linux/arch/ia64/sn/kernel/sn2/sn2_smp.c
<<
>>
Prefs
   1/*
   2 * SN2 Platform specific SMP Support
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/spinlock.h>
  14#include <linux/threads.h>
  15#include <linux/sched.h>
  16#include <linux/smp.h>
  17#include <linux/interrupt.h>
  18#include <linux/irq.h>
  19#include <linux/mmzone.h>
  20#include <linux/module.h>
  21#include <linux/bitops.h>
  22#include <linux/nodemask.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25
  26#include <asm/processor.h>
  27#include <asm/irq.h>
  28#include <asm/sal.h>
  29#include <asm/delay.h>
  30#include <asm/io.h>
  31#include <asm/smp.h>
  32#include <asm/tlb.h>
  33#include <asm/numa.h>
  34#include <asm/hw_irq.h>
  35#include <asm/current.h>
  36#include <asm/sn/sn_cpuid.h>
  37#include <asm/sn/sn_sal.h>
  38#include <asm/sn/addrs.h>
  39#include <asm/sn/shub_mmr.h>
  40#include <asm/sn/nodepda.h>
  41#include <asm/sn/rw_mmr.h>
  42#include <asm/sn/sn_feature_sets.h>
  43
  44DEFINE_PER_CPU(struct ptc_stats, ptcstats);
  45DECLARE_PER_CPU(struct ptc_stats, ptcstats);
  46
  47static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
  48
  49/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
  50static int sn2_flush_opt = 0;
  51
  52extern unsigned long
  53sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
  54                               volatile unsigned long *, unsigned long,
  55                               volatile unsigned long *, unsigned long);
  56void
  57sn2_ptc_deadlock_recovery(short *, short, short, int,
  58                          volatile unsigned long *, unsigned long,
  59                          volatile unsigned long *, unsigned long);
  60
  61/*
  62 * Note: some is the following is captured here to make degugging easier
  63 * (the macros make more sense if you see the debug patch - not posted)
  64 */
  65#define sn2_ptctest     0
  66#define local_node_uses_ptc_ga(sh1)     ((sh1) ? 1 : 0)
  67#define max_active_pio(sh1)             ((sh1) ? 32 : 7)
  68#define reset_max_active_on_deadlock()  1
  69#define PTC_LOCK(sh1)                   ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
  70
  71struct ptc_stats {
  72        unsigned long ptc_l;
  73        unsigned long change_rid;
  74        unsigned long shub_ptc_flushes;
  75        unsigned long nodes_flushed;
  76        unsigned long deadlocks;
  77        unsigned long deadlocks2;
  78        unsigned long lock_itc_clocks;
  79        unsigned long shub_itc_clocks;
  80        unsigned long shub_itc_clocks_max;
  81        unsigned long shub_ptc_flushes_not_my_mm;
  82        unsigned long shub_ipi_flushes;
  83        unsigned long shub_ipi_flushes_itc_clocks;
  84};
  85
  86#define sn2_ptctest     0
  87
  88static inline unsigned long wait_piowc(void)
  89{
  90        volatile unsigned long *piows;
  91        unsigned long zeroval, ws;
  92
  93        piows = pda->pio_write_status_addr;
  94        zeroval = pda->pio_write_status_val;
  95        do {
  96                cpu_relax();
  97        } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
  98        return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
  99}
 100
 101/**
 102 * sn_migrate - SN-specific task migration actions
 103 * @task: Task being migrated to new CPU
 104 *
 105 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
 106 * Context switching user threads which have memory-mapped MMIO may cause
 107 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
 108 * from the previous CPU's Shub before execution resumes on the new CPU.
 109 */
 110void sn_migrate(struct task_struct *task)
 111{
 112        pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
 113        volatile unsigned long *adr = last_pda->pio_write_status_addr;
 114        unsigned long val = last_pda->pio_write_status_val;
 115
 116        /* Drain PIO writes from old CPU's Shub */
 117        while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
 118                        != val))
 119                cpu_relax();
 120}
 121
 122void sn_tlb_migrate_finish(struct mm_struct *mm)
 123{
 124        /* flush_tlb_mm is inefficient if more than 1 users of mm */
 125        if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
 126                flush_tlb_mm(mm);
 127}
 128
 129static void
 130sn2_ipi_flush_all_tlb(struct mm_struct *mm)
 131{
 132        unsigned long itc;
 133
 134        itc = ia64_get_itc();
 135        smp_flush_tlb_cpumask(*mm_cpumask(mm));
 136        itc = ia64_get_itc() - itc;
 137        __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
 138        __get_cpu_var(ptcstats).shub_ipi_flushes++;
 139}
 140
 141/**
 142 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
 143 * @mm: mm_struct containing virtual address range
 144 * @start: start of virtual address range
 145 * @end: end of virtual address range
 146 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
 147 *
 148 * Purges the translation caches of all processors of the given virtual address
 149 * range.
 150 *
 151 * Note:
 152 *      - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
 153 *      - cpu_vm_mask is converted into a nodemask of the nodes containing the
 154 *        cpus in cpu_vm_mask.
 155 *      - if only one bit is set in cpu_vm_mask & it is the current cpu & the
 156 *        process is purging its own virtual address range, then only the
 157 *        local TLB needs to be flushed. This flushing can be done using
 158 *        ptc.l. This is the common case & avoids the global spinlock.
 159 *      - if multiple cpus have loaded the context, then flushing has to be
 160 *        done with ptc.g/MMRs under protection of the global ptc_lock.
 161 */
 162
 163void
 164sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
 165                     unsigned long end, unsigned long nbits)
 166{
 167        int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
 168        int mymm = (mm == current->active_mm && mm == current->mm);
 169        int use_cpu_ptcga;
 170        volatile unsigned long *ptc0, *ptc1;
 171        unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
 172        short nasids[MAX_NUMNODES], nix;
 173        nodemask_t nodes_flushed;
 174        int active, max_active, deadlock, flush_opt = sn2_flush_opt;
 175
 176        if (flush_opt > 2) {
 177                sn2_ipi_flush_all_tlb(mm);
 178                return;
 179        }
 180
 181        nodes_clear(nodes_flushed);
 182        i = 0;
 183
 184        for_each_cpu(cpu, mm_cpumask(mm)) {
 185                cnode = cpu_to_node(cpu);
 186                node_set(cnode, nodes_flushed);
 187                lcpu = cpu;
 188                i++;
 189        }
 190
 191        if (i == 0)
 192                return;
 193
 194        preempt_disable();
 195
 196        if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
 197                do {
 198                        ia64_ptcl(start, nbits << 2);
 199                        start += (1UL << nbits);
 200                } while (start < end);
 201                ia64_srlz_i();
 202                __get_cpu_var(ptcstats).ptc_l++;
 203                preempt_enable();
 204                return;
 205        }
 206
 207        if (atomic_read(&mm->mm_users) == 1 && mymm) {
 208                flush_tlb_mm(mm);
 209                __get_cpu_var(ptcstats).change_rid++;
 210                preempt_enable();
 211                return;
 212        }
 213
 214        if (flush_opt == 2) {
 215                sn2_ipi_flush_all_tlb(mm);
 216                preempt_enable();
 217                return;
 218        }
 219
 220        itc = ia64_get_itc();
 221        nix = 0;
 222        for_each_node_mask(cnode, nodes_flushed)
 223                nasids[nix++] = cnodeid_to_nasid(cnode);
 224
 225        rr_value = (mm->context << 3) | REGION_NUMBER(start);
 226
 227        shub1 = is_shub1();
 228        if (shub1) {
 229                data0 = (1UL << SH1_PTC_0_A_SHFT) |
 230                        (nbits << SH1_PTC_0_PS_SHFT) |
 231                        (rr_value << SH1_PTC_0_RID_SHFT) |
 232                        (1UL << SH1_PTC_0_START_SHFT);
 233                ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
 234                ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
 235        } else {
 236                data0 = (1UL << SH2_PTC_A_SHFT) |
 237                        (nbits << SH2_PTC_PS_SHFT) |
 238                        (1UL << SH2_PTC_START_SHFT);
 239                ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
 240                        (rr_value << SH2_PTC_RID_SHFT));
 241                ptc1 = NULL;
 242        }
 243        
 244
 245        mynasid = get_nasid();
 246        use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
 247        max_active = max_active_pio(shub1);
 248
 249        itc = ia64_get_itc();
 250        spin_lock_irqsave(PTC_LOCK(shub1), flags);
 251        itc2 = ia64_get_itc();
 252
 253        __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
 254        __get_cpu_var(ptcstats).shub_ptc_flushes++;
 255        __get_cpu_var(ptcstats).nodes_flushed += nix;
 256        if (!mymm)
 257                 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
 258
 259        if (use_cpu_ptcga && !mymm) {
 260                old_rr = ia64_get_rr(start);
 261                ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
 262                ia64_srlz_d();
 263        }
 264
 265        wait_piowc();
 266        do {
 267                if (shub1)
 268                        data1 = start | (1UL << SH1_PTC_1_START_SHFT);
 269                else
 270                        data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
 271                deadlock = 0;
 272                active = 0;
 273                for (ibegin = 0, i = 0; i < nix; i++) {
 274                        nasid = nasids[i];
 275                        if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
 276                                ia64_ptcga(start, nbits << 2);
 277                                ia64_srlz_i();
 278                        } else {
 279                                ptc0 = CHANGE_NASID(nasid, ptc0);
 280                                if (ptc1)
 281                                        ptc1 = CHANGE_NASID(nasid, ptc1);
 282                                pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
 283                                active++;
 284                        }
 285                        if (active >= max_active || i == (nix - 1)) {
 286                                if ((deadlock = wait_piowc())) {
 287                                        if (flush_opt == 1)
 288                                                goto done;
 289                                        sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
 290                                        if (reset_max_active_on_deadlock())
 291                                                max_active = 1;
 292                                }
 293                                active = 0;
 294                                ibegin = i + 1;
 295                        }
 296                }
 297                start += (1UL << nbits);
 298        } while (start < end);
 299
 300done:
 301        itc2 = ia64_get_itc() - itc2;
 302        __get_cpu_var(ptcstats).shub_itc_clocks += itc2;
 303        if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
 304                __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
 305
 306        if (old_rr) {
 307                ia64_set_rr(start, old_rr);
 308                ia64_srlz_d();
 309        }
 310
 311        spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
 312
 313        if (flush_opt == 1 && deadlock) {
 314                __get_cpu_var(ptcstats).deadlocks++;
 315                sn2_ipi_flush_all_tlb(mm);
 316        }
 317
 318        preempt_enable();
 319}
 320
 321/*
 322 * sn2_ptc_deadlock_recovery
 323 *
 324 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
 325 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
 326 * coded in assembly language.
 327 */
 328
 329void
 330sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
 331                          volatile unsigned long *ptc0, unsigned long data0,
 332                          volatile unsigned long *ptc1, unsigned long data1)
 333{
 334        short nasid, i;
 335        unsigned long *piows, zeroval, n;
 336
 337        __get_cpu_var(ptcstats).deadlocks++;
 338
 339        piows = (unsigned long *) pda->pio_write_status_addr;
 340        zeroval = pda->pio_write_status_val;
 341
 342
 343        for (i=ib; i <= ie; i++) {
 344                nasid = nasids[i];
 345                if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
 346                        continue;
 347                ptc0 = CHANGE_NASID(nasid, ptc0);
 348                if (ptc1)
 349                        ptc1 = CHANGE_NASID(nasid, ptc1);
 350
 351                n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
 352                __get_cpu_var(ptcstats).deadlocks2 += n;
 353        }
 354
 355}
 356
 357/**
 358 * sn_send_IPI_phys - send an IPI to a Nasid and slice
 359 * @nasid: nasid to receive the interrupt (may be outside partition)
 360 * @physid: physical cpuid to receive the interrupt.
 361 * @vector: command to send
 362 * @delivery_mode: delivery mechanism
 363 *
 364 * Sends an IPI (interprocessor interrupt) to the processor specified by
 365 * @physid
 366 *
 367 * @delivery_mode can be one of the following
 368 *
 369 * %IA64_IPI_DM_INT - pend an interrupt
 370 * %IA64_IPI_DM_PMI - pend a PMI
 371 * %IA64_IPI_DM_NMI - pend an NMI
 372 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 373 */
 374void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
 375{
 376        long val;
 377        unsigned long flags = 0;
 378        volatile long *p;
 379
 380        p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
 381        val = (1UL << SH_IPI_INT_SEND_SHFT) |
 382            (physid << SH_IPI_INT_PID_SHFT) |
 383            ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
 384            ((long)vector << SH_IPI_INT_IDX_SHFT) |
 385            (0x000feeUL << SH_IPI_INT_BASE_SHFT);
 386
 387        mb();
 388        if (enable_shub_wars_1_1()) {
 389                spin_lock_irqsave(&sn2_global_ptc_lock, flags);
 390        }
 391        pio_phys_write_mmr(p, val);
 392        if (enable_shub_wars_1_1()) {
 393                wait_piowc();
 394                spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
 395        }
 396
 397}
 398
 399EXPORT_SYMBOL(sn_send_IPI_phys);
 400
 401/**
 402 * sn2_send_IPI - send an IPI to a processor
 403 * @cpuid: target of the IPI
 404 * @vector: command to send
 405 * @delivery_mode: delivery mechanism
 406 * @redirect: redirect the IPI?
 407 *
 408 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
 409 * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
 410 * be one of the following
 411 *
 412 * %IA64_IPI_DM_INT - pend an interrupt
 413 * %IA64_IPI_DM_PMI - pend a PMI
 414 * %IA64_IPI_DM_NMI - pend an NMI
 415 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 416 */
 417void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
 418{
 419        long physid;
 420        int nasid;
 421
 422        physid = cpu_physical_id(cpuid);
 423        nasid = cpuid_to_nasid(cpuid);
 424
 425        /* the following is used only when starting cpus at boot time */
 426        if (unlikely(nasid == -1))
 427                ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
 428
 429        sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
 430}
 431
 432#ifdef CONFIG_HOTPLUG_CPU
 433/**
 434 * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
 435 * @cpu - CPU that is requested to be disabled.
 436 *
 437 * CPU disable is only allowed on SHub2 systems running with a PROM
 438 * that supports CPU disable. It is not permitted to disable the boot processor.
 439 */
 440bool sn_cpu_disable_allowed(int cpu)
 441{
 442        if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
 443                if (cpu != 0)
 444                        return true;
 445                else
 446                        printk(KERN_WARNING
 447                              "Disabling the boot processor is not allowed.\n");
 448
 449        } else
 450                printk(KERN_WARNING
 451                       "CPU disable is not supported on this system.\n");
 452
 453        return false;
 454}
 455#endif /* CONFIG_HOTPLUG_CPU */
 456
 457#ifdef CONFIG_PROC_FS
 458
 459#define PTC_BASENAME    "sgi_sn/ptc_statistics"
 460
 461static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
 462{
 463        if (*offset < nr_cpu_ids)
 464                return offset;
 465        return NULL;
 466}
 467
 468static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
 469{
 470        (*offset)++;
 471        if (*offset < nr_cpu_ids)
 472                return offset;
 473        return NULL;
 474}
 475
 476static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
 477{
 478}
 479
 480static int sn2_ptc_seq_show(struct seq_file *file, void *data)
 481{
 482        struct ptc_stats *stat;
 483        int cpu;
 484
 485        cpu = *(loff_t *) data;
 486
 487        if (!cpu) {
 488                seq_printf(file,
 489                           "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
 490                seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
 491        }
 492
 493        if (cpu < nr_cpu_ids && cpu_online(cpu)) {
 494                stat = &per_cpu(ptcstats, cpu);
 495                seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
 496                                stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
 497                                stat->deadlocks,
 498                                1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
 499                                1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
 500                                1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
 501                                stat->shub_ptc_flushes_not_my_mm,
 502                                stat->deadlocks2,
 503                                stat->shub_ipi_flushes,
 504                                1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
 505        }
 506        return 0;
 507}
 508
 509static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
 510{
 511        int cpu;
 512        char optstr[64];
 513
 514        if (count == 0 || count > sizeof(optstr))
 515                return -EINVAL;
 516        if (copy_from_user(optstr, user, count))
 517                return -EFAULT;
 518        optstr[count - 1] = '\0';
 519        sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
 520
 521        for_each_online_cpu(cpu)
 522                memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
 523
 524        return count;
 525}
 526
 527static const struct seq_operations sn2_ptc_seq_ops = {
 528        .start = sn2_ptc_seq_start,
 529        .next = sn2_ptc_seq_next,
 530        .stop = sn2_ptc_seq_stop,
 531        .show = sn2_ptc_seq_show
 532};
 533
 534static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
 535{
 536        return seq_open(file, &sn2_ptc_seq_ops);
 537}
 538
 539static const struct file_operations proc_sn2_ptc_operations = {
 540        .open = sn2_ptc_proc_open,
 541        .read = seq_read,
 542        .write = sn2_ptc_proc_write,
 543        .llseek = seq_lseek,
 544        .release = seq_release,
 545};
 546
 547static struct proc_dir_entry *proc_sn2_ptc;
 548
 549static int __init sn2_ptc_init(void)
 550{
 551        if (!ia64_platform_is("sn2"))
 552                return 0;
 553
 554        proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
 555                                   NULL, &proc_sn2_ptc_operations);
 556        if (!proc_sn2_ptc) {
 557                printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
 558                return -EINVAL;
 559        }
 560        spin_lock_init(&sn2_global_ptc_lock);
 561        return 0;
 562}
 563
 564static void __exit sn2_ptc_exit(void)
 565{
 566        remove_proc_entry(PTC_BASENAME, NULL);
 567}
 568
 569module_init(sn2_ptc_init);
 570module_exit(sn2_ptc_exit);
 571#endif /* CONFIG_PROC_FS */
 572
 573