linux/arch/parisc/include/asm/pgtable.h
<<
>>
Prefs
   1#ifndef _PARISC_PGTABLE_H
   2#define _PARISC_PGTABLE_H
   3
   4#include <asm-generic/4level-fixup.h>
   5
   6#include <asm/fixmap.h>
   7
   8#ifndef __ASSEMBLY__
   9/*
  10 * we simulate an x86-style page table for the linux mm code
  11 */
  12
  13#include <linux/bitops.h>
  14#include <linux/spinlock.h>
  15#include <linux/mm_types.h>
  16#include <asm/processor.h>
  17#include <asm/cache.h>
  18
  19extern spinlock_t pa_dbit_lock;
  20
  21/*
  22 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
  23 * memory.  For the return value to be meaningful, ADDR must be >=
  24 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
  25 * require a hash-, or multi-level tree-lookup or something of that
  26 * sort) but it guarantees to return TRUE only if accessing the page
  27 * at that address does not cause an error.  Note that there may be
  28 * addresses for which kern_addr_valid() returns FALSE even though an
  29 * access would not cause an error (e.g., this is typically true for
  30 * memory mapped I/O regions.
  31 *
  32 * XXX Need to implement this for parisc.
  33 */
  34#define kern_addr_valid(addr)   (1)
  35
  36/* Certain architectures need to do special things when PTEs
  37 * within a page table are directly modified.  Thus, the following
  38 * hook is made available.
  39 */
  40#define set_pte(pteptr, pteval)                                 \
  41        do{                                                     \
  42                *(pteptr) = (pteval);                           \
  43        } while(0)
  44
  45extern void purge_tlb_entries(struct mm_struct *, unsigned long);
  46
  47#define set_pte_at(mm, addr, ptep, pteval)                      \
  48        do {                                                    \
  49                unsigned long flags;                            \
  50                spin_lock_irqsave(&pa_dbit_lock, flags);        \
  51                set_pte(ptep, pteval);                          \
  52                purge_tlb_entries(mm, addr);                    \
  53                spin_unlock_irqrestore(&pa_dbit_lock, flags);   \
  54        } while (0)
  55
  56#endif /* !__ASSEMBLY__ */
  57
  58#include <asm/page.h>
  59
  60#define pte_ERROR(e) \
  61        printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  62#define pmd_ERROR(e) \
  63        printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
  64#define pgd_ERROR(e) \
  65        printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
  66
  67/* This is the size of the initially mapped kernel memory */
  68#define KERNEL_INITIAL_ORDER    24      /* 0 to 1<<24 = 16MB */
  69#define KERNEL_INITIAL_SIZE     (1 << KERNEL_INITIAL_ORDER)
  70
  71#if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB)
  72#define PT_NLEVELS      3
  73#define PGD_ORDER       1 /* Number of pages per pgd */
  74#define PMD_ORDER       1 /* Number of pages per pmd */
  75#define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
  76#else
  77#define PT_NLEVELS      2
  78#define PGD_ORDER       1 /* Number of pages per pgd */
  79#define PGD_ALLOC_ORDER PGD_ORDER
  80#endif
  81
  82/* Definitions for 3rd level (we use PLD here for Page Lower directory
  83 * because PTE_SHIFT is used lower down to mean shift that has to be
  84 * done to get usable bits out of the PTE) */
  85#define PLD_SHIFT       PAGE_SHIFT
  86#define PLD_SIZE        PAGE_SIZE
  87#define BITS_PER_PTE    (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
  88#define PTRS_PER_PTE    (1UL << BITS_PER_PTE)
  89
  90/* Definitions for 2nd level */
  91#define pgtable_cache_init()    do { } while (0)
  92
  93#define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE)
  94#define PMD_SIZE        (1UL << PMD_SHIFT)
  95#define PMD_MASK        (~(PMD_SIZE-1))
  96#if PT_NLEVELS == 3
  97#define BITS_PER_PMD    (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
  98#else
  99#define BITS_PER_PMD    0
 100#endif
 101#define PTRS_PER_PMD    (1UL << BITS_PER_PMD)
 102
 103/* Definitions for 1st level */
 104#define PGDIR_SHIFT     (PMD_SHIFT + BITS_PER_PMD)
 105#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
 106#define BITS_PER_PGD    (BITS_PER_LONG - PGDIR_SHIFT)
 107#else
 108#define BITS_PER_PGD    (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
 109#endif
 110#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 111#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 112#define PTRS_PER_PGD    (1UL << BITS_PER_PGD)
 113#define USER_PTRS_PER_PGD       PTRS_PER_PGD
 114
 115#ifdef CONFIG_64BIT
 116#define MAX_ADDRBITS    (PGDIR_SHIFT + BITS_PER_PGD)
 117#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 118#define SPACEID_SHIFT   (MAX_ADDRBITS - 32)
 119#else
 120#define MAX_ADDRBITS    (BITS_PER_LONG)
 121#define MAX_ADDRESS     (1UL << MAX_ADDRBITS)
 122#define SPACEID_SHIFT   0
 123#endif
 124
 125/* This calculates the number of initial pages we need for the initial
 126 * page tables */
 127#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
 128# define PT_INITIAL     (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
 129#else
 130# define PT_INITIAL     (1)  /* all initial PTEs fit into one page */
 131#endif
 132
 133/*
 134 * pgd entries used up by user/kernel:
 135 */
 136
 137#define FIRST_USER_ADDRESS      0
 138
 139/* NB: The tlb miss handlers make certain assumptions about the order */
 140/*     of the following bits, so be careful (One example, bits 25-31  */
 141/*     are moved together in one instruction).                        */
 142
 143#define _PAGE_READ_BIT     31   /* (0x001) read access allowed */
 144#define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */
 145#define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */
 146#define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */
 147#define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */
 148#define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */
 149#define _PAGE_FILE_BIT  _PAGE_DIRTY_BIT /* overload this bit */
 150#define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */
 151#define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */
 152#define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */
 153#define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */
 154/* bit 21 was formerly the FLUSH bit but is now unused */
 155#define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */
 156
 157/* N.B. The bits are defined in terms of a 32 bit word above, so the */
 158/*      following macro is ok for both 32 and 64 bit.                */
 159
 160#define xlate_pabit(x) (31 - x)
 161
 162/* this defines the shift to the usable bits in the PTE it is set so
 163 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
 164 * to zero */
 165#define PTE_SHIFT               xlate_pabit(_PAGE_USER_BIT)
 166
 167/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
 168#define PFN_PTE_SHIFT           12
 169
 170
 171/* this is how many bits may be used by the file functions */
 172#define PTE_FILE_MAX_BITS       (BITS_PER_LONG - PTE_SHIFT)
 173
 174#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
 175#define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
 176
 177#define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT))
 178#define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT))
 179#define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE)
 180#define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT))
 181#define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
 182#define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT))
 183#define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT))
 184#define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
 185#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
 186#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
 187#define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT))
 188#define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT))
 189#define _PAGE_FILE     (1 << xlate_pabit(_PAGE_FILE_BIT))
 190
 191#define _PAGE_TABLE     (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_ACCESSED)
 192#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 193#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
 194#define _PAGE_KERNEL_EXEC       (_PAGE_KERNEL_RO | _PAGE_EXEC)
 195#define _PAGE_KERNEL_RWX        (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
 196#define _PAGE_KERNEL            (_PAGE_KERNEL_RO | _PAGE_WRITE)
 197
 198/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
 199 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
 200 * for a few meta-information bits, so we shift the address to be
 201 * able to effectively address 40/42/44-bits of physical address space
 202 * depending on 4k/16k/64k PAGE_SIZE */
 203#define _PxD_PRESENT_BIT   31
 204#define _PxD_ATTACHED_BIT  30
 205#define _PxD_VALID_BIT     29
 206
 207#define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT))
 208#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
 209#define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT))
 210#define PxD_FLAG_MASK     (0xf)
 211#define PxD_FLAG_SHIFT    (4)
 212#define PxD_VALUE_SHIFT   (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */
 213
 214#ifndef __ASSEMBLY__
 215
 216#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
 217#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
 218/* Others seem to make this executable, I don't know if that's correct
 219   or not.  The stack is mapped this way though so this is necessary
 220   in the short term - dhd@linuxcare.com, 2000-08-08 */
 221#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
 222#define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
 223#define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
 224#define PAGE_COPY       PAGE_EXECREAD
 225#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
 226#define PAGE_KERNEL     __pgprot(_PAGE_KERNEL)
 227#define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL_EXEC)
 228#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
 229#define PAGE_KERNEL_RO  __pgprot(_PAGE_KERNEL_RO)
 230#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
 231#define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
 232
 233
 234/*
 235 * We could have an execute only page using "gateway - promote to priv
 236 * level 3", but that is kind of silly. So, the way things are defined
 237 * now, we must always have read permission for pages with execute
 238 * permission. For the fun of it we'll go ahead and support write only
 239 * pages.
 240 */
 241
 242         /*xwr*/
 243#define __P000  PAGE_NONE
 244#define __P001  PAGE_READONLY
 245#define __P010  __P000 /* copy on write */
 246#define __P011  __P001 /* copy on write */
 247#define __P100  PAGE_EXECREAD
 248#define __P101  PAGE_EXECREAD
 249#define __P110  __P100 /* copy on write */
 250#define __P111  __P101 /* copy on write */
 251
 252#define __S000  PAGE_NONE
 253#define __S001  PAGE_READONLY
 254#define __S010  PAGE_WRITEONLY
 255#define __S011  PAGE_SHARED
 256#define __S100  PAGE_EXECREAD
 257#define __S101  PAGE_EXECREAD
 258#define __S110  PAGE_RWX
 259#define __S111  PAGE_RWX
 260
 261
 262extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
 263
 264/* initial page tables for 0-8MB for kernel */
 265
 266extern pte_t pg0[];
 267
 268/* zero page used for uninitialized stuff */
 269
 270extern unsigned long *empty_zero_page;
 271
 272/*
 273 * ZERO_PAGE is a global shared page that is always zero: used
 274 * for zero-mapped memory areas etc..
 275 */
 276
 277#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 278
 279#define pte_none(x)     (pte_val(x) == 0)
 280#define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
 281#define pte_clear(mm,addr,xp)   do { pte_val(*(xp)) = 0; } while (0)
 282
 283#define pmd_flag(x)     (pmd_val(x) & PxD_FLAG_MASK)
 284#define pmd_address(x)  ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 285#define pgd_flag(x)     (pgd_val(x) & PxD_FLAG_MASK)
 286#define pgd_address(x)  ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
 287
 288#if PT_NLEVELS == 3
 289/* The first entry of the permanent pmd is not there if it contains
 290 * the gateway marker */
 291#define pmd_none(x)     (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
 292#else
 293#define pmd_none(x)     (!pmd_val(x))
 294#endif
 295#define pmd_bad(x)      (!(pmd_flag(x) & PxD_FLAG_VALID))
 296#define pmd_present(x)  (pmd_flag(x) & PxD_FLAG_PRESENT)
 297static inline void pmd_clear(pmd_t *pmd) {
 298#if PT_NLEVELS == 3
 299        if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
 300                /* This is the entry pointing to the permanent pmd
 301                 * attached to the pgd; cannot clear it */
 302                __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
 303        else
 304#endif
 305                __pmd_val_set(*pmd,  0);
 306}
 307
 308
 309
 310#if PT_NLEVELS == 3
 311#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
 312#define pgd_page(pgd)   virt_to_page((void *)pgd_page_vaddr(pgd))
 313
 314/* For 64 bit we have three level tables */
 315
 316#define pgd_none(x)     (!pgd_val(x))
 317#define pgd_bad(x)      (!(pgd_flag(x) & PxD_FLAG_VALID))
 318#define pgd_present(x)  (pgd_flag(x) & PxD_FLAG_PRESENT)
 319static inline void pgd_clear(pgd_t *pgd) {
 320#if PT_NLEVELS == 3
 321        if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
 322                /* This is the permanent pmd attached to the pgd; cannot
 323                 * free it */
 324                return;
 325#endif
 326        __pgd_val_set(*pgd, 0);
 327}
 328#else
 329/*
 330 * The "pgd_xxx()" functions here are trivial for a folded two-level
 331 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 332 * into the pgd entry)
 333 */
 334static inline int pgd_none(pgd_t pgd)           { return 0; }
 335static inline int pgd_bad(pgd_t pgd)            { return 0; }
 336static inline int pgd_present(pgd_t pgd)        { return 1; }
 337static inline void pgd_clear(pgd_t * pgdp)      { }
 338#endif
 339
 340/*
 341 * The following only work if pte_present() is true.
 342 * Undefined behaviour if not..
 343 */
 344static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
 345static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
 346static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
 347static inline int pte_file(pte_t pte)           { return pte_val(pte) & _PAGE_FILE; }
 348static inline int pte_special(pte_t pte)        { return 0; }
 349
 350static inline pte_t pte_mkclean(pte_t pte)      { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
 351static inline pte_t pte_mkold(pte_t pte)        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 352static inline pte_t pte_wrprotect(pte_t pte)    { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
 353static inline pte_t pte_mkdirty(pte_t pte)      { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 354static inline pte_t pte_mkyoung(pte_t pte)      { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 355static inline pte_t pte_mkwrite(pte_t pte)      { pte_val(pte) |= _PAGE_WRITE; return pte; }
 356static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
 357
 358/*
 359 * Conversion functions: convert a page and protection to a page entry,
 360 * and a page entry and page directory to the page they refer to.
 361 */
 362#define __mk_pte(addr,pgprot) \
 363({                                                                      \
 364        pte_t __pte;                                                    \
 365                                                                        \
 366        pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot));  \
 367                                                                        \
 368        __pte;                                                          \
 369})
 370
 371#define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
 372
 373static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 374{
 375        pte_t pte;
 376        pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
 377        return pte;
 378}
 379
 380static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 381{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 382
 383/* Permanent address of a page.  On parisc we don't have highmem. */
 384
 385#define pte_pfn(x)              (pte_val(x) >> PFN_PTE_SHIFT)
 386
 387#define pte_page(pte)           (pfn_to_page(pte_pfn(pte)))
 388
 389#define pmd_page_vaddr(pmd)     ((unsigned long) __va(pmd_address(pmd)))
 390
 391#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
 392#define pmd_page(pmd)   virt_to_page((void *)__pmd_page(pmd))
 393
 394#define pgd_index(address) ((address) >> PGDIR_SHIFT)
 395
 396/* to find an entry in a page-table-directory */
 397#define pgd_offset(mm, address) \
 398((mm)->pgd + ((address) >> PGDIR_SHIFT))
 399
 400/* to find an entry in a kernel page-table-directory */
 401#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 402
 403/* Find an entry in the second-level page table.. */
 404
 405#if PT_NLEVELS == 3
 406#define pmd_offset(dir,address) \
 407((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
 408#else
 409#define pmd_offset(dir,addr) ((pmd_t *) dir)
 410#endif
 411
 412/* Find an entry in the third-level page table.. */ 
 413#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
 414#define pte_offset_kernel(pmd, address) \
 415        ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
 416#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
 417#define pte_unmap(pte) do { } while (0)
 418
 419#define pte_unmap(pte)                  do { } while (0)
 420#define pte_unmap_nested(pte)           do { } while (0)
 421
 422extern void paging_init (void);
 423
 424/* Used for deferring calls to flush_dcache_page() */
 425
 426#define PG_dcache_dirty         PG_arch_1
 427
 428extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
 429
 430/* Encode and de-code a swap entry */
 431
 432#define __swp_type(x)                     ((x).val & 0x1f)
 433#define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \
 434                                          (((x).val >> 8) & ~0x7) )
 435#define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \
 436                                            ((offset &  0x7) << 6) | \
 437                                            ((offset & ~0x7) << 8) })
 438#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 439#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 440
 441static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 442{
 443        pte_t pte;
 444        unsigned long flags;
 445
 446        if (!pte_young(*ptep))
 447                return 0;
 448
 449        spin_lock_irqsave(&pa_dbit_lock, flags);
 450        pte = *ptep;
 451        if (!pte_young(pte)) {
 452                spin_unlock_irqrestore(&pa_dbit_lock, flags);
 453                return 0;
 454        }
 455        set_pte(ptep, pte_mkold(pte));
 456        purge_tlb_entries(vma->vm_mm, addr);
 457        spin_unlock_irqrestore(&pa_dbit_lock, flags);
 458        return 1;
 459}
 460
 461struct mm_struct;
 462static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 463{
 464        pte_t old_pte;
 465        unsigned long flags;
 466
 467        spin_lock_irqsave(&pa_dbit_lock, flags);
 468        old_pte = *ptep;
 469        pte_clear(mm,addr,ptep);
 470        purge_tlb_entries(mm, addr);
 471        spin_unlock_irqrestore(&pa_dbit_lock, flags);
 472
 473        return old_pte;
 474}
 475
 476static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 477{
 478        unsigned long flags;
 479        spin_lock_irqsave(&pa_dbit_lock, flags);
 480        set_pte(ptep, pte_wrprotect(*ptep));
 481        purge_tlb_entries(mm, addr);
 482        spin_unlock_irqrestore(&pa_dbit_lock, flags);
 483}
 484
 485#define pte_same(A,B)   (pte_val(A) == pte_val(B))
 486
 487#endif /* !__ASSEMBLY__ */
 488
 489
 490/* TLB page size encoding - see table 3-1 in parisc20.pdf */
 491#define _PAGE_SIZE_ENCODING_4K          0
 492#define _PAGE_SIZE_ENCODING_16K         1
 493#define _PAGE_SIZE_ENCODING_64K         2
 494#define _PAGE_SIZE_ENCODING_256K        3
 495#define _PAGE_SIZE_ENCODING_1M          4
 496#define _PAGE_SIZE_ENCODING_4M          5
 497#define _PAGE_SIZE_ENCODING_16M         6
 498#define _PAGE_SIZE_ENCODING_64M         7
 499
 500#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 501# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
 502#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
 503# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
 504#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
 505# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
 506#endif
 507
 508
 509#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
 510
 511/* We provide our own get_unmapped_area to provide cache coherency */
 512
 513#define HAVE_ARCH_UNMAPPED_AREA
 514
 515#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 516#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 517#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 518#define __HAVE_ARCH_PTE_SAME
 519#include <asm-generic/pgtable.h>
 520
 521#endif /* _PARISC_PGTABLE_H */
 522