linux/arch/m68k/mm/mcfmmu.c
<<
>>
Prefs
   1/*
   2 * Based upon linux/arch/m68k/mm/sun3mmu.c
   3 * Based upon linux/arch/ppc/mm/mmu_context.c
   4 *
   5 * Implementations of mm routines specific to the Coldfire MMU.
   6 *
   7 * Copyright (c) 2008 Freescale Semiconductor, Inc.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/types.h>
  12#include <linux/mm.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/bootmem.h>
  16
  17#include <asm/setup.h>
  18#include <asm/page.h>
  19#include <asm/pgtable.h>
  20#include <asm/mmu_context.h>
  21#include <asm/mcf_pgalloc.h>
  22#include <asm/tlbflush.h>
  23
  24#define KMAPAREA(x)     ((x >= VMALLOC_START) && (x < KMAP_END))
  25
  26mm_context_t next_mmu_context;
  27unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
  28atomic_t nr_free_contexts;
  29struct mm_struct *context_mm[LAST_CONTEXT+1];
  30extern unsigned long num_pages;
  31
  32/*
  33 * ColdFire paging_init derived from sun3.
  34 */
  35void __init paging_init(void)
  36{
  37        pgd_t *pg_dir;
  38        pte_t *pg_table;
  39        unsigned long address, size;
  40        unsigned long next_pgtable, bootmem_end;
  41        unsigned long zones_size[MAX_NR_ZONES];
  42        enum zone_type zone;
  43        int i;
  44
  45        empty_zero_page = (void *) alloc_bootmem_pages(PAGE_SIZE);
  46        memset((void *) empty_zero_page, 0, PAGE_SIZE);
  47
  48        pg_dir = swapper_pg_dir;
  49        memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
  50
  51        size = num_pages * sizeof(pte_t);
  52        size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
  53        next_pgtable = (unsigned long) alloc_bootmem_pages(size);
  54
  55        bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
  56        pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
  57
  58        address = PAGE_OFFSET;
  59        while (address < (unsigned long)high_memory) {
  60                pg_table = (pte_t *) next_pgtable;
  61                next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
  62                pgd_val(*pg_dir) = (unsigned long) pg_table;
  63                pg_dir++;
  64
  65                /* now change pg_table to kernel virtual addresses */
  66                for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
  67                        pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
  68                        if (address >= (unsigned long) high_memory)
  69                                pte_val(pte) = 0;
  70
  71                        set_pte(pg_table, pte);
  72                        address += PAGE_SIZE;
  73                }
  74        }
  75
  76        current->mm = NULL;
  77
  78        for (zone = 0; zone < MAX_NR_ZONES; zone++)
  79                zones_size[zone] = 0x0;
  80        zones_size[ZONE_DMA] = num_pages;
  81        free_area_init(zones_size);
  82}
  83
  84int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
  85{
  86        unsigned long flags, mmuar, mmutr;
  87        struct mm_struct *mm;
  88        pgd_t *pgd;
  89        pmd_t *pmd;
  90        pte_t *pte;
  91        int asid;
  92
  93        local_irq_save(flags);
  94
  95        mmuar = (dtlb) ? mmu_read(MMUAR) :
  96                regs->pc + (extension_word * sizeof(long));
  97
  98        mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
  99        if (!mm) {
 100                local_irq_restore(flags);
 101                return -1;
 102        }
 103
 104        pgd = pgd_offset(mm, mmuar);
 105        if (pgd_none(*pgd))  {
 106                local_irq_restore(flags);
 107                return -1;
 108        }
 109
 110        pmd = pmd_offset(pgd, mmuar);
 111        if (pmd_none(*pmd)) {
 112                local_irq_restore(flags);
 113                return -1;
 114        }
 115
 116        pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
 117                                : pte_offset_map(pmd, mmuar);
 118        if (pte_none(*pte) || !pte_present(*pte)) {
 119                local_irq_restore(flags);
 120                return -1;
 121        }
 122
 123        if (write) {
 124                if (!pte_write(*pte)) {
 125                        local_irq_restore(flags);
 126                        return -1;
 127                }
 128                set_pte(pte, pte_mkdirty(*pte));
 129        }
 130
 131        set_pte(pte, pte_mkyoung(*pte));
 132        asid = mm->context & 0xff;
 133        if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
 134                set_pte(pte, pte_wrprotect(*pte));
 135
 136        mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
 137        if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
 138                mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
 139        mmu_write(MMUTR, mmutr);
 140
 141        mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
 142                ((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
 143
 144        if (dtlb)
 145                mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
 146        else
 147                mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
 148
 149        local_irq_restore(flags);
 150        return 0;
 151}
 152
 153/*
 154 * Initialize the context management stuff.
 155 * The following was taken from arch/ppc/mmu_context.c
 156 */
 157void __init mmu_context_init(void)
 158{
 159        /*
 160         * Some processors have too few contexts to reserve one for
 161         * init_mm, and require using context 0 for a normal task.
 162         * Other processors reserve the use of context zero for the kernel.
 163         * This code assumes FIRST_CONTEXT < 32.
 164         */
 165        context_map[0] = (1 << FIRST_CONTEXT) - 1;
 166        next_mmu_context = FIRST_CONTEXT;
 167        atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
 168}
 169
 170/*
 171 * Steal a context from a task that has one at the moment.
 172 * This is only used on 8xx and 4xx and we presently assume that
 173 * they don't do SMP.  If they do then thicfpgalloc.hs will have to check
 174 * whether the MM we steal is in use.
 175 * We also assume that this is only used on systems that don't
 176 * use an MMU hash table - this is true for 8xx and 4xx.
 177 * This isn't an LRU system, it just frees up each context in
 178 * turn (sort-of pseudo-random replacement :).  This would be the
 179 * place to implement an LRU scheme if anyone was motivated to do it.
 180 *  -- paulus
 181 */
 182void steal_context(void)
 183{
 184        struct mm_struct *mm;
 185        /*
 186         * free up context `next_mmu_context'
 187         * if we shouldn't free context 0, don't...
 188         */
 189        if (next_mmu_context < FIRST_CONTEXT)
 190                next_mmu_context = FIRST_CONTEXT;
 191        mm = context_mm[next_mmu_context];
 192        flush_tlb_mm(mm);
 193        destroy_context(mm);
 194}
 195
 196