linux/arch/powerpc/include/asm/pgtable-ppc64.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
   2#define _ASM_POWERPC_PGTABLE_PPC64_H_
   3/*
   4 * This file contains the functions and defines necessary to modify and use
   5 * the ppc64 hashed page table.
   6 */
   7
   8#ifdef CONFIG_PPC_64K_PAGES
   9#include <asm/pgtable-ppc64-64k.h>
  10#else
  11#include <asm/pgtable-ppc64-4k.h>
  12#endif
  13#include <asm/barrier.h>
  14
  15#define FIRST_USER_ADDRESS      0
  16
  17/*
  18 * Size of EA range mapped by our pagetables.
  19 */
  20#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  21                            PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  22#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
  23
  24#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  25#define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
  26#else
  27#define PMD_CACHE_INDEX PMD_INDEX_SIZE
  28#endif
  29/*
  30 * Define the address range of the kernel non-linear virtual area
  31 */
  32
  33#ifdef CONFIG_PPC_BOOK3E
  34#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
  35#else
  36#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
  37#endif
  38#define KERN_VIRT_SIZE  ASM_CONST(0x0000100000000000)
  39
  40/*
  41 * The vmalloc space starts at the beginning of that region, and
  42 * occupies half of it on hash CPUs and a quarter of it on Book3E
  43 * (we keep a quarter for the virtual memmap)
  44 */
  45#define VMALLOC_START   KERN_VIRT_START
  46#ifdef CONFIG_PPC_BOOK3E
  47#define VMALLOC_SIZE    (KERN_VIRT_SIZE >> 2)
  48#else
  49#define VMALLOC_SIZE    (KERN_VIRT_SIZE >> 1)
  50#endif
  51#define VMALLOC_END     (VMALLOC_START + VMALLOC_SIZE)
  52
  53/*
  54 * The second half of the kernel virtual space is used for IO mappings,
  55 * it's itself carved into the PIO region (ISA and PHB IO space) and
  56 * the ioremap space
  57 *
  58 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
  59 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
  60 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
  61 */
  62#define KERN_IO_START   (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
  63#define FULL_IO_SIZE    0x80000000ul
  64#define  ISA_IO_BASE    (KERN_IO_START)
  65#define  ISA_IO_END     (KERN_IO_START + 0x10000ul)
  66#define  PHB_IO_BASE    (ISA_IO_END)
  67#define  PHB_IO_END     (KERN_IO_START + FULL_IO_SIZE)
  68#define IOREMAP_BASE    (PHB_IO_END)
  69#define IOREMAP_END     (KERN_VIRT_START + KERN_VIRT_SIZE)
  70
  71
  72/*
  73 * Region IDs
  74 */
  75#define REGION_SHIFT            60UL
  76#define REGION_MASK             (0xfUL << REGION_SHIFT)
  77#define REGION_ID(ea)           (((unsigned long)(ea)) >> REGION_SHIFT)
  78
  79#define VMALLOC_REGION_ID       (REGION_ID(VMALLOC_START))
  80#define KERNEL_REGION_ID        (REGION_ID(PAGE_OFFSET))
  81#define VMEMMAP_REGION_ID       (0xfUL) /* Server only */
  82#define USER_REGION_ID          (0UL)
  83
  84/*
  85 * Defines the address of the vmemap area, in its own region on
  86 * hash table CPUs and after the vmalloc space on Book3E
  87 */
  88#ifdef CONFIG_PPC_BOOK3E
  89#define VMEMMAP_BASE            VMALLOC_END
  90#define VMEMMAP_END             KERN_IO_START
  91#else
  92#define VMEMMAP_BASE            (VMEMMAP_REGION_ID << REGION_SHIFT)
  93#endif
  94#define vmemmap                 ((struct page *)VMEMMAP_BASE)
  95
  96
  97/*
  98 * Include the PTE bits definitions
  99 */
 100#ifdef CONFIG_PPC_BOOK3S
 101#include <asm/pte-hash64.h>
 102#else
 103#include <asm/pte-book3e.h>
 104#endif
 105#include <asm/pte-common.h>
 106
 107#ifdef CONFIG_PPC_MM_SLICES
 108#define HAVE_ARCH_UNMAPPED_AREA
 109#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 110#endif /* CONFIG_PPC_MM_SLICES */
 111
 112#ifndef __ASSEMBLY__
 113
 114/*
 115 * This is the default implementation of various PTE accessors, it's
 116 * used in all cases except Book3S with 64K pages where we have a
 117 * concept of sub-pages
 118 */
 119#ifndef __real_pte
 120
 121#ifdef STRICT_MM_TYPECHECKS
 122#define __real_pte(e,p)         ((real_pte_t){(e)})
 123#define __rpte_to_pte(r)        ((r).pte)
 124#else
 125#define __real_pte(e,p)         (e)
 126#define __rpte_to_pte(r)        (__pte(r))
 127#endif
 128#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
 129
 130#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
 131        do {                                                             \
 132                index = 0;                                               \
 133                shift = mmu_psize_defs[psize].shift;                     \
 134
 135#define pte_iterate_hashed_end() } while(0)
 136
 137#ifdef CONFIG_PPC_HAS_HASH_64K
 138#define pte_pagesize_index(mm, addr, pte)       get_slice_psize(mm, addr)
 139#else
 140#define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
 141#endif
 142
 143#endif /* __real_pte */
 144
 145
 146/* pte_clear moved to later in this file */
 147
 148#define PMD_BAD_BITS            (PTE_TABLE_SIZE-1)
 149#define PUD_BAD_BITS            (PMD_TABLE_SIZE-1)
 150
 151#define pmd_set(pmdp, pmdval)   (pmd_val(*(pmdp)) = (pmdval))
 152#define pmd_none(pmd)           (!pmd_val(pmd))
 153#define pmd_bad(pmd)            (!is_kernel_addr(pmd_val(pmd)) \
 154                                 || (pmd_val(pmd) & PMD_BAD_BITS))
 155#define pmd_present(pmd)        (pmd_val(pmd) != 0)
 156#define pmd_clear(pmdp)         (pmd_val(*(pmdp)) = 0)
 157#define pmd_page_vaddr(pmd)     (pmd_val(pmd) & ~PMD_MASKED_BITS)
 158extern struct page *pmd_page(pmd_t pmd);
 159
 160#define pud_set(pudp, pudval)   (pud_val(*(pudp)) = (pudval))
 161#define pud_none(pud)           (!pud_val(pud))
 162#define pud_bad(pud)            (!is_kernel_addr(pud_val(pud)) \
 163                                 || (pud_val(pud) & PUD_BAD_BITS))
 164#define pud_present(pud)        (pud_val(pud) != 0)
 165#define pud_clear(pudp)         (pud_val(*(pudp)) = 0)
 166#define pud_page_vaddr(pud)     (pud_val(pud) & ~PUD_MASKED_BITS)
 167#define pud_page(pud)           virt_to_page(pud_page_vaddr(pud))
 168
 169#define pgd_set(pgdp, pudp)     ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
 170
 171/*
 172 * Find an entry in a page-table-directory.  We combine the address region
 173 * (the high order N bits) and the pgd portion of the address.
 174 */
 175#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
 176
 177#define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
 178
 179#define pmd_offset(pudp,addr) \
 180  (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
 181
 182#define pte_offset_kernel(dir,addr) \
 183  (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
 184
 185#define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
 186#define pte_unmap(pte)                  do { } while(0)
 187
 188/* to find an entry in a kernel page-table-directory */
 189/* This now only contains the vmalloc pages */
 190#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 191extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
 192                            pte_t *ptep, unsigned long pte, int huge);
 193
 194/* Atomic PTE updates */
 195static inline unsigned long pte_update(struct mm_struct *mm,
 196                                       unsigned long addr,
 197                                       pte_t *ptep, unsigned long clr,
 198                                       int huge)
 199{
 200#ifdef PTE_ATOMIC_UPDATES
 201        unsigned long old, tmp;
 202
 203        __asm__ __volatile__(
 204        "1:     ldarx   %0,0,%3         # pte_update\n\
 205        andi.   %1,%0,%6\n\
 206        bne-    1b \n\
 207        andc    %1,%0,%4 \n\
 208        stdcx.  %1,0,%3 \n\
 209        bne-    1b"
 210        : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
 211        : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
 212        : "cc" );
 213#else
 214        unsigned long old = pte_val(*ptep);
 215        *ptep = __pte(old & ~clr);
 216#endif
 217        /* huge pages use the old page table lock */
 218        if (!huge)
 219                assert_pte_locked(mm, addr);
 220
 221#ifdef CONFIG_PPC_STD_MMU_64
 222        if (old & _PAGE_HASHPTE)
 223                hpte_need_flush(mm, addr, ptep, old, huge);
 224#endif
 225
 226        return old;
 227}
 228
 229static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 230                                              unsigned long addr, pte_t *ptep)
 231{
 232        unsigned long old;
 233
 234        if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
 235                return 0;
 236        old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
 237        return (old & _PAGE_ACCESSED) != 0;
 238}
 239#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 240#define ptep_test_and_clear_young(__vma, __addr, __ptep)                   \
 241({                                                                         \
 242        int __r;                                                           \
 243        __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
 244        __r;                                                               \
 245})
 246
 247#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 248static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 249                                      pte_t *ptep)
 250{
 251
 252        if ((pte_val(*ptep) & _PAGE_RW) == 0)
 253                return;
 254
 255        pte_update(mm, addr, ptep, _PAGE_RW, 0);
 256}
 257
 258static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 259                                           unsigned long addr, pte_t *ptep)
 260{
 261        if ((pte_val(*ptep) & _PAGE_RW) == 0)
 262                return;
 263
 264        pte_update(mm, addr, ptep, _PAGE_RW, 1);
 265}
 266
 267/*
 268 * We currently remove entries from the hashtable regardless of whether
 269 * the entry was young or dirty. The generic routines only flush if the
 270 * entry was young or dirty which is not good enough.
 271 *
 272 * We should be more intelligent about this but for the moment we override
 273 * these functions and force a tlb flush unconditionally
 274 */
 275#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 276#define ptep_clear_flush_young(__vma, __address, __ptep)                \
 277({                                                                      \
 278        int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
 279                                                  __ptep);              \
 280        __young;                                                        \
 281})
 282
 283#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 284static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 285                                       unsigned long addr, pte_t *ptep)
 286{
 287        unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
 288        return __pte(old);
 289}
 290
 291static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 292                             pte_t * ptep)
 293{
 294        pte_update(mm, addr, ptep, ~0UL, 0);
 295}
 296
 297
 298/* Set the dirty and/or accessed bits atomically in a linux PTE, this
 299 * function doesn't need to flush the hash entry
 300 */
 301static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
 302{
 303        unsigned long bits = pte_val(entry) &
 304                (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
 305
 306#ifdef PTE_ATOMIC_UPDATES
 307        unsigned long old, tmp;
 308
 309        __asm__ __volatile__(
 310        "1:     ldarx   %0,0,%4\n\
 311                andi.   %1,%0,%6\n\
 312                bne-    1b \n\
 313                or      %0,%3,%0\n\
 314                stdcx.  %0,0,%4\n\
 315                bne-    1b"
 316        :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
 317        :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
 318        :"cc");
 319#else
 320        unsigned long old = pte_val(*ptep);
 321        *ptep = __pte(old | bits);
 322#endif
 323}
 324
 325#define __HAVE_ARCH_PTE_SAME
 326#define pte_same(A,B)   (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
 327
 328#define pte_ERROR(e) \
 329        printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 330#define pmd_ERROR(e) \
 331        printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
 332#define pgd_ERROR(e) \
 333        printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 334
 335/* Encode and de-code a swap entry */
 336#define __swp_type(entry)       (((entry).val >> 1) & 0x3f)
 337#define __swp_offset(entry)     ((entry).val >> 8)
 338#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
 339#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
 340#define __swp_entry_to_pte(x)   ((pte_t) { (x).val << PTE_RPN_SHIFT })
 341#define pte_to_pgoff(pte)       (pte_val(pte) >> PTE_RPN_SHIFT)
 342#define pgoff_to_pte(off)       ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
 343#define PTE_FILE_MAX_BITS       (BITS_PER_LONG - PTE_RPN_SHIFT)
 344
 345void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
 346void pgtable_cache_init(void);
 347#endif /* __ASSEMBLY__ */
 348
 349/*
 350 * THP pages can't be special. So use the _PAGE_SPECIAL
 351 */
 352#define _PAGE_SPLITTING _PAGE_SPECIAL
 353
 354/*
 355 * We need to differentiate between explicit huge page and THP huge
 356 * page, since THP huge page also need to track real subpage details
 357 */
 358#define _PAGE_THP_HUGE  _PAGE_4K_PFN
 359
 360/*
 361 * set of bits not changed in pmd_modify.
 362 */
 363#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS |               \
 364                         _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
 365                         _PAGE_THP_HUGE)
 366
 367#ifndef __ASSEMBLY__
 368/*
 369 * The linux hugepage PMD now include the pmd entries followed by the address
 370 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
 371 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
 372 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
 373 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
 374 *
 375 * The last three bits are intentionally left to zero. This memory location
 376 * are also used as normal page PTE pointers. So if we have any pointers
 377 * left around while we collapse a hugepage, we need to make sure
 378 * _PAGE_PRESENT and _PAGE_FILE bits of that are zero when we look at them
 379 */
 380static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
 381{
 382        return (hpte_slot_array[index] >> 3) & 0x1;
 383}
 384
 385static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
 386                                           int index)
 387{
 388        return hpte_slot_array[index] >> 4;
 389}
 390
 391static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
 392                                        unsigned int index, unsigned int hidx)
 393{
 394        hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
 395}
 396
 397static inline char *get_hpte_slot_array(pmd_t *pmdp)
 398{
 399        /*
 400         * The hpte hindex is stored in the pgtable whose address is in the
 401         * second half of the PMD
 402         *
 403         * Order this load with the test for pmd_trans_huge in the caller
 404         */
 405        smp_rmb();
 406        return *(char **)(pmdp + PTRS_PER_PMD);
 407
 408
 409}
 410
 411extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
 412                                   pmd_t *pmdp);
 413#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 414extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
 415extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
 416extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
 417extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
 418                       pmd_t *pmdp, pmd_t pmd);
 419extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 420                                 pmd_t *pmd);
 421
 422static inline int pmd_trans_huge(pmd_t pmd)
 423{
 424        /*
 425         * leaf pte for huge page, bottom two bits != 00
 426         */
 427        return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
 428}
 429
 430static inline int pmd_large(pmd_t pmd)
 431{
 432        /*
 433         * leaf pte for huge page, bottom two bits != 00
 434         */
 435        if (pmd_trans_huge(pmd))
 436                return pmd_val(pmd) & _PAGE_PRESENT;
 437        return 0;
 438}
 439
 440static inline int pmd_trans_splitting(pmd_t pmd)
 441{
 442        if (pmd_trans_huge(pmd))
 443                return pmd_val(pmd) & _PAGE_SPLITTING;
 444        return 0;
 445}
 446
 447extern int has_transparent_hugepage(void);
 448#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 449
 450static inline pte_t pmd_pte(pmd_t pmd)
 451{
 452        return __pte(pmd_val(pmd));
 453}
 454
 455static inline pmd_t pte_pmd(pte_t pte)
 456{
 457        return __pmd(pte_val(pte));
 458}
 459
 460static inline pte_t *pmdp_ptep(pmd_t *pmd)
 461{
 462        return (pte_t *)pmd;
 463}
 464
 465#define pmd_pfn(pmd)            pte_pfn(pmd_pte(pmd))
 466#define pmd_young(pmd)          pte_young(pmd_pte(pmd))
 467#define pmd_mkold(pmd)          pte_pmd(pte_mkold(pmd_pte(pmd)))
 468#define pmd_wrprotect(pmd)      pte_pmd(pte_wrprotect(pmd_pte(pmd)))
 469#define pmd_mkdirty(pmd)        pte_pmd(pte_mkdirty(pmd_pte(pmd)))
 470#define pmd_mkyoung(pmd)        pte_pmd(pte_mkyoung(pmd_pte(pmd)))
 471#define pmd_mkwrite(pmd)        pte_pmd(pte_mkwrite(pmd_pte(pmd)))
 472
 473#define __HAVE_ARCH_PMD_WRITE
 474#define pmd_write(pmd)          pte_write(pmd_pte(pmd))
 475
 476static inline pmd_t pmd_mkhuge(pmd_t pmd)
 477{
 478        /* Do nothing, mk_pmd() does this part.  */
 479        return pmd;
 480}
 481
 482static inline pmd_t pmd_mknotpresent(pmd_t pmd)
 483{
 484        pmd_val(pmd) &= ~_PAGE_PRESENT;
 485        return pmd;
 486}
 487
 488static inline pmd_t pmd_mksplitting(pmd_t pmd)
 489{
 490        pmd_val(pmd) |= _PAGE_SPLITTING;
 491        return pmd;
 492}
 493
 494#define __HAVE_ARCH_PMD_SAME
 495static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 496{
 497        return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
 498}
 499
 500#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 501extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 502                                 unsigned long address, pmd_t *pmdp,
 503                                 pmd_t entry, int dirty);
 504
 505extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
 506                                         unsigned long addr,
 507                                         pmd_t *pmdp, unsigned long clr);
 508
 509static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
 510                                              unsigned long addr, pmd_t *pmdp)
 511{
 512        unsigned long old;
 513
 514        if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
 515                return 0;
 516        old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED);
 517        return ((old & _PAGE_ACCESSED) != 0);
 518}
 519
 520#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 521extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 522                                     unsigned long address, pmd_t *pmdp);
 523#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 524extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 525                                  unsigned long address, pmd_t *pmdp);
 526
 527#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
 528extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
 529                                unsigned long addr, pmd_t *pmdp);
 530
 531#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
 532extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
 533                              pmd_t *pmdp);
 534
 535#define __HAVE_ARCH_PMDP_SET_WRPROTECT
 536static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 537                                      pmd_t *pmdp)
 538{
 539
 540        if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
 541                return;
 542
 543        pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW);
 544}
 545
 546#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 547extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 548                                 unsigned long address, pmd_t *pmdp);
 549
 550#define __HAVE_ARCH_PGTABLE_DEPOSIT
 551extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 552                                       pgtable_t pgtable);
 553#define __HAVE_ARCH_PGTABLE_WITHDRAW
 554extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 555
 556#define __HAVE_ARCH_PMDP_INVALIDATE
 557extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 558                            pmd_t *pmdp);
 559#endif /* __ASSEMBLY__ */
 560#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
 561