linux/arch/mips/cavium-octeon/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2004-2007 Cavium Networks
   7 * Copyright (C) 2008, 2009 Wind River Systems
   8 *   written by Ralf Baechle <ralf@linux-mips.org>
   9 */
  10#include <linux/compiler.h>
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/console.h>
  14#include <linux/delay.h>
  15#include <linux/export.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/serial.h>
  19#include <linux/smp.h>
  20#include <linux/types.h>
  21#include <linux/string.h>       /* for memset */
  22#include <linux/tty.h>
  23#include <linux/time.h>
  24#include <linux/platform_device.h>
  25#include <linux/serial_core.h>
  26#include <linux/serial_8250.h>
  27#include <linux/of_fdt.h>
  28#include <linux/libfdt.h>
  29#include <linux/kexec.h>
  30
  31#include <asm/processor.h>
  32#include <asm/reboot.h>
  33#include <asm/smp-ops.h>
  34#include <asm/irq_cpu.h>
  35#include <asm/mipsregs.h>
  36#include <asm/bootinfo.h>
  37#include <asm/sections.h>
  38#include <asm/time.h>
  39
  40#include <asm/octeon/octeon.h>
  41#include <asm/octeon/pci-octeon.h>
  42#include <asm/octeon/cvmx-mio-defs.h>
  43
  44extern struct plat_smp_ops octeon_smp_ops;
  45
  46#ifdef CONFIG_PCI
  47extern void pci_console_init(const char *arg);
  48#endif
  49
  50static unsigned long long MAX_MEMORY = 512ull << 20;
  51
  52struct octeon_boot_descriptor *octeon_boot_desc_ptr;
  53
  54struct cvmx_bootinfo *octeon_bootinfo;
  55EXPORT_SYMBOL(octeon_bootinfo);
  56
  57static unsigned long long RESERVE_LOW_MEM = 0ull;
  58#ifdef CONFIG_KEXEC
  59#ifdef CONFIG_SMP
  60/*
  61 * Wait for relocation code is prepared and send
  62 * secondary CPUs to spin until kernel is relocated.
  63 */
  64static void octeon_kexec_smp_down(void *ignored)
  65{
  66        int cpu = smp_processor_id();
  67
  68        local_irq_disable();
  69        set_cpu_online(cpu, false);
  70        while (!atomic_read(&kexec_ready_to_reboot))
  71                cpu_relax();
  72
  73        asm volatile (
  74        "       sync                                            \n"
  75        "       synci   ($0)                                    \n");
  76
  77        relocated_kexec_smp_wait(NULL);
  78}
  79#endif
  80
  81#define OCTEON_DDR0_BASE    (0x0ULL)
  82#define OCTEON_DDR0_SIZE    (0x010000000ULL)
  83#define OCTEON_DDR1_BASE    (0x410000000ULL)
  84#define OCTEON_DDR1_SIZE    (0x010000000ULL)
  85#define OCTEON_DDR2_BASE    (0x020000000ULL)
  86#define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
  87#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
  88
  89static struct kimage *kimage_ptr;
  90
  91static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
  92{
  93        int64_t addr;
  94        struct cvmx_bootmem_desc *bootmem_desc;
  95
  96        bootmem_desc = cvmx_bootmem_get_desc();
  97
  98        if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
  99                mem_size = OCTEON_MAX_PHY_MEM_SIZE;
 100                pr_err("Error: requested memory too large,"
 101                       "truncating to maximum size\n");
 102        }
 103
 104        bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
 105        bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
 106
 107        addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
 108        bootmem_desc->head_addr = 0;
 109
 110        if (mem_size <= OCTEON_DDR0_SIZE) {
 111                __cvmx_bootmem_phy_free(addr,
 112                                mem_size - RESERVE_LOW_MEM -
 113                                low_reserved_bytes, 0);
 114                return;
 115        }
 116
 117        __cvmx_bootmem_phy_free(addr,
 118                        OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
 119                        low_reserved_bytes, 0);
 120
 121        mem_size -= OCTEON_DDR0_SIZE;
 122
 123        if (mem_size > OCTEON_DDR1_SIZE) {
 124                __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
 125                __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
 126                                mem_size - OCTEON_DDR1_SIZE, 0);
 127        } else
 128                __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
 129}
 130
 131static int octeon_kexec_prepare(struct kimage *image)
 132{
 133        int i;
 134        char *bootloader = "kexec";
 135
 136        octeon_boot_desc_ptr->argc = 0;
 137        for (i = 0; i < image->nr_segments; i++) {
 138                if (!strncmp(bootloader, (char *)image->segment[i].buf,
 139                                strlen(bootloader))) {
 140                        /*
 141                         * convert command line string to array
 142                         * of parameters (as bootloader does).
 143                         */
 144                        int argc = 0, offt;
 145                        char *str = (char *)image->segment[i].buf;
 146                        char *ptr = strchr(str, ' ');
 147                        while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
 148                                *ptr = '\0';
 149                                if (ptr[1] != ' ') {
 150                                        offt = (int)(ptr - str + 1);
 151                                        octeon_boot_desc_ptr->argv[argc] =
 152                                                image->segment[i].mem + offt;
 153                                        argc++;
 154                                }
 155                                ptr = strchr(ptr + 1, ' ');
 156                        }
 157                        octeon_boot_desc_ptr->argc = argc;
 158                        break;
 159                }
 160        }
 161
 162        /*
 163         * Information about segments will be needed during pre-boot memory
 164         * initialization.
 165         */
 166        kimage_ptr = image;
 167        return 0;
 168}
 169
 170static void octeon_generic_shutdown(void)
 171{
 172        int i;
 173#ifdef CONFIG_SMP
 174        int cpu;
 175#endif
 176        struct cvmx_bootmem_desc *bootmem_desc;
 177        void *named_block_array_ptr;
 178
 179        bootmem_desc = cvmx_bootmem_get_desc();
 180        named_block_array_ptr =
 181                cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
 182
 183#ifdef CONFIG_SMP
 184        /* disable watchdogs */
 185        for_each_online_cpu(cpu)
 186                cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
 187#else
 188        cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 189#endif
 190        if (kimage_ptr != kexec_crash_image) {
 191                memset(named_block_array_ptr,
 192                        0x0,
 193                        CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
 194                        sizeof(struct cvmx_bootmem_named_block_desc));
 195                /*
 196                 * Mark all memory (except low 0x100000 bytes) as free.
 197                 * It is the same thing that bootloader does.
 198                 */
 199                kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
 200                                0x100000);
 201                /*
 202                 * Allocate all segments to avoid their corruption during boot.
 203                 */
 204                for (i = 0; i < kimage_ptr->nr_segments; i++)
 205                        cvmx_bootmem_alloc_address(
 206                                kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
 207                                kimage_ptr->segment[i].mem - PAGE_SIZE,
 208                                PAGE_SIZE);
 209        } else {
 210                /*
 211                 * Do not mark all memory as free. Free only named sections
 212                 * leaving the rest of memory unchanged.
 213                 */
 214                struct cvmx_bootmem_named_block_desc *ptr =
 215                        (struct cvmx_bootmem_named_block_desc *)
 216                        named_block_array_ptr;
 217
 218                for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
 219                        if (ptr[i].size)
 220                                cvmx_bootmem_free_named(ptr[i].name);
 221        }
 222        kexec_args[2] = 1UL; /* running on octeon_main_processor */
 223        kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
 224#ifdef CONFIG_SMP
 225        secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
 226        secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
 227#endif
 228}
 229
 230static void octeon_shutdown(void)
 231{
 232        octeon_generic_shutdown();
 233#ifdef CONFIG_SMP
 234        smp_call_function(octeon_kexec_smp_down, NULL, 0);
 235        smp_wmb();
 236        while (num_online_cpus() > 1) {
 237                cpu_relax();
 238                mdelay(1);
 239        }
 240#endif
 241}
 242
 243static void octeon_crash_shutdown(struct pt_regs *regs)
 244{
 245        octeon_generic_shutdown();
 246        default_machine_crash_shutdown(regs);
 247}
 248
 249#endif /* CONFIG_KEXEC */
 250
 251#ifdef CONFIG_CAVIUM_RESERVE32
 252uint64_t octeon_reserve32_memory;
 253EXPORT_SYMBOL(octeon_reserve32_memory);
 254#endif
 255
 256#ifdef CONFIG_KEXEC
 257/* crashkernel cmdline parameter is parsed _after_ memory setup
 258 * we also parse it here (workaround for EHB5200) */
 259static uint64_t crashk_size, crashk_base;
 260#endif
 261
 262static int octeon_uart;
 263
 264extern asmlinkage void handle_int(void);
 265extern asmlinkage void plat_irq_dispatch(void);
 266
 267/**
 268 * Return non zero if we are currently running in the Octeon simulator
 269 *
 270 * Returns
 271 */
 272int octeon_is_simulation(void)
 273{
 274        return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
 275}
 276EXPORT_SYMBOL(octeon_is_simulation);
 277
 278/**
 279 * Return true if Octeon is in PCI Host mode. This means
 280 * Linux can control the PCI bus.
 281 *
 282 * Returns Non zero if Octeon in host mode.
 283 */
 284int octeon_is_pci_host(void)
 285{
 286#ifdef CONFIG_PCI
 287        return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
 288#else
 289        return 0;
 290#endif
 291}
 292
 293/**
 294 * Get the clock rate of Octeon
 295 *
 296 * Returns Clock rate in HZ
 297 */
 298uint64_t octeon_get_clock_rate(void)
 299{
 300        struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
 301
 302        return sysinfo->cpu_clock_hz;
 303}
 304EXPORT_SYMBOL(octeon_get_clock_rate);
 305
 306static u64 octeon_io_clock_rate;
 307
 308u64 octeon_get_io_clock_rate(void)
 309{
 310        return octeon_io_clock_rate;
 311}
 312EXPORT_SYMBOL(octeon_get_io_clock_rate);
 313
 314
 315/**
 316 * Write to the LCD display connected to the bootbus. This display
 317 * exists on most Cavium evaluation boards. If it doesn't exist, then
 318 * this function doesn't do anything.
 319 *
 320 * @s:      String to write
 321 */
 322void octeon_write_lcd(const char *s)
 323{
 324        if (octeon_bootinfo->led_display_base_addr) {
 325                void __iomem *lcd_address =
 326                        ioremap_nocache(octeon_bootinfo->led_display_base_addr,
 327                                        8);
 328                int i;
 329                for (i = 0; i < 8; i++, s++) {
 330                        if (*s)
 331                                iowrite8(*s, lcd_address + i);
 332                        else
 333                                iowrite8(' ', lcd_address + i);
 334                }
 335                iounmap(lcd_address);
 336        }
 337}
 338
 339/**
 340 * Return the console uart passed by the bootloader
 341 *
 342 * Returns uart   (0 or 1)
 343 */
 344int octeon_get_boot_uart(void)
 345{
 346        int uart;
 347#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
 348        uart = 1;
 349#else
 350        uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
 351                1 : 0;
 352#endif
 353        return uart;
 354}
 355
 356/**
 357 * Get the coremask Linux was booted on.
 358 *
 359 * Returns Core mask
 360 */
 361int octeon_get_boot_coremask(void)
 362{
 363        return octeon_boot_desc_ptr->core_mask;
 364}
 365
 366/**
 367 * Check the hardware BIST results for a CPU
 368 */
 369void octeon_check_cpu_bist(void)
 370{
 371        const int coreid = cvmx_get_core_num();
 372        unsigned long long mask;
 373        unsigned long long bist_val;
 374
 375        /* Check BIST results for COP0 registers */
 376        mask = 0x1f00000000ull;
 377        bist_val = read_octeon_c0_icacheerr();
 378        if (bist_val & mask)
 379                pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
 380                       coreid, bist_val);
 381
 382        bist_val = read_octeon_c0_dcacheerr();
 383        if (bist_val & 1)
 384                pr_err("Core%d L1 Dcache parity error: "
 385                       "CacheErr(dcache) = 0x%llx\n",
 386                       coreid, bist_val);
 387
 388        mask = 0xfc00000000000000ull;
 389        bist_val = read_c0_cvmmemctl();
 390        if (bist_val & mask)
 391                pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
 392                       coreid, bist_val);
 393
 394        write_octeon_c0_dcacheerr(0);
 395}
 396
 397/**
 398 * Reboot Octeon
 399 *
 400 * @command: Command to pass to the bootloader. Currently ignored.
 401 */
 402static void octeon_restart(char *command)
 403{
 404        /* Disable all watchdogs before soft reset. They don't get cleared */
 405#ifdef CONFIG_SMP
 406        int cpu;
 407        for_each_online_cpu(cpu)
 408                cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
 409#else
 410        cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 411#endif
 412
 413        mb();
 414        while (1)
 415                cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
 416}
 417
 418
 419/**
 420 * Permanently stop a core.
 421 *
 422 * @arg: Ignored.
 423 */
 424static void octeon_kill_core(void *arg)
 425{
 426        if (octeon_is_simulation())
 427                /* A break instruction causes the simulator stop a core */
 428                asm volatile ("break" ::: "memory");
 429
 430        local_irq_disable();
 431        /* Disable watchdog on this core. */
 432        cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
 433        /* Spin in a low power mode. */
 434        while (true)
 435                asm volatile ("wait" ::: "memory");
 436}
 437
 438
 439/**
 440 * Halt the system
 441 */
 442static void octeon_halt(void)
 443{
 444        smp_call_function(octeon_kill_core, NULL, 0);
 445
 446        switch (octeon_bootinfo->board_type) {
 447        case CVMX_BOARD_TYPE_NAO38:
 448                /* Driving a 1 to GPIO 12 shuts off this board */
 449                cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
 450                cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
 451                break;
 452        default:
 453                octeon_write_lcd("PowerOff");
 454                break;
 455        }
 456
 457        octeon_kill_core(NULL);
 458}
 459
 460/**
 461 * Return a string representing the system type
 462 *
 463 * Returns
 464 */
 465const char *octeon_board_type_string(void)
 466{
 467        static char name[80];
 468        sprintf(name, "%s (%s)",
 469                cvmx_board_type_to_string(octeon_bootinfo->board_type),
 470                octeon_model_get_string(read_c0_prid()));
 471        return name;
 472}
 473
 474const char *get_system_type(void)
 475        __attribute__ ((alias("octeon_board_type_string")));
 476
 477void octeon_user_io_init(void)
 478{
 479        union octeon_cvmemctl cvmmemctl;
 480        union cvmx_iob_fau_timeout fau_timeout;
 481        union cvmx_pow_nw_tim nm_tim;
 482
 483        /* Get the current settings for CP0_CVMMEMCTL_REG */
 484        cvmmemctl.u64 = read_c0_cvmmemctl();
 485        /* R/W If set, marked write-buffer entries time out the same
 486         * as as other entries; if clear, marked write-buffer entries
 487         * use the maximum timeout. */
 488        cvmmemctl.s.dismarkwblongto = 1;
 489        /* R/W If set, a merged store does not clear the write-buffer
 490         * entry timeout state. */
 491        cvmmemctl.s.dismrgclrwbto = 0;
 492        /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
 493         * word location for an IOBDMA. The other 8 bits come from the
 494         * SCRADDR field of the IOBDMA. */
 495        cvmmemctl.s.iobdmascrmsb = 0;
 496        /* R/W If set, SYNCWS and SYNCS only order marked stores; if
 497         * clear, SYNCWS and SYNCS only order unmarked
 498         * stores. SYNCWSMARKED has no effect when DISSYNCWS is
 499         * set. */
 500        cvmmemctl.s.syncwsmarked = 0;
 501        /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
 502        cvmmemctl.s.dissyncws = 0;
 503        /* R/W If set, no stall happens on write buffer full. */
 504        if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
 505                cvmmemctl.s.diswbfst = 1;
 506        else
 507                cvmmemctl.s.diswbfst = 0;
 508        /* R/W If set (and SX set), supervisor-level loads/stores can
 509         * use XKPHYS addresses with <48>==0 */
 510        cvmmemctl.s.xkmemenas = 0;
 511
 512        /* R/W If set (and UX set), user-level loads/stores can use
 513         * XKPHYS addresses with VA<48>==0 */
 514        cvmmemctl.s.xkmemenau = 0;
 515
 516        /* R/W If set (and SX set), supervisor-level loads/stores can
 517         * use XKPHYS addresses with VA<48>==1 */
 518        cvmmemctl.s.xkioenas = 0;
 519
 520        /* R/W If set (and UX set), user-level loads/stores can use
 521         * XKPHYS addresses with VA<48>==1 */
 522        cvmmemctl.s.xkioenau = 0;
 523
 524        /* R/W If set, all stores act as SYNCW (NOMERGE must be set
 525         * when this is set) RW, reset to 0. */
 526        cvmmemctl.s.allsyncw = 0;
 527
 528        /* R/W If set, no stores merge, and all stores reach the
 529         * coherent bus in order. */
 530        cvmmemctl.s.nomerge = 0;
 531        /* R/W Selects the bit in the counter used for DID time-outs 0
 532         * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
 533         * between 1x and 2x this interval. For example, with
 534         * DIDTTO=3, expiration interval is between 16K and 32K. */
 535        cvmmemctl.s.didtto = 0;
 536        /* R/W If set, the (mem) CSR clock never turns off. */
 537        cvmmemctl.s.csrckalwys = 0;
 538        /* R/W If set, mclk never turns off. */
 539        cvmmemctl.s.mclkalwys = 0;
 540        /* R/W Selects the bit in the counter used for write buffer
 541         * flush time-outs (WBFLT+11) is the bit position in an
 542         * internal counter used to determine expiration. The write
 543         * buffer expires between 1x and 2x this interval. For
 544         * example, with WBFLT = 0, a write buffer expires between 2K
 545         * and 4K cycles after the write buffer entry is allocated. */
 546        cvmmemctl.s.wbfltime = 0;
 547        /* R/W If set, do not put Istream in the L2 cache. */
 548        cvmmemctl.s.istrnol2 = 0;
 549
 550        /*
 551         * R/W The write buffer threshold. As per erratum Core-14752
 552         * for CN63XX, a sc/scd might fail if the write buffer is
 553         * full.  Lowering WBTHRESH greatly lowers the chances of the
 554         * write buffer ever being full and triggering the erratum.
 555         */
 556        if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
 557                cvmmemctl.s.wbthresh = 4;
 558        else
 559                cvmmemctl.s.wbthresh = 10;
 560
 561        /* R/W If set, CVMSEG is available for loads/stores in
 562         * kernel/debug mode. */
 563#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
 564        cvmmemctl.s.cvmsegenak = 1;
 565#else
 566        cvmmemctl.s.cvmsegenak = 0;
 567#endif
 568        /* R/W If set, CVMSEG is available for loads/stores in
 569         * supervisor mode. */
 570        cvmmemctl.s.cvmsegenas = 0;
 571        /* R/W If set, CVMSEG is available for loads/stores in user
 572         * mode. */
 573        cvmmemctl.s.cvmsegenau = 0;
 574        /* R/W Size of local memory in cache blocks, 54 (6912 bytes)
 575         * is max legal value. */
 576        cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
 577
 578        write_c0_cvmmemctl(cvmmemctl.u64);
 579
 580        if (smp_processor_id() == 0)
 581                pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
 582                          CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
 583                          CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
 584
 585        /* Set a default for the hardware timeouts */
 586        fau_timeout.u64 = 0;
 587        fau_timeout.s.tout_val = 0xfff;
 588        /* Disable tagwait FAU timeout */
 589        fau_timeout.s.tout_enb = 0;
 590        cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
 591
 592        nm_tim.u64 = 0;
 593        /* 4096 cycles */
 594        nm_tim.s.nw_tim = 3;
 595        cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
 596
 597        write_octeon_c0_icacheerr(0);
 598        write_c0_derraddr1(0);
 599}
 600
 601/**
 602 * Early entry point for arch setup
 603 */
 604void __init prom_init(void)
 605{
 606        struct cvmx_sysinfo *sysinfo;
 607        const char *arg;
 608        char *p;
 609        int i;
 610        int argc;
 611#ifdef CONFIG_CAVIUM_RESERVE32
 612        int64_t addr = -1;
 613#endif
 614        /*
 615         * The bootloader passes a pointer to the boot descriptor in
 616         * $a3, this is available as fw_arg3.
 617         */
 618        octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
 619        octeon_bootinfo =
 620                cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
 621        cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
 622
 623        sysinfo = cvmx_sysinfo_get();
 624        memset(sysinfo, 0, sizeof(*sysinfo));
 625        sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
 626        sysinfo->phy_mem_desc_ptr =
 627                cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
 628        sysinfo->core_mask = octeon_bootinfo->core_mask;
 629        sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
 630        sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
 631        sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
 632        sysinfo->board_type = octeon_bootinfo->board_type;
 633        sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
 634        sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
 635        memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
 636               sizeof(sysinfo->mac_addr_base));
 637        sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
 638        memcpy(sysinfo->board_serial_number,
 639               octeon_bootinfo->board_serial_number,
 640               sizeof(sysinfo->board_serial_number));
 641        sysinfo->compact_flash_common_base_addr =
 642                octeon_bootinfo->compact_flash_common_base_addr;
 643        sysinfo->compact_flash_attribute_base_addr =
 644                octeon_bootinfo->compact_flash_attribute_base_addr;
 645        sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
 646        sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
 647        sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
 648
 649        if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
 650                /* I/O clock runs at a different rate than the CPU. */
 651                union cvmx_mio_rst_boot rst_boot;
 652                rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
 653                octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
 654        } else {
 655                octeon_io_clock_rate = sysinfo->cpu_clock_hz;
 656        }
 657
 658        /*
 659         * Only enable the LED controller if we're running on a CN38XX, CN58XX,
 660         * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
 661         */
 662        if (!octeon_is_simulation() &&
 663            octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
 664                cvmx_write_csr(CVMX_LED_EN, 0);
 665                cvmx_write_csr(CVMX_LED_PRT, 0);
 666                cvmx_write_csr(CVMX_LED_DBG, 0);
 667                cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
 668                cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
 669                cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
 670                cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
 671                cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
 672                cvmx_write_csr(CVMX_LED_EN, 1);
 673        }
 674#ifdef CONFIG_CAVIUM_RESERVE32
 675        /*
 676         * We need to temporarily allocate all memory in the reserve32
 677         * region. This makes sure the kernel doesn't allocate this
 678         * memory when it is getting memory from the
 679         * bootloader. Later, after the memory allocations are
 680         * complete, the reserve32 will be freed.
 681         *
 682         * Allocate memory for RESERVED32 aligned on 2MB boundary. This
 683         * is in case we later use hugetlb entries with it.
 684         */
 685        addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
 686                                                0, 0, 2 << 20,
 687                                                "CAVIUM_RESERVE32", 0);
 688        if (addr < 0)
 689                pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
 690        else
 691                octeon_reserve32_memory = addr;
 692#endif
 693
 694#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
 695        if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
 696                pr_info("Skipping L2 locking due to reduced L2 cache size\n");
 697        } else {
 698                uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
 699#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
 700                /* TLB refill */
 701                cvmx_l2c_lock_mem_region(ebase, 0x100);
 702#endif
 703#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
 704                /* General exception */
 705                cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
 706#endif
 707#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
 708                /* Interrupt handler */
 709                cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
 710#endif
 711#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
 712                cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
 713                cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
 714#endif
 715#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
 716                cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
 717#endif
 718        }
 719#endif
 720
 721        octeon_check_cpu_bist();
 722
 723        octeon_uart = octeon_get_boot_uart();
 724
 725#ifdef CONFIG_SMP
 726        octeon_write_lcd("LinuxSMP");
 727#else
 728        octeon_write_lcd("Linux");
 729#endif
 730
 731#ifdef CONFIG_CAVIUM_GDB
 732        /*
 733         * When debugging the linux kernel, force the cores to enter
 734         * the debug exception handler to break in.
 735         */
 736        if (octeon_get_boot_debug_flag()) {
 737                cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
 738                cvmx_read_csr(CVMX_CIU_DINT);
 739        }
 740#endif
 741
 742        octeon_setup_delays();
 743
 744        /*
 745         * BIST should always be enabled when doing a soft reset. L2
 746         * Cache locking for instance is not cleared unless BIST is
 747         * enabled.  Unfortunately due to a chip errata G-200 for
 748         * Cn38XX and CN31XX, BIST msut be disabled on these parts.
 749         */
 750        if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 751            OCTEON_IS_MODEL(OCTEON_CN31XX))
 752                cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
 753        else
 754                cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
 755
 756        /* Default to 64MB in the simulator to speed things up */
 757        if (octeon_is_simulation())
 758                MAX_MEMORY = 64ull << 20;
 759
 760        arg = strstr(arcs_cmdline, "mem=");
 761        if (arg) {
 762                MAX_MEMORY = memparse(arg + 4, &p);
 763                if (MAX_MEMORY == 0)
 764                        MAX_MEMORY = 32ull << 30;
 765                if (*p == '@')
 766                        RESERVE_LOW_MEM = memparse(p + 1, &p);
 767        }
 768
 769        arcs_cmdline[0] = 0;
 770        argc = octeon_boot_desc_ptr->argc;
 771        for (i = 0; i < argc; i++) {
 772                const char *arg =
 773                        cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
 774                if ((strncmp(arg, "MEM=", 4) == 0) ||
 775                    (strncmp(arg, "mem=", 4) == 0)) {
 776                        MAX_MEMORY = memparse(arg + 4, &p);
 777                        if (MAX_MEMORY == 0)
 778                                MAX_MEMORY = 32ull << 30;
 779                        if (*p == '@')
 780                                RESERVE_LOW_MEM = memparse(p + 1, &p);
 781                } else if (strcmp(arg, "ecc_verbose") == 0) {
 782#ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
 783                        __cvmx_interrupt_ecc_report_single_bit_errors = 1;
 784                        pr_notice("Reporting of single bit ECC errors is "
 785                                  "turned on\n");
 786#endif
 787#ifdef CONFIG_KEXEC
 788                } else if (strncmp(arg, "crashkernel=", 12) == 0) {
 789                        crashk_size = memparse(arg+12, &p);
 790                        if (*p == '@')
 791                                crashk_base = memparse(p+1, &p);
 792                        strcat(arcs_cmdline, " ");
 793                        strcat(arcs_cmdline, arg);
 794                        /*
 795                         * To do: switch parsing to new style, something like:
 796                         * parse_crashkernel(arg, sysinfo->system_dram_size,
 797                         *                &crashk_size, &crashk_base);
 798                         */
 799#endif
 800                } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
 801                           sizeof(arcs_cmdline) - 1) {
 802                        strcat(arcs_cmdline, " ");
 803                        strcat(arcs_cmdline, arg);
 804                }
 805        }
 806
 807        if (strstr(arcs_cmdline, "console=") == NULL) {
 808#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
 809                strcat(arcs_cmdline, " console=ttyS0,115200");
 810#else
 811                if (octeon_uart == 1)
 812                        strcat(arcs_cmdline, " console=ttyS1,115200");
 813                else
 814                        strcat(arcs_cmdline, " console=ttyS0,115200");
 815#endif
 816        }
 817
 818        if (octeon_is_simulation()) {
 819                /*
 820                 * The simulator uses a mtdram device pre filled with
 821                 * the filesystem. Also specify the calibration delay
 822                 * to avoid calculating it every time.
 823                 */
 824                strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
 825        }
 826
 827        mips_hpt_frequency = octeon_get_clock_rate();
 828
 829        octeon_init_cvmcount();
 830
 831        _machine_restart = octeon_restart;
 832        _machine_halt = octeon_halt;
 833
 834#ifdef CONFIG_KEXEC
 835        _machine_kexec_shutdown = octeon_shutdown;
 836        _machine_crash_shutdown = octeon_crash_shutdown;
 837        _machine_kexec_prepare = octeon_kexec_prepare;
 838#endif
 839
 840        octeon_user_io_init();
 841        register_smp_ops(&octeon_smp_ops);
 842}
 843
 844/* Exclude a single page from the regions obtained in plat_mem_setup. */
 845#ifndef CONFIG_CRASH_DUMP
 846static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
 847{
 848        if (addr > *mem && addr < *mem + *size) {
 849                u64 inc = addr - *mem;
 850                add_memory_region(*mem, inc, BOOT_MEM_RAM);
 851                *mem += inc;
 852                *size -= inc;
 853        }
 854
 855        if (addr == *mem && *size > PAGE_SIZE) {
 856                *mem += PAGE_SIZE;
 857                *size -= PAGE_SIZE;
 858        }
 859}
 860#endif /* CONFIG_CRASH_DUMP */
 861
 862void __init plat_mem_setup(void)
 863{
 864        uint64_t mem_alloc_size;
 865        uint64_t total;
 866        uint64_t crashk_end;
 867#ifndef CONFIG_CRASH_DUMP
 868        int64_t memory;
 869        uint64_t kernel_start;
 870        uint64_t kernel_size;
 871#endif
 872
 873        total = 0;
 874        crashk_end = 0;
 875
 876        /*
 877         * The Mips memory init uses the first memory location for
 878         * some memory vectors. When SPARSEMEM is in use, it doesn't
 879         * verify that the size is big enough for the final
 880         * vectors. Making the smallest chuck 4MB seems to be enough
 881         * to consistently work.
 882         */
 883        mem_alloc_size = 4 << 20;
 884        if (mem_alloc_size > MAX_MEMORY)
 885                mem_alloc_size = MAX_MEMORY;
 886
 887/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
 888#ifdef CONFIG_CRASH_DUMP
 889        add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
 890        total += MAX_MEMORY;
 891#else
 892#ifdef CONFIG_KEXEC
 893        if (crashk_size > 0) {
 894                add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
 895                crashk_end = crashk_base + crashk_size;
 896        }
 897#endif
 898        /*
 899         * When allocating memory, we want incrementing addresses from
 900         * bootmem_alloc so the code in add_memory_region can merge
 901         * regions next to each other.
 902         */
 903        cvmx_bootmem_lock();
 904        while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
 905                && (total < MAX_MEMORY)) {
 906                memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
 907                                                __pa_symbol(&__init_end), -1,
 908                                                0x100000,
 909                                                CVMX_BOOTMEM_FLAG_NO_LOCKING);
 910                if (memory >= 0) {
 911                        u64 size = mem_alloc_size;
 912#ifdef CONFIG_KEXEC
 913                        uint64_t end;
 914#endif
 915
 916                        /*
 917                         * exclude a page at the beginning and end of
 918                         * the 256MB PCIe 'hole' so the kernel will not
 919                         * try to allocate multi-page buffers that
 920                         * span the discontinuity.
 921                         */
 922                        memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
 923                                            &memory, &size);
 924                        memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
 925                                            CVMX_PCIE_BAR1_PHYS_SIZE,
 926                                            &memory, &size);
 927#ifdef CONFIG_KEXEC
 928                        end = memory + mem_alloc_size;
 929
 930                        /*
 931                         * This function automatically merges address regions
 932                         * next to each other if they are received in
 933                         * incrementing order
 934                         */
 935                        if (memory < crashk_base && end >  crashk_end) {
 936                                /* region is fully in */
 937                                add_memory_region(memory,
 938                                                  crashk_base - memory,
 939                                                  BOOT_MEM_RAM);
 940                                total += crashk_base - memory;
 941                                add_memory_region(crashk_end,
 942                                                  end - crashk_end,
 943                                                  BOOT_MEM_RAM);
 944                                total += end - crashk_end;
 945                                continue;
 946                        }
 947
 948                        if (memory >= crashk_base && end <= crashk_end)
 949                                /*
 950                                 * Entire memory region is within the new
 951                                 *  kernel's memory, ignore it.
 952                                 */
 953                                continue;
 954
 955                        if (memory > crashk_base && memory < crashk_end &&
 956                            end > crashk_end) {
 957                                /*
 958                                 * Overlap with the beginning of the region,
 959                                 * reserve the beginning.
 960                                  */
 961                                mem_alloc_size -= crashk_end - memory;
 962                                memory = crashk_end;
 963                        } else if (memory < crashk_base && end > crashk_base &&
 964                                   end < crashk_end)
 965                                /*
 966                                 * Overlap with the beginning of the region,
 967                                 * chop of end.
 968                                 */
 969                                mem_alloc_size -= end - crashk_base;
 970#endif
 971                        add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
 972                        total += mem_alloc_size;
 973                        /* Recovering mem_alloc_size */
 974                        mem_alloc_size = 4 << 20;
 975                } else {
 976                        break;
 977                }
 978        }
 979        cvmx_bootmem_unlock();
 980        /* Add the memory region for the kernel. */
 981        kernel_start = (unsigned long) _text;
 982        kernel_size = _end - _text;
 983
 984        /* Adjust for physical offset. */
 985        kernel_start &= ~0xffffffff80000000ULL;
 986        add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
 987#endif /* CONFIG_CRASH_DUMP */
 988
 989#ifdef CONFIG_CAVIUM_RESERVE32
 990        /*
 991         * Now that we've allocated the kernel memory it is safe to
 992         * free the reserved region. We free it here so that builtin
 993         * drivers can use the memory.
 994         */
 995        if (octeon_reserve32_memory)
 996                cvmx_bootmem_free_named("CAVIUM_RESERVE32");
 997#endif /* CONFIG_CAVIUM_RESERVE32 */
 998
 999        if (total == 0)
1000                panic("Unable to allocate memory from "
1001                      "cvmx_bootmem_phy_alloc\n");
1002}
1003
1004/*
1005 * Emit one character to the boot UART.  Exported for use by the
1006 * watchdog timer.
1007 */
1008int prom_putchar(char c)
1009{
1010        uint64_t lsrval;
1011
1012        /* Spin until there is room */
1013        do {
1014                lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1015        } while ((lsrval & 0x20) == 0);
1016
1017        /* Write the byte */
1018        cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1019        return 1;
1020}
1021EXPORT_SYMBOL(prom_putchar);
1022
1023void prom_free_prom_memory(void)
1024{
1025        if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
1026                /* Check for presence of Core-14449 fix.  */
1027                u32 insn;
1028                u32 *foo;
1029
1030                foo = &insn;
1031
1032                asm volatile("# before" : : : "memory");
1033                prefetch(foo);
1034                asm volatile(
1035                        ".set push\n\t"
1036                        ".set noreorder\n\t"
1037                        "bal 1f\n\t"
1038                        "nop\n"
1039                        "1:\tlw %0,-12($31)\n\t"
1040                        ".set pop\n\t"
1041                        : "=r" (insn) : : "$31", "memory");
1042
1043                if ((insn >> 26) != 0x33)
1044                        panic("No PREF instruction at Core-14449 probe point.");
1045
1046                if (((insn >> 16) & 0x1f) != 28)
1047                        panic("Core-14449 WAR not in place (%04x).\n"
1048                              "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
1049        }
1050}
1051
1052int octeon_prune_device_tree(void);
1053
1054extern const char __dtb_octeon_3xxx_begin;
1055extern const char __dtb_octeon_3xxx_end;
1056extern const char __dtb_octeon_68xx_begin;
1057extern const char __dtb_octeon_68xx_end;
1058void __init device_tree_init(void)
1059{
1060        int dt_size;
1061        struct boot_param_header *fdt;
1062        bool do_prune;
1063
1064        if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1065                fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1066                if (fdt_check_header(fdt))
1067                        panic("Corrupt Device Tree passed to kernel.");
1068                dt_size = be32_to_cpu(fdt->totalsize);
1069                do_prune = false;
1070        } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1071                fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
1072                dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
1073                do_prune = true;
1074        } else {
1075                fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
1076                dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
1077                do_prune = true;
1078        }
1079
1080        /* Copy the default tree from init memory. */
1081        initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
1082        if (initial_boot_params == NULL)
1083                panic("Could not allocate initial_boot_params\n");
1084        memcpy(initial_boot_params, fdt, dt_size);
1085
1086        if (do_prune) {
1087                octeon_prune_device_tree();
1088                pr_info("Using internal Device Tree.\n");
1089        } else {
1090                pr_info("Using passed Device Tree.\n");
1091        }
1092        unflatten_device_tree();
1093}
1094
1095static int __initdata disable_octeon_edac_p;
1096
1097static int __init disable_octeon_edac(char *str)
1098{
1099        disable_octeon_edac_p = 1;
1100        return 0;
1101}
1102early_param("disable_octeon_edac", disable_octeon_edac);
1103
1104static char *edac_device_names[] = {
1105        "octeon_l2c_edac",
1106        "octeon_pc_edac",
1107};
1108
1109static int __init edac_devinit(void)
1110{
1111        struct platform_device *dev;
1112        int i, err = 0;
1113        int num_lmc;
1114        char *name;
1115
1116        if (disable_octeon_edac_p)
1117                return 0;
1118
1119        for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1120                name = edac_device_names[i];
1121                dev = platform_device_register_simple(name, -1, NULL, 0);
1122                if (IS_ERR(dev)) {
1123                        pr_err("Registation of %s failed!\n", name);
1124                        err = PTR_ERR(dev);
1125                }
1126        }
1127
1128        num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1129                (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1130        for (i = 0; i < num_lmc; i++) {
1131                dev = platform_device_register_simple("octeon_lmc_edac",
1132                                                      i, NULL, 0);
1133                if (IS_ERR(dev)) {
1134                        pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
1135                        err = PTR_ERR(dev);
1136                }
1137        }
1138
1139        return err;
1140}
1141device_initcall(edac_devinit);
1142