linux/arch/mips/kernel/vpe.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
   3 *
   4 *  This program is free software; you can distribute it and/or modify it
   5 *  under the terms of the GNU General Public License (Version 2) as
   6 *  published by the Free Software Foundation.
   7 *
   8 *  This program is distributed in the hope it will be useful, but WITHOUT
   9 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  11 *  for more details.
  12 *
  13 *  You should have received a copy of the GNU General Public License along
  14 *  with this program; if not, write to the Free Software Foundation, Inc.,
  15 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  16 */
  17
  18/*
  19 * VPE support module
  20 *
  21 * Provides support for loading a MIPS SP program on VPE1.
  22 * The SP environment is rather simple, no tlb's.  It needs to be relocatable
  23 * (or partially linked). You should initialise your stack in the startup
  24 * code. This loader looks for the symbol __start and sets up
  25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
  26 *
  27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
  28 * i.e cat spapp >/dev/vpe1.
  29 */
  30#include <linux/kernel.h>
  31#include <linux/device.h>
  32#include <linux/fs.h>
  33#include <linux/init.h>
  34#include <asm/uaccess.h>
  35#include <linux/slab.h>
  36#include <linux/list.h>
  37#include <linux/vmalloc.h>
  38#include <linux/elf.h>
  39#include <linux/seq_file.h>
  40#include <linux/syscalls.h>
  41#include <linux/moduleloader.h>
  42#include <linux/interrupt.h>
  43#include <linux/poll.h>
  44#include <linux/bootmem.h>
  45#include <asm/mipsregs.h>
  46#include <asm/mipsmtregs.h>
  47#include <asm/cacheflush.h>
  48#include <linux/atomic.h>
  49#include <asm/cpu.h>
  50#include <asm/mips_mt.h>
  51#include <asm/processor.h>
  52#include <asm/vpe.h>
  53
  54typedef void *vpe_handle;
  55
  56#ifndef ARCH_SHF_SMALL
  57#define ARCH_SHF_SMALL 0
  58#endif
  59
  60/* If this is set, the section belongs in the init part of the module */
  61#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  62
  63/*
  64 * The number of TCs and VPEs physically available on the core
  65 */
  66static int hw_tcs, hw_vpes;
  67static char module_name[] = "vpe";
  68static int major;
  69static const int minor = 1;     /* fixed for now  */
  70
  71/* grab the likely amount of memory we will need. */
  72#ifdef CONFIG_MIPS_VPE_LOADER_TOM
  73#define P_SIZE (2 * 1024 * 1024)
  74#else
  75/* add an overhead to the max kmalloc size for non-striped symbols/etc */
  76#define P_SIZE (256 * 1024)
  77#endif
  78
  79extern unsigned long physical_memsize;
  80
  81#define MAX_VPES 16
  82#define VPE_PATH_MAX 256
  83
  84enum vpe_state {
  85        VPE_STATE_UNUSED = 0,
  86        VPE_STATE_INUSE,
  87        VPE_STATE_RUNNING
  88};
  89
  90enum tc_state {
  91        TC_STATE_UNUSED = 0,
  92        TC_STATE_INUSE,
  93        TC_STATE_RUNNING,
  94        TC_STATE_DYNAMIC
  95};
  96
  97struct vpe {
  98        enum vpe_state state;
  99
 100        /* (device) minor associated with this vpe */
 101        int minor;
 102
 103        /* elfloader stuff */
 104        void *load_addr;
 105        unsigned long len;
 106        char *pbuffer;
 107        unsigned long plen;
 108        unsigned int uid, gid;
 109        char cwd[VPE_PATH_MAX];
 110
 111        unsigned long __start;
 112
 113        /* tc's associated with this vpe */
 114        struct list_head tc;
 115
 116        /* The list of vpe's */
 117        struct list_head list;
 118
 119        /* shared symbol address */
 120        void *shared_ptr;
 121
 122        /* the list of who wants to know when something major happens */
 123        struct list_head notify;
 124
 125        unsigned int ntcs;
 126};
 127
 128struct tc {
 129        enum tc_state state;
 130        int index;
 131
 132        struct vpe *pvpe;       /* parent VPE */
 133        struct list_head tc;    /* The list of TC's with this VPE */
 134        struct list_head list;  /* The global list of tc's */
 135};
 136
 137struct {
 138        spinlock_t vpe_list_lock;
 139        struct list_head vpe_list;      /* Virtual processing elements */
 140        spinlock_t tc_list_lock;
 141        struct list_head tc_list;       /* Thread contexts */
 142} vpecontrol = {
 143        .vpe_list_lock  = __SPIN_LOCK_UNLOCKED(vpe_list_lock),
 144        .vpe_list       = LIST_HEAD_INIT(vpecontrol.vpe_list),
 145        .tc_list_lock   = __SPIN_LOCK_UNLOCKED(tc_list_lock),
 146        .tc_list        = LIST_HEAD_INIT(vpecontrol.tc_list)
 147};
 148
 149static void release_progmem(void *ptr);
 150
 151/* get the vpe associated with this minor */
 152static struct vpe *get_vpe(int minor)
 153{
 154        struct vpe *res, *v;
 155
 156        if (!cpu_has_mipsmt)
 157                return NULL;
 158
 159        res = NULL;
 160        spin_lock(&vpecontrol.vpe_list_lock);
 161        list_for_each_entry(v, &vpecontrol.vpe_list, list) {
 162                if (v->minor == minor) {
 163                        res = v;
 164                        break;
 165                }
 166        }
 167        spin_unlock(&vpecontrol.vpe_list_lock);
 168
 169        return res;
 170}
 171
 172/* get the vpe associated with this minor */
 173static struct tc *get_tc(int index)
 174{
 175        struct tc *res, *t;
 176
 177        res = NULL;
 178        spin_lock(&vpecontrol.tc_list_lock);
 179        list_for_each_entry(t, &vpecontrol.tc_list, list) {
 180                if (t->index == index) {
 181                        res = t;
 182                        break;
 183                }
 184        }
 185        spin_unlock(&vpecontrol.tc_list_lock);
 186
 187        return res;
 188}
 189
 190/* allocate a vpe and associate it with this minor (or index) */
 191static struct vpe *alloc_vpe(int minor)
 192{
 193        struct vpe *v;
 194
 195        if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL)
 196                return NULL;
 197
 198        INIT_LIST_HEAD(&v->tc);
 199        spin_lock(&vpecontrol.vpe_list_lock);
 200        list_add_tail(&v->list, &vpecontrol.vpe_list);
 201        spin_unlock(&vpecontrol.vpe_list_lock);
 202
 203        INIT_LIST_HEAD(&v->notify);
 204        v->minor = minor;
 205
 206        return v;
 207}
 208
 209/* allocate a tc. At startup only tc0 is running, all other can be halted. */
 210static struct tc *alloc_tc(int index)
 211{
 212        struct tc *tc;
 213
 214        if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL)
 215                goto out;
 216
 217        INIT_LIST_HEAD(&tc->tc);
 218        tc->index = index;
 219
 220        spin_lock(&vpecontrol.tc_list_lock);
 221        list_add_tail(&tc->list, &vpecontrol.tc_list);
 222        spin_unlock(&vpecontrol.tc_list_lock);
 223
 224out:
 225        return tc;
 226}
 227
 228/* clean up and free everything */
 229static void release_vpe(struct vpe *v)
 230{
 231        list_del(&v->list);
 232        if (v->load_addr)
 233                release_progmem(v);
 234        kfree(v);
 235}
 236
 237static void __maybe_unused dump_mtregs(void)
 238{
 239        unsigned long val;
 240
 241        val = read_c0_config3();
 242        printk("config3 0x%lx MT %ld\n", val,
 243               (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
 244
 245        val = read_c0_mvpcontrol();
 246        printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
 247               (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
 248               (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
 249               (val & MVPCONTROL_EVP));
 250
 251        val = read_c0_mvpconf0();
 252        printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
 253               (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
 254               val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
 255}
 256
 257/* Find some VPE program space  */
 258static void *alloc_progmem(unsigned long len)
 259{
 260        void *addr;
 261
 262#ifdef CONFIG_MIPS_VPE_LOADER_TOM
 263        /*
 264         * This means you must tell Linux to use less memory than you
 265         * physically have, for example by passing a mem= boot argument.
 266         */
 267        addr = pfn_to_kaddr(max_low_pfn);
 268        memset(addr, 0, len);
 269#else
 270        /* simple grab some mem for now */
 271        addr = kzalloc(len, GFP_KERNEL);
 272#endif
 273
 274        return addr;
 275}
 276
 277static void release_progmem(void *ptr)
 278{
 279#ifndef CONFIG_MIPS_VPE_LOADER_TOM
 280        kfree(ptr);
 281#endif
 282}
 283
 284/* Update size with this section: return offset. */
 285static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
 286{
 287        long ret;
 288
 289        ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
 290        *size = ret + sechdr->sh_size;
 291        return ret;
 292}
 293
 294/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
 295   might -- code, read-only data, read-write data, small data.  Tally
 296   sizes, and place the offsets into sh_entsize fields: high bit means it
 297   belongs in init. */
 298static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
 299                            Elf_Shdr * sechdrs, const char *secstrings)
 300{
 301        static unsigned long const masks[][2] = {
 302                /* NOTE: all executable code must be the first section
 303                 * in this array; otherwise modify the text_size
 304                 * finder in the two loops below */
 305                {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
 306                {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
 307                {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
 308                {ARCH_SHF_SMALL | SHF_ALLOC, 0}
 309        };
 310        unsigned int m, i;
 311
 312        for (i = 0; i < hdr->e_shnum; i++)
 313                sechdrs[i].sh_entsize = ~0UL;
 314
 315        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
 316                for (i = 0; i < hdr->e_shnum; ++i) {
 317                        Elf_Shdr *s = &sechdrs[i];
 318
 319                        //  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
 320                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
 321                            || (s->sh_flags & masks[m][1])
 322                            || s->sh_entsize != ~0UL)
 323                                continue;
 324                        s->sh_entsize =
 325                                get_offset((unsigned long *)&mod->core_size, s);
 326                }
 327
 328                if (m == 0)
 329                        mod->core_text_size = mod->core_size;
 330
 331        }
 332}
 333
 334
 335/* from module-elf32.c, but subverted a little */
 336
 337struct mips_hi16 {
 338        struct mips_hi16 *next;
 339        Elf32_Addr *addr;
 340        Elf32_Addr value;
 341};
 342
 343static struct mips_hi16 *mips_hi16_list;
 344static unsigned int gp_offs, gp_addr;
 345
 346static int apply_r_mips_none(struct module *me, uint32_t *location,
 347                             Elf32_Addr v)
 348{
 349        return 0;
 350}
 351
 352static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
 353                                Elf32_Addr v)
 354{
 355        int rel;
 356
 357        if( !(*location & 0xffff) ) {
 358                rel = (int)v - gp_addr;
 359        }
 360        else {
 361                /* .sbss + gp(relative) + offset */
 362                /* kludge! */
 363                rel =  (int)(short)((int)v + gp_offs +
 364                                    (int)(short)(*location & 0xffff) - gp_addr);
 365        }
 366
 367        if( (rel > 32768) || (rel < -32768) ) {
 368                printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
 369                       "relative address 0x%x out of range of gp register\n",
 370                       rel);
 371                return -ENOEXEC;
 372        }
 373
 374        *location = (*location & 0xffff0000) | (rel & 0xffff);
 375
 376        return 0;
 377}
 378
 379static int apply_r_mips_pc16(struct module *me, uint32_t *location,
 380                             Elf32_Addr v)
 381{
 382        int rel;
 383        rel = (((unsigned int)v - (unsigned int)location));
 384        rel >>= 2;              // because the offset is in _instructions_ not bytes.
 385        rel -= 1;               // and one instruction less due to the branch delay slot.
 386
 387        if( (rel > 32768) || (rel < -32768) ) {
 388                printk(KERN_DEBUG "VPE loader: "
 389                       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
 390                return -ENOEXEC;
 391        }
 392
 393        *location = (*location & 0xffff0000) | (rel & 0xffff);
 394
 395        return 0;
 396}
 397
 398static int apply_r_mips_32(struct module *me, uint32_t *location,
 399                           Elf32_Addr v)
 400{
 401        *location += v;
 402
 403        return 0;
 404}
 405
 406static int apply_r_mips_26(struct module *me, uint32_t *location,
 407                           Elf32_Addr v)
 408{
 409        if (v % 4) {
 410                printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
 411                       " unaligned relocation\n");
 412                return -ENOEXEC;
 413        }
 414
 415/*
 416 * Not desperately convinced this is a good check of an overflow condition
 417 * anyway. But it gets in the way of handling undefined weak symbols which
 418 * we want to set to zero.
 419 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
 420 * printk(KERN_ERR
 421 * "module %s: relocation overflow\n",
 422 * me->name);
 423 * return -ENOEXEC;
 424 * }
 425 */
 426
 427        *location = (*location & ~0x03ffffff) |
 428                ((*location + (v >> 2)) & 0x03ffffff);
 429        return 0;
 430}
 431
 432static int apply_r_mips_hi16(struct module *me, uint32_t *location,
 433                             Elf32_Addr v)
 434{
 435        struct mips_hi16 *n;
 436
 437        /*
 438         * We cannot relocate this one now because we don't know the value of
 439         * the carry we need to add.  Save the information, and let LO16 do the
 440         * actual relocation.
 441         */
 442        n = kmalloc(sizeof *n, GFP_KERNEL);
 443        if (!n)
 444                return -ENOMEM;
 445
 446        n->addr = location;
 447        n->value = v;
 448        n->next = mips_hi16_list;
 449        mips_hi16_list = n;
 450
 451        return 0;
 452}
 453
 454static int apply_r_mips_lo16(struct module *me, uint32_t *location,
 455                             Elf32_Addr v)
 456{
 457        unsigned long insnlo = *location;
 458        Elf32_Addr val, vallo;
 459        struct mips_hi16 *l, *next;
 460
 461        /* Sign extend the addend we extract from the lo insn.  */
 462        vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
 463
 464        if (mips_hi16_list != NULL) {
 465
 466                l = mips_hi16_list;
 467                while (l != NULL) {
 468                        unsigned long insn;
 469
 470                        /*
 471                         * The value for the HI16 had best be the same.
 472                         */
 473                        if (v != l->value) {
 474                                printk(KERN_DEBUG "VPE loader: "
 475                                       "apply_r_mips_lo16/hi16: \t"
 476                                       "inconsistent value information\n");
 477                                goto out_free;
 478                        }
 479
 480                        /*
 481                         * Do the HI16 relocation.  Note that we actually don't
 482                         * need to know anything about the LO16 itself, except
 483                         * where to find the low 16 bits of the addend needed
 484                         * by the LO16.
 485                         */
 486                        insn = *l->addr;
 487                        val = ((insn & 0xffff) << 16) + vallo;
 488                        val += v;
 489
 490                        /*
 491                         * Account for the sign extension that will happen in
 492                         * the low bits.
 493                         */
 494                        val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
 495
 496                        insn = (insn & ~0xffff) | val;
 497                        *l->addr = insn;
 498
 499                        next = l->next;
 500                        kfree(l);
 501                        l = next;
 502                }
 503
 504                mips_hi16_list = NULL;
 505        }
 506
 507        /*
 508         * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
 509         */
 510        val = v + vallo;
 511        insnlo = (insnlo & ~0xffff) | (val & 0xffff);
 512        *location = insnlo;
 513
 514        return 0;
 515
 516out_free:
 517        while (l != NULL) {
 518                next = l->next;
 519                kfree(l);
 520                l = next;
 521        }
 522        mips_hi16_list = NULL;
 523
 524        return -ENOEXEC;
 525}
 526
 527static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
 528                                Elf32_Addr v) = {
 529        [R_MIPS_NONE]   = apply_r_mips_none,
 530        [R_MIPS_32]     = apply_r_mips_32,
 531        [R_MIPS_26]     = apply_r_mips_26,
 532        [R_MIPS_HI16]   = apply_r_mips_hi16,
 533        [R_MIPS_LO16]   = apply_r_mips_lo16,
 534        [R_MIPS_GPREL16] = apply_r_mips_gprel16,
 535        [R_MIPS_PC16] = apply_r_mips_pc16
 536};
 537
 538static char *rstrs[] = {
 539        [R_MIPS_NONE]   = "MIPS_NONE",
 540        [R_MIPS_32]     = "MIPS_32",
 541        [R_MIPS_26]     = "MIPS_26",
 542        [R_MIPS_HI16]   = "MIPS_HI16",
 543        [R_MIPS_LO16]   = "MIPS_LO16",
 544        [R_MIPS_GPREL16] = "MIPS_GPREL16",
 545        [R_MIPS_PC16] = "MIPS_PC16"
 546};
 547
 548static int apply_relocations(Elf32_Shdr *sechdrs,
 549                      const char *strtab,
 550                      unsigned int symindex,
 551                      unsigned int relsec,
 552                      struct module *me)
 553{
 554        Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
 555        Elf32_Sym *sym;
 556        uint32_t *location;
 557        unsigned int i;
 558        Elf32_Addr v;
 559        int res;
 560
 561        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 562                Elf32_Word r_info = rel[i].r_info;
 563
 564                /* This is where to make the change */
 565                location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
 566                        + rel[i].r_offset;
 567                /* This is the symbol it is referring to */
 568                sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
 569                        + ELF32_R_SYM(r_info);
 570
 571                if (!sym->st_value) {
 572                        printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
 573                               me->name, strtab + sym->st_name);
 574                        /* just print the warning, dont barf */
 575                }
 576
 577                v = sym->st_value;
 578
 579                res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
 580                if( res ) {
 581                        char *r = rstrs[ELF32_R_TYPE(r_info)];
 582                        printk(KERN_WARNING "VPE loader: .text+0x%x "
 583                               "relocation type %s for symbol \"%s\" failed\n",
 584                               rel[i].r_offset, r ? r : "UNKNOWN",
 585                               strtab + sym->st_name);
 586                        return res;
 587                }
 588        }
 589
 590        return 0;
 591}
 592
 593static inline void save_gp_address(unsigned int secbase, unsigned int rel)
 594{
 595        gp_addr = secbase + rel;
 596        gp_offs = gp_addr - (secbase & 0xffff0000);
 597}
 598/* end module-elf32.c */
 599
 600
 601
 602/* Change all symbols so that sh_value encodes the pointer directly. */
 603static void simplify_symbols(Elf_Shdr * sechdrs,
 604                            unsigned int symindex,
 605                            const char *strtab,
 606                            const char *secstrings,
 607                            unsigned int nsecs, struct module *mod)
 608{
 609        Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
 610        unsigned long secbase, bssbase = 0;
 611        unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
 612        int size;
 613
 614        /* find the .bss section for COMMON symbols */
 615        for (i = 0; i < nsecs; i++) {
 616                if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
 617                        bssbase = sechdrs[i].sh_addr;
 618                        break;
 619                }
 620        }
 621
 622        for (i = 1; i < n; i++) {
 623                switch (sym[i].st_shndx) {
 624                case SHN_COMMON:
 625                        /* Allocate space for the symbol in the .bss section.
 626                           st_value is currently size.
 627                           We want it to have the address of the symbol. */
 628
 629                        size = sym[i].st_value;
 630                        sym[i].st_value = bssbase;
 631
 632                        bssbase += size;
 633                        break;
 634
 635                case SHN_ABS:
 636                        /* Don't need to do anything */
 637                        break;
 638
 639                case SHN_UNDEF:
 640                        /* ret = -ENOENT; */
 641                        break;
 642
 643                case SHN_MIPS_SCOMMON:
 644                        printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON "
 645                               "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
 646                               sym[i].st_shndx);
 647                        // .sbss section
 648                        break;
 649
 650                default:
 651                        secbase = sechdrs[sym[i].st_shndx].sh_addr;
 652
 653                        if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
 654                                save_gp_address(secbase, sym[i].st_value);
 655                        }
 656
 657                        sym[i].st_value += secbase;
 658                        break;
 659                }
 660        }
 661}
 662
 663#ifdef DEBUG_ELFLOADER
 664static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
 665                            const char *strtab, struct module *mod)
 666{
 667        Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
 668        unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
 669
 670        printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
 671        for (i = 1; i < n; i++) {
 672                printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
 673                       strtab + sym[i].st_name, sym[i].st_value);
 674        }
 675}
 676#endif
 677
 678/* We are prepared so configure and start the VPE... */
 679static int vpe_run(struct vpe * v)
 680{
 681        unsigned long flags, val, dmt_flag;
 682        struct vpe_notifications *n;
 683        unsigned int vpeflags;
 684        struct tc *t;
 685
 686        /* check we are the Master VPE */
 687        local_irq_save(flags);
 688        val = read_c0_vpeconf0();
 689        if (!(val & VPECONF0_MVP)) {
 690                printk(KERN_WARNING
 691                       "VPE loader: only Master VPE's are allowed to configure MT\n");
 692                local_irq_restore(flags);
 693
 694                return -1;
 695        }
 696
 697        dmt_flag = dmt();
 698        vpeflags = dvpe();
 699
 700        if (list_empty(&v->tc)) {
 701                evpe(vpeflags);
 702                emt(dmt_flag);
 703                local_irq_restore(flags);
 704
 705                printk(KERN_WARNING
 706                       "VPE loader: No TC's associated with VPE %d\n",
 707                       v->minor);
 708
 709                return -ENOEXEC;
 710        }
 711
 712        t = list_first_entry(&v->tc, struct tc, tc);
 713
 714        /* Put MVPE's into 'configuration state' */
 715        set_c0_mvpcontrol(MVPCONTROL_VPC);
 716
 717        settc(t->index);
 718
 719        /* should check it is halted, and not activated */
 720        if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
 721                evpe(vpeflags);
 722                emt(dmt_flag);
 723                local_irq_restore(flags);
 724
 725                printk(KERN_WARNING "VPE loader: TC %d is already active!\n",
 726                       t->index);
 727
 728                return -ENOEXEC;
 729        }
 730
 731        /* Write the address we want it to start running from in the TCPC register. */
 732        write_tc_c0_tcrestart((unsigned long)v->__start);
 733        write_tc_c0_tccontext((unsigned long)0);
 734
 735        /*
 736         * Mark the TC as activated, not interrupt exempt and not dynamically
 737         * allocatable
 738         */
 739        val = read_tc_c0_tcstatus();
 740        val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
 741        write_tc_c0_tcstatus(val);
 742
 743        write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
 744
 745        /*
 746         * The sde-kit passes 'memsize' to __start in $a3, so set something
 747         * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
 748         * DFLT_HEAP_SIZE when you compile your program
 749         */
 750        mttgpr(6, v->ntcs);
 751        mttgpr(7, physical_memsize);
 752
 753        /* set up VPE1 */
 754        /*
 755         * bind the TC to VPE 1 as late as possible so we only have the final
 756         * VPE registers to set up, and so an EJTAG probe can trigger on it
 757         */
 758        write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
 759
 760        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
 761
 762        back_to_back_c0_hazard();
 763
 764        /* Set up the XTC bit in vpeconf0 to point at our tc */
 765        write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
 766                              | (t->index << VPECONF0_XTC_SHIFT));
 767
 768        back_to_back_c0_hazard();
 769
 770        /* enable this VPE */
 771        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
 772
 773        /* clear out any left overs from a previous program */
 774        write_vpe_c0_status(0);
 775        write_vpe_c0_cause(0);
 776
 777        /* take system out of configuration state */
 778        clear_c0_mvpcontrol(MVPCONTROL_VPC);
 779
 780        /*
 781         * SMTC/SMVP kernels manage VPE enable independently,
 782         * but uniprocessor kernels need to turn it on, even
 783         * if that wasn't the pre-dvpe() state.
 784         */
 785#ifdef CONFIG_SMP
 786        evpe(vpeflags);
 787#else
 788        evpe(EVPE_ENABLE);
 789#endif
 790        emt(dmt_flag);
 791        local_irq_restore(flags);
 792
 793        list_for_each_entry(n, &v->notify, list)
 794                n->start(minor);
 795
 796        return 0;
 797}
 798
 799static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
 800                                      unsigned int symindex, const char *strtab,
 801                                      struct module *mod)
 802{
 803        Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
 804        unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
 805
 806        for (i = 1; i < n; i++) {
 807                if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
 808                        v->__start = sym[i].st_value;
 809                }
 810
 811                if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
 812                        v->shared_ptr = (void *)sym[i].st_value;
 813                }
 814        }
 815
 816        if ( (v->__start == 0) || (v->shared_ptr == NULL))
 817                return -1;
 818
 819        return 0;
 820}
 821
 822/*
 823 * Allocates a VPE with some program code space(the load address), copies the
 824 * contents of the program (p)buffer performing relocatations/etc, free's it
 825 * when finished.
 826 */
 827static int vpe_elfload(struct vpe * v)
 828{
 829        Elf_Ehdr *hdr;
 830        Elf_Shdr *sechdrs;
 831        long err = 0;
 832        char *secstrings, *strtab = NULL;
 833        unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
 834        struct module mod;      // so we can re-use the relocations code
 835
 836        memset(&mod, 0, sizeof(struct module));
 837        strcpy(mod.name, "VPE loader");
 838
 839        hdr = (Elf_Ehdr *) v->pbuffer;
 840        len = v->plen;
 841
 842        /* Sanity checks against insmoding binaries or wrong arch,
 843           weird elf version */
 844        if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
 845            || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
 846            || !elf_check_arch(hdr)
 847            || hdr->e_shentsize != sizeof(*sechdrs)) {
 848                printk(KERN_WARNING
 849                       "VPE loader: program wrong arch or weird elf version\n");
 850
 851                return -ENOEXEC;
 852        }
 853
 854        if (hdr->e_type == ET_REL)
 855                relocate = 1;
 856
 857        if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
 858                printk(KERN_ERR "VPE loader: program length %u truncated\n",
 859                       len);
 860
 861                return -ENOEXEC;
 862        }
 863
 864        /* Convenience variables */
 865        sechdrs = (void *)hdr + hdr->e_shoff;
 866        secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
 867        sechdrs[0].sh_addr = 0;
 868
 869        /* And these should exist, but gcc whinges if we don't init them */
 870        symindex = strindex = 0;
 871
 872        if (relocate) {
 873                for (i = 1; i < hdr->e_shnum; i++) {
 874                        if (sechdrs[i].sh_type != SHT_NOBITS
 875                            && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
 876                                printk(KERN_ERR "VPE program length %u truncated\n",
 877                                       len);
 878                                return -ENOEXEC;
 879                        }
 880
 881                        /* Mark all sections sh_addr with their address in the
 882                           temporary image. */
 883                        sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
 884
 885                        /* Internal symbols and strings. */
 886                        if (sechdrs[i].sh_type == SHT_SYMTAB) {
 887                                symindex = i;
 888                                strindex = sechdrs[i].sh_link;
 889                                strtab = (char *)hdr + sechdrs[strindex].sh_offset;
 890                        }
 891                }
 892                layout_sections(&mod, hdr, sechdrs, secstrings);
 893        }
 894
 895        v->load_addr = alloc_progmem(mod.core_size);
 896        if (!v->load_addr)
 897                return -ENOMEM;
 898
 899        pr_info("VPE loader: loading to %p\n", v->load_addr);
 900
 901        if (relocate) {
 902                for (i = 0; i < hdr->e_shnum; i++) {
 903                        void *dest;
 904
 905                        if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 906                                continue;
 907
 908                        dest = v->load_addr + sechdrs[i].sh_entsize;
 909
 910                        if (sechdrs[i].sh_type != SHT_NOBITS)
 911                                memcpy(dest, (void *)sechdrs[i].sh_addr,
 912                                       sechdrs[i].sh_size);
 913                        /* Update sh_addr to point to copy in image. */
 914                        sechdrs[i].sh_addr = (unsigned long)dest;
 915
 916                        printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
 917                               secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
 918                }
 919
 920                /* Fix up syms, so that st_value is a pointer to location. */
 921                simplify_symbols(sechdrs, symindex, strtab, secstrings,
 922                                 hdr->e_shnum, &mod);
 923
 924                /* Now do relocations. */
 925                for (i = 1; i < hdr->e_shnum; i++) {
 926                        const char *strtab = (char *)sechdrs[strindex].sh_addr;
 927                        unsigned int info = sechdrs[i].sh_info;
 928
 929                        /* Not a valid relocation section? */
 930                        if (info >= hdr->e_shnum)
 931                                continue;
 932
 933                        /* Don't bother with non-allocated sections */
 934                        if (!(sechdrs[info].sh_flags & SHF_ALLOC))
 935                                continue;
 936
 937                        if (sechdrs[i].sh_type == SHT_REL)
 938                                err = apply_relocations(sechdrs, strtab, symindex, i,
 939                                                        &mod);
 940                        else if (sechdrs[i].sh_type == SHT_RELA)
 941                                err = apply_relocate_add(sechdrs, strtab, symindex, i,
 942                                                         &mod);
 943                        if (err < 0)
 944                                return err;
 945
 946                }
 947        } else {
 948                struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff);
 949
 950                for (i = 0; i < hdr->e_phnum; i++) {
 951                        if (phdr->p_type == PT_LOAD) {
 952                                memcpy((void *)phdr->p_paddr,
 953                                       (char *)hdr + phdr->p_offset,
 954                                       phdr->p_filesz);
 955                                memset((void *)phdr->p_paddr + phdr->p_filesz,
 956                                       0, phdr->p_memsz - phdr->p_filesz);
 957                    }
 958                    phdr++;
 959                }
 960
 961                for (i = 0; i < hdr->e_shnum; i++) {
 962                        /* Internal symbols and strings. */
 963                        if (sechdrs[i].sh_type == SHT_SYMTAB) {
 964                                symindex = i;
 965                                strindex = sechdrs[i].sh_link;
 966                                strtab = (char *)hdr + sechdrs[strindex].sh_offset;
 967
 968                                /* mark the symtab's address for when we try to find the
 969                                   magic symbols */
 970                                sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
 971                        }
 972                }
 973        }
 974
 975        /* make sure it's physically written out */
 976        flush_icache_range((unsigned long)v->load_addr,
 977                           (unsigned long)v->load_addr + v->len);
 978
 979        if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
 980                if (v->__start == 0) {
 981                        printk(KERN_WARNING "VPE loader: program does not contain "
 982                               "a __start symbol\n");
 983                        return -ENOEXEC;
 984                }
 985
 986                if (v->shared_ptr == NULL)
 987                        printk(KERN_WARNING "VPE loader: "
 988                               "program does not contain vpe_shared symbol.\n"
 989                               " Unable to use AMVP (AP/SP) facilities.\n");
 990        }
 991
 992        printk(" elf loaded\n");
 993        return 0;
 994}
 995
 996static void cleanup_tc(struct tc *tc)
 997{
 998        unsigned long flags;
 999        unsigned int mtflags, vpflags;
1000        int tmp;
1001
1002        local_irq_save(flags);
1003        mtflags = dmt();
1004        vpflags = dvpe();
1005        /* Put MVPE's into 'configuration state' */
1006        set_c0_mvpcontrol(MVPCONTROL_VPC);
1007
1008        settc(tc->index);
1009        tmp = read_tc_c0_tcstatus();
1010
1011        /* mark not allocated and not dynamically allocatable */
1012        tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1013        tmp |= TCSTATUS_IXMT;   /* interrupt exempt */
1014        write_tc_c0_tcstatus(tmp);
1015
1016        write_tc_c0_tchalt(TCHALT_H);
1017        mips_ihb();
1018
1019        /* bind it to anything other than VPE1 */
1020//      write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1021
1022        clear_c0_mvpcontrol(MVPCONTROL_VPC);
1023        evpe(vpflags);
1024        emt(mtflags);
1025        local_irq_restore(flags);
1026}
1027
1028static int getcwd(char *buff, int size)
1029{
1030        mm_segment_t old_fs;
1031        int ret;
1032
1033        old_fs = get_fs();
1034        set_fs(KERNEL_DS);
1035
1036        ret = sys_getcwd(buff, size);
1037
1038        set_fs(old_fs);
1039
1040        return ret;
1041}
1042
1043/* checks VPE is unused and gets ready to load program  */
1044static int vpe_open(struct inode *inode, struct file *filp)
1045{
1046        enum vpe_state state;
1047        struct vpe_notifications *not;
1048        struct vpe *v;
1049        int ret;
1050
1051        if (minor != iminor(inode)) {
1052                /* assume only 1 device at the moment. */
1053                pr_warning("VPE loader: only vpe1 is supported\n");
1054
1055                return -ENODEV;
1056        }
1057
1058        if ((v = get_vpe(tclimit)) == NULL) {
1059                pr_warning("VPE loader: unable to get vpe\n");
1060
1061                return -ENODEV;
1062        }
1063
1064        state = xchg(&v->state, VPE_STATE_INUSE);
1065        if (state != VPE_STATE_UNUSED) {
1066                printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1067
1068                list_for_each_entry(not, &v->notify, list) {
1069                        not->stop(tclimit);
1070                }
1071
1072                release_progmem(v->load_addr);
1073                cleanup_tc(get_tc(tclimit));
1074        }
1075
1076        /* this of-course trashes what was there before... */
1077        v->pbuffer = vmalloc(P_SIZE);
1078        if (!v->pbuffer) {
1079                pr_warning("VPE loader: unable to allocate memory\n");
1080                return -ENOMEM;
1081        }
1082        v->plen = P_SIZE;
1083        v->load_addr = NULL;
1084        v->len = 0;
1085
1086        v->uid = filp->f_cred->fsuid;
1087        v->gid = filp->f_cred->fsgid;
1088
1089        v->cwd[0] = 0;
1090        ret = getcwd(v->cwd, VPE_PATH_MAX);
1091        if (ret < 0)
1092                printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1093
1094        v->shared_ptr = NULL;
1095        v->__start = 0;
1096
1097        return 0;
1098}
1099
1100static int vpe_release(struct inode *inode, struct file *filp)
1101{
1102        struct vpe *v;
1103        Elf_Ehdr *hdr;
1104        int ret = 0;
1105
1106        v = get_vpe(tclimit);
1107        if (v == NULL)
1108                return -ENODEV;
1109
1110        hdr = (Elf_Ehdr *) v->pbuffer;
1111        if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) {
1112                if (vpe_elfload(v) >= 0) {
1113                        vpe_run(v);
1114                } else {
1115                        printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1116                        ret = -ENOEXEC;
1117                }
1118        } else {
1119                printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1120                ret = -ENOEXEC;
1121        }
1122
1123        /* It's good to be able to run the SP and if it chokes have a look at
1124           the /dev/rt?. But if we reset the pointer to the shared struct we
1125           lose what has happened. So perhaps if garbage is sent to the vpe
1126           device, use it as a trigger for the reset. Hopefully a nice
1127           executable will be along shortly. */
1128        if (ret < 0)
1129                v->shared_ptr = NULL;
1130
1131        vfree(v->pbuffer);
1132        v->plen = 0;
1133
1134        return ret;
1135}
1136
1137static ssize_t vpe_write(struct file *file, const char __user * buffer,
1138                         size_t count, loff_t * ppos)
1139{
1140        size_t ret = count;
1141        struct vpe *v;
1142
1143        if (iminor(file_inode(file)) != minor)
1144                return -ENODEV;
1145
1146        v = get_vpe(tclimit);
1147        if (v == NULL)
1148                return -ENODEV;
1149
1150        if ((count + v->len) > v->plen) {
1151                printk(KERN_WARNING
1152                       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1153                return -ENOMEM;
1154        }
1155
1156        count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1157        if (!count)
1158                return -EFAULT;
1159
1160        v->len += count;
1161        return ret;
1162}
1163
1164static const struct file_operations vpe_fops = {
1165        .owner = THIS_MODULE,
1166        .open = vpe_open,
1167        .release = vpe_release,
1168        .write = vpe_write,
1169        .llseek = noop_llseek,
1170};
1171
1172/* module wrapper entry points */
1173/* give me a vpe */
1174vpe_handle vpe_alloc(void)
1175{
1176        int i;
1177        struct vpe *v;
1178
1179        /* find a vpe */
1180        for (i = 1; i < MAX_VPES; i++) {
1181                if ((v = get_vpe(i)) != NULL) {
1182                        v->state = VPE_STATE_INUSE;
1183                        return v;
1184                }
1185        }
1186        return NULL;
1187}
1188
1189EXPORT_SYMBOL(vpe_alloc);
1190
1191/* start running from here */
1192int vpe_start(vpe_handle vpe, unsigned long start)
1193{
1194        struct vpe *v = vpe;
1195
1196        v->__start = start;
1197        return vpe_run(v);
1198}
1199
1200EXPORT_SYMBOL(vpe_start);
1201
1202/* halt it for now */
1203int vpe_stop(vpe_handle vpe)
1204{
1205        struct vpe *v = vpe;
1206        struct tc *t;
1207        unsigned int evpe_flags;
1208
1209        evpe_flags = dvpe();
1210
1211        if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1212
1213                settc(t->index);
1214                write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1215        }
1216
1217        evpe(evpe_flags);
1218
1219        return 0;
1220}
1221
1222EXPORT_SYMBOL(vpe_stop);
1223
1224/* I've done with it thank you */
1225int vpe_free(vpe_handle vpe)
1226{
1227        struct vpe *v = vpe;
1228        struct tc *t;
1229        unsigned int evpe_flags;
1230
1231        if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1232                return -ENOEXEC;
1233        }
1234
1235        evpe_flags = dvpe();
1236
1237        /* Put MVPE's into 'configuration state' */
1238        set_c0_mvpcontrol(MVPCONTROL_VPC);
1239
1240        settc(t->index);
1241        write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1242
1243        /* halt the TC */
1244        write_tc_c0_tchalt(TCHALT_H);
1245        mips_ihb();
1246
1247        /* mark the TC unallocated */
1248        write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1249
1250        v->state = VPE_STATE_UNUSED;
1251
1252        clear_c0_mvpcontrol(MVPCONTROL_VPC);
1253        evpe(evpe_flags);
1254
1255        return 0;
1256}
1257
1258EXPORT_SYMBOL(vpe_free);
1259
1260void *vpe_get_shared(int index)
1261{
1262        struct vpe *v;
1263
1264        if ((v = get_vpe(index)) == NULL)
1265                return NULL;
1266
1267        return v->shared_ptr;
1268}
1269
1270EXPORT_SYMBOL(vpe_get_shared);
1271
1272int vpe_getuid(int index)
1273{
1274        struct vpe *v;
1275
1276        if ((v = get_vpe(index)) == NULL)
1277                return -1;
1278
1279        return v->uid;
1280}
1281
1282EXPORT_SYMBOL(vpe_getuid);
1283
1284int vpe_getgid(int index)
1285{
1286        struct vpe *v;
1287
1288        if ((v = get_vpe(index)) == NULL)
1289                return -1;
1290
1291        return v->gid;
1292}
1293
1294EXPORT_SYMBOL(vpe_getgid);
1295
1296int vpe_notify(int index, struct vpe_notifications *notify)
1297{
1298        struct vpe *v;
1299
1300        if ((v = get_vpe(index)) == NULL)
1301                return -1;
1302
1303        list_add(&notify->list, &v->notify);
1304        return 0;
1305}
1306
1307EXPORT_SYMBOL(vpe_notify);
1308
1309char *vpe_getcwd(int index)
1310{
1311        struct vpe *v;
1312
1313        if ((v = get_vpe(index)) == NULL)
1314                return NULL;
1315
1316        return v->cwd;
1317}
1318
1319EXPORT_SYMBOL(vpe_getcwd);
1320
1321static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
1322                          const char *buf, size_t len)
1323{
1324        struct vpe *vpe = get_vpe(tclimit);
1325        struct vpe_notifications *not;
1326
1327        list_for_each_entry(not, &vpe->notify, list) {
1328                not->stop(tclimit);
1329        }
1330
1331        release_progmem(vpe->load_addr);
1332        cleanup_tc(get_tc(tclimit));
1333        vpe_stop(vpe);
1334        vpe_free(vpe);
1335
1336        return len;
1337}
1338
1339static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr,
1340                         char *buf)
1341{
1342        struct vpe *vpe = get_vpe(tclimit);
1343
1344        return sprintf(buf, "%d\n", vpe->ntcs);
1345}
1346
1347static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr,
1348                          const char *buf, size_t len)
1349{
1350        struct vpe *vpe = get_vpe(tclimit);
1351        unsigned long new;
1352        char *endp;
1353
1354        new = simple_strtoul(buf, &endp, 0);
1355        if (endp == buf)
1356                goto out_einval;
1357
1358        if (new == 0 || new > (hw_tcs - tclimit))
1359                goto out_einval;
1360
1361        vpe->ntcs = new;
1362
1363        return len;
1364
1365out_einval:
1366        return -EINVAL;
1367}
1368
1369static struct device_attribute vpe_class_attributes[] = {
1370        __ATTR(kill, S_IWUSR, NULL, store_kill),
1371        __ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs),
1372        {}
1373};
1374
1375static void vpe_device_release(struct device *cd)
1376{
1377        kfree(cd);
1378}
1379
1380struct class vpe_class = {
1381        .name = "vpe",
1382        .owner = THIS_MODULE,
1383        .dev_release = vpe_device_release,
1384        .dev_attrs = vpe_class_attributes,
1385};
1386
1387struct device vpe_device;
1388
1389static int __init vpe_module_init(void)
1390{
1391        unsigned int mtflags, vpflags;
1392        unsigned long flags, val;
1393        struct vpe *v = NULL;
1394        struct tc *t;
1395        int tc, err;
1396
1397        if (!cpu_has_mipsmt) {
1398                printk("VPE loader: not a MIPS MT capable processor\n");
1399                return -ENODEV;
1400        }
1401
1402        if (vpelimit == 0) {
1403                printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
1404                       "initializing VPE loader.\nPass maxvpes=<n> argument as "
1405                       "kernel argument\n");
1406
1407                return -ENODEV;
1408        }
1409
1410        if (tclimit == 0) {
1411                printk(KERN_WARNING "No TCs reserved for AP/SP, not "
1412                       "initializing VPE loader.\nPass maxtcs=<n> argument as "
1413                       "kernel argument\n");
1414
1415                return -ENODEV;
1416        }
1417
1418        major = register_chrdev(0, module_name, &vpe_fops);
1419        if (major < 0) {
1420                printk("VPE loader: unable to register character device\n");
1421                return major;
1422        }
1423
1424        err = class_register(&vpe_class);
1425        if (err) {
1426                printk(KERN_ERR "vpe_class registration failed\n");
1427                goto out_chrdev;
1428        }
1429
1430        device_initialize(&vpe_device);
1431        vpe_device.class        = &vpe_class,
1432        vpe_device.parent       = NULL,
1433        dev_set_name(&vpe_device, "vpe1");
1434        vpe_device.devt = MKDEV(major, minor);
1435        err = device_add(&vpe_device);
1436        if (err) {
1437                printk(KERN_ERR "Adding vpe_device failed\n");
1438                goto out_class;
1439        }
1440
1441        local_irq_save(flags);
1442        mtflags = dmt();
1443        vpflags = dvpe();
1444
1445        /* Put MVPE's into 'configuration state' */
1446        set_c0_mvpcontrol(MVPCONTROL_VPC);
1447
1448        /* dump_mtregs(); */
1449
1450        val = read_c0_mvpconf0();
1451        hw_tcs = (val & MVPCONF0_PTC) + 1;
1452        hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
1453
1454        for (tc = tclimit; tc < hw_tcs; tc++) {
1455                /*
1456                 * Must re-enable multithreading temporarily or in case we
1457                 * reschedule send IPIs or similar we might hang.
1458                 */
1459                clear_c0_mvpcontrol(MVPCONTROL_VPC);
1460                evpe(vpflags);
1461                emt(mtflags);
1462                local_irq_restore(flags);
1463                t = alloc_tc(tc);
1464                if (!t) {
1465                        err = -ENOMEM;
1466                        goto out;
1467                }
1468
1469                local_irq_save(flags);
1470                mtflags = dmt();
1471                vpflags = dvpe();
1472                set_c0_mvpcontrol(MVPCONTROL_VPC);
1473
1474                /* VPE's */
1475                if (tc < hw_tcs) {
1476                        settc(tc);
1477
1478                        if ((v = alloc_vpe(tc)) == NULL) {
1479                                printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1480
1481                                goto out_reenable;
1482                        }
1483
1484                        v->ntcs = hw_tcs - tclimit;
1485
1486                        /* add the tc to the list of this vpe's tc's. */
1487                        list_add(&t->tc, &v->tc);
1488
1489                        /* deactivate all but vpe0 */
1490                        if (tc >= tclimit) {
1491                                unsigned long tmp = read_vpe_c0_vpeconf0();
1492
1493                                tmp &= ~VPECONF0_VPA;
1494
1495                                /* master VPE */
1496                                tmp |= VPECONF0_MVP;
1497                                write_vpe_c0_vpeconf0(tmp);
1498                        }
1499
1500                        /* disable multi-threading with TC's */
1501                        write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1502
1503                        if (tc >= vpelimit) {
1504                                /*
1505                                 * Set config to be the same as vpe0,
1506                                 * particularly kseg0 coherency alg
1507                                 */
1508                                write_vpe_c0_config(read_c0_config());
1509                        }
1510                }
1511
1512                /* TC's */
1513                t->pvpe = v;    /* set the parent vpe */
1514
1515                if (tc >= tclimit) {
1516                        unsigned long tmp;
1517
1518                        settc(tc);
1519
1520                        /* Any TC that is bound to VPE0 gets left as is - in case
1521                           we are running SMTC on VPE0. A TC that is bound to any
1522                           other VPE gets bound to VPE0, ideally I'd like to make
1523                           it homeless but it doesn't appear to let me bind a TC
1524                           to a non-existent VPE. Which is perfectly reasonable.
1525
1526                           The (un)bound state is visible to an EJTAG probe so may
1527                           notify GDB...
1528                        */
1529
1530                        if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1531                                /* tc is bound >vpe0 */
1532                                write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1533
1534                                t->pvpe = get_vpe(0);   /* set the parent vpe */
1535                        }
1536
1537                        /* halt the TC */
1538                        write_tc_c0_tchalt(TCHALT_H);
1539                        mips_ihb();
1540
1541                        tmp = read_tc_c0_tcstatus();
1542
1543                        /* mark not activated and not dynamically allocatable */
1544                        tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1545                        tmp |= TCSTATUS_IXMT;   /* interrupt exempt */
1546                        write_tc_c0_tcstatus(tmp);
1547                }
1548        }
1549
1550out_reenable:
1551        /* release config state */
1552        clear_c0_mvpcontrol(MVPCONTROL_VPC);
1553
1554        evpe(vpflags);
1555        emt(mtflags);
1556        local_irq_restore(flags);
1557
1558        return 0;
1559
1560out_class:
1561        class_unregister(&vpe_class);
1562out_chrdev:
1563        unregister_chrdev(major, module_name);
1564
1565out:
1566        return err;
1567}
1568
1569static void __exit vpe_module_exit(void)
1570{
1571        struct vpe *v, *n;
1572
1573        device_del(&vpe_device);
1574        unregister_chrdev(major, module_name);
1575
1576        /* No locking needed here */
1577        list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1578                if (v->state != VPE_STATE_UNUSED)
1579                        release_vpe(v);
1580        }
1581}
1582
1583module_init(vpe_module_init);
1584module_exit(vpe_module_exit);
1585MODULE_DESCRIPTION("MIPS VPE Loader");
1586MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1587MODULE_LICENSE("GPL");
1588