linux/arch/mips/powertv/powertv_setup.c
<<
>>
Prefs
   1/*
   2 * Carsten Langgaard, carstenl@mips.com
   3 * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
   4 * Portions copyright (C) 2009 Cisco Systems, Inc.
   5 *
   6 *  This program is free software; you can distribute it and/or modify it
   7 *  under the terms of the GNU General Public License (Version 2) as
   8 *  published by the Free Software Foundation.
   9 *
  10 *  This program is distributed in the hope it will be useful, but WITHOUT
  11 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 *  for more details.
  14 *
  15 *  You should have received a copy of the GNU General Public License along
  16 *  with this program; if not, write to the Free Software Foundation, Inc.,
  17 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  18 */
  19#include <linux/init.h>
  20#include <linux/sched.h>
  21#include <linux/ioport.h>
  22#include <linux/pci.h>
  23#include <linux/screen_info.h>
  24#include <linux/notifier.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/ctype.h>
  28#include <linux/cpu.h>
  29#include <linux/time.h>
  30
  31#include <asm/bootinfo.h>
  32#include <asm/irq.h>
  33#include <asm/mips-boards/generic.h>
  34#include <asm/dma.h>
  35#include <asm/asm.h>
  36#include <asm/traps.h>
  37#include <asm/asm-offsets.h>
  38#include "reset.h"
  39
  40#define VAL(n)          STR(n)
  41
  42/*
  43 * Macros for loading addresses and storing registers:
  44 * LONG_L_      Stringified version of LONG_L for use in asm() statement
  45 * LONG_S_      Stringified version of LONG_S for use in asm() statement
  46 * PTR_LA_      Stringified version of PTR_LA for use in asm() statement
  47 * REG_SIZE     Number of 8-bit bytes in a full width register
  48 */
  49#define LONG_L_         VAL(LONG_L) " "
  50#define LONG_S_         VAL(LONG_S) " "
  51#define PTR_LA_         VAL(PTR_LA) " "
  52
  53#ifdef CONFIG_64BIT
  54#warning TODO: 64-bit code needs to be verified
  55#define REG_SIZE        "8"             /* In bytes */
  56#endif
  57
  58#ifdef CONFIG_32BIT
  59#define REG_SIZE        "4"             /* In bytes */
  60#endif
  61
  62static void register_panic_notifier(void);
  63static int panic_handler(struct notifier_block *notifier_block,
  64        unsigned long event, void *cause_string);
  65
  66const char *get_system_type(void)
  67{
  68        return "PowerTV";
  69}
  70
  71void __init plat_mem_setup(void)
  72{
  73        panic_on_oops = 1;
  74        register_panic_notifier();
  75
  76#if 0
  77        mips_pcibios_init();
  78#endif
  79        mips_reboot_setup();
  80}
  81
  82/*
  83 * Install a panic notifier for platform-specific diagnostics
  84 */
  85static void register_panic_notifier()
  86{
  87        static struct notifier_block panic_notifier = {
  88                .notifier_call = panic_handler,
  89                .next = NULL,
  90                .priority       = INT_MAX
  91        };
  92        atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
  93}
  94
  95static int panic_handler(struct notifier_block *notifier_block,
  96        unsigned long event, void *cause_string)
  97{
  98        struct pt_regs  my_regs;
  99
 100        /* Save all of the registers */
 101        {
 102                unsigned long   at, v0, v1; /* Must be on the stack */
 103
 104                /* Start by saving $at and v0 on the stack. We use $at
 105                 * ourselves, but it looks like the compiler may use v0 or v1
 106                 * to load the address of the pt_regs structure. We'll come
 107                 * back later to store the registers in the pt_regs
 108                 * structure. */
 109                __asm__ __volatile__ (
 110                        ".set   noat\n"
 111                        LONG_S_         "$at, %[at]\n"
 112                        LONG_S_         "$2, %[v0]\n"
 113                        LONG_S_         "$3, %[v1]\n"
 114                :
 115                        [at] "=m" (at),
 116                        [v0] "=m" (v0),
 117                        [v1] "=m" (v1)
 118                :
 119                :       "at"
 120                );
 121
 122                __asm__ __volatile__ (
 123                        ".set   noat\n"
 124                        "move           $at, %[pt_regs]\n"
 125
 126                        /* Argument registers */
 127                        LONG_S_         "$4, " VAL(PT_R4) "($at)\n"
 128                        LONG_S_         "$5, " VAL(PT_R5) "($at)\n"
 129                        LONG_S_         "$6, " VAL(PT_R6) "($at)\n"
 130                        LONG_S_         "$7, " VAL(PT_R7) "($at)\n"
 131
 132                        /* Temporary regs */
 133                        LONG_S_         "$8, " VAL(PT_R8) "($at)\n"
 134                        LONG_S_         "$9, " VAL(PT_R9) "($at)\n"
 135                        LONG_S_         "$10, " VAL(PT_R10) "($at)\n"
 136                        LONG_S_         "$11, " VAL(PT_R11) "($at)\n"
 137                        LONG_S_         "$12, " VAL(PT_R12) "($at)\n"
 138                        LONG_S_         "$13, " VAL(PT_R13) "($at)\n"
 139                        LONG_S_         "$14, " VAL(PT_R14) "($at)\n"
 140                        LONG_S_         "$15, " VAL(PT_R15) "($at)\n"
 141
 142                        /* "Saved" registers */
 143                        LONG_S_         "$16, " VAL(PT_R16) "($at)\n"
 144                        LONG_S_         "$17, " VAL(PT_R17) "($at)\n"
 145                        LONG_S_         "$18, " VAL(PT_R18) "($at)\n"
 146                        LONG_S_         "$19, " VAL(PT_R19) "($at)\n"
 147                        LONG_S_         "$20, " VAL(PT_R20) "($at)\n"
 148                        LONG_S_         "$21, " VAL(PT_R21) "($at)\n"
 149                        LONG_S_         "$22, " VAL(PT_R22) "($at)\n"
 150                        LONG_S_         "$23, " VAL(PT_R23) "($at)\n"
 151
 152                        /* Add'l temp regs */
 153                        LONG_S_         "$24, " VAL(PT_R24) "($at)\n"
 154                        LONG_S_         "$25, " VAL(PT_R25) "($at)\n"
 155
 156                        /* Kernel temp regs */
 157                        LONG_S_         "$26, " VAL(PT_R26) "($at)\n"
 158                        LONG_S_         "$27, " VAL(PT_R27) "($at)\n"
 159
 160                        /* Global pointer, stack pointer, frame pointer and
 161                         * return address */
 162                        LONG_S_         "$gp, " VAL(PT_R28) "($at)\n"
 163                        LONG_S_         "$sp, " VAL(PT_R29) "($at)\n"
 164                        LONG_S_         "$fp, " VAL(PT_R30) "($at)\n"
 165                        LONG_S_         "$ra, " VAL(PT_R31) "($at)\n"
 166
 167                        /* Now we can get the $at and v0 registers back and
 168                         * store them */
 169                        LONG_L_         "$8, %[at]\n"
 170                        LONG_S_         "$8, " VAL(PT_R1) "($at)\n"
 171                        LONG_L_         "$8, %[v0]\n"
 172                        LONG_S_         "$8, " VAL(PT_R2) "($at)\n"
 173                        LONG_L_         "$8, %[v1]\n"
 174                        LONG_S_         "$8, " VAL(PT_R3) "($at)\n"
 175                :
 176                :
 177                        [at] "m" (at),
 178                        [v0] "m" (v0),
 179                        [v1] "m" (v1),
 180                        [pt_regs] "r" (&my_regs)
 181                :       "at", "t0"
 182                );
 183
 184                /* Set the current EPC value to be the current location in this
 185                 * function */
 186                __asm__ __volatile__ (
 187                        ".set   noat\n"
 188                "1:\n"
 189                        PTR_LA_         "$at, 1b\n"
 190                        LONG_S_         "$at, %[cp0_epc]\n"
 191                :
 192                        [cp0_epc] "=m" (my_regs.cp0_epc)
 193                :
 194                :       "at"
 195                );
 196
 197                my_regs.cp0_cause = read_c0_cause();
 198                my_regs.cp0_status = read_c0_status();
 199        }
 200
 201        pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
 202                "zzzz... \n");
 203
 204        return NOTIFY_DONE;
 205}
 206
 207/* Information about the RF MAC address, if one was supplied on the
 208 * command line. */
 209static bool have_rfmac;
 210static u8 rfmac[ETH_ALEN];
 211
 212static int rfmac_param(char *p)
 213{
 214        u8      *q;
 215        bool    is_high_nibble;
 216        int     c;
 217
 218        /* Skip a leading "0x", if present */
 219        if (*p == '0' && *(p+1) == 'x')
 220                p += 2;
 221
 222        q = rfmac;
 223        is_high_nibble = true;
 224
 225        for (c = (unsigned char) *p++;
 226                isxdigit(c) && q - rfmac < ETH_ALEN;
 227                c = (unsigned char) *p++) {
 228                int     nibble;
 229
 230                nibble = (isdigit(c) ? (c - '0') :
 231                        (isupper(c) ? c - 'A' + 10 : c - 'a' + 10));
 232
 233                if (is_high_nibble)
 234                        *q = nibble << 4;
 235                else
 236                        *q++ |= nibble;
 237
 238                is_high_nibble = !is_high_nibble;
 239        }
 240
 241        /* If we parsed all the way to the end of the parameter value and
 242         * parsed all ETH_ALEN bytes, we have a usable RF MAC address */
 243        have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);
 244
 245        return 0;
 246}
 247
 248early_param("rfmac", rfmac_param);
 249
 250/*
 251 * Generate an Ethernet MAC address that has a good chance of being unique.
 252 * @addr:       Pointer to six-byte array containing the Ethernet address
 253 * Generates an Ethernet MAC address that is highly likely to be unique for
 254 * this particular system on a network with other systems of the same type.
 255 *
 256 * The problem we are solving is that, when eth_random_addr() is used to
 257 * generate MAC addresses at startup, there isn't much entropy for the random
 258 * number generator to use and the addresses it produces are fairly likely to
 259 * be the same as those of other identical systems on the same local network.
 260 * This is true even for relatively small numbers of systems (for the reason
 261 * why, see the Wikipedia entry for "Birthday problem" at:
 262 *      http://en.wikipedia.org/wiki/Birthday_problem
 263 *
 264 * The good news is that we already have a MAC address known to be unique, the
 265 * RF MAC address. The bad news is that this address is already in use on the
 266 * RF interface. Worse, the obvious trick, taking the RF MAC address and
 267 * turning on the locally managed bit, has already been used for other devices.
 268 * Still, this does give us something to work with.
 269 *
 270 * The approach we take is:
 271 * 1.   If we can't get the RF MAC Address, just call eth_random_addr.
 272 * 2.   Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
 273 *      bits of the new address. This is very likely to be unique, except for
 274 *      the current box.
 275 * 3.   To avoid using addresses already on the current box, we set the top
 276 *      six bits of the address with a value different from any currently
 277 *      registered Scientific Atlanta organizationally unique identifyer
 278 *      (OUI). This avoids duplication with any addresses on the system that
 279 *      were generated from valid Scientific Atlanta-registered address by
 280 *      simply flipping the locally managed bit.
 281 * 4.   We aren't generating a multicast address, so we leave the multicast
 282 *      bit off. Since we aren't using a registered address, we have to set
 283 *      the locally managed bit.
 284 * 5.   We then randomly generate the remaining 16-bits. This does two
 285 *      things:
 286 *      a.      It allows us to call this function for more than one device
 287 *              in this system
 288 *      b.      It ensures that things will probably still work even if
 289 *              some device on the device network has a locally managed
 290 *              address that matches the top six bits from step 2.
 291 */
 292void platform_random_ether_addr(u8 addr[ETH_ALEN])
 293{
 294        const int num_random_bytes = 2;
 295        const unsigned char non_sciatl_oui_bits = 0xc0u;
 296        const unsigned char mac_addr_locally_managed = (1 << 1);
 297
 298        if (!have_rfmac) {
 299                pr_warning("rfmac not available on command line; "
 300                        "generating random MAC address\n");
 301                eth_random_addr(addr);
 302        }
 303
 304        else {
 305                int     i;
 306
 307                /* Set the first byte to something that won't match a Scientific
 308                 * Atlanta OUI, is locally managed, and isn't a multicast
 309                 * address */
 310                addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;
 311
 312                /* Get some bytes of random address information */
 313                get_random_bytes(&addr[1], num_random_bytes);
 314
 315                /* Copy over the NIC-specific bits of the RF MAC address */
 316                for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
 317                        addr[i] = rfmac[i];
 318        }
 319}
 320