linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1/*
   2 * Initialize MMU support.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/init.h>
   9
  10#include <linux/bootmem.h>
  11#include <linux/efi.h>
  12#include <linux/elf.h>
  13#include <linux/memblock.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/module.h>
  17#include <linux/personality.h>
  18#include <linux/reboot.h>
  19#include <linux/slab.h>
  20#include <linux/swap.h>
  21#include <linux/proc_fs.h>
  22#include <linux/bitops.h>
  23#include <linux/kexec.h>
  24
  25#include <asm/dma.h>
  26#include <asm/io.h>
  27#include <asm/machvec.h>
  28#include <asm/numa.h>
  29#include <asm/patch.h>
  30#include <asm/pgalloc.h>
  31#include <asm/sal.h>
  32#include <asm/sections.h>
  33#include <asm/tlb.h>
  34#include <asm/uaccess.h>
  35#include <asm/unistd.h>
  36#include <asm/mca.h>
  37#include <asm/paravirt.h>
  38
  39extern void ia64_tlb_init (void);
  40
  41unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  42
  43#ifdef CONFIG_VIRTUAL_MEM_MAP
  44unsigned long VMALLOC_END = VMALLOC_END_INIT;
  45EXPORT_SYMBOL(VMALLOC_END);
  46struct page *vmem_map;
  47EXPORT_SYMBOL(vmem_map);
  48#endif
  49
  50struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  51EXPORT_SYMBOL(zero_page_memmap_ptr);
  52
  53void
  54__ia64_sync_icache_dcache (pte_t pte)
  55{
  56        unsigned long addr;
  57        struct page *page;
  58
  59        page = pte_page(pte);
  60        addr = (unsigned long) page_address(page);
  61
  62        if (test_bit(PG_arch_1, &page->flags))
  63                return;                         /* i-cache is already coherent with d-cache */
  64
  65        flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  66        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  67}
  68
  69/*
  70 * Since DMA is i-cache coherent, any (complete) pages that were written via
  71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  72 * flush them when they get mapped into an executable vm-area.
  73 */
  74void
  75dma_mark_clean(void *addr, size_t size)
  76{
  77        unsigned long pg_addr, end;
  78
  79        pg_addr = PAGE_ALIGN((unsigned long) addr);
  80        end = (unsigned long) addr + size;
  81        while (pg_addr + PAGE_SIZE <= end) {
  82                struct page *page = virt_to_page(pg_addr);
  83                set_bit(PG_arch_1, &page->flags);
  84                pg_addr += PAGE_SIZE;
  85        }
  86}
  87
  88inline void
  89ia64_set_rbs_bot (void)
  90{
  91        unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  92
  93        if (stack_size > MAX_USER_STACK_SIZE)
  94                stack_size = MAX_USER_STACK_SIZE;
  95        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  96}
  97
  98/*
  99 * This performs some platform-dependent address space initialization.
 100 * On IA-64, we want to setup the VM area for the register backing
 101 * store (which grows upwards) and install the gateway page which is
 102 * used for signal trampolines, etc.
 103 */
 104void
 105ia64_init_addr_space (void)
 106{
 107        struct vm_area_struct *vma;
 108
 109        ia64_set_rbs_bot();
 110
 111        /*
 112         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 113         * the problem.  When the process attempts to write to the register backing store
 114         * for the first time, it will get a SEGFAULT in this case.
 115         */
 116        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 117        if (vma) {
 118                INIT_LIST_HEAD(&vma->anon_vma_chain);
 119                vma->vm_mm = current->mm;
 120                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 121                vma->vm_end = vma->vm_start + PAGE_SIZE;
 122                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 123                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 124                down_write(&current->mm->mmap_sem);
 125                if (insert_vm_struct(current->mm, vma)) {
 126                        up_write(&current->mm->mmap_sem);
 127                        kmem_cache_free(vm_area_cachep, vma);
 128                        return;
 129                }
 130                up_write(&current->mm->mmap_sem);
 131        }
 132
 133        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 134        if (!(current->personality & MMAP_PAGE_ZERO)) {
 135                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 136                if (vma) {
 137                        INIT_LIST_HEAD(&vma->anon_vma_chain);
 138                        vma->vm_mm = current->mm;
 139                        vma->vm_end = PAGE_SIZE;
 140                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 141                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
 142                                        VM_DONTEXPAND | VM_DONTDUMP;
 143                        down_write(&current->mm->mmap_sem);
 144                        if (insert_vm_struct(current->mm, vma)) {
 145                                up_write(&current->mm->mmap_sem);
 146                                kmem_cache_free(vm_area_cachep, vma);
 147                                return;
 148                        }
 149                        up_write(&current->mm->mmap_sem);
 150                }
 151        }
 152}
 153
 154void
 155free_initmem (void)
 156{
 157        free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
 158                           -1, "unused kernel");
 159}
 160
 161void __init
 162free_initrd_mem (unsigned long start, unsigned long end)
 163{
 164        /*
 165         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 166         * Thus EFI and the kernel may have different page sizes. It is
 167         * therefore possible to have the initrd share the same page as
 168         * the end of the kernel (given current setup).
 169         *
 170         * To avoid freeing/using the wrong page (kernel sized) we:
 171         *      - align up the beginning of initrd
 172         *      - align down the end of initrd
 173         *
 174         *  |             |
 175         *  |=============| a000
 176         *  |             |
 177         *  |             |
 178         *  |             | 9000
 179         *  |/////////////|
 180         *  |/////////////|
 181         *  |=============| 8000
 182         *  |///INITRD////|
 183         *  |/////////////|
 184         *  |/////////////| 7000
 185         *  |             |
 186         *  |KKKKKKKKKKKKK|
 187         *  |=============| 6000
 188         *  |KKKKKKKKKKKKK|
 189         *  |KKKKKKKKKKKKK|
 190         *  K=kernel using 8KB pages
 191         *
 192         * In this example, we must free page 8000 ONLY. So we must align up
 193         * initrd_start and keep initrd_end as is.
 194         */
 195        start = PAGE_ALIGN(start);
 196        end = end & PAGE_MASK;
 197
 198        if (start < end)
 199                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 200
 201        for (; start < end; start += PAGE_SIZE) {
 202                if (!virt_addr_valid(start))
 203                        continue;
 204                free_reserved_page(virt_to_page(start));
 205        }
 206}
 207
 208/*
 209 * This installs a clean page in the kernel's page table.
 210 */
 211static struct page * __init
 212put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 213{
 214        pgd_t *pgd;
 215        pud_t *pud;
 216        pmd_t *pmd;
 217        pte_t *pte;
 218
 219        if (!PageReserved(page))
 220                printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
 221                       page_address(page));
 222
 223        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 224
 225        {
 226                pud = pud_alloc(&init_mm, pgd, address);
 227                if (!pud)
 228                        goto out;
 229                pmd = pmd_alloc(&init_mm, pud, address);
 230                if (!pmd)
 231                        goto out;
 232                pte = pte_alloc_kernel(pmd, address);
 233                if (!pte)
 234                        goto out;
 235                if (!pte_none(*pte))
 236                        goto out;
 237                set_pte(pte, mk_pte(page, pgprot));
 238        }
 239  out:
 240        /* no need for flush_tlb */
 241        return page;
 242}
 243
 244static void __init
 245setup_gate (void)
 246{
 247        void *gate_section;
 248        struct page *page;
 249
 250        /*
 251         * Map the gate page twice: once read-only to export the ELF
 252         * headers etc. and once execute-only page to enable
 253         * privilege-promotion via "epc":
 254         */
 255        gate_section = paravirt_get_gate_section();
 256        page = virt_to_page(ia64_imva(gate_section));
 257        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 258#ifdef HAVE_BUGGY_SEGREL
 259        page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
 260        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 261#else
 262        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 263        /* Fill in the holes (if any) with read-only zero pages: */
 264        {
 265                unsigned long addr;
 266
 267                for (addr = GATE_ADDR + PAGE_SIZE;
 268                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 269                     addr += PAGE_SIZE)
 270                {
 271                        put_kernel_page(ZERO_PAGE(0), addr,
 272                                        PAGE_READONLY);
 273                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 274                                        PAGE_READONLY);
 275                }
 276        }
 277#endif
 278        ia64_patch_gate();
 279}
 280
 281void ia64_mmu_init(void *my_cpu_data)
 282{
 283        unsigned long pta, impl_va_bits;
 284        extern void tlb_init(void);
 285
 286#ifdef CONFIG_DISABLE_VHPT
 287#       define VHPT_ENABLE_BIT  0
 288#else
 289#       define VHPT_ENABLE_BIT  1
 290#endif
 291
 292        /*
 293         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 294         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 295         * virtual address space are implemented but if we pick a large enough page size
 296         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 297         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 298         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 299         * problem in practice.  Alternatively, we could truncate the top of the mapped
 300         * address space to not permit mappings that would overlap with the VMLPT.
 301         * --davidm 00/12/06
 302         */
 303#       define pte_bits                 3
 304#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 305        /*
 306         * The virtual page table has to cover the entire implemented address space within
 307         * a region even though not all of this space may be mappable.  The reason for
 308         * this is that the Access bit and Dirty bit fault handlers perform
 309         * non-speculative accesses to the virtual page table, so the address range of the
 310         * virtual page table itself needs to be covered by virtual page table.
 311         */
 312#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 313#       define POW2(n)                  (1ULL << (n))
 314
 315        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 316
 317        if (impl_va_bits < 51 || impl_va_bits > 61)
 318                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 319        /*
 320         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 321         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 322         * the test makes sure that our mapped space doesn't overlap the
 323         * unimplemented hole in the middle of the region.
 324         */
 325        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 326            (mapped_space_bits > impl_va_bits - 1))
 327                panic("Cannot build a big enough virtual-linear page table"
 328                      " to cover mapped address space.\n"
 329                      " Try using a smaller page size.\n");
 330
 331
 332        /* place the VMLPT at the end of each page-table mapped region: */
 333        pta = POW2(61) - POW2(vmlpt_bits);
 334
 335        /*
 336         * Set the (virtually mapped linear) page table address.  Bit
 337         * 8 selects between the short and long format, bits 2-7 the
 338         * size of the table, and bit 0 whether the VHPT walker is
 339         * enabled.
 340         */
 341        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 342
 343        ia64_tlb_init();
 344
 345#ifdef  CONFIG_HUGETLB_PAGE
 346        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 347        ia64_srlz_d();
 348#endif
 349}
 350
 351#ifdef CONFIG_VIRTUAL_MEM_MAP
 352int vmemmap_find_next_valid_pfn(int node, int i)
 353{
 354        unsigned long end_address, hole_next_pfn;
 355        unsigned long stop_address;
 356        pg_data_t *pgdat = NODE_DATA(node);
 357
 358        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 359        end_address = PAGE_ALIGN(end_address);
 360
 361        stop_address = (unsigned long) &vmem_map[
 362                pgdat->node_start_pfn + pgdat->node_spanned_pages];
 363
 364        do {
 365                pgd_t *pgd;
 366                pud_t *pud;
 367                pmd_t *pmd;
 368                pte_t *pte;
 369
 370                pgd = pgd_offset_k(end_address);
 371                if (pgd_none(*pgd)) {
 372                        end_address += PGDIR_SIZE;
 373                        continue;
 374                }
 375
 376                pud = pud_offset(pgd, end_address);
 377                if (pud_none(*pud)) {
 378                        end_address += PUD_SIZE;
 379                        continue;
 380                }
 381
 382                pmd = pmd_offset(pud, end_address);
 383                if (pmd_none(*pmd)) {
 384                        end_address += PMD_SIZE;
 385                        continue;
 386                }
 387
 388                pte = pte_offset_kernel(pmd, end_address);
 389retry_pte:
 390                if (pte_none(*pte)) {
 391                        end_address += PAGE_SIZE;
 392                        pte++;
 393                        if ((end_address < stop_address) &&
 394                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 395                                goto retry_pte;
 396                        continue;
 397                }
 398                /* Found next valid vmem_map page */
 399                break;
 400        } while (end_address < stop_address);
 401
 402        end_address = min(end_address, stop_address);
 403        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 404        hole_next_pfn = end_address / sizeof(struct page);
 405        return hole_next_pfn - pgdat->node_start_pfn;
 406}
 407
 408int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 409{
 410        unsigned long address, start_page, end_page;
 411        struct page *map_start, *map_end;
 412        int node;
 413        pgd_t *pgd;
 414        pud_t *pud;
 415        pmd_t *pmd;
 416        pte_t *pte;
 417
 418        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 419        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 420
 421        start_page = (unsigned long) map_start & PAGE_MASK;
 422        end_page = PAGE_ALIGN((unsigned long) map_end);
 423        node = paddr_to_nid(__pa(start));
 424
 425        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 426                pgd = pgd_offset_k(address);
 427                if (pgd_none(*pgd))
 428                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 429                pud = pud_offset(pgd, address);
 430
 431                if (pud_none(*pud))
 432                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 433                pmd = pmd_offset(pud, address);
 434
 435                if (pmd_none(*pmd))
 436                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 437                pte = pte_offset_kernel(pmd, address);
 438
 439                if (pte_none(*pte))
 440                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 441                                             PAGE_KERNEL));
 442        }
 443        return 0;
 444}
 445
 446struct memmap_init_callback_data {
 447        struct page *start;
 448        struct page *end;
 449        int nid;
 450        unsigned long zone;
 451};
 452
 453static int __meminit
 454virtual_memmap_init(u64 start, u64 end, void *arg)
 455{
 456        struct memmap_init_callback_data *args;
 457        struct page *map_start, *map_end;
 458
 459        args = (struct memmap_init_callback_data *) arg;
 460        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 461        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 462
 463        if (map_start < args->start)
 464                map_start = args->start;
 465        if (map_end > args->end)
 466                map_end = args->end;
 467
 468        /*
 469         * We have to initialize "out of bounds" struct page elements that fit completely
 470         * on the same pages that were allocated for the "in bounds" elements because they
 471         * may be referenced later (and found to be "reserved").
 472         */
 473        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 474        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 475                    / sizeof(struct page));
 476
 477        if (map_start < map_end)
 478                memmap_init_zone((unsigned long)(map_end - map_start),
 479                                 args->nid, args->zone, page_to_pfn(map_start),
 480                                 MEMMAP_EARLY);
 481        return 0;
 482}
 483
 484void __meminit
 485memmap_init (unsigned long size, int nid, unsigned long zone,
 486             unsigned long start_pfn)
 487{
 488        if (!vmem_map)
 489                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
 490        else {
 491                struct page *start;
 492                struct memmap_init_callback_data args;
 493
 494                start = pfn_to_page(start_pfn);
 495                args.start = start;
 496                args.end = start + size;
 497                args.nid = nid;
 498                args.zone = zone;
 499
 500                efi_memmap_walk(virtual_memmap_init, &args);
 501        }
 502}
 503
 504int
 505ia64_pfn_valid (unsigned long pfn)
 506{
 507        char byte;
 508        struct page *pg = pfn_to_page(pfn);
 509
 510        return     (__get_user(byte, (char __user *) pg) == 0)
 511                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 512                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 513}
 514EXPORT_SYMBOL(ia64_pfn_valid);
 515
 516int __init find_largest_hole(u64 start, u64 end, void *arg)
 517{
 518        u64 *max_gap = arg;
 519
 520        static u64 last_end = PAGE_OFFSET;
 521
 522        /* NOTE: this algorithm assumes efi memmap table is ordered */
 523
 524        if (*max_gap < (start - last_end))
 525                *max_gap = start - last_end;
 526        last_end = end;
 527        return 0;
 528}
 529
 530#endif /* CONFIG_VIRTUAL_MEM_MAP */
 531
 532int __init register_active_ranges(u64 start, u64 len, int nid)
 533{
 534        u64 end = start + len;
 535
 536#ifdef CONFIG_KEXEC
 537        if (start > crashk_res.start && start < crashk_res.end)
 538                start = crashk_res.end;
 539        if (end > crashk_res.start && end < crashk_res.end)
 540                end = crashk_res.start;
 541#endif
 542
 543        if (start < end)
 544                memblock_add_node(__pa(start), end - start, nid);
 545        return 0;
 546}
 547
 548int
 549find_max_min_low_pfn (u64 start, u64 end, void *arg)
 550{
 551        unsigned long pfn_start, pfn_end;
 552#ifdef CONFIG_FLATMEM
 553        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 554        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 555#else
 556        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 557        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 558#endif
 559        min_low_pfn = min(min_low_pfn, pfn_start);
 560        max_low_pfn = max(max_low_pfn, pfn_end);
 561        return 0;
 562}
 563
 564/*
 565 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 566 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 567 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 568 * useful for performance testing, but conceivably could also come in handy for debugging
 569 * purposes.
 570 */
 571
 572static int nolwsys __initdata;
 573
 574static int __init
 575nolwsys_setup (char *s)
 576{
 577        nolwsys = 1;
 578        return 1;
 579}
 580
 581__setup("nolwsys", nolwsys_setup);
 582
 583void __init
 584mem_init (void)
 585{
 586        int i;
 587
 588        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 589        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 590        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 591
 592#ifdef CONFIG_PCI
 593        /*
 594         * This needs to be called _after_ the command line has been parsed but _before_
 595         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 596         * been freed.
 597         */
 598        platform_dma_init();
 599#endif
 600
 601#ifdef CONFIG_FLATMEM
 602        BUG_ON(!mem_map);
 603#endif
 604
 605        set_max_mapnr(max_low_pfn);
 606        high_memory = __va(max_low_pfn * PAGE_SIZE);
 607        free_all_bootmem();
 608        mem_init_print_info(NULL);
 609
 610        /*
 611         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 612         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 613         * code can tell them apart.
 614         */
 615        for (i = 0; i < NR_syscalls; ++i) {
 616                extern unsigned long sys_call_table[NR_syscalls];
 617                unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
 618
 619                if (!fsyscall_table[i] || nolwsys)
 620                        fsyscall_table[i] = sys_call_table[i] | 1;
 621        }
 622        setup_gate();
 623}
 624
 625#ifdef CONFIG_MEMORY_HOTPLUG
 626int arch_add_memory(int nid, u64 start, u64 size)
 627{
 628        pg_data_t *pgdat;
 629        struct zone *zone;
 630        unsigned long start_pfn = start >> PAGE_SHIFT;
 631        unsigned long nr_pages = size >> PAGE_SHIFT;
 632        int ret;
 633
 634        pgdat = NODE_DATA(nid);
 635
 636        zone = pgdat->node_zones + ZONE_NORMAL;
 637        ret = __add_pages(nid, zone, start_pfn, nr_pages);
 638
 639        if (ret)
 640                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 641                       __func__,  ret);
 642
 643        return ret;
 644}
 645
 646#ifdef CONFIG_MEMORY_HOTREMOVE
 647int arch_remove_memory(u64 start, u64 size)
 648{
 649        unsigned long start_pfn = start >> PAGE_SHIFT;
 650        unsigned long nr_pages = size >> PAGE_SHIFT;
 651        struct zone *zone;
 652        int ret;
 653
 654        zone = page_zone(pfn_to_page(start_pfn));
 655        ret = __remove_pages(zone, start_pfn, nr_pages);
 656        if (ret)
 657                pr_warn("%s: Problem encountered in __remove_pages() as"
 658                        " ret=%d\n", __func__,  ret);
 659
 660        return ret;
 661}
 662#endif
 663#endif
 664
 665/*
 666 * Even when CONFIG_IA32_SUPPORT is not enabled it is
 667 * useful to have the Linux/x86 domain registered to
 668 * avoid an attempted module load when emulators call
 669 * personality(PER_LINUX32). This saves several milliseconds
 670 * on each such call.
 671 */
 672static struct exec_domain ia32_exec_domain;
 673
 674static int __init
 675per_linux32_init(void)
 676{
 677        ia32_exec_domain.name = "Linux/x86";
 678        ia32_exec_domain.handler = NULL;
 679        ia32_exec_domain.pers_low = PER_LINUX32;
 680        ia32_exec_domain.pers_high = PER_LINUX32;
 681        ia32_exec_domain.signal_map = default_exec_domain.signal_map;
 682        ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
 683        register_exec_domain(&ia32_exec_domain);
 684
 685        return 0;
 686}
 687
 688__initcall(per_linux32_init);
 689