linux/arch/mips/kernel/smtc.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or
   3 * modify it under the terms of the GNU General Public License
   4 * as published by the Free Software Foundation; either version 2
   5 * of the License, or (at your option) any later version.
   6 *
   7 * This program is distributed in the hope that it will be useful,
   8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  10 * GNU General Public License for more details.
  11 *
  12 * You should have received a copy of the GNU General Public License
  13 * along with this program; if not, write to the Free Software
  14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  15 *
  16 * Copyright (C) 2004 Mips Technologies, Inc
  17 * Copyright (C) 2008 Kevin D. Kissell
  18 */
  19
  20#include <linux/clockchips.h>
  21#include <linux/kernel.h>
  22#include <linux/sched.h>
  23#include <linux/smp.h>
  24#include <linux/cpumask.h>
  25#include <linux/interrupt.h>
  26#include <linux/kernel_stat.h>
  27#include <linux/module.h>
  28#include <linux/ftrace.h>
  29#include <linux/slab.h>
  30
  31#include <asm/cpu.h>
  32#include <asm/processor.h>
  33#include <linux/atomic.h>
  34#include <asm/hardirq.h>
  35#include <asm/hazards.h>
  36#include <asm/irq.h>
  37#include <asm/idle.h>
  38#include <asm/mmu_context.h>
  39#include <asm/mipsregs.h>
  40#include <asm/cacheflush.h>
  41#include <asm/time.h>
  42#include <asm/addrspace.h>
  43#include <asm/smtc.h>
  44#include <asm/smtc_proc.h>
  45#include <asm/setup.h>
  46
  47/*
  48 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
  49 * in do_IRQ. These are passed in setup_irq_smtc() and stored
  50 * in this table.
  51 */
  52unsigned long irq_hwmask[NR_IRQS];
  53
  54#define LOCK_MT_PRA() \
  55        local_irq_save(flags); \
  56        mtflags = dmt()
  57
  58#define UNLOCK_MT_PRA() \
  59        emt(mtflags); \
  60        local_irq_restore(flags)
  61
  62#define LOCK_CORE_PRA() \
  63        local_irq_save(flags); \
  64        mtflags = dvpe()
  65
  66#define UNLOCK_CORE_PRA() \
  67        evpe(mtflags); \
  68        local_irq_restore(flags)
  69
  70/*
  71 * Data structures purely associated with SMTC parallelism
  72 */
  73
  74
  75/*
  76 * Table for tracking ASIDs whose lifetime is prolonged.
  77 */
  78
  79asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
  80
  81/*
  82 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
  83 */
  84
  85#define IPIBUF_PER_CPU 4
  86
  87struct smtc_ipi_q IPIQ[NR_CPUS];
  88static struct smtc_ipi_q freeIPIq;
  89
  90
  91/*
  92 * Number of FPU contexts for each VPE
  93 */
  94
  95static int smtc_nconf1[MAX_SMTC_VPES];
  96
  97
  98/* Forward declarations */
  99
 100void ipi_decode(struct smtc_ipi *);
 101static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
 102static void setup_cross_vpe_interrupts(unsigned int nvpe);
 103void init_smtc_stats(void);
 104
 105/* Global SMTC Status */
 106
 107unsigned int smtc_status;
 108
 109/* Boot command line configuration overrides */
 110
 111static int vpe0limit;
 112static int ipibuffers;
 113static int nostlb;
 114static int asidmask;
 115unsigned long smtc_asid_mask = 0xff;
 116
 117static int __init vpe0tcs(char *str)
 118{
 119        get_option(&str, &vpe0limit);
 120
 121        return 1;
 122}
 123
 124static int __init ipibufs(char *str)
 125{
 126        get_option(&str, &ipibuffers);
 127        return 1;
 128}
 129
 130static int __init stlb_disable(char *s)
 131{
 132        nostlb = 1;
 133        return 1;
 134}
 135
 136static int __init asidmask_set(char *str)
 137{
 138        get_option(&str, &asidmask);
 139        switch (asidmask) {
 140        case 0x1:
 141        case 0x3:
 142        case 0x7:
 143        case 0xf:
 144        case 0x1f:
 145        case 0x3f:
 146        case 0x7f:
 147        case 0xff:
 148                smtc_asid_mask = (unsigned long)asidmask;
 149                break;
 150        default:
 151                printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
 152        }
 153        return 1;
 154}
 155
 156__setup("vpe0tcs=", vpe0tcs);
 157__setup("ipibufs=", ipibufs);
 158__setup("nostlb", stlb_disable);
 159__setup("asidmask=", asidmask_set);
 160
 161#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 162
 163static int hang_trig;
 164
 165static int __init hangtrig_enable(char *s)
 166{
 167        hang_trig = 1;
 168        return 1;
 169}
 170
 171
 172__setup("hangtrig", hangtrig_enable);
 173
 174#define DEFAULT_BLOCKED_IPI_LIMIT 32
 175
 176static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
 177
 178static int __init tintq(char *str)
 179{
 180        get_option(&str, &timerq_limit);
 181        return 1;
 182}
 183
 184__setup("tintq=", tintq);
 185
 186static int imstuckcount[MAX_SMTC_VPES][8];
 187/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
 188static int vpemask[MAX_SMTC_VPES][8] = {
 189        {0, 0, 1, 0, 0, 0, 0, 1},
 190        {0, 0, 0, 0, 0, 0, 0, 1}
 191};
 192int tcnoprog[NR_CPUS];
 193static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
 194static int clock_hang_reported[NR_CPUS];
 195
 196#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 197
 198/*
 199 * Configure shared TLB - VPC configuration bit must be set by caller
 200 */
 201
 202static void smtc_configure_tlb(void)
 203{
 204        int i, tlbsiz, vpes;
 205        unsigned long mvpconf0;
 206        unsigned long config1val;
 207
 208        /* Set up ASID preservation table */
 209        for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
 210            for(i = 0; i < MAX_SMTC_ASIDS; i++) {
 211                smtc_live_asid[vpes][i] = 0;
 212            }
 213        }
 214        mvpconf0 = read_c0_mvpconf0();
 215
 216        if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
 217                        >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
 218            /* If we have multiple VPEs, try to share the TLB */
 219            if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
 220                /*
 221                 * If TLB sizing is programmable, shared TLB
 222                 * size is the total available complement.
 223                 * Otherwise, we have to take the sum of all
 224                 * static VPE TLB entries.
 225                 */
 226                if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
 227                                >> MVPCONF0_PTLBE_SHIFT)) == 0) {
 228                    /*
 229                     * If there's more than one VPE, there had better
 230                     * be more than one TC, because we need one to bind
 231                     * to each VPE in turn to be able to read
 232                     * its configuration state!
 233                     */
 234                    settc(1);
 235                    /* Stop the TC from doing anything foolish */
 236                    write_tc_c0_tchalt(TCHALT_H);
 237                    mips_ihb();
 238                    /* No need to un-Halt - that happens later anyway */
 239                    for (i=0; i < vpes; i++) {
 240                        write_tc_c0_tcbind(i);
 241                        /*
 242                         * To be 100% sure we're really getting the right
 243                         * information, we exit the configuration state
 244                         * and do an IHB after each rebinding.
 245                         */
 246                        write_c0_mvpcontrol(
 247                                read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 248                        mips_ihb();
 249                        /*
 250                         * Only count if the MMU Type indicated is TLB
 251                         */
 252                        if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
 253                                config1val = read_vpe_c0_config1();
 254                                tlbsiz += ((config1val >> 25) & 0x3f) + 1;
 255                        }
 256
 257                        /* Put core back in configuration state */
 258                        write_c0_mvpcontrol(
 259                                read_c0_mvpcontrol() | MVPCONTROL_VPC );
 260                        mips_ihb();
 261                    }
 262                }
 263                write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
 264                ehb();
 265
 266                /*
 267                 * Setup kernel data structures to use software total,
 268                 * rather than read the per-VPE Config1 value. The values
 269                 * for "CPU 0" gets copied to all the other CPUs as part
 270                 * of their initialization in smtc_cpu_setup().
 271                 */
 272
 273                /* MIPS32 limits TLB indices to 64 */
 274                if (tlbsiz > 64)
 275                        tlbsiz = 64;
 276                cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
 277                smtc_status |= SMTC_TLB_SHARED;
 278                local_flush_tlb_all();
 279
 280                printk("TLB of %d entry pairs shared by %d VPEs\n",
 281                        tlbsiz, vpes);
 282            } else {
 283                printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
 284            }
 285        }
 286}
 287
 288
 289/*
 290 * Incrementally build the CPU map out of constituent MIPS MT cores,
 291 * using the specified available VPEs and TCs.  Plaform code needs
 292 * to ensure that each MIPS MT core invokes this routine on reset,
 293 * one at a time(!).
 294 *
 295 * This version of the build_cpu_map and prepare_cpus routines assumes
 296 * that *all* TCs of a MIPS MT core will be used for Linux, and that
 297 * they will be spread across *all* available VPEs (to minimise the
 298 * loss of efficiency due to exception service serialization).
 299 * An improved version would pick up configuration information and
 300 * possibly leave some TCs/VPEs as "slave" processors.
 301 *
 302 * Use c0_MVPConf0 to find out how many TCs are available, setting up
 303 * cpu_possible_mask and the logical/physical mappings.
 304 */
 305
 306int __init smtc_build_cpu_map(int start_cpu_slot)
 307{
 308        int i, ntcs;
 309
 310        /*
 311         * The CPU map isn't actually used for anything at this point,
 312         * so it's not clear what else we should do apart from set
 313         * everything up so that "logical" = "physical".
 314         */
 315        ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 316        for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
 317                set_cpu_possible(i, true);
 318                __cpu_number_map[i] = i;
 319                __cpu_logical_map[i] = i;
 320        }
 321#ifdef CONFIG_MIPS_MT_FPAFF
 322        /* Initialize map of CPUs with FPUs */
 323        cpus_clear(mt_fpu_cpumask);
 324#endif
 325
 326        /* One of those TC's is the one booting, and not a secondary... */
 327        printk("%i available secondary CPU TC(s)\n", i - 1);
 328
 329        return i;
 330}
 331
 332/*
 333 * Common setup before any secondaries are started
 334 * Make sure all CPUs are in a sensible state before we boot any of the
 335 * secondaries.
 336 *
 337 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
 338 * as possible across the available VPEs.
 339 */
 340
 341static void smtc_tc_setup(int vpe, int tc, int cpu)
 342{
 343        static int cp1contexts[MAX_SMTC_VPES];
 344
 345        /*
 346         * Make a local copy of the available FPU contexts in order
 347         * to keep track of TCs that can have one.
 348         */
 349        if (tc == 1)
 350        {
 351                /*
 352                 * FIXME: Multi-core SMTC hasn't been tested and the
 353                 *        maximum number of VPEs may change.
 354                 */
 355                cp1contexts[0] = smtc_nconf1[0] - 1;
 356                cp1contexts[1] = smtc_nconf1[1];
 357        }
 358
 359        settc(tc);
 360        write_tc_c0_tchalt(TCHALT_H);
 361        mips_ihb();
 362        write_tc_c0_tcstatus((read_tc_c0_tcstatus()
 363                        & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
 364                        | TCSTATUS_A);
 365        /*
 366         * TCContext gets an offset from the base of the IPIQ array
 367         * to be used in low-level code to detect the presence of
 368         * an active IPI queue.
 369         */
 370        write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
 371
 372        /* Bind TC to VPE. */
 373        write_tc_c0_tcbind(vpe);
 374
 375        /* In general, all TCs should have the same cpu_data indications. */
 376        memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
 377
 378        /* Check to see if there is a FPU context available for this TC. */
 379        if (!cp1contexts[vpe])
 380                cpu_data[cpu].options &= ~MIPS_CPU_FPU;
 381        else
 382                cp1contexts[vpe]--;
 383
 384        /* Store the TC and VPE into the cpu_data structure. */
 385        cpu_data[cpu].vpe_id = vpe;
 386        cpu_data[cpu].tc_id = tc;
 387
 388        /* FIXME: Multi-core SMTC hasn't been tested, but be prepared. */
 389        cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
 390}
 391
 392/*
 393 * Tweak to get Count registers synced as closely as possible. The
 394 * value seems good for 34K-class cores.
 395 */
 396
 397#define CP0_SKEW 8
 398
 399void smtc_prepare_cpus(int cpus)
 400{
 401        int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
 402        unsigned long flags;
 403        unsigned long val;
 404        int nipi;
 405        struct smtc_ipi *pipi;
 406
 407        /* disable interrupts so we can disable MT */
 408        local_irq_save(flags);
 409        /* disable MT so we can configure */
 410        dvpe();
 411        dmt();
 412
 413        spin_lock_init(&freeIPIq.lock);
 414
 415        /*
 416         * We probably don't have as many VPEs as we do SMP "CPUs",
 417         * but it's possible - and in any case we'll never use more!
 418         */
 419        for (i=0; i<NR_CPUS; i++) {
 420                IPIQ[i].head = IPIQ[i].tail = NULL;
 421                spin_lock_init(&IPIQ[i].lock);
 422                IPIQ[i].depth = 0;
 423                IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
 424        }
 425
 426        /* cpu_data index starts at zero */
 427        cpu = 0;
 428        cpu_data[cpu].vpe_id = 0;
 429        cpu_data[cpu].tc_id = 0;
 430        cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
 431        cpu++;
 432
 433        /* Report on boot-time options */
 434        mips_mt_set_cpuoptions();
 435        if (vpelimit > 0)
 436                printk("Limit of %d VPEs set\n", vpelimit);
 437        if (tclimit > 0)
 438                printk("Limit of %d TCs set\n", tclimit);
 439        if (nostlb) {
 440                printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
 441        }
 442        if (asidmask)
 443                printk("ASID mask value override to 0x%x\n", asidmask);
 444
 445        /* Temporary */
 446#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 447        if (hang_trig)
 448                printk("Logic Analyser Trigger on suspected TC hang\n");
 449#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
 450
 451        /* Put MVPE's into 'configuration state' */
 452        write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
 453
 454        val = read_c0_mvpconf0();
 455        nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
 456        if (vpelimit > 0 && nvpe > vpelimit)
 457                nvpe = vpelimit;
 458        ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
 459        if (ntc > NR_CPUS)
 460                ntc = NR_CPUS;
 461        if (tclimit > 0 && ntc > tclimit)
 462                ntc = tclimit;
 463        slop = ntc % nvpe;
 464        for (i = 0; i < nvpe; i++) {
 465                tcpervpe[i] = ntc / nvpe;
 466                if (slop) {
 467                        if((slop - i) > 0) tcpervpe[i]++;
 468                }
 469        }
 470        /* Handle command line override for VPE0 */
 471        if (vpe0limit > ntc) vpe0limit = ntc;
 472        if (vpe0limit > 0) {
 473                int slopslop;
 474                if (vpe0limit < tcpervpe[0]) {
 475                    /* Reducing TC count - distribute to others */
 476                    slop = tcpervpe[0] - vpe0limit;
 477                    slopslop = slop % (nvpe - 1);
 478                    tcpervpe[0] = vpe0limit;
 479                    for (i = 1; i < nvpe; i++) {
 480                        tcpervpe[i] += slop / (nvpe - 1);
 481                        if(slopslop && ((slopslop - (i - 1) > 0)))
 482                                tcpervpe[i]++;
 483                    }
 484                } else if (vpe0limit > tcpervpe[0]) {
 485                    /* Increasing TC count - steal from others */
 486                    slop = vpe0limit - tcpervpe[0];
 487                    slopslop = slop % (nvpe - 1);
 488                    tcpervpe[0] = vpe0limit;
 489                    for (i = 1; i < nvpe; i++) {
 490                        tcpervpe[i] -= slop / (nvpe - 1);
 491                        if(slopslop && ((slopslop - (i - 1) > 0)))
 492                                tcpervpe[i]--;
 493                    }
 494                }
 495        }
 496
 497        /* Set up shared TLB */
 498        smtc_configure_tlb();
 499
 500        for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
 501                /* Get number of CP1 contexts for each VPE. */
 502                if (tc == 0)
 503                {
 504                        /*
 505                         * Do not call settc() for TC0 or the FPU context
 506                         * value will be incorrect. Besides, we know that
 507                         * we are TC0 anyway.
 508                         */
 509                        smtc_nconf1[0] = ((read_vpe_c0_vpeconf1() &
 510                                VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
 511                        if (nvpe == 2)
 512                        {
 513                                settc(1);
 514                                smtc_nconf1[1] = ((read_vpe_c0_vpeconf1() &
 515                                        VPECONF1_NCP1) >> VPECONF1_NCP1_SHIFT);
 516                                settc(0);
 517                        }
 518                }
 519                if (tcpervpe[vpe] == 0)
 520                        continue;
 521                if (vpe != 0)
 522                        printk(", ");
 523                printk("VPE %d: TC", vpe);
 524                for (i = 0; i < tcpervpe[vpe]; i++) {
 525                        /*
 526                         * TC 0 is bound to VPE 0 at reset,
 527                         * and is presumably executing this
 528                         * code.  Leave it alone!
 529                         */
 530                        if (tc != 0) {
 531                                smtc_tc_setup(vpe, tc, cpu);
 532                                if (vpe != 0) {
 533                                        /*
 534                                         * Set MVP bit (possibly again).  Do it
 535                                         * here to catch CPUs that have no TCs
 536                                         * bound to the VPE at reset.  In that
 537                                         * case, a TC must be bound to the VPE
 538                                         * before we can set VPEControl[MVP]
 539                                         */
 540                                        write_vpe_c0_vpeconf0(
 541                                                read_vpe_c0_vpeconf0() |
 542                                                VPECONF0_MVP);
 543                                }
 544                                cpu++;
 545                        }
 546                        printk(" %d", tc);
 547                        tc++;
 548                }
 549                if (vpe != 0) {
 550                        /*
 551                         * Allow this VPE to control others.
 552                         */
 553                        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
 554                                              VPECONF0_MVP);
 555
 556                        /*
 557                         * Clear any stale software interrupts from VPE's Cause
 558                         */
 559                        write_vpe_c0_cause(0);
 560
 561                        /*
 562                         * Clear ERL/EXL of VPEs other than 0
 563                         * and set restricted interrupt enable/mask.
 564                         */
 565                        write_vpe_c0_status((read_vpe_c0_status()
 566                                & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
 567                                | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
 568                                | ST0_IE));
 569                        /*
 570                         * set config to be the same as vpe0,
 571                         *  particularly kseg0 coherency alg
 572                         */
 573                        write_vpe_c0_config(read_c0_config());
 574                        /* Clear any pending timer interrupt */
 575                        write_vpe_c0_compare(0);
 576                        /* Propagate Config7 */
 577                        write_vpe_c0_config7(read_c0_config7());
 578                        write_vpe_c0_count(read_c0_count() + CP0_SKEW);
 579                        ehb();
 580                }
 581                /* enable multi-threading within VPE */
 582                write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
 583                /* enable the VPE */
 584                write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
 585        }
 586
 587        /*
 588         * Pull any physically present but unused TCs out of circulation.
 589         */
 590        while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
 591                set_cpu_possible(tc, false);
 592                set_cpu_present(tc, false);
 593                tc++;
 594        }
 595
 596        /* release config state */
 597        write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
 598
 599        printk("\n");
 600
 601        /* Set up coprocessor affinity CPU mask(s) */
 602
 603#ifdef CONFIG_MIPS_MT_FPAFF
 604        for (tc = 0; tc < ntc; tc++) {
 605                if (cpu_data[tc].options & MIPS_CPU_FPU)
 606                        cpu_set(tc, mt_fpu_cpumask);
 607        }
 608#endif
 609
 610        /* set up ipi interrupts... */
 611
 612        /* If we have multiple VPEs running, set up the cross-VPE interrupt */
 613
 614        setup_cross_vpe_interrupts(nvpe);
 615
 616        /* Set up queue of free IPI "messages". */
 617        nipi = NR_CPUS * IPIBUF_PER_CPU;
 618        if (ipibuffers > 0)
 619                nipi = ipibuffers;
 620
 621        pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
 622        if (pipi == NULL)
 623                panic("kmalloc of IPI message buffers failed");
 624        else
 625                printk("IPI buffer pool of %d buffers\n", nipi);
 626        for (i = 0; i < nipi; i++) {
 627                smtc_ipi_nq(&freeIPIq, pipi);
 628                pipi++;
 629        }
 630
 631        /* Arm multithreading and enable other VPEs - but all TCs are Halted */
 632        emt(EMT_ENABLE);
 633        evpe(EVPE_ENABLE);
 634        local_irq_restore(flags);
 635        /* Initialize SMTC /proc statistics/diagnostics */
 636        init_smtc_stats();
 637}
 638
 639
 640/*
 641 * Setup the PC, SP, and GP of a secondary processor and start it
 642 * running!
 643 * smp_bootstrap is the place to resume from
 644 * __KSTK_TOS(idle) is apparently the stack pointer
 645 * (unsigned long)idle->thread_info the gp
 646 *
 647 */
 648void smtc_boot_secondary(int cpu, struct task_struct *idle)
 649{
 650        extern u32 kernelsp[NR_CPUS];
 651        unsigned long flags;
 652        int mtflags;
 653
 654        LOCK_MT_PRA();
 655        if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 656                dvpe();
 657        }
 658        settc(cpu_data[cpu].tc_id);
 659
 660        /* pc */
 661        write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
 662
 663        /* stack pointer */
 664        kernelsp[cpu] = __KSTK_TOS(idle);
 665        write_tc_gpr_sp(__KSTK_TOS(idle));
 666
 667        /* global pointer */
 668        write_tc_gpr_gp((unsigned long)task_thread_info(idle));
 669
 670        smtc_status |= SMTC_MTC_ACTIVE;
 671        write_tc_c0_tchalt(0);
 672        if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 673                evpe(EVPE_ENABLE);
 674        }
 675        UNLOCK_MT_PRA();
 676}
 677
 678void smtc_init_secondary(void)
 679{
 680}
 681
 682void smtc_smp_finish(void)
 683{
 684        int cpu = smp_processor_id();
 685
 686        /*
 687         * Lowest-numbered CPU per VPE starts a clock tick.
 688         * Like per_cpu_trap_init() hack, this assumes that
 689         * SMTC init code assigns TCs consdecutively and
 690         * in ascending order across available VPEs.
 691         */
 692        if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
 693                write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
 694
 695        local_irq_enable();
 696
 697        printk("TC %d going on-line as CPU %d\n",
 698                cpu_data[smp_processor_id()].tc_id, smp_processor_id());
 699}
 700
 701void smtc_cpus_done(void)
 702{
 703}
 704
 705/*
 706 * Support for SMTC-optimized driver IRQ registration
 707 */
 708
 709/*
 710 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
 711 * in do_IRQ. These are passed in setup_irq_smtc() and stored
 712 * in this table.
 713 */
 714
 715int setup_irq_smtc(unsigned int irq, struct irqaction * new,
 716                        unsigned long hwmask)
 717{
 718#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
 719        unsigned int vpe = current_cpu_data.vpe_id;
 720
 721        vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
 722#endif
 723        irq_hwmask[irq] = hwmask;
 724
 725        return setup_irq(irq, new);
 726}
 727
 728#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
 729/*
 730 * Support for IRQ affinity to TCs
 731 */
 732
 733void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
 734{
 735        /*
 736         * If a "fast path" cache of quickly decodable affinity state
 737         * is maintained, this is where it gets done, on a call up
 738         * from the platform affinity code.
 739         */
 740}
 741
 742void smtc_forward_irq(struct irq_data *d)
 743{
 744        unsigned int irq = d->irq;
 745        int target;
 746
 747        /*
 748         * OK wise guy, now figure out how to get the IRQ
 749         * to be serviced on an authorized "CPU".
 750         *
 751         * Ideally, to handle the situation where an IRQ has multiple
 752         * eligible CPUS, we would maintain state per IRQ that would
 753         * allow a fair distribution of service requests.  Since the
 754         * expected use model is any-or-only-one, for simplicity
 755         * and efficiency, we just pick the easiest one to find.
 756         */
 757
 758        target = cpumask_first(d->affinity);
 759
 760        /*
 761         * We depend on the platform code to have correctly processed
 762         * IRQ affinity change requests to ensure that the IRQ affinity
 763         * mask has been purged of bits corresponding to nonexistent and
 764         * offline "CPUs", and to TCs bound to VPEs other than the VPE
 765         * connected to the physical interrupt input for the interrupt
 766         * in question.  Otherwise we have a nasty problem with interrupt
 767         * mask management.  This is best handled in non-performance-critical
 768         * platform IRQ affinity setting code,  to minimize interrupt-time
 769         * checks.
 770         */
 771
 772        /* If no one is eligible, service locally */
 773        if (target >= NR_CPUS)
 774                do_IRQ_no_affinity(irq);
 775        else
 776                smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
 777}
 778
 779#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
 780
 781/*
 782 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
 783 * Within a VPE one TC can interrupt another by different approaches.
 784 * The easiest to get right would probably be to make all TCs except
 785 * the target IXMT and set a software interrupt, but an IXMT-based
 786 * scheme requires that a handler must run before a new IPI could
 787 * be sent, which would break the "broadcast" loops in MIPS MT.
 788 * A more gonzo approach within a VPE is to halt the TC, extract
 789 * its Restart, Status, and a couple of GPRs, and program the Restart
 790 * address to emulate an interrupt.
 791 *
 792 * Within a VPE, one can be confident that the target TC isn't in
 793 * a critical EXL state when halted, since the write to the Halt
 794 * register could not have issued on the writing thread if the
 795 * halting thread had EXL set. So k0 and k1 of the target TC
 796 * can be used by the injection code.  Across VPEs, one can't
 797 * be certain that the target TC isn't in a critical exception
 798 * state. So we try a two-step process of sending a software
 799 * interrupt to the target VPE, which either handles the event
 800 * itself (if it was the target) or injects the event within
 801 * the VPE.
 802 */
 803
 804static void smtc_ipi_qdump(void)
 805{
 806        int i;
 807        struct smtc_ipi *temp;
 808
 809        for (i = 0; i < NR_CPUS ;i++) {
 810                pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
 811                        i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
 812                        IPIQ[i].depth);
 813                temp = IPIQ[i].head;
 814
 815                while (temp != IPIQ[i].tail) {
 816                        pr_debug("%d %d %d: ", temp->type, temp->dest,
 817                               (int)temp->arg);
 818#ifdef  SMTC_IPI_DEBUG
 819                    pr_debug("%u %lu\n", temp->sender, temp->stamp);
 820#else
 821                    pr_debug("\n");
 822#endif
 823                    temp = temp->flink;
 824                }
 825        }
 826}
 827
 828/*
 829 * The standard atomic.h primitives don't quite do what we want
 830 * here: We need an atomic add-and-return-previous-value (which
 831 * could be done with atomic_add_return and a decrement) and an
 832 * atomic set/zero-and-return-previous-value (which can't really
 833 * be done with the atomic.h primitives). And since this is
 834 * MIPS MT, we can assume that we have LL/SC.
 835 */
 836static inline int atomic_postincrement(atomic_t *v)
 837{
 838        unsigned long result;
 839
 840        unsigned long temp;
 841
 842        __asm__ __volatile__(
 843        "1:     ll      %0, %2                                  \n"
 844        "       addu    %1, %0, 1                               \n"
 845        "       sc      %1, %2                                  \n"
 846        "       beqz    %1, 1b                                  \n"
 847        __WEAK_LLSC_MB
 848        : "=&r" (result), "=&r" (temp), "=m" (v->counter)
 849        : "m" (v->counter)
 850        : "memory");
 851
 852        return result;
 853}
 854
 855void smtc_send_ipi(int cpu, int type, unsigned int action)
 856{
 857        int tcstatus;
 858        struct smtc_ipi *pipi;
 859        unsigned long flags;
 860        int mtflags;
 861        unsigned long tcrestart;
 862        int set_resched_flag = (type == LINUX_SMP_IPI &&
 863                                action == SMP_RESCHEDULE_YOURSELF);
 864
 865        if (cpu == smp_processor_id()) {
 866                printk("Cannot Send IPI to self!\n");
 867                return;
 868        }
 869        if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
 870                return; /* There is a reschedule queued already */
 871
 872        /* Set up a descriptor, to be delivered either promptly or queued */
 873        pipi = smtc_ipi_dq(&freeIPIq);
 874        if (pipi == NULL) {
 875                bust_spinlocks(1);
 876                mips_mt_regdump(dvpe());
 877                panic("IPI Msg. Buffers Depleted");
 878        }
 879        pipi->type = type;
 880        pipi->arg = (void *)action;
 881        pipi->dest = cpu;
 882        if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
 883                /* If not on same VPE, enqueue and send cross-VPE interrupt */
 884                IPIQ[cpu].resched_flag |= set_resched_flag;
 885                smtc_ipi_nq(&IPIQ[cpu], pipi);
 886                LOCK_CORE_PRA();
 887                settc(cpu_data[cpu].tc_id);
 888                write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
 889                UNLOCK_CORE_PRA();
 890        } else {
 891                /*
 892                 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
 893                 * since ASID shootdown on the other VPE may
 894                 * collide with this operation.
 895                 */
 896                LOCK_CORE_PRA();
 897                settc(cpu_data[cpu].tc_id);
 898                /* Halt the targeted TC */
 899                write_tc_c0_tchalt(TCHALT_H);
 900                mips_ihb();
 901
 902                /*
 903                 * Inspect TCStatus - if IXMT is set, we have to queue
 904                 * a message. Otherwise, we set up the "interrupt"
 905                 * of the other TC
 906                 */
 907                tcstatus = read_tc_c0_tcstatus();
 908
 909                if ((tcstatus & TCSTATUS_IXMT) != 0) {
 910                        /*
 911                         * If we're in the the irq-off version of the wait
 912                         * loop, we need to force exit from the wait and
 913                         * do a direct post of the IPI.
 914                         */
 915                        if (cpu_wait == r4k_wait_irqoff) {
 916                                tcrestart = read_tc_c0_tcrestart();
 917                                if (address_is_in_r4k_wait_irqoff(tcrestart)) {
 918                                        write_tc_c0_tcrestart(__pastwait);
 919                                        tcstatus &= ~TCSTATUS_IXMT;
 920                                        write_tc_c0_tcstatus(tcstatus);
 921                                        goto postdirect;
 922                                }
 923                        }
 924                        /*
 925                         * Otherwise we queue the message for the target TC
 926                         * to pick up when he does a local_irq_restore()
 927                         */
 928                        write_tc_c0_tchalt(0);
 929                        UNLOCK_CORE_PRA();
 930                        IPIQ[cpu].resched_flag |= set_resched_flag;
 931                        smtc_ipi_nq(&IPIQ[cpu], pipi);
 932                } else {
 933postdirect:
 934                        post_direct_ipi(cpu, pipi);
 935                        write_tc_c0_tchalt(0);
 936                        UNLOCK_CORE_PRA();
 937                }
 938        }
 939}
 940
 941/*
 942 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
 943 */
 944static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
 945{
 946        struct pt_regs *kstack;
 947        unsigned long tcstatus;
 948        unsigned long tcrestart;
 949        extern u32 kernelsp[NR_CPUS];
 950        extern void __smtc_ipi_vector(void);
 951//printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
 952
 953        /* Extract Status, EPC from halted TC */
 954        tcstatus = read_tc_c0_tcstatus();
 955        tcrestart = read_tc_c0_tcrestart();
 956        /* If TCRestart indicates a WAIT instruction, advance the PC */
 957        if ((tcrestart & 0x80000000)
 958            && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
 959                tcrestart += 4;
 960        }
 961        /*
 962         * Save on TC's future kernel stack
 963         *
 964         * CU bit of Status is indicator that TC was
 965         * already running on a kernel stack...
 966         */
 967        if (tcstatus & ST0_CU0)  {
 968                /* Note that this "- 1" is pointer arithmetic */
 969                kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
 970        } else {
 971                kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
 972        }
 973
 974        kstack->cp0_epc = (long)tcrestart;
 975        /* Save TCStatus */
 976        kstack->cp0_tcstatus = tcstatus;
 977        /* Pass token of operation to be performed kernel stack pad area */
 978        kstack->pad0[4] = (unsigned long)pipi;
 979        /* Pass address of function to be called likewise */
 980        kstack->pad0[5] = (unsigned long)&ipi_decode;
 981        /* Set interrupt exempt and kernel mode */
 982        tcstatus |= TCSTATUS_IXMT;
 983        tcstatus &= ~TCSTATUS_TKSU;
 984        write_tc_c0_tcstatus(tcstatus);
 985        ehb();
 986        /* Set TC Restart address to be SMTC IPI vector */
 987        write_tc_c0_tcrestart(__smtc_ipi_vector);
 988}
 989
 990static void ipi_resched_interrupt(void)
 991{
 992        scheduler_ipi();
 993}
 994
 995static void ipi_call_interrupt(void)
 996{
 997        /* Invoke generic function invocation code in smp.c */
 998        smp_call_function_interrupt();
 999}
1000
1001DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
1002
1003static void __irq_entry smtc_clock_tick_interrupt(void)
1004{
1005        unsigned int cpu = smp_processor_id();
1006        struct clock_event_device *cd;
1007        int irq = MIPS_CPU_IRQ_BASE + 1;
1008
1009        irq_enter();
1010        kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
1011        cd = &per_cpu(mips_clockevent_device, cpu);
1012        cd->event_handler(cd);
1013        irq_exit();
1014}
1015
1016void ipi_decode(struct smtc_ipi *pipi)
1017{
1018        void *arg_copy = pipi->arg;
1019        int type_copy = pipi->type;
1020
1021        smtc_ipi_nq(&freeIPIq, pipi);
1022
1023        switch (type_copy) {
1024        case SMTC_CLOCK_TICK:
1025                smtc_clock_tick_interrupt();
1026                break;
1027
1028        case LINUX_SMP_IPI:
1029                switch ((int)arg_copy) {
1030                case SMP_RESCHEDULE_YOURSELF:
1031                        ipi_resched_interrupt();
1032                        break;
1033                case SMP_CALL_FUNCTION:
1034                        ipi_call_interrupt();
1035                        break;
1036                default:
1037                        printk("Impossible SMTC IPI Argument %p\n", arg_copy);
1038                        break;
1039                }
1040                break;
1041#ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
1042        case IRQ_AFFINITY_IPI:
1043                /*
1044                 * Accept a "forwarded" interrupt that was initially
1045                 * taken by a TC who doesn't have affinity for the IRQ.
1046                 */
1047                do_IRQ_no_affinity((int)arg_copy);
1048                break;
1049#endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
1050        default:
1051                printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
1052                break;
1053        }
1054}
1055
1056/*
1057 * Similar to smtc_ipi_replay(), but invoked from context restore,
1058 * so it reuses the current exception frame rather than set up a
1059 * new one with self_ipi.
1060 */
1061
1062void deferred_smtc_ipi(void)
1063{
1064        int cpu = smp_processor_id();
1065
1066        /*
1067         * Test is not atomic, but much faster than a dequeue,
1068         * and the vast majority of invocations will have a null queue.
1069         * If irq_disabled when this was called, then any IPIs queued
1070         * after we test last will be taken on the next irq_enable/restore.
1071         * If interrupts were enabled, then any IPIs added after the
1072         * last test will be taken directly.
1073         */
1074
1075        while (IPIQ[cpu].head != NULL) {
1076                struct smtc_ipi_q *q = &IPIQ[cpu];
1077                struct smtc_ipi *pipi;
1078                unsigned long flags;
1079
1080                /*
1081                 * It may be possible we'll come in with interrupts
1082                 * already enabled.
1083                 */
1084                local_irq_save(flags);
1085                spin_lock(&q->lock);
1086                pipi = __smtc_ipi_dq(q);
1087                spin_unlock(&q->lock);
1088                if (pipi != NULL) {
1089                        if (pipi->type == LINUX_SMP_IPI &&
1090                            (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1091                                IPIQ[cpu].resched_flag = 0;
1092                        ipi_decode(pipi);
1093                }
1094                /*
1095                 * The use of the __raw_local restore isn't
1096                 * as obviously necessary here as in smtc_ipi_replay(),
1097                 * but it's more efficient, given that we're already
1098                 * running down the IPI queue.
1099                 */
1100                __arch_local_irq_restore(flags);
1101        }
1102}
1103
1104/*
1105 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1106 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1107 * in some regards preferable to have external logic for "doorbell" hardware
1108 * interrupts.
1109 */
1110
1111static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1112
1113static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1114{
1115        int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1116        int my_tc = cpu_data[smp_processor_id()].tc_id;
1117        int cpu;
1118        struct smtc_ipi *pipi;
1119        unsigned long tcstatus;
1120        int sent;
1121        unsigned long flags;
1122        unsigned int mtflags;
1123        unsigned int vpflags;
1124
1125        /*
1126         * So long as cross-VPE interrupts are done via
1127         * MFTR/MTTR read-modify-writes of Cause, we need
1128         * to stop other VPEs whenever the local VPE does
1129         * anything similar.
1130         */
1131        local_irq_save(flags);
1132        vpflags = dvpe();
1133        clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1134        set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1135        irq_enable_hazard();
1136        evpe(vpflags);
1137        local_irq_restore(flags);
1138
1139        /*
1140         * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1141         * queued for TCs on this VPE other than the current one.
1142         * Return-from-interrupt should cause us to drain the queue
1143         * for the current TC, so we ought not to have to do it explicitly here.
1144         */
1145
1146        for_each_online_cpu(cpu) {
1147                if (cpu_data[cpu].vpe_id != my_vpe)
1148                        continue;
1149
1150                pipi = smtc_ipi_dq(&IPIQ[cpu]);
1151                if (pipi != NULL) {
1152                        if (cpu_data[cpu].tc_id != my_tc) {
1153                                sent = 0;
1154                                LOCK_MT_PRA();
1155                                settc(cpu_data[cpu].tc_id);
1156                                write_tc_c0_tchalt(TCHALT_H);
1157                                mips_ihb();
1158                                tcstatus = read_tc_c0_tcstatus();
1159                                if ((tcstatus & TCSTATUS_IXMT) == 0) {
1160                                        post_direct_ipi(cpu, pipi);
1161                                        sent = 1;
1162                                }
1163                                write_tc_c0_tchalt(0);
1164                                UNLOCK_MT_PRA();
1165                                if (!sent) {
1166                                        smtc_ipi_req(&IPIQ[cpu], pipi);
1167                                }
1168                        } else {
1169                                /*
1170                                 * ipi_decode() should be called
1171                                 * with interrupts off
1172                                 */
1173                                local_irq_save(flags);
1174                                if (pipi->type == LINUX_SMP_IPI &&
1175                                    (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1176                                        IPIQ[cpu].resched_flag = 0;
1177                                ipi_decode(pipi);
1178                                local_irq_restore(flags);
1179                        }
1180                }
1181        }
1182
1183        return IRQ_HANDLED;
1184}
1185
1186static void ipi_irq_dispatch(void)
1187{
1188        do_IRQ(cpu_ipi_irq);
1189}
1190
1191static struct irqaction irq_ipi = {
1192        .handler        = ipi_interrupt,
1193        .flags          = IRQF_PERCPU,
1194        .name           = "SMTC_IPI"
1195};
1196
1197static void setup_cross_vpe_interrupts(unsigned int nvpe)
1198{
1199        if (nvpe < 1)
1200                return;
1201
1202        if (!cpu_has_vint)
1203                panic("SMTC Kernel requires Vectored Interrupt support");
1204
1205        set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1206
1207        setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1208
1209        irq_set_handler(cpu_ipi_irq, handle_percpu_irq);
1210}
1211
1212/*
1213 * SMTC-specific hacks invoked from elsewhere in the kernel.
1214 */
1215
1216 /*
1217  * smtc_ipi_replay is called from raw_local_irq_restore
1218  */
1219
1220void smtc_ipi_replay(void)
1221{
1222        unsigned int cpu = smp_processor_id();
1223
1224        /*
1225         * To the extent that we've ever turned interrupts off,
1226         * we may have accumulated deferred IPIs.  This is subtle.
1227         * we should be OK:  If we pick up something and dispatch
1228         * it here, that's great. If we see nothing, but concurrent
1229         * with this operation, another TC sends us an IPI, IXMT
1230         * is clear, and we'll handle it as a real pseudo-interrupt
1231         * and not a pseudo-pseudo interrupt.  The important thing
1232         * is to do the last check for queued message *after* the
1233         * re-enabling of interrupts.
1234         */
1235        while (IPIQ[cpu].head != NULL) {
1236                struct smtc_ipi_q *q = &IPIQ[cpu];
1237                struct smtc_ipi *pipi;
1238                unsigned long flags;
1239
1240                /*
1241                 * It's just possible we'll come in with interrupts
1242                 * already enabled.
1243                 */
1244                local_irq_save(flags);
1245
1246                spin_lock(&q->lock);
1247                pipi = __smtc_ipi_dq(q);
1248                spin_unlock(&q->lock);
1249                /*
1250                 ** But use a raw restore here to avoid recursion.
1251                 */
1252                __arch_local_irq_restore(flags);
1253
1254                if (pipi) {
1255                        self_ipi(pipi);
1256                        smtc_cpu_stats[cpu].selfipis++;
1257                }
1258        }
1259}
1260
1261EXPORT_SYMBOL(smtc_ipi_replay);
1262
1263void smtc_idle_loop_hook(void)
1264{
1265#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1266        int im;
1267        int flags;
1268        int mtflags;
1269        int bit;
1270        int vpe;
1271        int tc;
1272        int hook_ntcs;
1273        /*
1274         * printk within DMT-protected regions can deadlock,
1275         * so buffer diagnostic messages for later output.
1276         */
1277        char *pdb_msg;
1278        char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1279
1280        if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1281                if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1282                        int mvpconf0;
1283                        /* Tedious stuff to just do once */
1284                        mvpconf0 = read_c0_mvpconf0();
1285                        hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1286                        if (hook_ntcs > NR_CPUS)
1287                                hook_ntcs = NR_CPUS;
1288                        for (tc = 0; tc < hook_ntcs; tc++) {
1289                                tcnoprog[tc] = 0;
1290                                clock_hang_reported[tc] = 0;
1291                        }
1292                        for (vpe = 0; vpe < 2; vpe++)
1293                                for (im = 0; im < 8; im++)
1294                                        imstuckcount[vpe][im] = 0;
1295                        printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1296                        atomic_set(&idle_hook_initialized, 1000);
1297                } else {
1298                        /* Someone else is initializing in parallel - let 'em finish */
1299                        while (atomic_read(&idle_hook_initialized) < 1000)
1300                                ;
1301                }
1302        }
1303
1304        /* Have we stupidly left IXMT set somewhere? */
1305        if (read_c0_tcstatus() & 0x400) {
1306                write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1307                ehb();
1308                printk("Dangling IXMT in cpu_idle()\n");
1309        }
1310
1311        /* Have we stupidly left an IM bit turned off? */
1312#define IM_LIMIT 2000
1313        local_irq_save(flags);
1314        mtflags = dmt();
1315        pdb_msg = &id_ho_db_msg[0];
1316        im = read_c0_status();
1317        vpe = current_cpu_data.vpe_id;
1318        for (bit = 0; bit < 8; bit++) {
1319                /*
1320                 * In current prototype, I/O interrupts
1321                 * are masked for VPE > 0
1322                 */
1323                if (vpemask[vpe][bit]) {
1324                        if (!(im & (0x100 << bit)))
1325                                imstuckcount[vpe][bit]++;
1326                        else
1327                                imstuckcount[vpe][bit] = 0;
1328                        if (imstuckcount[vpe][bit] > IM_LIMIT) {
1329                                set_c0_status(0x100 << bit);
1330                                ehb();
1331                                imstuckcount[vpe][bit] = 0;
1332                                pdb_msg += sprintf(pdb_msg,
1333                                        "Dangling IM %d fixed for VPE %d\n", bit,
1334                                        vpe);
1335                        }
1336                }
1337        }
1338
1339        emt(mtflags);
1340        local_irq_restore(flags);
1341        if (pdb_msg != &id_ho_db_msg[0])
1342                printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1343#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1344
1345        smtc_ipi_replay();
1346}
1347
1348void smtc_soft_dump(void)
1349{
1350        int i;
1351
1352        printk("Counter Interrupts taken per CPU (TC)\n");
1353        for (i=0; i < NR_CPUS; i++) {
1354                printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1355        }
1356        printk("Self-IPI invocations:\n");
1357        for (i=0; i < NR_CPUS; i++) {
1358                printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1359        }
1360        smtc_ipi_qdump();
1361        printk("%d Recoveries of \"stolen\" FPU\n",
1362               atomic_read(&smtc_fpu_recoveries));
1363}
1364
1365
1366/*
1367 * TLB management routines special to SMTC
1368 */
1369
1370void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1371{
1372        unsigned long flags, mtflags, tcstat, prevhalt, asid;
1373        int tlb, i;
1374
1375        /*
1376         * It would be nice to be able to use a spinlock here,
1377         * but this is invoked from within TLB flush routines
1378         * that protect themselves with DVPE, so if a lock is
1379         * held by another TC, it'll never be freed.
1380         *
1381         * DVPE/DMT must not be done with interrupts enabled,
1382         * so even so most callers will already have disabled
1383         * them, let's be really careful...
1384         */
1385
1386        local_irq_save(flags);
1387        if (smtc_status & SMTC_TLB_SHARED) {
1388                mtflags = dvpe();
1389                tlb = 0;
1390        } else {
1391                mtflags = dmt();
1392                tlb = cpu_data[cpu].vpe_id;
1393        }
1394        asid = asid_cache(cpu);
1395
1396        do {
1397                if (!((asid += ASID_INC) & ASID_MASK) ) {
1398                        if (cpu_has_vtag_icache)
1399                                flush_icache_all();
1400                        /* Traverse all online CPUs (hack requires contiguous range) */
1401                        for_each_online_cpu(i) {
1402                                /*
1403                                 * We don't need to worry about our own CPU, nor those of
1404                                 * CPUs who don't share our TLB.
1405                                 */
1406                                if ((i != smp_processor_id()) &&
1407                                    ((smtc_status & SMTC_TLB_SHARED) ||
1408                                     (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1409                                        settc(cpu_data[i].tc_id);
1410                                        prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1411                                        if (!prevhalt) {
1412                                                write_tc_c0_tchalt(TCHALT_H);
1413                                                mips_ihb();
1414                                        }
1415                                        tcstat = read_tc_c0_tcstatus();
1416                                        smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1417                                        if (!prevhalt)
1418                                                write_tc_c0_tchalt(0);
1419                                }
1420                        }
1421                        if (!asid)              /* fix version if needed */
1422                                asid = ASID_FIRST_VERSION;
1423                        local_flush_tlb_all();  /* start new asid cycle */
1424                }
1425        } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1426
1427        /*
1428         * SMTC shares the TLB within VPEs and possibly across all VPEs.
1429         */
1430        for_each_online_cpu(i) {
1431                if ((smtc_status & SMTC_TLB_SHARED) ||
1432                    (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1433                        cpu_context(i, mm) = asid_cache(i) = asid;
1434        }
1435
1436        if (smtc_status & SMTC_TLB_SHARED)
1437                evpe(mtflags);
1438        else
1439                emt(mtflags);
1440        local_irq_restore(flags);
1441}
1442
1443/*
1444 * Invoked from macros defined in mmu_context.h
1445 * which must already have disabled interrupts
1446 * and done a DVPE or DMT as appropriate.
1447 */
1448
1449void smtc_flush_tlb_asid(unsigned long asid)
1450{
1451        int entry;
1452        unsigned long ehi;
1453
1454        entry = read_c0_wired();
1455
1456        /* Traverse all non-wired entries */
1457        while (entry < current_cpu_data.tlbsize) {
1458                write_c0_index(entry);
1459                ehb();
1460                tlb_read();
1461                ehb();
1462                ehi = read_c0_entryhi();
1463                if ((ehi & ASID_MASK) == asid) {
1464                    /*
1465                     * Invalidate only entries with specified ASID,
1466                     * makiing sure all entries differ.
1467                     */
1468                    write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1469                    write_c0_entrylo0(0);
1470                    write_c0_entrylo1(0);
1471                    mtc0_tlbw_hazard();
1472                    tlb_write_indexed();
1473                }
1474                entry++;
1475        }
1476        write_c0_index(PARKED_INDEX);
1477        tlbw_use_hazard();
1478}
1479
1480/*
1481 * Support for single-threading cache flush operations.
1482 */
1483
1484static int halt_state_save[NR_CPUS];
1485
1486/*
1487 * To really, really be sure that nothing is being done
1488 * by other TCs, halt them all.  This code assumes that
1489 * a DVPE has already been done, so while their Halted
1490 * state is theoretically architecturally unstable, in
1491 * practice, it's not going to change while we're looking
1492 * at it.
1493 */
1494
1495void smtc_cflush_lockdown(void)
1496{
1497        int cpu;
1498
1499        for_each_online_cpu(cpu) {
1500                if (cpu != smp_processor_id()) {
1501                        settc(cpu_data[cpu].tc_id);
1502                        halt_state_save[cpu] = read_tc_c0_tchalt();
1503                        write_tc_c0_tchalt(TCHALT_H);
1504                }
1505        }
1506        mips_ihb();
1507}
1508
1509/* It would be cheating to change the cpu_online states during a flush! */
1510
1511void smtc_cflush_release(void)
1512{
1513        int cpu;
1514
1515        /*
1516         * Start with a hazard barrier to ensure
1517         * that all CACHE ops have played through.
1518         */
1519        mips_ihb();
1520
1521        for_each_online_cpu(cpu) {
1522                if (cpu != smp_processor_id()) {
1523                        settc(cpu_data[cpu].tc_id);
1524                        write_tc_c0_tchalt(halt_state_save[cpu]);
1525                }
1526        }
1527        mips_ihb();
1528}
1529