linux/arch/metag/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 * Macros and functions to manipulate Meta page tables.
   3 */
   4
   5#ifndef _METAG_PGTABLE_H
   6#define _METAG_PGTABLE_H
   7
   8#include <asm-generic/pgtable-nopmd.h>
   9
  10/* Invalid regions on Meta: 0x00000000-0x001FFFFF and 0xFFFF0000-0xFFFFFFFF */
  11#if PAGE_OFFSET >= LINGLOBAL_BASE
  12#define CONSISTENT_START        0xF7000000
  13#define CONSISTENT_END          0xF73FFFFF
  14#define VMALLOC_START           0xF8000000
  15#define VMALLOC_END             0xFFFEFFFF
  16#else
  17#define CONSISTENT_START        0x77000000
  18#define CONSISTENT_END          0x773FFFFF
  19#define VMALLOC_START           0x78000000
  20#define VMALLOC_END             0x7FFFFFFF
  21#endif
  22
  23/*
  24 * Definitions for MMU descriptors
  25 *
  26 * These are the hardware bits in the MMCU pte entries.
  27 * Derived from the Meta toolkit headers.
  28 */
  29#define _PAGE_PRESENT           MMCU_ENTRY_VAL_BIT
  30#define _PAGE_WRITE             MMCU_ENTRY_WR_BIT
  31#define _PAGE_PRIV              MMCU_ENTRY_PRIV_BIT
  32/* Write combine bit - this can cause writes to occur out of order */
  33#define _PAGE_WR_COMBINE        MMCU_ENTRY_WRC_BIT
  34/* Sys coherent bit - this bit is never used by Linux */
  35#define _PAGE_SYS_COHERENT      MMCU_ENTRY_SYS_BIT
  36#define _PAGE_ALWAYS_ZERO_1     0x020
  37#define _PAGE_CACHE_CTRL0       0x040
  38#define _PAGE_CACHE_CTRL1       0x080
  39#define _PAGE_ALWAYS_ZERO_2     0x100
  40#define _PAGE_ALWAYS_ZERO_3     0x200
  41#define _PAGE_ALWAYS_ZERO_4     0x400
  42#define _PAGE_ALWAYS_ZERO_5     0x800
  43
  44/* These are software bits that we stuff into the gaps in the hardware
  45 * pte entries that are not used.  Note, these DO get stored in the actual
  46 * hardware, but the hardware just does not use them.
  47 */
  48#define _PAGE_ACCESSED          _PAGE_ALWAYS_ZERO_1
  49#define _PAGE_DIRTY             _PAGE_ALWAYS_ZERO_2
  50#define _PAGE_FILE              _PAGE_ALWAYS_ZERO_3
  51
  52/* Pages owned, and protected by, the kernel. */
  53#define _PAGE_KERNEL            _PAGE_PRIV
  54
  55/* No cacheing of this page */
  56#define _PAGE_CACHE_WIN0        (MMCU_CWIN_UNCACHED << MMCU_ENTRY_CWIN_S)
  57/* burst cacheing - good for data streaming */
  58#define _PAGE_CACHE_WIN1        (MMCU_CWIN_BURST << MMCU_ENTRY_CWIN_S)
  59/* One cache way per thread */
  60#define _PAGE_CACHE_WIN2        (MMCU_CWIN_C1SET << MMCU_ENTRY_CWIN_S)
  61/* Full on cacheing */
  62#define _PAGE_CACHE_WIN3        (MMCU_CWIN_CACHED << MMCU_ENTRY_CWIN_S)
  63
  64#define _PAGE_CACHEABLE         (_PAGE_CACHE_WIN3 | _PAGE_WR_COMBINE)
  65
  66/* which bits are used for cache control ... */
  67#define _PAGE_CACHE_MASK        (_PAGE_CACHE_CTRL0 | _PAGE_CACHE_CTRL1 | \
  68                                 _PAGE_WR_COMBINE)
  69
  70/* This is a mask of the bits that pte_modify is allowed to change. */
  71#define _PAGE_CHG_MASK          (PAGE_MASK)
  72
  73#define _PAGE_SZ_SHIFT          1
  74#define _PAGE_SZ_4K             (0x0)
  75#define _PAGE_SZ_8K             (0x1 << _PAGE_SZ_SHIFT)
  76#define _PAGE_SZ_16K            (0x2 << _PAGE_SZ_SHIFT)
  77#define _PAGE_SZ_32K            (0x3 << _PAGE_SZ_SHIFT)
  78#define _PAGE_SZ_64K            (0x4 << _PAGE_SZ_SHIFT)
  79#define _PAGE_SZ_128K           (0x5 << _PAGE_SZ_SHIFT)
  80#define _PAGE_SZ_256K           (0x6 << _PAGE_SZ_SHIFT)
  81#define _PAGE_SZ_512K           (0x7 << _PAGE_SZ_SHIFT)
  82#define _PAGE_SZ_1M             (0x8 << _PAGE_SZ_SHIFT)
  83#define _PAGE_SZ_2M             (0x9 << _PAGE_SZ_SHIFT)
  84#define _PAGE_SZ_4M             (0xa << _PAGE_SZ_SHIFT)
  85#define _PAGE_SZ_MASK           (0xf << _PAGE_SZ_SHIFT)
  86
  87#if defined(CONFIG_PAGE_SIZE_4K)
  88#define _PAGE_SZ                (_PAGE_SZ_4K)
  89#elif defined(CONFIG_PAGE_SIZE_8K)
  90#define _PAGE_SZ                (_PAGE_SZ_8K)
  91#elif defined(CONFIG_PAGE_SIZE_16K)
  92#define _PAGE_SZ                (_PAGE_SZ_16K)
  93#endif
  94#define _PAGE_TABLE             (_PAGE_SZ | _PAGE_PRESENT)
  95
  96#if defined(CONFIG_HUGETLB_PAGE_SIZE_8K)
  97# define _PAGE_SZHUGE           (_PAGE_SZ_8K)
  98#elif defined(CONFIG_HUGETLB_PAGE_SIZE_16K)
  99# define _PAGE_SZHUGE           (_PAGE_SZ_16K)
 100#elif defined(CONFIG_HUGETLB_PAGE_SIZE_32K)
 101# define _PAGE_SZHUGE           (_PAGE_SZ_32K)
 102#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
 103# define _PAGE_SZHUGE           (_PAGE_SZ_64K)
 104#elif defined(CONFIG_HUGETLB_PAGE_SIZE_128K)
 105# define _PAGE_SZHUGE           (_PAGE_SZ_128K)
 106#elif defined(CONFIG_HUGETLB_PAGE_SIZE_256K)
 107# define _PAGE_SZHUGE           (_PAGE_SZ_256K)
 108#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
 109# define _PAGE_SZHUGE           (_PAGE_SZ_512K)
 110#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1M)
 111# define _PAGE_SZHUGE           (_PAGE_SZ_1M)
 112#elif defined(CONFIG_HUGETLB_PAGE_SIZE_2M)
 113# define _PAGE_SZHUGE           (_PAGE_SZ_2M)
 114#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4M)
 115# define _PAGE_SZHUGE           (_PAGE_SZ_4M)
 116#endif
 117
 118/*
 119 * The Linux memory management assumes a three-level page table setup. On
 120 * Meta, we use that, but "fold" the mid level into the top-level page
 121 * table.
 122 */
 123
 124/* PGDIR_SHIFT determines the size of the area a second-level page table can
 125 * map. This is always 4MB.
 126 */
 127
 128#define PGDIR_SHIFT     22
 129#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 130#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 131
 132/*
 133 * Entries per page directory level: we use a two-level, so
 134 * we don't really have any PMD directory physically. First level tables
 135 * always map 2Gb (local or global) at a granularity of 4MB, second-level
 136 * tables map 4MB with a granularity between 4MB and 4kB (between 1 and
 137 * 1024 entries).
 138 */
 139#define PTRS_PER_PTE    (PGDIR_SIZE/PAGE_SIZE)
 140#define HPTRS_PER_PTE   (PGDIR_SIZE/HPAGE_SIZE)
 141#define PTRS_PER_PGD    512
 142
 143#define USER_PTRS_PER_PGD       256
 144#define FIRST_USER_ADDRESS      META_MEMORY_BASE
 145#define FIRST_USER_PGD_NR       pgd_index(FIRST_USER_ADDRESS)
 146
 147#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
 148                                 _PAGE_CACHEABLE)
 149
 150#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_WRITE | \
 151                                 _PAGE_ACCESSED | _PAGE_CACHEABLE)
 152#define PAGE_SHARED_C   PAGE_SHARED
 153#define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
 154                                 _PAGE_CACHEABLE)
 155#define PAGE_COPY_C     PAGE_COPY
 156
 157#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
 158                                 _PAGE_CACHEABLE)
 159#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | \
 160                                 _PAGE_ACCESSED | _PAGE_WRITE | \
 161                                 _PAGE_CACHEABLE | _PAGE_KERNEL)
 162
 163#define __P000  PAGE_NONE
 164#define __P001  PAGE_READONLY
 165#define __P010  PAGE_COPY
 166#define __P011  PAGE_COPY
 167#define __P100  PAGE_READONLY
 168#define __P101  PAGE_READONLY
 169#define __P110  PAGE_COPY_C
 170#define __P111  PAGE_COPY_C
 171
 172#define __S000  PAGE_NONE
 173#define __S001  PAGE_READONLY
 174#define __S010  PAGE_SHARED
 175#define __S011  PAGE_SHARED
 176#define __S100  PAGE_READONLY
 177#define __S101  PAGE_READONLY
 178#define __S110  PAGE_SHARED_C
 179#define __S111  PAGE_SHARED_C
 180
 181#ifndef __ASSEMBLY__
 182
 183#include <asm/page.h>
 184
 185/* zero page used for uninitialized stuff */
 186extern unsigned long empty_zero_page;
 187#define ZERO_PAGE(vaddr)        (virt_to_page(empty_zero_page))
 188
 189/* Certain architectures need to do special things when pte's
 190 * within a page table are directly modified.  Thus, the following
 191 * hook is made available.
 192 */
 193#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
 194#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
 195
 196#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
 197
 198#define pte_pfn(pte)            (pte_val(pte) >> PAGE_SHIFT)
 199
 200#define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
 201
 202#define pte_none(x)             (!pte_val(x))
 203#define pte_present(x)          (pte_val(x) & _PAGE_PRESENT)
 204#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
 205
 206#define pmd_none(x)             (!pmd_val(x))
 207#define pmd_bad(x)              ((pmd_val(x) & ~(PAGE_MASK | _PAGE_SZ_MASK)) \
 208                                        != (_PAGE_TABLE & ~_PAGE_SZ_MASK))
 209#define pmd_present(x)          (pmd_val(x) & _PAGE_PRESENT)
 210#define pmd_clear(xp)           do { pmd_val(*(xp)) = 0; } while (0)
 211
 212#define pte_page(x)             pfn_to_page(pte_pfn(x))
 213
 214/*
 215 * The following only work if pte_present() is true.
 216 * Undefined behaviour if not..
 217 */
 218
 219static inline int pte_write(pte_t pte)   { return pte_val(pte) & _PAGE_WRITE; }
 220static inline int pte_dirty(pte_t pte)   { return pte_val(pte) & _PAGE_DIRTY; }
 221static inline int pte_young(pte_t pte)   { return pte_val(pte) & _PAGE_ACCESSED; }
 222static inline int pte_file(pte_t pte)    { return pte_val(pte) & _PAGE_FILE; }
 223static inline int pte_special(pte_t pte) { return 0; }
 224
 225static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= (~_PAGE_WRITE); return pte; }
 226static inline pte_t pte_mkclean(pte_t pte)   { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
 227static inline pte_t pte_mkold(pte_t pte)     { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 228static inline pte_t pte_mkwrite(pte_t pte)   { pte_val(pte) |= _PAGE_WRITE; return pte; }
 229static inline pte_t pte_mkdirty(pte_t pte)   { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 230static inline pte_t pte_mkyoung(pte_t pte)   { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 231static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
 232static inline pte_t pte_mkhuge(pte_t pte)    { return pte; }
 233
 234/*
 235 * Macro and implementation to make a page protection as uncacheable.
 236 */
 237#define pgprot_writecombine(prot)                                       \
 238        __pgprot(pgprot_val(prot) & ~(_PAGE_CACHE_CTRL1 | _PAGE_CACHE_CTRL0))
 239
 240#define pgprot_noncached(prot)                                          \
 241        __pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE)
 242
 243
 244/*
 245 * Conversion functions: convert a page and protection to a page entry,
 246 * and a page entry and page directory to the page they refer to.
 247 */
 248
 249#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 250
 251static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 252{
 253        pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
 254        return pte;
 255}
 256
 257static inline unsigned long pmd_page_vaddr(pmd_t pmd)
 258{
 259        unsigned long paddr = pmd_val(pmd) & PAGE_MASK;
 260        if (!paddr)
 261                return 0;
 262        return (unsigned long)__va(paddr);
 263}
 264
 265#define pmd_page(pmd)           (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 266#define pmd_page_shift(pmd)     (12 + ((pmd_val(pmd) & _PAGE_SZ_MASK) \
 267                                        >> _PAGE_SZ_SHIFT))
 268#define pmd_num_ptrs(pmd)       (PGDIR_SIZE >> pmd_page_shift(pmd))
 269
 270/*
 271 * Each pgd is only 2k, mapping 2Gb (local or global). If we're in global
 272 * space drop the top bit before indexing the pgd.
 273 */
 274#if PAGE_OFFSET >= LINGLOBAL_BASE
 275#define pgd_index(address)      ((((address) & ~0x80000000) >> PGDIR_SHIFT) \
 276                                                        & (PTRS_PER_PGD-1))
 277#else
 278#define pgd_index(address)      (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 279#endif
 280
 281#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
 282
 283#define pgd_offset_k(address)   pgd_offset(&init_mm, address)
 284
 285#define pmd_index(address)      (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 286
 287/* Find an entry in the second-level page table.. */
 288#if !defined(CONFIG_HUGETLB_PAGE)
 289  /* all pages are of size (1 << PAGE_SHIFT), so no need to read 1st level pt */
 290# define pte_index(pmd, address) \
 291        (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 292#else
 293  /* some pages are huge, so read 1st level pt to find out */
 294# define pte_index(pmd, address) \
 295        (((address) >> pmd_page_shift(pmd)) & (pmd_num_ptrs(pmd) - 1))
 296#endif
 297#define pte_offset_kernel(dir, address) \
 298        ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(*(dir), address))
 299#define pte_offset_map(dir, address)            pte_offset_kernel(dir, address)
 300#define pte_offset_map_nested(dir, address)     pte_offset_kernel(dir, address)
 301
 302#define pte_unmap(pte)          do { } while (0)
 303#define pte_unmap_nested(pte)   do { } while (0)
 304
 305#define pte_ERROR(e) \
 306        pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 307#define pgd_ERROR(e) \
 308        pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 309
 310/*
 311 * Meta doesn't have any external MMU info: the kernel page
 312 * tables contain all the necessary information.
 313 */
 314static inline void update_mmu_cache(struct vm_area_struct *vma,
 315                                    unsigned long address, pte_t *pte)
 316{
 317}
 318
 319/*
 320 * Encode and decode a swap entry (must be !pte_none(e) && !pte_present(e))
 321 * Since PAGE_PRESENT is bit 1, we can use the bits above that.
 322 */
 323#define __swp_type(x)                   (((x).val >> 1) & 0xff)
 324#define __swp_offset(x)                 ((x).val >> 10)
 325#define __swp_entry(type, offset)       ((swp_entry_t) { ((type) << 1) | \
 326                                         ((offset) << 10) })
 327#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 328#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 329
 330#define PTE_FILE_MAX_BITS       22
 331#define pte_to_pgoff(x)         (pte_val(x) >> 10)
 332#define pgoff_to_pte(x)         __pte(((x) << 10) | _PAGE_FILE)
 333
 334#define kern_addr_valid(addr)   (1)
 335
 336/*
 337 * No page table caches to initialise
 338 */
 339#define pgtable_cache_init()    do { } while (0)
 340
 341extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 342void paging_init(unsigned long mem_end);
 343
 344#ifdef CONFIG_METAG_META12
 345/* This is a workaround for an issue in Meta 1 cores. These cores cache
 346 * invalid entries in the TLB so we always need to flush whenever we add
 347 * a new pte. Unfortunately we can only flush the whole TLB not shoot down
 348 * single entries so this is sub-optimal. This implementation ensures that
 349 * we will get a flush at the second attempt, so we may still get repeated
 350 * faults, we just don't overflow the kernel stack handling them.
 351 */
 352#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 353#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
 354({                                                                        \
 355        int __changed = !pte_same(*(__ptep), __entry);                    \
 356        if (__changed) {                                                  \
 357                set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
 358        }                                                                 \
 359        flush_tlb_page(__vma, __address);                                 \
 360        __changed;                                                        \
 361})
 362#endif
 363
 364#include <asm-generic/pgtable.h>
 365
 366#endif /* __ASSEMBLY__ */
 367#endif /* _METAG_PGTABLE_H */
 368