor PMC that we are using.
3006                 * we save the value of the pmc in ctx_pmcs[] and if
3007                 * the monitoring is not stopped for the context we also
3008                 * place it in the saved state area so that it will be
3009                 * picked up later by the context switch code.
3010                 *
3011                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3012                 *
3013                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3014                 * monitoring needs to be stopped.
3015                 */
3016                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3017
3018                /*
3019                 * update context state
3020                 */
3021                ctx->ctx_pmcs[cnum] = value;
3022
3023                if (is_loaded) {
3024                        /*
3025                         * write thread state
3026                         */
3027                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3028
3029                        /*
3030                         * write hardware register if we can
3031                         */
3032                        if (can_access_pmu) {
3033                                ia64_set_pmc(cnum, value);
3034                        }
3035#ifdef CONFIG_SMP
3036                        else {
3037                                /*
3038                                 * per-task SMP only here
3039                                 *
3040                                 * we are guaranteed that the task is not running on the other CPU,
3041                                 * we indicate that this PMD will need to be reloaded if the task
3042                                 * is rescheduled on the CPU it ran last on.
3043                                 */
3044                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3045                        }
3046#endif
3047                }
3048
3049                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3050                          cnum,
3051                          value,
3052                          is_loaded,
3053                          can_access_pmu,
3054                          flags,
3055                          ctx->ctx_all_pmcs[0],
3056                          ctx->ctx_used_pmds[0],
3057                          ctx->ctx_pmds[cnum].eventid,
3058                          smpl_pmds,
3059                          reset_pmds,
3060                          ctx->ctx_reload_pmcs[0],
3061                          ctx->ctx_used_monitors[0],
3062                          ctx->ctx_ovfl_regs[0]));
3063        }
3064
3065        /*
3066         * make sure the changes are visible
3067         */
3068        if (can_access_pmu) ia64_srlz_d();
3069
3070        return 0;
3071error:
3072        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3073        return ret;
3074}
3075
3076static int
3077pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3078{
3079        struct task_struct *task;
3080        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3081        unsigned long value, hw_value, ovfl_mask;
3082        unsigned int cnum;
3083        int i, can_access_pmu = 0, state;
3084        int is_counting, is_loaded, is_system, expert_mode;
3085        int ret = -EINVAL;
3086        pfm_reg_check_t wr_func;
3087
3088
3089        state     = ctx->ctx_state;
3090        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3091        is_system = ctx->ctx_fl_system;
3092        ovfl_mask = pmu_conf->ovfl_val;
3093        task      = ctx->ctx_task;
3094
3095        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3096
3097        /*
3098         * on both UP and SMP, we can only write to the PMC when the task is
3099         * the owner of the local PMU.
3100         */
3101        if (likely(is_loaded)) {
3102                /*
3103                 * In system wide and when the context is loaded, access can only happen
3104                 * when the caller is running on the CPU being monitored by the session.
3105                 * It does not have to be the owner (ctx_task) of the context per se.
3106                 */
3107                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3108                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3109                        return -EBUSY;
3110                }
3111                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3112        }
3113        expert_mode = pfm_sysctl.expert_mode; 
3114
3115        for (i = 0; i < count; i++, req++) {
3116
3117                cnum  = req->reg_num;
3118                value = req->reg_value;
3119
3120                if (!PMD_IS_IMPL(cnum)) {
3121                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3122                        goto abort_mission;
3123                }
3124                is_counting = PMD_IS_COUNTING(cnum);
3125                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3126
3127                /*
3128                 * execute write checker, if any
3129                 */
3130                if (unlikely(expert_mode == 0 && wr_func)) {
3131                        unsigned long v = value;
3132
3133                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3134                        if (ret) goto abort_mission;
3135
3136                        value = v;
3137                        ret   = -EINVAL;
3138                }
3139
3140                /*
3141                 * no error on this register
3142                 */
3143                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3144
3145                /*
3146                 * now commit changes to software state
3147                 */
3148                hw_value = value;
3149
3150                /*
3151                 * update virtualized (64bits) counter
3152                 */
3153                if (is_counting) {
3154                        /*
3155                         * write context state
3156                         */
3157                        ctx->ctx_pmds[cnum].lval = value;
3158
3159                        /*
3160                         * when context is load we use the split value
3161                         */
3162                        if (is_loaded) {
3163                                hw_value = value &  ovfl_mask;
3164                                value    = value & ~ovfl_mask;
3165                        }
3166                }
3167                /*
3168                 * update reset values (not just for counters)
3169                 */
3170                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3171                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3172
3173                /*
3174                 * update randomization parameters (not just for counters)
3175                 */
3176                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3177                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3178
3179                /*
3180                 * update context value
3181                 */
3182                ctx->ctx_pmds[cnum].val  = value;
3183
3184                /*
3185                 * Keep track of what we use
3186                 *
3187                 * We do not keep track of PMC because we have to
3188                 * systematically restore ALL of them.
3189                 */
3190                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3191
3192                /*
3193                 * mark this PMD register used as well
3194                 */
3195                CTX_USED_PMD(ctx, RDEP(cnum));
3196
3197                /*
3198                 * make sure we do not try to reset on
3199                 * restart because we have established new values
3200                 */
3201                if (is_counting && state == PFM_CTX_MASKED) {
3202                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3203                }
3204
3205                if (is_loaded) {
3206                        /*
3207                         * write thread state
3208                         */
3209                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3210
3211                        /*
3212                         * write hardware register if we can
3213                         */
3214                        if (can_access_pmu) {
3215                                ia64_set_pmd(cnum, hw_value);
3216                        } else {
3217#ifdef CONFIG_SMP
3218                                /*
3219                                 * we are guaranteed that the task is not running on the other CPU,
3220                                 * we indicate that this PMD will need to be reloaded if the task
3221                                 * is rescheduled on the CPU it ran last on.
3222                                 */
3223                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3224#endif
3225                        }
3226                }
3227
3228                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3229                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3230                        cnum,
3231                        value,
3232                        is_loaded,
3233                        can_access_pmu,
3234                        hw_value,
3235                        ctx->ctx_pmds[cnum].val,
3236                        ctx->ctx_pmds[cnum].short_reset,
3237                        ctx->ctx_pmds[cnum].long_reset,
3238                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3239                        ctx->ctx_pmds[cnum].seed,
3240                        ctx->ctx_pmds[cnum].mask,
3241                        ctx->ctx_used_pmds[0],
3242                        ctx->ctx_pmds[cnum].reset_pmds[0],
3243                        ctx->ctx_reload_pmds[0],
3244                        ctx->ctx_all_pmds[0],
3245                        ctx->ctx_ovfl_regs[0]));
3246        }
3247
3248        /*
3249         * make changes visible
3250         */
3251        if (can_access_pmu) ia64_srlz_d();
3252
3253        return 0;
3254
3255abort_mission:
3256        /*
3257         * for now, we have only one possibility for error
3258         */
3259        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3260        return ret;
3261}
3262
3263/*
3264 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3265 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3266 * interrupt is delivered during the call, it will be kept pending until we leave, making
3267 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3268 * guaranteed to return consistent data to the user, it may simply be old. It is not
3269 * trivial to treat the overflow while inside the call because you may end up in
3270 * some module sampling buffer code causing deadlocks.
3271 */
3272static int
3273pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3274{
3275        struct task_struct *task;
3276        unsigned long val = 0UL, lval, ovfl_mask, sval;
3277        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3278        unsigned int cnum, reg_flags = 0;
3279        int i, can_access_pmu = 0, state;
3280        int is_loaded, is_system, is_counting, expert_mode;
3281        int ret = -EINVAL;
3282        pfm_reg_check_t rd_func;
3283
3284        /*
3285         * access is possible when loaded only for
3286         * self-monitoring tasks or in UP mode
3287         */
3288
3289        state     = ctx->ctx_state;
3290        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3291        is_system = ctx->ctx_fl_system;
3292        ovfl_mask = pmu_conf->ovfl_val;
3293        task      = ctx->ctx_task;
3294
3295        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3296
3297        if (likely(is_loaded)) {
3298                /*
3299                 * In system wide and when the context is loaded, access can only happen
3300                 * when the caller is running on the CPU being monitored by the session.
3301                 * It does not have to be the owner (ctx_task) of the context per se.
3302                 */
3303                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3304                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3305                        return -EBUSY;
3306                }
3307                /*
3308                 * this can be true when not self-monitoring only in UP
3309                 */
3310                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3311
3312                if (can_access_pmu) ia64_srlz_d();
3313        }
3314        expert_mode = pfm_sysctl.expert_mode; 
3315
3316        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3317                is_loaded,
3318                can_access_pmu,
3319                state));
3320
3321        /*
3322         * on both UP and SMP, we can only read the PMD from the hardware register when
3323         * the task is the owner of the local PMU.
3324         */
3325
3326        for (i = 0; i < count; i++, req++) {
3327
3328                cnum        = req->reg_num;
3329                reg_flags   = req->reg_flags;
3330
3331                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3332                /*
3333                 * we can only read the register that we use. That includes
3334                 * the one we explicitly initialize AND the one we want included
3335                 * in the sampling buffer (smpl_regs).
3336                 *
3337                 * Having this restriction allows optimization in the ctxsw routine
3338                 * without compromising security (leaks)
3339                 */
3340                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3341
3342                sval        = ctx->ctx_pmds[cnum].val;
3343                lval        = ctx->ctx_pmds[cnum].lval;
3344                is_counting = PMD_IS_COUNTING(cnum);
3345
3346                /*
3347                 * If the task is not the current one, then we check if the
3348                 * PMU state is still in the local live register due to lazy ctxsw.
3349                 * If true, then we read directly from the registers.
3350                 */
3351                if (can_access_pmu){
3352                        val = ia64_get_pmd(cnum);
3353                } else {
3354                        /*
3355                         * context has been saved
3356                         * if context is zombie, then task does not exist anymore.
3357                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3358                         */
3359                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3360                }
3361                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3362
3363                if (is_counting) {
3364                        /*
3365                         * XXX: need to check for overflow when loaded
3366                         */
3367                        val &= ovfl_mask;
3368                        val += sval;
3369                }
3370
3371                /*
3372                 * execute read checker, if any
3373                 */
3374                if (unlikely(expert_mode == 0 && rd_func)) {
3375                        unsigned long v = val;
3376                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3377                        if (ret) goto error;
3378                        val = v;
3379                        ret = -EINVAL;
3380                }
3381
3382                PFM_REG_RETFLAG_SET(reg_flags, 0);
3383
3384                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3385
3386                /*
3387                 * update register return value, abort all if problem during copy.
3388                 * we only modify the reg_flags field. no check mode is fine because
3389                 * access has been verified upfront in sys_perfmonctl().
3390                 */
3391                req->reg_value            = val;
3392                req->reg_flags            = reg_flags;
3393                req->reg_last_reset_val   = lval;
3394        }
3395
3396        return 0;
3397
3398error:
3399        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3400        return ret;
3401}
3402
3403int
3404pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3405{
3406        pfm_context_t *ctx;
3407
3408        if (req == NULL) return -EINVAL;
3409
3410        ctx = GET_PMU_CTX();
3411
3412        if (ctx == NULL) return -EINVAL;
3413
3414        /*
3415         * for now limit to current task, which is enough when calling
3416         * from overflow handler
3417         */
3418        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3419
3420        return pfm_write_pmcs(ctx, req, nreq, regs);
3421}
3422EXPORT_SYMBOL(pfm_mod_write_pmcs);
3423
3424int
3425pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3426{
3427        pfm_context_t *ctx;
3428
3429        if (req == NULL) return -EINVAL;
3430
3431        ctx = GET_PMU_CTX();
3432
3433        if (ctx == NULL) return -EINVAL;
3434
3435        /*
3436         * for now limit to current task, which is enough when calling
3437         * from overflow handler
3438         */
3439        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3440
3441        return pfm_read_pmds(ctx, req, nreq, regs);
3442}
3443EXPORT_SYMBOL(pfm_mod_read_pmds);
3444
3445/*
3446 * Only call this function when a process it trying to
3447 * write the debug registers (reading is always allowed)
3448 */
3449int
3450pfm_use_debug_registers(struct task_struct *task)
3451{
3452        pfm_context_t *ctx = task->thread.pfm_context;
3453        unsigned long flags;
3454        int ret = 0;
3455
3456        if (pmu_conf->use_rr_dbregs == 0) return 0;
3457
3458        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3459
3460        /*
3461         * do it only once
3462         */
3463        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3464
3465        /*
3466         * Even on SMP, we do not need to use an atomic here because
3467         * the only way in is via ptrace() and this is possible only when the
3468         * process is stopped. Even in the case where the ctxsw out is not totally
3469         * completed by the time we come here, there is no way the 'stopped' process
3470         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3471         * So this is always safe.
3472         */
3473        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3474
3475        LOCK_PFS(flags);
3476
3477        /*
3478         * We cannot allow setting breakpoints when system wide monitoring
3479         * sessions are using the debug registers.
3480         */
3481        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3482                ret = -1;
3483        else
3484                pfm_sessions.pfs_ptrace_use_dbregs++;
3485
3486        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3487                  pfm_sessions.pfs_ptrace_use_dbregs,
3488                  pfm_sessions.pfs_sys_use_dbregs,
3489                  task_pid_nr(task), ret));
3490
3491        UNLOCK_PFS(flags);
3492
3493        return ret;
3494}
3495
3496/*
3497 * This function is called for every task that exits with the
3498 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3499 * able to use the debug registers for debugging purposes via
3500 * ptrace(). Therefore we know it was not using them for
3501 * performance monitoring, so we only decrement the number
3502 * of "ptraced" debug register users to keep the count up to date
3503 */
3504int
3505pfm_release_debug_registers(struct task_struct *task)
3506{
3507        unsigned long flags;
3508        int ret;
3509
3510        if (pmu_conf->use_rr_dbregs == 0) return 0;
3511
3512        LOCK_PFS(flags);
3513        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3514                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3515                ret = -1;
3516        }  else {
3517                pfm_sessions.pfs_ptrace_use_dbregs--;
3518                ret = 0;
3519        }
3520        UNLOCK_PFS(flags);
3521
3522        return ret;
3523}
3524
3525static int
3526pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3527{
3528        struct task_struct *task;
3529        pfm_buffer_fmt_t *fmt;
3530        pfm_ovfl_ctrl_t rst_ctrl;
3531        int state, is_system;
3532        int ret = 0;
3533
3534        state     = ctx->ctx_state;
3535        fmt       = ctx->ctx_buf_fmt;
3536        is_system = ctx->ctx_fl_system;
3537        task      = PFM_CTX_TASK(ctx);
3538
3539        switch(state) {
3540                case PFM_CTX_MASKED:
3541                        break;
3542                case PFM_CTX_LOADED: 
3543                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3544                        /* fall through */
3545                case PFM_CTX_UNLOADED:
3546                case PFM_CTX_ZOMBIE:
3547                        DPRINT(("invalid state=%d\n", state));
3548                        return -EBUSY;
3549                default:
3550                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3551                        return -EINVAL;
3552        }
3553
3554        /*
3555         * In system wide and when the context is loaded, access can only happen
3556         * when the caller is running on the CPU being monitored by the session.
3557         * It does not have to be the owner (ctx_task) of the context per se.
3558         */
3559        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3560                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3561                return -EBUSY;
3562        }
3563
3564        /* sanity check */
3565        if (unlikely(task == NULL)) {
3566                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3567                return -EINVAL;
3568        }
3569
3570        if (task == current || is_system) {
3571
3572                fmt = ctx->ctx_buf_fmt;
3573
3574                DPRINT(("restarting self %d ovfl=0x%lx\n",
3575                        task_pid_nr(task),
3576                        ctx->ctx_ovfl_regs[0]));
3577
3578                if (CTX_HAS_SMPL(ctx)) {
3579
3580                        prefetch(ctx->ctx_smpl_hdr);
3581
3582                        rst_ctrl.bits.mask_monitoring = 0;
3583                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3584
3585                        if (state == PFM_CTX_LOADED)
3586                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3587                        else
3588                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3589                } else {
3590                        rst_ctrl.bits.mask_monitoring = 0;
3591                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3592                }
3593
3594                if (ret == 0) {
3595                        if (rst_ctrl.bits.reset_ovfl_pmds)
3596                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3597
3598                        if (rst_ctrl.bits.mask_monitoring == 0) {
3599                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3600
3601                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3602                        } else {
3603                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3604
3605                                // cannot use pfm_stop_monitoring(task, regs);
3606                        }
3607                }
3608                /*
3609                 * clear overflowed PMD mask to remove any stale information
3610                 */
3611                ctx->ctx_ovfl_regs[0] = 0UL;
3612
3613                /*
3614                 * back to LOADED state
3615                 */
3616                ctx->ctx_state = PFM_CTX_LOADED;
3617
3618                /*
3619                 * XXX: not really useful for self monitoring
3620                 */
3621                ctx->ctx_fl_can_restart = 0;
3622
3623                return 0;
3624        }
3625
3626        /* 
3627         * restart another task
3628         */
3629
3630        /*
3631         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3632         * one is seen by the task.
3633         */
3634        if (state == PFM_CTX_MASKED) {
3635                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3636                /*
3637                 * will prevent subsequent restart before this one is
3638                 * seen by other task
3639                 */
3640                ctx->ctx_fl_can_restart = 0;
3641        }
3642
3643        /*
3644         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3645         * the task is blocked or on its way to block. That's the normal
3646         * restart path. If the monitoring is not masked, then the task
3647         * can be actively monitoring and we cannot directly intervene.
3648         * Therefore we use the trap mechanism to catch the task and
3649         * force it to reset the buffer/reset PMDs.
3650         *
3651         * if non-blocking, then we ensure that the task will go into
3652         * pfm_handle_work() before returning to user mode.
3653         *
3654         * We cannot explicitly reset another task, it MUST always
3655         * be done by the task itself. This works for system wide because
3656         * the tool that is controlling the session is logically doing 
3657         * "self-monitoring".
3658         */
3659        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3660                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3661                complete(&ctx->ctx_restart_done);
3662        } else {
3663                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3664
3665                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3666
3667                PFM_SET_WORK_PENDING(task, 1);
3668
3669                set_notify_resume(task);
3670
3671                /*
3672                 * XXX: send reschedule if task runs on another CPU
3673                 */
3674        }
3675        return 0;
3676}
3677
3678static int
3679pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3680{
3681        unsigned int m = *(unsigned int *)arg;
3682
3683        pfm_sysctl.debug = m == 0 ? 0 : 1;
3684
3685        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3686
3687        if (m == 0) {
3688                memset(pfm_stats, 0, sizeof(pfm_stats));
3689                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3690        }
3691        return 0;
3692}
3693
3694/*
3695 * arg can be NULL and count can be zero for this function
3696 */
3697static int
3698pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3699{
3700        struct thread_struct *thread = NULL;
3701        struct task_struct *task;
3702        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3703        unsigned long flags;
3704        dbreg_t dbreg;
3705        unsigned int rnum;
3706        int first_time;
3707        int ret = 0, state;
3708        int i, can_access_pmu = 0;
3709        int is_system, is_loaded;
3710
3711        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3712
3713        state     = ctx->ctx_state;
3714        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3715        is_system = ctx->ctx_fl_system;
3716        task      = ctx->ctx_task;
3717
3718        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3719
3720        /*
3721         * on both UP and SMP, we can only write to the PMC when the task is
3722         * the owner of the local PMU.
3723         */
3724        if (is_loaded) {
3725                thread = &task->thread;
3726                /*
3727                 * In system wide and when the context is loaded, access can only happen
3728                 * when the caller is running on the CPU being monitored by the session.
3729                 * It does not have to be the owner (ctx_task) of the context per se.
3730                 */
3731                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3732                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3733                        return -EBUSY;
3734                }
3735                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3736        }
3737
3738        /*
3739         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3740         * ensuring that no real breakpoint can be installed via this call.
3741         *
3742         * IMPORTANT: regs can be NULL in this function
3743         */
3744
3745        first_time = ctx->ctx_fl_using_dbreg == 0;
3746
3747        /*
3748         * don't bother if we are loaded and task is being debugged
3749         */
3750        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3751                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3752                return -EBUSY;
3753        }
3754
3755        /*
3756         * check for debug registers in system wide mode
3757         *
3758         * If though a check is done in pfm_context_load(),
3759         * we must repeat it here, in case the registers are
3760         * written after the context is loaded
3761         */
3762        if (is_loaded) {
3763                LOCK_PFS(flags);
3764
3765                if (first_time && is_system) {
3766                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3767                                ret = -EBUSY;
3768                        else
3769                                pfm_sessions.pfs_sys_use_dbregs++;
3770                }
3771                UNLOCK_PFS(flags);
3772        }
3773
3774        if (ret != 0) return ret;
3775
3776        /*
3777         * mark ourself as user of the debug registers for
3778         * perfmon purposes.
3779         */
3780        ctx->ctx_fl_using_dbreg = 1;
3781
3782        /*
3783         * clear hardware registers to make sure we don't
3784         * pick up stale state.
3785         *
3786         * for a system wide session, we do not use
3787         * thread.dbr, thread.ibr because this process
3788         * never leaves the current CPU and the state
3789         * is shared by all processes running on it
3790         */
3791        if (first_time && can_access_pmu) {
3792                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3793                for (i=0; i < pmu_conf->num_ibrs; i++) {
3794                        ia64_set_ibr(i, 0UL);
3795                        ia64_dv_serialize_instruction();
3796                }
3797                ia64_srlz_i();
3798                for (i=0; i < pmu_conf->num_dbrs; i++) {
3799                        ia64_set_dbr(i, 0UL);
3800                        ia64_dv_serialize_data();
3801                }
3802                ia64_srlz_d();
3803        }
3804
3805        /*
3806         * Now install the values into the registers
3807         */
3808        for (i = 0; i < count; i++, req++) {
3809
3810                rnum      = req->dbreg_num;
3811                dbreg.val = req->dbreg_value;
3812
3813                ret = -EINVAL;
3814
3815                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3816                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3817                                  rnum, dbreg.val, mode, i, count));
3818
3819                        goto abort_mission;
3820                }
3821
3822                /*
3823                 * make sure we do not install enabled breakpoint
3824                 */
3825                if (rnum & 0x1) {
3826                        if (mode == PFM_CODE_RR)
3827                                dbreg.ibr.ibr_x = 0;
3828                        else
3829                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3830                }
3831
3832                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3833
3834                /*
3835                 * Debug registers, just like PMC, can only be modified
3836                 * by a kernel call. Moreover, perfmon() access to those
3837                 * registers are centralized in this routine. The hardware
3838                 * does not modify the value of these registers, therefore,
3839                 * if we save them as they are written, we can avoid having
3840                 * to save them on context switch out. This is made possible
3841                 * by the fact that when perfmon uses debug registers, ptrace()
3842                 * won't be able to modify them concurrently.
3843                 */
3844                if (mode == PFM_CODE_RR) {
3845                        CTX_USED_IBR(ctx, rnum);
3846
3847                        if (can_access_pmu) {
3848                                ia64_set_ibr(rnum, dbreg.val);
3849                                ia64_dv_serialize_instruction();
3850                        }
3851
3852                        ctx->ctx_ibrs[rnum] = dbreg.val;
3853
3854                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3855                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3856                } else {
3857                        CTX_USED_DBR(ctx, rnum);
3858
3859                        if (can_access_pmu) {
3860                                ia64_set_dbr(rnum, dbreg.val);
3861                                ia64_dv_serialize_data();
3862                        }
3863                        ctx->ctx_dbrs[rnum] = dbreg.val;
3864
3865                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3866                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3867                }
3868        }
3869
3870        return 0;
3871
3872abort_mission:
3873        /*
3874         * in case it was our first attempt, we undo the global modifications
3875         */
3876        if (first_time) {
3877                LOCK_PFS(flags);
3878                if (ctx->ctx_fl_system) {
3879                        pfm_sessions.pfs_sys_use_dbregs--;
3880                }
3881                UNLOCK_PFS(flags);
3882                ctx->ctx_fl_using_dbreg = 0;
3883        }
3884        /*
3885         * install error return flag
3886         */
3887        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3888
3889        return ret;
3890}
3891
3892static int
3893pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3894{
3895        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3896}
3897
3898static int
3899pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3900{
3901        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3902}
3903
3904int
3905pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3906{
3907        pfm_context_t *ctx;
3908
3909        if (req == NULL) return -EINVAL;
3910
3911        ctx = GET_PMU_CTX();
3912
3913        if (ctx == NULL) return -EINVAL;
3914
3915        /*
3916         * for now limit to current task, which is enough when calling
3917         * from overflow handler
3918         */
3919        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3920
3921        return pfm_write_ibrs(ctx, req, nreq, regs);
3922}
3923EXPORT_SYMBOL(pfm_mod_write_ibrs);
3924
3925int
3926pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3927{
3928        pfm_context_t *ctx;
3929
3930        if (req == NULL) return -EINVAL;
3931
3932        ctx = GET_PMU_CTX();
3933
3934        if (ctx == NULL) return -EINVAL;
3935
3936        /*
3937         * for now limit to current task, which is enough when calling
3938         * from overflow handler
3939         */
3940        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3941
3942        return pfm_write_dbrs(ctx, req, nreq, regs);
3943}
3944EXPORT_SYMBOL(pfm_mod_write_dbrs);
3945
3946
3947static int
3948pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3949{
3950        pfarg_features_t *req = (pfarg_features_t *)arg;
3951
3952        req->ft_version = PFM_VERSION;
3953        return 0;
3954}
3955
3956static int
3957pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3958{
3959        struct pt_regs *tregs;
3960        struct task_struct *task = PFM_CTX_TASK(ctx);
3961        int state, is_system;
3962
3963        state     = ctx->ctx_state;
3964        is_system = ctx->ctx_fl_system;
3965
3966        /*
3967         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3968         */
3969        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3970
3971        /*
3972         * In system wide and when the context is loaded, access can only happen
3973         * when the caller is running on the CPU being monitored by the session.
3974         * It does not have to be the owner (ctx_task) of the context per se.
3975         */
3976        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3977                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3978                return -EBUSY;
3979        }
3980        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3981                task_pid_nr(PFM_CTX_TASK(ctx)),
3982                state,
3983                is_system));
3984        /*
3985         * in system mode, we need to update the PMU directly
3986         * and the user level state of the caller, which may not
3987         * necessarily be the creator of the context.
3988         */
3989        if (is_system) {
3990                /*
3991                 * Update local PMU first
3992                 *
3993                 * disable dcr pp
3994                 */
3995                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3996                ia64_srlz_i();
3997
3998                /*
3999                 * update local cpuinfo
4000                 */
4001                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4002
4003                /*
4004                 * stop monitoring, does srlz.i
4005                 */
4006                pfm_clear_psr_pp();
4007
4008                /*
4009                 * stop monitoring in the caller
4010                 */
4011                ia64_psr(regs)->pp = 0;
4012
4013                return 0;
4014        }
4015        /*
4016         * per-task mode
4017         */
4018
4019        if (task == current) {
4020                /* stop monitoring  at kernel level */
4021                pfm_clear_psr_up();
4022
4023                /*
4024                 * stop monitoring at the user level
4025                 */
4026                ia64_psr(regs)->up = 0;
4027        } else {
4028                tregs = task_pt_regs(task);
4029
4030                /*
4031                 * stop monitoring at the user level
4032                 */
4033                ia64_psr(tregs)->up = 0;
4034
4035                /*
4036                 * monitoring disabled in kernel at next reschedule
4037                 */
4038                ctx->ctx_saved_psr_up = 0;
4039                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4040        }
4041        return 0;
4042}
4043
4044
4045static int
4046pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4047{
4048        struct pt_regs *tregs;
4049        int state, is_system;
4050
4051        state     = ctx->ctx_state;
4052        is_system = ctx->ctx_fl_system;
4053
4054        if (state != PFM_CTX_LOADED) return -EINVAL;
4055
4056        /*
4057         * In system wide and when the context is loaded, access can only happen
4058         * when the caller is running on the CPU being monitored by the session.
4059         * It does not have to be the owner (ctx_task) of the context per se.
4060         */
4061        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4062                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4063                return -EBUSY;
4064        }
4065
4066        /*
4067         * in system mode, we need to update the PMU directly
4068         * and the user level state of the caller, which may not
4069         * necessarily be the creator of the context.
4070         */
4071        if (is_system) {
4072
4073                /*
4074                 * set user level psr.pp for the caller
4075                 */
4076                ia64_psr(regs)->pp = 1;
4077
4078                /*
4079                 * now update the local PMU and cpuinfo
4080                 */
4081                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4082
4083                /*
4084                 * start monitoring at kernel level
4085                 */
4086                pfm_set_psr_pp();
4087
4088                /* enable dcr pp */
4089                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4090                ia64_srlz_i();
4091
4092                return 0;
4093        }
4094
4095        /*
4096         * per-process mode
4097         */
4098
4099        if (ctx->ctx_task == current) {
4100
4101                /* start monitoring at kernel level */
4102                pfm_set_psr_up();
4103
4104                /*
4105                 * activate monitoring at user level
4106                 */
4107                ia64_psr(regs)->up = 1;
4108
4109        } else {
4110                tregs = task_pt_regs(ctx->ctx_task);
4111
4112                /*
4113                 * start monitoring at the kernel level the next
4114                 * time the task is scheduled
4115                 */
4116                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4117
4118                /*
4119                 * activate monitoring at user level
4120                 */
4121                ia64_psr(tregs)->up = 1;
4122        }
4123        return 0;
4124}
4125
4126static int
4127pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4128{
4129        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4130        unsigned int cnum;
4131        int i;
4132        int ret = -EINVAL;
4133
4134        for (i = 0; i < count; i++, req++) {
4135
4136                cnum = req->reg_num;
4137
4138                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4139
4140                req->reg_value = PMC_DFL_VAL(cnum);
4141
4142                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4143
4144                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4145        }
4146        return 0;
4147
4148abort_mission:
4149        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4150        return ret;
4151}
4152
4153static int
4154pfm_check_task_exist(pfm_context_t *ctx)
4155{
4156        struct task_struct *g, *t;
4157        int ret = -ESRCH;
4158
4159        read_lock(&tasklist_lock);
4160
4161        do_each_thread (g, t) {
4162                if (t->thread.pfm_context == ctx) {
4163                        ret = 0;
4164                        goto out;
4165                }
4166        } while_each_thread (g, t);
4167out:
4168        read_unlock(&tasklist_lock);
4169
4170        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4171
4172        return ret;
4173}
4174
4175static int
4176pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4177{
4178        struct task_struct *task;
4179        struct thread_struct *thread;
4180        struct pfm_context_t *old;
4181        unsigned long flags;
4182#ifndef CONFIG_SMP
4183        struct task_struct *owner_task = NULL;
4184#endif
4185        pfarg_load_t *req = (pfarg_load_t *)arg;
4186        unsigned long *pmcs_source, *pmds_source;
4187        int the_cpu;
4188        int ret = 0;
4189        int state, is_system, set_dbregs = 0;
4190
4191        state     = ctx->ctx_state;
4192        is_system = ctx->ctx_fl_system;
4193        /*
4194         * can only load from unloaded or terminated state
4195         */
4196        if (state != PFM_CTX_UNLOADED) {
4197                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4198                        req->load_pid,
4199                        ctx->ctx_state));
4200                return -EBUSY;
4201        }
4202
4203        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4204
4205        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4206                DPRINT(("cannot use blocking mode on self\n"));
4207                return -EINVAL;
4208        }
4209
4210        ret = pfm_get_task(ctx, req->load_pid, &task);
4211        if (ret) {
4212                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4213                return ret;
4214        }
4215
4216        ret = -EINVAL;
4217
4218        /*
4219         * system wide is self monitoring only
4220         */
4221        if (is_system && task != current) {
4222                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4223                        req->load_pid));
4224                goto error;
4225        }
4226
4227        thread = &task->thread;
4228
4229        ret = 0;
4230        /*
4231         * cannot load a context which is using range restrictions,
4232         * into a task that is being debugged.
4233         */
4234        if (ctx->ctx_fl_using_dbreg) {
4235                if (thread->flags & IA64_THREAD_DBG_VALID) {
4236                        ret = -EBUSY;
4237                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4238                        goto error;
4239                }
4240                LOCK_PFS(flags);
4241
4242                if (is_system) {
4243                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4244                                DPRINT(("cannot load [%d] dbregs in use\n",
4245                                                        task_pid_nr(task)));
4246                                ret = -EBUSY;
4247                        } else {
4248                                pfm_sessions.pfs_sys_use_dbregs++;
4249                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4250                                set_dbregs = 1;
4251                        }
4252                }
4253
4254                UNLOCK_PFS(flags);
4255
4256                if (ret) goto error;
4257        }
4258
4259        /*
4260         * SMP system-wide monitoring implies self-monitoring.
4261         *
4262         * The programming model expects the task to
4263         * be pinned on a CPU throughout the session.
4264         * Here we take note of the current CPU at the
4265         * time the context is loaded. No call from
4266         * another CPU will be allowed.
4267         *
4268         * The pinning via shed_setaffinity()
4269         * must be done by the calling task prior
4270         * to this call.
4271         *
4272         * systemwide: keep track of CPU this session is supposed to run on
4273         */
4274        the_cpu = ctx->ctx_cpu = smp_processor_id();
4275
4276        ret = -EBUSY;
4277        /*
4278         * now reserve the session
4279         */
4280        ret = pfm_reserve_session(current, is_system, the_cpu);
4281        if (ret) goto error;
4282
4283        /*
4284         * task is necessarily stopped at this point.
4285         *
4286         * If the previous context was zombie, then it got removed in
4287         * pfm_save_regs(). Therefore we should not see it here.
4288         * If we see a context, then this is an active context
4289         *
4290         * XXX: needs to be atomic
4291         */
4292        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4293                thread->pfm_context, ctx));
4294
4295        ret = -EBUSY;
4296        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4297        if (old != NULL) {
4298                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4299                goto error_unres;
4300        }
4301
4302        pfm_reset_msgq(ctx);
4303
4304        ctx->ctx_state = PFM_CTX_LOADED;
4305
4306        /*
4307         * link context to task
4308         */
4309        ctx->ctx_task = task;
4310
4311        if (is_system) {
4312                /*
4313                 * we load as stopped
4314                 */
4315                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4316                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4317
4318                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4319        } else {
4320                thread->flags |= IA64_THREAD_PM_VALID;
4321        }
4322
4323        /*
4324         * propagate into thread-state
4325         */
4326        pfm_copy_pmds(task, ctx);
4327        pfm_copy_pmcs(task, ctx);
4328
4329        pmcs_source = ctx->th_pmcs;
4330        pmds_source = ctx->th_pmds;
4331
4332        /*
4333         * always the case for system-wide
4334         */
4335        if (task == current) {
4336
4337                if (is_system == 0) {
4338
4339                        /* allow user level control */
4340                        ia64_psr(regs)->sp = 0;
4341                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4342
4343                        SET_LAST_CPU(ctx, smp_processor_id());
4344                        INC_ACTIVATION();
4345                        SET_ACTIVATION(ctx);
4346#ifndef CONFIG_SMP
4347                        /*
4348                         * push the other task out, if any
4349                         */
4350                        owner_task = GET_PMU_OWNER();
4351                        if (owner_task) pfm_lazy_save_regs(owner_task);
4352#endif
4353                }
4354                /*
4355                 * load all PMD from ctx to PMU (as opposed to thread state)
4356                 * restore all PMC from ctx to PMU
4357                 */
4358                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4359                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4360
4361                ctx->ctx_reload_pmcs[0] = 0UL;
4362                ctx->ctx_reload_pmds[0] = 0UL;
4363
4364                /*
4365                 * guaranteed safe by earlier check against DBG_VALID
4366                 */
4367                if (ctx->ctx_fl_using_dbreg) {
4368                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4369                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4370                }
4371                /*
4372                 * set new ownership
4373                 */
4374                SET_PMU_OWNER(task, ctx);
4375
4376                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4377        } else {
4378                /*
4379                 * when not current, task MUST be stopped, so this is safe
4380                 */
4381                regs = task_pt_regs(task);
4382
4383                /* force a full reload */
4384                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4385                SET_LAST_CPU(ctx, -1);
4386
4387                /* initial saved psr (stopped) */
4388                ctx->ctx_saved_psr_up = 0UL;
4389                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4390        }
4391
4392        ret = 0;
4393
4394error_unres:
4395        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4396error:
4397        /*
4398         * we must undo the dbregs setting (for system-wide)
4399         */
4400        if (ret && set_dbregs) {
4401                LOCK_PFS(flags);
4402                pfm_sessions.pfs_sys_use_dbregs--;
4403                UNLOCK_PFS(flags);
4404        }
4405        /*
4406         * release task, there is now a link with the context
4407         */
4408        if (is_system == 0 && task != current) {
4409                pfm_put_task(task);
4410
4411                if (ret == 0) {
4412                        ret = pfm_check_task_exist(ctx);
4413                        if (ret) {
4414                                ctx->ctx_state = PFM_CTX_UNLOADED;
4415                                ctx->ctx_task  = NULL;
4416                        }
4417                }
4418        }
4419        return ret;
4420}
4421
4422/*
4423 * in this function, we do not need to increase the use count
4424 * for the task via get_task_struct(), because we hold the
4425 * context lock. If the task were to disappear while having
4426 * a context attached, it would go through pfm_exit_thread()
4427 * which also grabs the context lock  and would therefore be blocked
4428 * until we are here.
4429 */
4430static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4431
4432static int
4433pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4434{
4435        struct task_struct *task = PFM_CTX_TASK(ctx);
4436        struct pt_regs *tregs;
4437        int prev_state, is_system;
4438        int ret;
4439
4440        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4441
4442        prev_state = ctx->ctx_state;
4443        is_system  = ctx->ctx_fl_system;
4444
4445        /*
4446         * unload only when necessary
4447         */
4448        if (prev_state == PFM_CTX_UNLOADED) {
4449                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4450                return 0;
4451        }
4452
4453        /*
4454         * clear psr and dcr bits
4455         */
4456        ret = pfm_stop(ctx, NULL, 0, regs);
4457        if (ret) return ret;
4458
4459        ctx->ctx_state = PFM_CTX_UNLOADED;
4460
4461        /*
4462         * in system mode, we need to update the PMU directly
4463         * and the user level state of the caller, which may not
4464         * necessarily be the creator of the context.
4465         */
4466        if (is_system) {
4467
4468                /*
4469                 * Update cpuinfo
4470                 *
4471                 * local PMU is taken care of in pfm_stop()
4472                 */
4473                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4474                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4475
4476                /*
4477                 * save PMDs in context
4478                 * release ownership
4479                 */
4480                pfm_flush_pmds(current, ctx);
4481
4482                /*
4483                 * at this point we are done with the PMU
4484                 * so we can unreserve the resource.
4485                 */
4486                if (prev_state != PFM_CTX_ZOMBIE) 
4487                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4488
4489                /*
4490                 * disconnect context from task
4491                 */
4492                task->thread.pfm_context = NULL;
4493                /*
4494                 * disconnect task from context
4495                 */
4496                ctx->ctx_task = NULL;
4497
4498                /*
4499                 * There is nothing more to cleanup here.
4500                 */
4501                return 0;
4502        }
4503
4504        /*
4505         * per-task mode
4506         */
4507        tregs = task == current ? regs : task_pt_regs(task);
4508
4509        if (task == current) {
4510                /*
4511                 * cancel user level control
4512                 */
4513                ia64_psr(regs)->sp = 1;
4514
4515                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4516        }
4517        /*
4518         * save PMDs to context
4519         * release ownership
4520         */
4521        pfm_flush_pmds(task, ctx);
4522
4523        /*
4524         * at this point we are done with the PMU
4525         * so we can unreserve the resource.
4526         *
4527         * when state was ZOMBIE, we have already unreserved.
4528         */
4529        if (prev_state != PFM_CTX_ZOMBIE) 
4530                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4531
4532        /*
4533         * reset activation counter and psr
4534         */
4535        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4536        SET_LAST_CPU(ctx, -1);
4537
4538        /*
4539         * PMU state will not be restored
4540         */
4541        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4542
4543        /*
4544         * break links between context and task
4545         */
4546        task->thread.pfm_context  = NULL;
4547        ctx->ctx_task             = NULL;
4548
4549        PFM_SET_WORK_PENDING(task, 0);
4550
4551        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4552        ctx->ctx_fl_can_restart  = 0;
4553        ctx->ctx_fl_going_zombie = 0;
4554
4555        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4556
4557        return 0;
4558}
4559
4560
4561/*
4562 * called only from exit_thread(): task == current
4563 * we come here only if current has a context attached (loaded or masked)
4564 */
4565void
4566pfm_exit_thread(struct task_struct *task)
4567{
4568        pfm_context_t *ctx;
4569        unsigned long flags;
4570        struct pt_regs *regs = task_pt_regs(task);
4571        int ret, state;
4572        int free_ok = 0;
4573
4574        ctx = PFM_GET_CTX(task);
4575
4576        PROTECT_CTX(ctx, flags);
4577
4578        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4579
4580        state = ctx->ctx_state;
4581        switch(state) {
4582                case PFM_CTX_UNLOADED:
4583                        /*
4584                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4585                         * be in unloaded state
4586                         */
4587                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4588                        break;
4589                case PFM_CTX_LOADED:
4590                case PFM_CTX_MASKED:
4591                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4592                        if (ret) {
4593                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4594                        }
4595                        DPRINT(("ctx unloaded for current state was %d\n", state));
4596
4597                        pfm_end_notify_user(ctx);
4598                        break;
4599                case PFM_CTX_ZOMBIE:
4600                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4601                        if (ret) {
4602                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4603                        }
4604                        free_ok = 1;
4605                        break;
4606                default:
4607                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4608                        break;
4609        }
4610        UNPROTECT_CTX(ctx, flags);
4611
4612        { u64 psr = pfm_get_psr();
4613          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4614          BUG_ON(GET_PMU_OWNER());
4615          BUG_ON(ia64_psr(regs)->up);
4616          BUG_ON(ia64_psr(regs)->pp);
4617        }
4618
4619        /*
4620         * All memory free operations (especially for vmalloc'ed memory)
4621         * MUST be done with interrupts ENABLED.
4622         */
4623        if (free_ok) pfm_context_free(ctx);
4624}
4625
4626/*
4627 * functions MUST be listed in the increasing order of their index (see permfon.h)
4628 */
4629#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4630#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4631#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4632#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4633#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4634
4635static pfm_cmd_desc_t pfm_cmd_tab[]={
4636/* 0  */PFM_CMD_NONE,
4637/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4638/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4639/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4640/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4641/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4642/* 6  */PFM_CMD_NONE,
4643/* 7  */PFM_CMD_NONE,
4644/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4645/* 9  */PFM_CMD_NONE,
4646/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4647/* 11 */PFM_CMD_NONE,
4648/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4649/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4650/* 14 */PFM_CMD_NONE,
4651/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4652/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4653/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4654/* 18 */PFM_CMD_NONE,
4655/* 19 */PFM_CMD_NONE,
4656/* 20 */PFM_CMD_NONE,
4657/* 21 */PFM_CMD_NONE,
4658/* 22 */PFM_CMD_NONE,
4659/* 23 */PFM_CMD_NONE,
4660/* 24 */PFM_CMD_NONE,
4661/* 25 */PFM_CMD_NONE,
4662/* 26 */PFM_CMD_NONE,
4663/* 27 */PFM_CMD_NONE,
4664/* 28 */PFM_CMD_NONE,
4665/* 29 */PFM_CMD_NONE,
4666/* 30 */PFM_CMD_NONE,
4667/* 31 */PFM_CMD_NONE,
4668/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4669/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4670};
4671#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4672
4673static int
4674pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4675{
4676        struct task_struct *task;
4677        int state, old_state;
4678
4679recheck:
4680        state = ctx->ctx_state;
4681        task  = ctx->ctx_task;
4682
4683        if (task == NULL) {
4684                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4685                return 0;
4686        }
4687
4688        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4689                ctx->ctx_fd,
4690                state,
4691                task_pid_nr(task),
4692                task->state, PFM_CMD_STOPPED(cmd)));
4693
4694        /*
4695         * self-monitoring always ok.
4696         *
4697         * for system-wide the caller can either be the creator of the
4698         * context (to one to which the context is attached to) OR
4699         * a task running on the same CPU as the session.
4700         */
4701        if (task == current || ctx->ctx_fl_system) return 0;
4702
4703        /*
4704         * we are monitoring another thread
4705         */
4706        switch(state) {
4707                case PFM_CTX_UNLOADED:
4708                        /*
4709                         * if context is UNLOADED we are safe to go
4710                         */
4711                        return 0;
4712                case PFM_CTX_ZOMBIE:
4713                        /*
4714                         * no command can operate on a zombie context
4715                         */
4716                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4717                        return -EINVAL;
4718                case PFM_CTX_MASKED:
4719                        /*
4720                         * PMU state has been saved to software even though
4721                         * the thread may still be running.
4722                         */
4723                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4724        }
4725
4726        /*
4727         * context is LOADED or MASKED. Some commands may need to have 
4728         * the task stopped.
4729         *
4730         * We could lift this restriction for UP but it would mean that
4731         * the user has no guarantee the task would not run between
4732         * two successive calls to perfmonctl(). That's probably OK.
4733         * If this user wants to ensure the task does not run, then
4734         * the task must be stopped.
4735         */
4736        if (PFM_CMD_STOPPED(cmd)) {
4737                if (!task_is_stopped_or_traced(task)) {
4738                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4739                        return -EBUSY;
4740                }
4741                /*
4742                 * task is now stopped, wait for ctxsw out
4743                 *
4744                 * This is an interesting point in the code.
4745                 * We need to unprotect the context because
4746                 * the pfm_save_regs() routines needs to grab
4747                 * the same lock. There are danger in doing
4748                 * this because it leaves a window open for
4749                 * another task to get access to the context
4750                 * and possibly change its state. The one thing
4751                 * that is not possible is for the context to disappear
4752                 * because we are protected by the VFS layer, i.e.,
4753                 * get_fd()/put_fd().
4754                 */
4755                old_state = state;
4756
4757                UNPROTECT_CTX(ctx, flags);
4758
4759                wait_task_inactive(task, 0);
4760
4761                PROTECT_CTX(ctx, flags);
4762
4763                /*
4764                 * we must recheck to verify if state has changed
4765                 */
4766                if (ctx->ctx_state != old_state) {
4767                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4768                        goto recheck;
4769                }
4770        }
4771        return 0;
4772}
4773
4774/*
4775 * system-call entry point (must return long)
4776 */
4777asmlinkage long
4778sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4779{
4780        struct fd f = {NULL, 0};
4781        pfm_context_t *ctx = NULL;
4782        unsigned long flags = 0UL;
4783        void *args_k = NULL;
4784        long ret; /* will expand int return types */
4785        size_t base_sz, sz, xtra_sz = 0;
4786        int narg, completed_args = 0, call_made = 0, cmd_flags;
4787        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4788        int (*getsize)(void *arg, size_t *sz);
4789#define PFM_MAX_ARGSIZE 4096
4790
4791        /*
4792         * reject any call if perfmon was disabled at initialization
4793         */
4794        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4795
4796        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4797                DPRINT(("invalid cmd=%d\n", cmd));
4798                return -EINVAL;
4799        }
4800
4801        func      = pfm_cmd_tab[cmd].cmd_func;
4802        narg      = pfm_cmd_tab[cmd].cmd_narg;
4803        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4804        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4805        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4806
4807        if (unlikely(func == NULL)) {
4808                DPRINT(("invalid cmd=%d\n", cmd));
4809                return -EINVAL;
4810        }
4811
4812        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4813                PFM_CMD_NAME(cmd),
4814                cmd,
4815                narg,
4816                base_sz,
4817                count));
4818
4819        /*
4820         * check if number of arguments matches what the command expects
4821         */
4822        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4823                return -EINVAL;
4824
4825restart_args:
4826        sz = xtra_sz + base_sz*count;
4827        /*
4828         * limit abuse to min page size
4829         */
4830        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4831                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4832                return -E2BIG;
4833        }
4834
4835        /*
4836         * allocate default-sized argument buffer
4837         */
4838        if (likely(count && args_k == NULL)) {
4839                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4840                if (args_k == NULL) return -ENOMEM;
4841        }
4842
4843        ret = -EFAULT;
4844
4845        /*
4846         * copy arguments
4847         *
4848         * assume sz = 0 for command without parameters
4849         */
4850        if (sz && copy_from_user(args_k, arg, sz)) {
4851                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4852                goto error_args;
4853        }
4854
4855        /*
4856         * check if command supports extra parameters
4857         */
4858        if (completed_args == 0 && getsize) {
4859                /*
4860                 * get extra parameters size (based on main argument)
4861                 */
4862                ret = (*getsize)(args_k, &xtra_sz);
4863                if (ret) goto error_args;
4864
4865                completed_args = 1;
4866
4867                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4868
4869                /* retry if necessary */
4870                if (likely(xtra_sz)) goto restart_args;
4871        }
4872
4873        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4874
4875        ret = -EBADF;
4876
4877        f = fdget(fd);
4878        if (unlikely(f.file == NULL)) {
4879                DPRINT(("invalid fd %d\n", fd));
4880                goto error_args;
4881        }
4882        if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4883                DPRINT(("fd %d not related to perfmon\n", fd));
4884                goto error_args;
4885        }
4886
4887        ctx = f.file->private_data;
4888        if (unlikely(ctx == NULL)) {
4889                DPRINT(("no context for fd %d\n", fd));
4890                goto error_args;
4891        }
4892        prefetch(&ctx->ctx_state);
4893
4894        PROTECT_CTX(ctx, flags);
4895
4896        /*
4897         * check task is stopped
4898         */
4899        ret = pfm_check_task_state(ctx, cmd, flags);
4900        if (unlikely(ret)) goto abort_locked;
4901
4902skip_fd:
4903        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4904
4905        call_made = 1;
4906
4907abort_locked:
4908        if (likely(ctx)) {
4909                DPRINT(("context unlocked\n"));
4910                UNPROTECT_CTX(ctx, flags);
4911        }
4912
4913        /* copy argument back to user, if needed */
4914        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4915
4916error_args:
4917        if (f.file)
4918                fdput(f);
4919
4920        kfree(args_k);
4921
4922        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4923
4924        return ret;
4925}
4926
4927static void
4928pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4929{
4930        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4931        pfm_ovfl_ctrl_t rst_ctrl;
4932        int state;
4933        int ret = 0;
4934
4935        state = ctx->ctx_state;
4936        /*
4937         * Unlock sampling buffer and reset index atomically
4938         * XXX: not really needed when blocking
4939         */
4940        if (CTX_HAS_SMPL(ctx)) {
4941
4942                rst_ctrl.bits.mask_monitoring = 0;
4943                rst_ctrl.bits.reset_ovfl_pmds = 0;
4944
4945                if (state == PFM_CTX_LOADED)
4946                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4947                else
4948                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4949        } else {
4950                rst_ctrl.bits.mask_monitoring = 0;
4951                rst_ctrl.bits.reset_ovfl_pmds = 1;
4952        }
4953
4954        if (ret == 0) {
4955                if (rst_ctrl.bits.reset_ovfl_pmds) {
4956                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4957                }
4958                if (rst_ctrl.bits.mask_monitoring == 0) {
4959                        DPRINT(("resuming monitoring\n"));
4960                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4961                } else {
4962                        DPRINT(("stopping monitoring\n"));
4963                        //pfm_stop_monitoring(current, regs);
4964                }
4965                ctx->ctx_state = PFM_CTX_LOADED;
4966        }
4967}
4968
4969/*
4970 * context MUST BE LOCKED when calling
4971 * can only be called for current
4972 */
4973static void
4974pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4975{
4976        int ret;
4977
4978        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4979
4980        ret = pfm_context_unload(ctx, NULL, 0, regs);
4981        if (ret) {
4982                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4983        }
4984
4985        /*
4986         * and wakeup controlling task, indicating we are now disconnected
4987         */
4988        wake_up_interruptible(&ctx->ctx_zombieq);
4989
4990        /*
4991         * given that context is still locked, the controlling
4992         * task will only get access when we return from
4993         * pfm_handle_work().
4994         */
4995}
4996
4997static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4998
4999 /*
5000  * pfm_handle_work() can be called with interrupts enabled
5001  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5002  * call may sleep, therefore we must re-enable interrupts
5003  * to avoid deadlocks. It is safe to do so because this function
5004  * is called ONLY when returning to user level (pUStk=1), in which case
5005  * there is no risk of kernel stack overflow due to deep
5006  * interrupt nesting.
5007  */
5008void
5009pfm_handle_work(void)
5010{
5011        pfm_context_t *ctx;
5012        struct pt_regs *regs;
5013        unsigned long flags, dummy_flags;
5014        unsigned long ovfl_regs;
5015        unsigned int reason;
5016        int ret;
5017
5018        ctx = PFM_GET_CTX(current);
5019        if (ctx == NULL) {
5020                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5021                        task_pid_nr(current));
5022                return;
5023        }
5024
5025        PROTECT_CTX(ctx, flags);
5026
5027        PFM_SET_WORK_PENDING(current, 0);
5028
5029        regs = task_pt_regs(current);
5030
5031        /*
5032         * extract reason for being here and clear
5033         */
5034        reason = ctx->ctx_fl_trap_reason;
5035        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5036        ovfl_regs = ctx->ctx_ovfl_regs[0];
5037
5038        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5039
5040        /*
5041         * must be done before we check for simple-reset mode
5042         */
5043        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5044                goto do_zombie;
5045
5046        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5047        if (reason == PFM_TRAP_REASON_RESET)
5048                goto skip_blocking;
5049
5050        /*
5051         * restore interrupt mask to what it was on entry.
5052         * Could be enabled/diasbled.
5053         */
5054        UNPROTECT_CTX(ctx, flags);
5055
5056        /*
5057         * force interrupt enable because of down_interruptible()
5058         */
5059        local_irq_enable();
5060
5061        DPRINT(("before block sleeping\n"));
5062
5063        /*
5064         * may go through without blocking on SMP systems
5065         * if restart has been received already by the time we call down()
5066         */
5067        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5068
5069        DPRINT(("after block sleeping ret=%d\n", ret));
5070
5071        /*
5072         * lock context and mask interrupts again
5073         * We save flags into a dummy because we may have
5074         * altered interrupts mask compared to entry in this
5075         * function.
5076         */
5077        PROTECT_CTX(ctx, dummy_flags);
5078
5079        /*
5080         * we need to read the ovfl_regs only after wake-up
5081         * because we may have had pfm_write_pmds() in between
5082         * and that can changed PMD values and therefore 
5083         * ovfl_regs is reset for these new PMD values.
5084         */
5085        ovfl_regs = ctx->ctx_ovfl_regs[0];
5086
5087        if (ctx->ctx_fl_going_zombie) {
5088do_zombie:
5089                DPRINT(("context is zombie, bailing out\n"));
5090                pfm_context_force_terminate(ctx, regs);
5091                goto nothing_to_do;
5092        }
5093        /*
5094         * in case of interruption of down() we don't restart anything
5095         */
5096        if (ret < 0)
5097                goto nothing_to_do;
5098
5099skip_blocking:
5100        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5101        ctx->ctx_ovfl_regs[0] = 0UL;
5102
5103nothing_to_do:
5104        /*
5105         * restore flags as they were upon entry
5106         */
5107        UNPROTECT_CTX(ctx, flags);
5108}
5109
5110static int
5111pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5112{
5113        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5114                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5115                return 0;
5116        }
5117
5118        DPRINT(("waking up somebody\n"));
5119
5120        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5121
5122        /*
5123         * safe, we are not in intr handler, nor in ctxsw when
5124         * we come here
5125         */
5126        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5127
5128        return 0;
5129}
5130
5131static int
5132pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5133{
5134        pfm_msg_t *msg = NULL;
5135
5136        if (ctx->ctx_fl_no_msg == 0) {
5137                msg = pfm_get_new_msg(ctx);
5138                if (msg == NULL) {
5139                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5140                        return -1;
5141                }
5142
5143                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5144                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5145                msg->pfm_ovfl_msg.msg_active_set   = 0;
5146                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5147                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5148                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5149                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5150                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5151        }
5152
5153        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5154                msg,
5155                ctx->ctx_fl_no_msg,
5156                ctx->ctx_fd,
5157                ovfl_pmds));
5158
5159        return pfm_notify_user(ctx, msg);
5160}
5161
5162static int
5163pfm_end_notify_user(pfm_context_t *ctx)
5164{
5165        pfm_msg_t *msg;
5166
5167        msg = pfm_get_new_msg(ctx);
5168        if (msg == NULL) {
5169                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5170                return -1;
5171        }
5172        /* no leak */
5173        memset(msg, 0, sizeof(*msg));
5174
5175        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5176        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5177        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5178
5179        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5180                msg,
5181                ctx->ctx_fl_no_msg,
5182                ctx->ctx_fd));
5183
5184        return pfm_notify_user(ctx, msg);
5185}
5186
5187/*
5188 * main overflow processing routine.
5189 * it can be called from the interrupt path or explicitly during the context switch code
5190 */
5191static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5192                                unsigned long pmc0, struct pt_regs *regs)
5193{
5194        pfm_ovfl_arg_t *ovfl_arg;
5195        unsigned long mask;
5196        unsigned long old_val, ovfl_val, new_val;
5197        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5198        unsigned long tstamp;
5199        pfm_ovfl_ctrl_t ovfl_ctrl;
5200        unsigned int i, has_smpl;
5201        int must_notify = 0;
5202
5203        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5204
5205        /*
5206         * sanity test. Should never happen
5207         */
5208        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5209
5210        tstamp   = ia64_get_itc();
5211        mask     = pmc0 >> PMU_FIRST_COUNTER;
5212        ovfl_val = pmu_conf->ovfl_val;
5213        has_smpl = CTX_HAS_SMPL(ctx);
5214
5215        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5216                     "used_pmds=0x%lx\n",
5217                        pmc0,
5218                        task ? task_pid_nr(task): -1,
5219                        (regs ? regs->cr_iip : 0),
5220                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5221                        ctx->ctx_used_pmds[0]));
5222
5223
5224        /*
5225         * first we update the virtual counters
5226         * assume there was a prior ia64_srlz_d() issued
5227         */
5228        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5229
5230                /* skip pmd which did not overflow */
5231                if ((mask & 0x1) == 0) continue;
5232
5233                /*
5234                 * Note that the pmd is not necessarily 0 at this point as qualified events
5235                 * may have happened before the PMU was frozen. The residual count is not
5236                 * taken into consideration here but will be with any read of the pmd via
5237                 * pfm_read_pmds().
5238                 */
5239                old_val              = new_val = ctx->ctx_pmds[i].val;
5240                new_val             += 1 + ovfl_val;
5241                ctx->ctx_pmds[i].val = new_val;
5242
5243                /*
5244                 * check for overflow condition
5245                 */
5246                if (likely(old_val > new_val)) {
5247                        ovfl_pmds |= 1UL << i;
5248                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5249                }
5250
5251                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5252                        i,
5253                        new_val,
5254                        old_val,
5255                        ia64_get_pmd(i) & ovfl_val,
5256                        ovfl_pmds,
5257                        ovfl_notify));
5258        }
5259
5260        /*
5261         * there was no 64-bit overflow, nothing else to do
5262         */
5263        if (ovfl_pmds == 0UL) return;
5264
5265        /* 
5266         * reset all control bits
5267         */
5268        ovfl_ctrl.val = 0;
5269        reset_pmds    = 0UL;
5270
5271        /*
5272         * if a sampling format module exists, then we "cache" the overflow by 
5273         * calling the module's handler() routine.
5274         */
5275        if (has_smpl) {
5276                unsigned long start_cycles, end_cycles;
5277                unsigned long pmd_mask;
5278                int j, k, ret = 0;
5279                int this_cpu = smp_processor_id();
5280
5281                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5282                ovfl_arg = &ctx->ctx_ovfl_arg;
5283
5284                prefetch(ctx->ctx_smpl_hdr);
5285
5286                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5287
5288                        mask = 1UL << i;
5289
5290                        if ((pmd_mask & 0x1) == 0) continue;
5291
5292                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5293                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5294                        ovfl_arg->active_set    = 0;
5295                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5296                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5297
5298                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5299                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5300                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5301
5302                        /*
5303                         * copy values of pmds of interest. Sampling format may copy them
5304                         * into sampling buffer.
5305                         */
5306                        if (smpl_pmds) {
5307                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5308                                        if ((smpl_pmds & 0x1) == 0) continue;
5309                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5310                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5311                                }
5312                        }
5313
5314                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5315
5316                        start_cycles = ia64_get_itc();
5317
5318                        /*
5319                         * call custom buffer format record (handler) routine
5320                         */
5321                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5322
5323                        end_cycles = ia64_get_itc();
5324
5325                        /*
5326                         * For those controls, we take the union because they have
5327                         * an all or nothing behavior.
5328                         */
5329                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5330                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5331                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5332                        /*
5333                         * build the bitmask of pmds to reset now
5334                         */
5335                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5336
5337                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5338                }
5339                /*
5340                 * when the module cannot handle the rest of the overflows, we abort right here
5341                 */
5342                if (ret && pmd_mask) {
5343                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5344                                pmd_mask<<PMU_FIRST_COUNTER));
5345                }
5346                /*
5347                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5348                 */
5349                ovfl_pmds &= ~reset_pmds;
5350        } else {
5351                /*
5352                 * when no sampling module is used, then the default
5353                 * is to notify on overflow if requested by user
5354                 */
5355                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5356                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5357                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5358                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5359                /*
5360                 * if needed, we reset all overflowed pmds
5361                 */
5362                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5363        }
5364
5365        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5366
5367        /*
5368         * reset the requested PMD registers using the short reset values
5369         */
5370        if (reset_pmds) {
5371                unsigned long bm = reset_pmds;
5372                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5373        }
5374
5375        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5376                /*
5377                 * keep track of what to reset when unblocking
5378                 */
5379                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5380
5381                /*
5382                 * check for blocking context 
5383                 */
5384                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5385
5386                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5387
5388                        /*
5389                         * set the perfmon specific checking pending work for the task
5390                         */
5391                        PFM_SET_WORK_PENDING(task, 1);
5392
5393                        /*
5394                         * when coming from ctxsw, current still points to the
5395                         * previous task, therefore we must work with task and not current.
5396                         */
5397                        set_notify_resume(task);
5398                }
5399                /*
5400                 * defer until state is changed (shorten spin window). the context is locked
5401                 * anyway, so the signal receiver would come spin for nothing.
5402                 */
5403                must_notify = 1;
5404        }
5405
5406        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5407                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5408                        PFM_GET_WORK_PENDING(task),
5409                        ctx->ctx_fl_trap_reason,
5410                        ovfl_pmds,
5411                        ovfl_notify,
5412                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5413        /*
5414         * in case monitoring must be stopped, we toggle the psr bits
5415         */
5416        if (ovfl_ctrl.bits.mask_monitoring) {
5417                pfm_mask_monitoring(task);
5418                ctx->ctx_state = PFM_CTX_MASKED;
5419                ctx->ctx_fl_can_restart = 1;
5420        }
5421
5422        /*
5423         * send notification now
5424         */
5425        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5426
5427        return;
5428
5429sanity_check:
5430        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5431                        smp_processor_id(),
5432                        task ? task_pid_nr(task) : -1,
5433                        pmc0);
5434        return;
5435
5436stop_monitoring:
5437        /*
5438         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5439         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5440         * come here as zombie only if the task is the current task. In which case, we
5441         * can access the PMU  hardware directly.
5442         *
5443         * Note that zombies do have PM_VALID set. So here we do the minimal.
5444         *
5445         * In case the context was zombified it could not be reclaimed at the time
5446         * the monitoring program exited. At this point, the PMU reservation has been
5447         * returned, the sampiing buffer has been freed. We must convert this call
5448         * into a spurious interrupt. However, we must also avoid infinite overflows
5449         * by stopping monitoring for this task. We can only come here for a per-task
5450         * context. All we need to do is to stop monitoring using the psr bits which
5451         * are always task private. By re-enabling secure montioring, we ensure that
5452         * the monitored task will not be able to re-activate monitoring.
5453         * The task will eventually be context switched out, at which point the context
5454         * will be reclaimed (that includes releasing ownership of the PMU).
5455         *
5456         * So there might be a window of time where the number of per-task session is zero
5457         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5458         * context. This is safe because if a per-task session comes in, it will push this one
5459         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5460         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5461         * also push our zombie context out.
5462         *
5463         * Overall pretty hairy stuff....
5464         */
5465        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5466        pfm_clear_psr_up();
5467        ia64_psr(regs)->up = 0;
5468        ia64_psr(regs)->sp = 1;
5469        return;
5470}
5471
5472static int
5473pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5474{
5475        struct task_struct *task;
5476        pfm_context_t *ctx;
5477        unsigned long flags;
5478        u64 pmc0;
5479        int this_cpu = smp_processor_id();
5480        int retval = 0;
5481
5482        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5483
5484        /*
5485         * srlz.d done before arriving here
5486         */
5487        pmc0 = ia64_get_pmc(0);
5488
5489        task = GET_PMU_OWNER();
5490        ctx  = GET_PMU_CTX();
5491
5492        /*
5493         * if we have some pending bits set
5494         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5495         */
5496        if (PMC0_HAS_OVFL(pmc0) && task) {
5497                /*
5498                 * we assume that pmc0.fr is always set here
5499                 */
5500
5501                /* sanity check */
5502                if (!ctx) goto report_spurious1;
5503
5504                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5505                        goto report_spurious2;
5506
5507                PROTECT_CTX_NOPRINT(ctx, flags);
5508
5509                pfm_overflow_handler(task, ctx, pmc0, regs);
5510
5511                UNPROTECT_CTX_NOPRINT(ctx, flags);
5512
5513        } else {
5514                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5515                retval = -1;
5516        }
5517        /*
5518         * keep it unfrozen at all times
5519         */
5520        pfm_unfreeze_pmu();
5521
5522        return retval;
5523
5524report_spurious1:
5525        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5526                this_cpu, task_pid_nr(task));
5527        pfm_unfreeze_pmu();
5528        return -1;
5529report_spurious2:
5530        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5531                this_cpu, 
5532                task_pid_nr(task));
5533        pfm_unfreeze_pmu();
5534        return -1;
5535}
5536
5537static irqreturn_t
5538pfm_interrupt_handler(int irq, void *arg)
5539{
5540        unsigned long start_cycles, total_cycles;
5541        unsigned long min, max;
5542        int this_cpu;
5543        int ret;
5544        struct pt_regs *regs = get_irq_regs();
5545
5546        this_cpu = get_cpu();
5547        if (likely(!pfm_alt_intr_handler)) {
5548                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5549                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5550
5551                start_cycles = ia64_get_itc();
5552
5553                ret = pfm_do_interrupt_handler(arg, regs);
5554
5555                total_cycles = ia64_get_itc();
5556
5557                /*
5558                 * don't measure spurious interrupts
5559                 */
5560                if (likely(ret == 0)) {
5561                        total_cycles -= start_cycles;
5562
5563                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5564                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5565
5566                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5567                }
5568        }
5569        else {
5570                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5571        }
5572
5573        put_cpu();
5574        return IRQ_HANDLED;
5575}
5576
5577/*
5578 * /proc/perfmon interface, for debug only
5579 */
5580
5581#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5582
5583static void *
5584pfm_proc_start(struct seq_file *m, loff_t *pos)
5585{
5586        if (*pos == 0) {
5587                return PFM_PROC_SHOW_HEADER;
5588        }
5589
5590        while (*pos <= nr_cpu_ids) {
5591                if (cpu_online(*pos - 1)) {
5592                        return (void *)*pos;
5593                }
5594                ++*pos;
5595        }
5596        return NULL;
5597}
5598
5599static void *
5600pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5601{
5602        ++*pos;
5603        return pfm_proc_start(m, pos);
5604}
5605
5606static void
5607pfm_proc_stop(struct seq_file *m, void *v)
5608{
5609}
5610
5611static void
5612pfm_proc_show_header(struct seq_file *m)
5613{
5614        struct list_head * pos;
5615        pfm_buffer_fmt_t * entry;
5616        unsigned long flags;
5617
5618        seq_printf(m,
5619                "perfmon version           : %u.%u\n"
5620                "model                     : %s\n"
5621                "fastctxsw                 : %s\n"
5622                "expert mode               : %s\n"
5623                "ovfl_mask                 : 0x%lx\n"
5624                "PMU flags                 : 0x%x\n",
5625                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5626                pmu_conf->pmu_name,
5627                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5628                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5629                pmu_conf->ovfl_val,
5630                pmu_conf->flags);
5631
5632        LOCK_PFS(flags);
5633
5634        seq_printf(m,
5635                "proc_sessions             : %u\n"
5636                "sys_sessions              : %u\n"
5637                "sys_use_dbregs            : %u\n"
5638                "ptrace_use_dbregs         : %u\n",
5639                pfm_sessions.pfs_task_sessions,
5640                pfm_sessions.pfs_sys_sessions,
5641                pfm_sessions.pfs_sys_use_dbregs,
5642                pfm_sessions.pfs_ptrace_use_dbregs);
5643
5644        UNLOCK_PFS(flags);
5645
5646        spin_lock(&pfm_buffer_fmt_lock);
5647
5648        list_for_each(pos, &pfm_buffer_fmt_list) {
5649                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5650                seq_printf(m, "format                    : %16phD %s\n",
5651                           entry->fmt_uuid, entry->fmt_name);
5652        }
5653        spin_unlock(&pfm_buffer_fmt_lock);
5654
5655}
5656
5657static int
5658pfm_proc_show(struct seq_file *m, void *v)
5659{
5660        unsigned long psr;
5661        unsigned int i;
5662        int cpu;
5663
5664        if (v == PFM_PROC_SHOW_HEADER) {
5665                pfm_proc_show_header(m);
5666                return 0;
5667        }
5668
5669        /* show info for CPU (v - 1) */
5670
5671        cpu = (long)v - 1;
5672        seq_printf(m,
5673                "CPU%-2d overflow intrs      : %lu\n"
5674                "CPU%-2d overflow cycles     : %lu\n"
5675                "CPU%-2d overflow min        : %lu\n"
5676                "CPU%-2d overflow max        : %lu\n"
5677                "CPU%-2d smpl handler calls  : %lu\n"
5678                "CPU%-2d smpl handler cycles : %lu\n"
5679                "CPU%-2d spurious intrs      : %lu\n"
5680                "CPU%-2d replay   intrs      : %lu\n"
5681                "CPU%-2d syst_wide           : %d\n"
5682                "CPU%-2d dcr_pp              : %d\n"
5683                "CPU%-2d exclude idle        : %d\n"
5684                "CPU%-2d owner               : %d\n"
5685                "CPU%-2d context             : %p\n"
5686                "CPU%-2d activations         : %lu\n",
5687                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5688                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5689                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5690                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5691                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5692                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5693                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5694                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5695                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5696                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5697                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5698                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5699                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5700                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5701
5702        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5703
5704                psr = pfm_get_psr();
5705
5706                ia64_srlz_d();
5707
5708                seq_printf(m, 
5709                        "CPU%-2d psr                 : 0x%lx\n"
5710                        "CPU%-2d pmc0                : 0x%lx\n", 
5711                        cpu, psr,
5712                        cpu, ia64_get_pmc(0));
5713
5714                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5715                        if (PMC_IS_COUNTING(i) == 0) continue;
5716                        seq_printf(m, 
5717                                "CPU%-2d pmc%u                : 0x%lx\n"
5718                                "CPU%-2d pmd%u                : 0x%lx\n", 
5719                                cpu, i, ia64_get_pmc(i),
5720                                cpu, i, ia64_get_pmd(i));
5721                }
5722        }
5723        return 0;
5724}
5725
5726const struct seq_operations pfm_seq_ops = {
5727        .start =        pfm_proc_start,
5728        .next =         pfm_proc_next,
5729        .stop =         pfm_proc_stop,
5730        .show =         pfm_proc_show
5731};
5732
5733static int
5734pfm_proc_open(struct inode *inode, struct file *file)
5735{
5736        return seq_open(file, &pfm_seq_ops);
5737}
5738
5739
5740/*
5741 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5742 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5743 * is active or inactive based on mode. We must rely on the value in
5744 * local_cpu_data->pfm_syst_info
5745 */
5746void
5747pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5748{
5749        struct pt_regs *regs;
5750        unsigned long dcr;
5751        unsigned long dcr_pp;
5752
5753        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5754
5755        /*
5756         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5757         * on every CPU, so we can rely on the pid to identify the idle task.
5758         */
5759        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5760                regs = task_pt_regs(task);
5761                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5762                return;
5763        }
5764        /*
5765         * if monitoring has started
5766         */
5767        if (dcr_pp) {
5768                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5769                /*
5770                 * context switching in?
5771                 */
5772                if (is_ctxswin) {
5773                        /* mask monitoring for the idle task */
5774                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5775                        pfm_clear_psr_pp();
5776                        ia64_srlz_i();
5777                        return;
5778                }
5779                /*
5780                 * context switching out
5781                 * restore monitoring for next task
5782                 *
5783                 * Due to inlining this odd if-then-else construction generates
5784                 * better code.
5785                 */
5786                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5787                pfm_set_psr_pp();
5788                ia64_srlz_i();
5789        }
5790}
5791
5792#ifdef CONFIG_SMP
5793
5794static void
5795pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5796{
5797        struct task_struct *task = ctx->ctx_task;
5798
5799        ia64_psr(regs)->up = 0;
5800        ia64_psr(regs)->sp = 1;
5801
5802        if (GET_PMU_OWNER() == task) {
5803                DPRINT(("cleared ownership for [%d]\n",
5804                                        task_pid_nr(ctx->ctx_task)));
5805                SET_PMU_OWNER(NULL, NULL);
5806        }
5807
5808        /*
5809         * disconnect the task from the context and vice-versa
5810         */
5811        PFM_SET_WORK_PENDING(task, 0);
5812
5813        task->thread.pfm_context  = NULL;
5814        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5815
5816        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5817}
5818
5819
5820/*
5821 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5822 */
5823void
5824pfm_save_regs(struct task_struct *task)
5825{
5826        pfm_context_t *ctx;
5827        unsigned long flags;
5828        u64 psr;
5829
5830
5831        ctx = PFM_GET_CTX(task);
5832        if (ctx == NULL) return;
5833
5834        /*
5835         * we always come here with interrupts ALREADY disabled by
5836         * the scheduler. So we simply need to protect against concurrent
5837         * access, not CPU concurrency.
5838         */
5839        flags = pfm_protect_ctx_ctxsw(ctx);
5840
5841        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5842                struct pt_regs *regs = task_pt_regs(task);
5843
5844                pfm_clear_psr_up();
5845
5846                pfm_force_cleanup(ctx, regs);
5847
5848                BUG_ON(ctx->ctx_smpl_hdr);
5849
5850                pfm_unprotect_ctx_ctxsw(ctx, flags);
5851
5852                pfm_context_free(ctx);
5853                return;
5854        }
5855
5856        /*
5857         * save current PSR: needed because we modify it
5858         */
5859        ia64_srlz_d();
5860        psr = pfm_get_psr();
5861
5862        BUG_ON(psr & (IA64_PSR_I));
5863
5864        /*
5865         * stop monitoring:
5866         * This is the last instruction which may generate an overflow
5867         *
5868         * We do not need to set psr.sp because, it is irrelevant in kernel.
5869         * It will be restored from ipsr when going back to user level
5870         */
5871        pfm_clear_psr_up();
5872
5873        /*
5874         * keep a copy of psr.up (for reload)
5875         */
5876        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5877
5878        /*
5879         * release ownership of this PMU.
5880         * PM interrupts are masked, so nothing
5881         * can happen.
5882         */
5883        SET_PMU_OWNER(NULL, NULL);
5884
5885        /*
5886         * we systematically save the PMD as we have no
5887         * guarantee we will be schedule at that same
5888         * CPU again.
5889         */
5890        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5891
5892        /*
5893         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5894         * we will need it on the restore path to check
5895         * for pending overflow.
5896         */
5897        ctx->th_pmcs[0] = ia64_get_pmc(0);
5898
5899        /*
5900         * unfreeze PMU if had pending overflows
5901         */
5902        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5903
5904        /*
5905         * finally, allow context access.
5906         * interrupts will still be masked after this call.
5907         */
5908        pfm_unprotect_ctx_ctxsw(ctx, flags);
5909}
5910
5911#else /* !CONFIG_SMP */
5912void
5913pfm_save_regs(struct task_struct *task)
5914{
5915        pfm_context_t *ctx;
5916        u64 psr;
5917
5918        ctx = PFM_GET_CTX(task);
5919        if (ctx == NULL) return;
5920
5921        /*
5922         * save current PSR: needed because we modify it
5923         */
5924        psr = pfm_get_psr();
5925
5926        BUG_ON(psr & (IA64_PSR_I));
5927
5928        /*
5929         * stop monitoring:
5930         * This is the last instruction which may generate an overflow
5931         *
5932         * We do not need to set psr.sp because, it is irrelevant in kernel.
5933         * It will be restored from ipsr when going back to user level
5934         */
5935        pfm_clear_psr_up();
5936
5937        /*
5938         * keep a copy of psr.up (for reload)
5939         */
5940        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5941}
5942
5943static void
5944pfm_lazy_save_regs (struct task_struct *task)
5945{
5946        pfm_context_t *ctx;
5947        unsigned long flags;
5948
5949        { u64 psr  = pfm_get_psr();
5950          BUG_ON(psr & IA64_PSR_UP);
5951        }
5952
5953        ctx = PFM_GET_CTX(task);
5954
5955        /*
5956         * we need to mask PMU overflow here to
5957         * make sure that we maintain pmc0 until
5958         * we save it. overflow interrupts are
5959         * treated as spurious if there is no
5960         * owner.
5961         *
5962         * XXX: I don't think this is necessary
5963         */
5964        PROTECT_CTX(ctx,flags);
5965
5966        /*
5967         * release ownership of this PMU.
5968         * must be done before we save the registers.
5969         *
5970         * after this call any PMU interrupt is treated
5971         * as spurious.
5972         */
5973        SET_PMU_OWNER(NULL, NULL);
5974
5975        /*
5976         * save all the pmds we use
5977         */
5978        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5979
5980        /*
5981         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5982         * it is needed to check for pended overflow
5983         * on the restore path
5984         */
5985        ctx->th_pmcs[0] = ia64_get_pmc(0);
5986
5987        /*
5988         * unfreeze PMU if had pending overflows
5989         */
5990        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5991
5992        /*
5993         * now get can unmask PMU interrupts, they will
5994         * be treated as purely spurious and we will not
5995         * lose any information
5996         */
5997        UNPROTECT_CTX(ctx,flags);
5998}
5999#endif /* CONFIG_SMP */
6000
6001#ifdef CONFIG_SMP
6002/*
6003 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6004 */
6005void
6006pfm_load_regs (struct task_struct *task)
6007{
6008        pfm_context_t *ctx;
6009        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6010        unsigned long flags;
6011        u64 psr, psr_up;
6012        int need_irq_resend;
6013
6014        ctx = PFM_GET_CTX(task);
6015        if (unlikely(ctx == NULL)) return;
6016
6017        BUG_ON(GET_PMU_OWNER());
6018
6019        /*
6020         * possible on unload
6021         */
6022        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6023
6024        /*
6025         * we always come here with interrupts ALREADY disabled by
6026         * the scheduler. So we simply need to protect against concurrent
6027         * access, not CPU concurrency.
6028         */
6029        flags = pfm_protect_ctx_ctxsw(ctx);
6030        psr   = pfm_get_psr();
6031
6032        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6033
6034        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6035        BUG_ON(psr & IA64_PSR_I);
6036
6037        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6038                struct pt_regs *regs = task_pt_regs(task);
6039
6040                BUG_ON(ctx->ctx_smpl_hdr);
6041
6042                pfm_force_cleanup(ctx, regs);
6043
6044                pfm_unprotect_ctx_ctxsw(ctx, flags);
6045
6046                /*
6047                 * this one (kmalloc'ed) is fine with interrupts disabled
6048                 */
6049                pfm_context_free(ctx);
6050
6051                return;
6052        }
6053
6054        /*
6055         * we restore ALL the debug registers to avoid picking up
6056         * stale state.
6057         */
6058        if (ctx->ctx_fl_using_dbreg) {
6059                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6060                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6061        }
6062        /*
6063         * retrieve saved psr.up
6064         */
6065        psr_up = ctx->ctx_saved_psr_up;
6066
6067        /*
6068         * if we were the last user of the PMU on that CPU,
6069         * then nothing to do except restore psr
6070         */
6071        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6072
6073                /*
6074                 * retrieve partial reload masks (due to user modifications)
6075                 */
6076                pmc_mask = ctx->ctx_reload_pmcs[0];
6077                pmd_mask = ctx->ctx_reload_pmds[0];
6078
6079        } else {
6080                /*
6081                 * To avoid leaking information to the user level when psr.sp=0,
6082                 * we must reload ALL implemented pmds (even the ones we don't use).
6083                 * In the kernel we only allow PFM_READ_PMDS on registers which
6084                 * we initialized or requested (sampling) so there is no risk there.
6085                 */
6086                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6087
6088                /*
6089                 * ALL accessible PMCs are systematically reloaded, unused registers
6090                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6091                 * up stale configuration.
6092                 *
6093                 * PMC0 is never in the mask. It is always restored separately.
6094                 */
6095                pmc_mask = ctx->ctx_all_pmcs[0];
6096        }
6097        /*
6098         * when context is MASKED, we will restore PMC with plm=0
6099         * and PMD with stale information, but that's ok, nothing
6100         * will be captured.
6101         *
6102         * XXX: optimize here
6103         */
6104        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6105        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6106
6107        /*
6108         * check for pending overflow at the time the state
6109         * was saved.
6110         */
6111        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6112                /*
6113                 * reload pmc0 with the overflow information
6114                 * On McKinley PMU, this will trigger a PMU interrupt
6115                 */
6116                ia64_set_pmc(0, ctx->th_pmcs[0]);
6117                ia64_srlz_d();
6118                ctx->th_pmcs[0] = 0UL;
6119
6120                /*
6121                 * will replay the PMU interrupt
6122                 */
6123                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6124
6125                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6126        }
6127
6128        /*
6129         * we just did a reload, so we reset the partial reload fields
6130         */
6131        ctx->ctx_reload_pmcs[0] = 0UL;
6132        ctx->ctx_reload_pmds[0] = 0UL;
6133
6134        SET_LAST_CPU(ctx, smp_processor_id());
6135
6136        /*
6137         * dump activation value for this PMU
6138         */
6139        INC_ACTIVATION();
6140        /*
6141         * record current activation for this context
6142         */
6143        SET_ACTIVATION(ctx);
6144
6145        /*
6146         * establish new ownership. 
6147         */
6148        SET_PMU_OWNER(task, ctx);
6149
6150        /*
6151         * restore the psr.up bit. measurement
6152         * is active again.
6153         * no PMU interrupt can happen at this point
6154         * because we still have interrupts disabled.
6155         */
6156        if (likely(psr_up)) pfm_set_psr_up();
6157
6158        /*
6159         * allow concurrent access to context
6160         */
6161        pfm_unprotect_ctx_ctxsw(ctx, flags);
6162}
6163#else /*  !CONFIG_SMP */
6164/*
6165 * reload PMU state for UP kernels
6166 * in 2.5 we come here with interrupts disabled
6167 */
6168void
6169pfm_load_regs (struct task_struct *task)
6170{
6171        pfm_context_t *ctx;
6172        struct task_struct *owner;
6173        unsigned long pmd_mask, pmc_mask;
6174        u64 psr, psr_up;
6175        int need_irq_resend;
6176
6177        owner = GET_PMU_OWNER();
6178        ctx   = PFM_GET_CTX(task);
6179        psr   = pfm_get_psr();
6180
6181        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6182        BUG_ON(psr & IA64_PSR_I);
6183
6184        /*
6185         * we restore ALL the debug registers to avoid picking up
6186         * stale state.
6187         *
6188         * This must be done even when the task is still the owner
6189         * as the registers may have been modified via ptrace()
6190         * (not perfmon) by the previous task.
6191         */
6192        if (ctx->ctx_fl_using_dbreg) {
6193                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6194                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6195        }
6196
6197        /*
6198         * retrieved saved psr.up
6199         */
6200        psr_up = ctx->ctx_saved_psr_up;
6201        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6202
6203        /*
6204         * short path, our state is still there, just
6205         * need to restore psr and we go
6206         *
6207         * we do not touch either PMC nor PMD. the psr is not touched
6208         * by the overflow_handler. So we are safe w.r.t. to interrupt
6209         * concurrency even without interrupt masking.
6210         */
6211        if (likely(owner == task)) {
6212                if (likely(psr_up)) pfm_set_psr_up();
6213                return;
6214        }
6215
6216        /*
6217         * someone else is still using the PMU, first push it out and
6218         * then we'll be able to install our stuff !
6219         *
6220         * Upon return, there will be no owner for the current PMU
6221         */
6222        if (owner) pfm_lazy_save_regs(owner);
6223
6224        /*
6225         * To avoid leaking information to the user level when psr.sp=0,
6226         * we must reload ALL implemented pmds (even the ones we don't use).
6227         * In the kernel we only allow PFM_READ_PMDS on registers which
6228         * we initialized or requested (sampling) so there is no risk there.
6229         */
6230        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6231
6232        /*
6233         * ALL accessible PMCs are systematically reloaded, unused registers
6234         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6235         * up stale configuration.
6236         *
6237         * PMC0 is never in the mask. It is always restored separately
6238         */
6239        pmc_mask = ctx->ctx_all_pmcs[0];
6240
6241        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6242        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6243
6244        /*
6245         * check for pending overflow at the time the state
6246         * was saved.
6247         */
6248        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6249                /*
6250                 * reload pmc0 with the overflow information
6251                 * On McKinley PMU, this will trigger a PMU interrupt
6252                 */
6253                ia64_set_pmc(0, ctx->th_pmcs[0]);
6254                ia64_srlz_d();
6255
6256                ctx->th_pmcs[0] = 0UL;
6257
6258                /*
6259                 * will replay the PMU interrupt
6260                 */
6261                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6262
6263                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6264        }
6265
6266        /*
6267         * establish new ownership. 
6268         */
6269        SET_PMU_OWNER(task, ctx);
6270
6271        /*
6272         * restore the psr.up bit. measurement
6273         * is active again.
6274         * no PMU interrupt can happen at this point
6275         * because we still have interrupts disabled.
6276         */
6277        if (likely(psr_up)) pfm_set_psr_up();
6278}
6279#endif /* CONFIG_SMP */
6280
6281/*
6282 * this function assumes monitoring is stopped
6283 */
6284static void
6285pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6286{
6287        u64 pmc0;
6288        unsigned long mask2, val, pmd_val, ovfl_val;
6289        int i, can_access_pmu = 0;
6290        int is_self;
6291
6292        /*
6293         * is the caller the task being monitored (or which initiated the
6294         * session for system wide measurements)
6295         */
6296        is_self = ctx->ctx_task == task ? 1 : 0;
6297
6298        /*
6299         * can access PMU is task is the owner of the PMU state on the current CPU
6300         * or if we are running on the CPU bound to the context in system-wide mode
6301         * (that is not necessarily the task the context is attached to in this mode).
6302         * In system-wide we always have can_access_pmu true because a task running on an
6303         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6304         */
6305        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6306        if (can_access_pmu) {
6307                /*
6308                 * Mark the PMU as not owned
6309                 * This will cause the interrupt handler to do nothing in case an overflow
6310                 * interrupt was in-flight
6311                 * This also guarantees that pmc0 will contain the final state
6312                 * It virtually gives us full control on overflow processing from that point
6313                 * on.
6314                 */
6315                SET_PMU_OWNER(NULL, NULL);
6316                DPRINT(("releasing ownership\n"));
6317
6318                /*
6319                 * read current overflow status:
6320                 *
6321                 * we are guaranteed to read the final stable state
6322                 */
6323                ia64_srlz_d();
6324                pmc0 = ia64_get_pmc(0); /* slow */
6325
6326                /*
6327                 * reset freeze bit, overflow status information destroyed
6328                 */
6329                pfm_unfreeze_pmu();
6330        } else {
6331                pmc0 = ctx->th_pmcs[0];
6332                /*
6333                 * clear whatever overflow status bits there were
6334                 */
6335                ctx->th_pmcs[0] = 0;
6336        }
6337        ovfl_val = pmu_conf->ovfl_val;
6338        /*
6339         * we save all the used pmds
6340         * we take care of overflows for counting PMDs
6341         *
6342         * XXX: sampling situation is not taken into account here
6343         */
6344        mask2 = ctx->ctx_used_pmds[0];
6345
6346        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6347
6348        for (i = 0; mask2; i++, mask2>>=1) {
6349
6350                /* skip non used pmds */
6351                if ((mask2 & 0x1) == 0) continue;
6352
6353                /*
6354                 * can access PMU always true in system wide mode
6355                 */
6356                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6357
6358                if (PMD_IS_COUNTING(i)) {
6359                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6360                                task_pid_nr(task),
6361                                i,
6362                                ctx->ctx_pmds[i].val,
6363                                val & ovfl_val));
6364
6365                        /*
6366                         * we rebuild the full 64 bit value of the counter
6367                         */
6368                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6369
6370                        /*
6371                         * now everything is in ctx_pmds[] and we need
6372                         * to clear the saved context from save_regs() such that
6373                         * pfm_read_pmds() gets the correct value
6374                         */
6375                        pmd_val = 0UL;
6376
6377                        /*
6378                         * take care of overflow inline
6379                         */
6380                        if (pmc0 & (1UL << i)) {
6381                                val += 1 + ovfl_val;
6382                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6383                        }
6384                }
6385
6386                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6387
6388                if (is_self) ctx->th_pmds[i] = pmd_val;
6389
6390                ctx->ctx_pmds[i].val = val;
6391        }
6392}
6393
6394static struct irqaction perfmon_irqaction = {
6395        .handler = pfm_interrupt_handler,
6396        .flags   = IRQF_DISABLED,
6397        .name    = "perfmon"
6398};
6399
6400static void
6401pfm_alt_save_pmu_state(void *data)
6402{
6403        struct pt_regs *regs;
6404
6405        regs = task_pt_regs(current);
6406
6407        DPRINT(("called\n"));
6408
6409        /*
6410         * should not be necessary but
6411         * let's take not risk
6412         */
6413        pfm_clear_psr_up();
6414        pfm_clear_psr_pp();
6415        ia64_psr(regs)->pp = 0;
6416
6417        /*
6418         * This call is required
6419         * May cause a spurious interrupt on some processors
6420         */
6421        pfm_freeze_pmu();
6422
6423        ia64_srlz_d();
6424}
6425
6426void
6427pfm_alt_restore_pmu_state(void *data)
6428{
6429        struct pt_regs *regs;
6430
6431        regs = task_pt_regs(current);
6432
6433        DPRINT(("called\n"));
6434
6435        /*
6436         * put PMU back in state expected
6437         * by perfmon
6438         */
6439        pfm_clear_psr_up();
6440        pfm_clear_psr_pp();
6441        ia64_psr(regs)->pp = 0;
6442
6443        /*
6444         * perfmon runs with PMU unfrozen at all times
6445         */
6446        pfm_unfreeze_pmu();
6447
6448        ia64_srlz_d();
6449}
6450
6451int
6452pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6453{
6454        int ret, i;
6455        int reserve_cpu;
6456
6457        /* some sanity checks */
6458        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6459
6460        /* do the easy test first */
6461        if (pfm_alt_intr_handler) return -EBUSY;
6462
6463        /* one at a time in the install or remove, just fail the others */
6464        if (!spin_trylock(&pfm_alt_install_check)) {
6465                return -EBUSY;
6466        }
6467
6468        /* reserve our session */
6469        for_each_online_cpu(reserve_cpu) {
6470                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6471                if (ret) goto cleanup_reserve;
6472        }
6473
6474        /* save the current system wide pmu states */
6475        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6476        if (ret) {
6477                DPRINT(("on_each_cpu() failed: %d\n", ret));
6478                goto cleanup_reserve;
6479        }
6480
6481        /* officially change to the alternate interrupt handler */
6482        pfm_alt_intr_handler = hdl;
6483
6484        spin_unlock(&pfm_alt_install_check);
6485
6486        return 0;
6487
6488cleanup_reserve:
6489        for_each_online_cpu(i) {
6490                /* don't unreserve more than we reserved */
6491                if (i >= reserve_cpu) break;
6492
6493                pfm_unreserve_session(NULL, 1, i);
6494        }
6495
6496        spin_unlock(&pfm_alt_install_check);
6497
6498        return ret;
6499}
6500EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6501
6502int
6503pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6504{
6505        int i;
6506        int ret;
6507
6508        if (hdl == NULL) return -EINVAL;
6509
6510        /* cannot remove someone else's handler! */
6511        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6512
6513        /* one at a time in the install or remove, just fail the others */
6514        if (!spin_trylock(&pfm_alt_install_check)) {
6515                return -EBUSY;
6516        }
6517
6518        pfm_alt_intr_handler = NULL;
6519
6520        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6521        if (ret) {
6522                DPRINT(("on_each_cpu() failed: %d\n", ret));
6523        }
6524
6525        for_each_online_cpu(i) {
6526                pfm_unreserve_session(NULL, 1, i);
6527        }
6528
6529        spin_unlock(&pfm_alt_install_check);
6530
6531        return 0;
6532}
6533EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6534
6535/*
6536 * perfmon initialization routine, called from the initcall() table
6537 */
6538static int init_pfm_fs(void);
6539
6540static int __init
6541pfm_probe_pmu(void)
6542{
6543        pmu_config_t **p;
6544        int family;
6545
6546        family = local_cpu_data->family;
6547        p      = pmu_confs;
6548
6549        while(*p) {
6550                if ((*p)->probe) {
6551                        if ((*p)->probe() == 0) goto found;
6552                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6553                        goto found;
6554                }
6555                p++;
6556        }
6557        return -1;
6558found:
6559        pmu_conf = *p;
6560        return 0;
6561}
6562
6563static const struct file_operations pfm_proc_fops = {
6564        .open           = pfm_proc_open,
6565        .read           = seq_read,
6566        .llseek         = seq_lseek,
6567        .release        = seq_release,
6568};
6569
6570int __init
6571pfm_init(void)
6572{
6573        unsigned int n, n_counters, i;
6574
6575        printk("perfmon: version %u.%u IRQ %u\n",
6576                PFM_VERSION_MAJ,
6577                PFM_VERSION_MIN,
6578                IA64_PERFMON_VECTOR);
6579
6580        if (pfm_probe_pmu()) {
6581                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6582                                local_cpu_data->family);
6583                return -ENODEV;
6584        }
6585
6586        /*
6587         * compute the number of implemented PMD/PMC from the
6588         * description tables
6589         */
6590        n = 0;
6591        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6592                if (PMC_IS_IMPL(i) == 0) continue;
6593                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6594                n++;
6595        }
6596        pmu_conf->num_pmcs = n;
6597
6598        n = 0; n_counters = 0;
6599        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6600                if (PMD_IS_IMPL(i) == 0) continue;
6601                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6602                n++;
6603                if (PMD_IS_COUNTING(i)) n_counters++;
6604        }
6605        pmu_conf->num_pmds      = n;
6606        pmu_conf->num_counters  = n_counters;
6607
6608        /*
6609         * sanity checks on the number of debug registers
6610         */
6611        if (pmu_conf->use_rr_dbregs) {
6612                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6613                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6614                        pmu_conf = NULL;
6615                        return -1;
6616                }
6617                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6618                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6619                        pmu_conf = NULL;
6620                        return -1;
6621                }
6622        }
6623
6624        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6625               pmu_conf->pmu_name,
6626               pmu_conf->num_pmcs,
6627               pmu_conf->num_pmds,
6628               pmu_conf->num_counters,
6629               ffz(pmu_conf->ovfl_val));
6630
6631        /* sanity check */
6632        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6633                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6634                pmu_conf = NULL;
6635                return -1;
6636        }
6637
6638        /*
6639         * create /proc/perfmon (mostly for debugging purposes)
6640         */
6641        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6642        if (perfmon_dir == NULL) {
6643                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6644                pmu_conf = NULL;
6645                return -1;
6646        }
6647
6648        /*
6649         * create /proc/sys/kernel/perfmon (for debugging purposes)
6650         */
6651        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6652
6653        /*
6654         * initialize all our spinlocks
6655         */
6656        spin_lock_init(&pfm_sessions.pfs_lock);
6657        spin_lock_init(&pfm_buffer_fmt_lock);
6658
6659        init_pfm_fs();
6660
6661        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6662
6663        return 0;
6664}
6665
6666__initcall(pfm_init);
6667
6668/*
6669 * this function is called before pfm_init()
6670 */
6671void
6672pfm_init_percpu (void)
6673{
6674        static int first_time=1;
6675        /*
6676         * make sure no measurement is active
6677         * (may inherit programmed PMCs from EFI).
6678         */
6679        pfm_clear_psr_pp();
6680        pfm_clear_psr_up();
6681
6682        /*
6683         * we run with the PMU not frozen at all times
6684         */
6685        pfm_unfreeze_pmu();
6686
6687        if (first_time) {
6688                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6689                first_time=0;
6690        }
6691
6692        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6693        ia64_srlz_d();
6694}
6695
6696/*
6697 * used for debug purposes only
6698 */
6699void
6700dump_pmu_state(const char *from)
6701{
6702        struct task_struct *task;
6703        struct pt_regs *regs;
6704        pfm_context_t *ctx;
6705        unsigned long psr, dcr, info, flags;
6706        int i, this_cpu;
6707
6708        local_irq_save(flags);
6709
6710        this_cpu = smp_processor_id();
6711        regs     = task_pt_regs(current);
6712        info     = PFM_CPUINFO_GET();
6713        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6714
6715        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6716                local_irq_restore(flags);
6717                return;
6718        }
6719
6720        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6721                this_cpu, 
6722                from, 
6723                task_pid_nr(current),
6724                regs->cr_iip,
6725                current->comm);
6726
6727        task = GET_PMU_OWNER();
6728        ctx  = GET_PMU_CTX();
6729
6730        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6731
6732        psr = pfm_get_psr();
6733
6734        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6735                this_cpu,
6736                ia64_get_pmc(0),
6737                psr & IA64_PSR_PP ? 1 : 0,
6738                psr & IA64_PSR_UP ? 1 : 0,
6739                dcr & IA64_DCR_PP ? 1 : 0,
6740                info,
6741                ia64_psr(regs)->up,
6742                ia64_psr(regs)->pp);
6743
6744        ia64_psr(regs)->up = 0;
6745        ia64_psr(regs)->pp = 0;
6746
6747        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6748                if (PMC_IS_IMPL(i) == 0) continue;
6749                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6750        }
6751
6752        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6753                if (PMD_IS_IMPL(i) == 0) continue;
6754                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6755        }
6756
6757        if (ctx) {
6758                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6759                                this_cpu,
6760                                ctx->ctx_state,
6761                                ctx->ctx_smpl_vaddr,
6762                                ctx->ctx_smpl_hdr,
6763                                ctx->ctx_msgq_head,
6764                                ctx->ctx_msgq_tail,
6765                                ctx->ctx_saved_psr_up);
6766        }
6767        local_irq_restore(flags);
6768}
6769
6770/*
6771 * called from process.c:copy_thread(). task is new child.
6772 */
6773void
6774pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6775{
6776        struct thread_struct *thread;
6777
6778        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6779
6780        thread = &task->thread;
6781
6782        /*
6783         * cut links inherited from parent (current)
6784         */
6785        thread->pfm_context = NULL;
6786
6787        PFM_SET_WORK_PENDING(task, 0);
6788
6789        /*
6790         * the psr bits are already set properly in copy_threads()
6791         */
6792}
6793#else  /* !CONFIG_PERFMON */
6794asmlinkage long
6795sys_perfmonctl (int fd, int cmd, void *arg, int count)
6796{
6797        return -ENOSYS;
6798}
6799#endif /* CONFIG_PERFMON */
6800