linux/arch/powerpc/kernel/machine_kexec_64.c
<<
>>
Prefs
   1/*
   2 * PPC64 code to handle Linux booting another kernel.
   3 *
   4 * Copyright (C) 2004-2005, IBM Corp.
   5 *
   6 * Created by: Milton D Miller II
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12
  13#include <linux/kexec.h>
  14#include <linux/smp.h>
  15#include <linux/thread_info.h>
  16#include <linux/init_task.h>
  17#include <linux/errno.h>
  18#include <linux/kernel.h>
  19#include <linux/cpu.h>
  20#include <linux/hardirq.h>
  21
  22#include <asm/page.h>
  23#include <asm/current.h>
  24#include <asm/machdep.h>
  25#include <asm/cacheflush.h>
  26#include <asm/paca.h>
  27#include <asm/mmu.h>
  28#include <asm/sections.h>       /* _end */
  29#include <asm/prom.h>
  30#include <asm/smp.h>
  31#include <asm/hw_breakpoint.h>
  32
  33int default_machine_kexec_prepare(struct kimage *image)
  34{
  35        int i;
  36        unsigned long begin, end;       /* limits of segment */
  37        unsigned long low, high;        /* limits of blocked memory range */
  38        struct device_node *node;
  39        const unsigned long *basep;
  40        const unsigned int *sizep;
  41
  42        if (!ppc_md.hpte_clear_all)
  43                return -ENOENT;
  44
  45        /*
  46         * Since we use the kernel fault handlers and paging code to
  47         * handle the virtual mode, we must make sure no destination
  48         * overlaps kernel static data or bss.
  49         */
  50        for (i = 0; i < image->nr_segments; i++)
  51                if (image->segment[i].mem < __pa(_end))
  52                        return -ETXTBSY;
  53
  54        /*
  55         * For non-LPAR, we absolutely can not overwrite the mmu hash
  56         * table, since we are still using the bolted entries in it to
  57         * do the copy.  Check that here.
  58         *
  59         * It is safe if the end is below the start of the blocked
  60         * region (end <= low), or if the beginning is after the
  61         * end of the blocked region (begin >= high).  Use the
  62         * boolean identity !(a || b)  === (!a && !b).
  63         */
  64        if (htab_address) {
  65                low = __pa(htab_address);
  66                high = low + htab_size_bytes;
  67
  68                for (i = 0; i < image->nr_segments; i++) {
  69                        begin = image->segment[i].mem;
  70                        end = begin + image->segment[i].memsz;
  71
  72                        if ((begin < high) && (end > low))
  73                                return -ETXTBSY;
  74                }
  75        }
  76
  77        /* We also should not overwrite the tce tables */
  78        for_each_node_by_type(node, "pci") {
  79                basep = of_get_property(node, "linux,tce-base", NULL);
  80                sizep = of_get_property(node, "linux,tce-size", NULL);
  81                if (basep == NULL || sizep == NULL)
  82                        continue;
  83
  84                low = *basep;
  85                high = low + (*sizep);
  86
  87                for (i = 0; i < image->nr_segments; i++) {
  88                        begin = image->segment[i].mem;
  89                        end = begin + image->segment[i].memsz;
  90
  91                        if ((begin < high) && (end > low))
  92                                return -ETXTBSY;
  93                }
  94        }
  95
  96        return 0;
  97}
  98
  99#define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE)
 100
 101static void copy_segments(unsigned long ind)
 102{
 103        unsigned long entry;
 104        unsigned long *ptr;
 105        void *dest;
 106        void *addr;
 107
 108        /*
 109         * We rely on kexec_load to create a lists that properly
 110         * initializes these pointers before they are used.
 111         * We will still crash if the list is wrong, but at least
 112         * the compiler will be quiet.
 113         */
 114        ptr = NULL;
 115        dest = NULL;
 116
 117        for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
 118                addr = __va(entry & PAGE_MASK);
 119
 120                switch (entry & IND_FLAGS) {
 121                case IND_DESTINATION:
 122                        dest = addr;
 123                        break;
 124                case IND_INDIRECTION:
 125                        ptr = addr;
 126                        break;
 127                case IND_SOURCE:
 128                        copy_page(dest, addr);
 129                        dest += PAGE_SIZE;
 130                }
 131        }
 132}
 133
 134void kexec_copy_flush(struct kimage *image)
 135{
 136        long i, nr_segments = image->nr_segments;
 137        struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
 138
 139        /* save the ranges on the stack to efficiently flush the icache */
 140        memcpy(ranges, image->segment, sizeof(ranges));
 141
 142        /*
 143         * After this call we may not use anything allocated in dynamic
 144         * memory, including *image.
 145         *
 146         * Only globals and the stack are allowed.
 147         */
 148        copy_segments(image->head);
 149
 150        /*
 151         * we need to clear the icache for all dest pages sometime,
 152         * including ones that were in place on the original copy
 153         */
 154        for (i = 0; i < nr_segments; i++)
 155                flush_icache_range((unsigned long)__va(ranges[i].mem),
 156                        (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
 157}
 158
 159#ifdef CONFIG_SMP
 160
 161static int kexec_all_irq_disabled = 0;
 162
 163static void kexec_smp_down(void *arg)
 164{
 165        local_irq_disable();
 166        hard_irq_disable();
 167
 168        mb(); /* make sure our irqs are disabled before we say they are */
 169        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 170        while(kexec_all_irq_disabled == 0)
 171                cpu_relax();
 172        mb(); /* make sure all irqs are disabled before this */
 173        hw_breakpoint_disable();
 174        /*
 175         * Now every CPU has IRQs off, we can clear out any pending
 176         * IPIs and be sure that no more will come in after this.
 177         */
 178        if (ppc_md.kexec_cpu_down)
 179                ppc_md.kexec_cpu_down(0, 1);
 180
 181        kexec_smp_wait();
 182        /* NOTREACHED */
 183}
 184
 185static void kexec_prepare_cpus_wait(int wait_state)
 186{
 187        int my_cpu, i, notified=-1;
 188
 189        hw_breakpoint_disable();
 190        my_cpu = get_cpu();
 191        /* Make sure each CPU has at least made it to the state we need.
 192         *
 193         * FIXME: There is a (slim) chance of a problem if not all of the CPUs
 194         * are correctly onlined.  If somehow we start a CPU on boot with RTAS
 195         * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
 196         * time, the boot CPU will timeout.  If it does eventually execute
 197         * stuff, the secondary will start up (paca[].cpu_start was written) and
 198         * get into a peculiar state.  If the platform supports
 199         * smp_ops->take_timebase(), the secondary CPU will probably be spinning
 200         * in there.  If not (i.e. pseries), the secondary will continue on and
 201         * try to online itself/idle/etc. If it survives that, we need to find
 202         * these possible-but-not-online-but-should-be CPUs and chaperone them
 203         * into kexec_smp_wait().
 204         */
 205        for_each_online_cpu(i) {
 206                if (i == my_cpu)
 207                        continue;
 208
 209                while (paca[i].kexec_state < wait_state) {
 210                        barrier();
 211                        if (i != notified) {
 212                                printk(KERN_INFO "kexec: waiting for cpu %d "
 213                                       "(physical %d) to enter %i state\n",
 214                                       i, paca[i].hw_cpu_id, wait_state);
 215                                notified = i;
 216                        }
 217                }
 218        }
 219        mb();
 220}
 221
 222/*
 223 * We need to make sure each present CPU is online.  The next kernel will scan
 224 * the device tree and assume primary threads are online and query secondary
 225 * threads via RTAS to online them if required.  If we don't online primary
 226 * threads, they will be stuck.  However, we also online secondary threads as we
 227 * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
 228 * threads as offline -- and again, these CPUs will be stuck.
 229 *
 230 * So, we online all CPUs that should be running, including secondary threads.
 231 */
 232static void wake_offline_cpus(void)
 233{
 234        int cpu = 0;
 235
 236        for_each_present_cpu(cpu) {
 237                if (!cpu_online(cpu)) {
 238                        printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
 239                               cpu);
 240                        cpu_up(cpu);
 241                }
 242        }
 243}
 244
 245static void kexec_prepare_cpus(void)
 246{
 247        wake_offline_cpus();
 248        smp_call_function(kexec_smp_down, NULL, /* wait */0);
 249        local_irq_disable();
 250        hard_irq_disable();
 251
 252        mb(); /* make sure IRQs are disabled before we say they are */
 253        get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
 254
 255        kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
 256        /* we are sure every CPU has IRQs off at this point */
 257        kexec_all_irq_disabled = 1;
 258
 259        /* after we tell the others to go down */
 260        if (ppc_md.kexec_cpu_down)
 261                ppc_md.kexec_cpu_down(0, 0);
 262
 263        /*
 264         * Before removing MMU mappings make sure all CPUs have entered real
 265         * mode:
 266         */
 267        kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
 268
 269        put_cpu();
 270}
 271
 272#else /* ! SMP */
 273
 274static void kexec_prepare_cpus(void)
 275{
 276        /*
 277         * move the secondarys to us so that we can copy
 278         * the new kernel 0-0x100 safely
 279         *
 280         * do this if kexec in setup.c ?
 281         *
 282         * We need to release the cpus if we are ever going from an
 283         * UP to an SMP kernel.
 284         */
 285        smp_release_cpus();
 286        if (ppc_md.kexec_cpu_down)
 287                ppc_md.kexec_cpu_down(0, 0);
 288        local_irq_disable();
 289        hard_irq_disable();
 290}
 291
 292#endif /* SMP */
 293
 294/*
 295 * kexec thread structure and stack.
 296 *
 297 * We need to make sure that this is 16384-byte aligned due to the
 298 * way process stacks are handled.  It also must be statically allocated
 299 * or allocated as part of the kimage, because everything else may be
 300 * overwritten when we copy the kexec image.  We piggyback on the
 301 * "init_task" linker section here to statically allocate a stack.
 302 *
 303 * We could use a smaller stack if we don't care about anything using
 304 * current, but that audit has not been performed.
 305 */
 306static union thread_union kexec_stack __init_task_data =
 307        { };
 308
 309/*
 310 * For similar reasons to the stack above, the kexecing CPU needs to be on a
 311 * static PACA; we switch to kexec_paca.
 312 */
 313struct paca_struct kexec_paca;
 314
 315/* Our assembly helper, in kexec_stub.S */
 316extern void kexec_sequence(void *newstack, unsigned long start,
 317                           void *image, void *control,
 318                           void (*clear_all)(void)) __noreturn;
 319
 320/* too late to fail here */
 321void default_machine_kexec(struct kimage *image)
 322{
 323        /* prepare control code if any */
 324
 325        /*
 326        * If the kexec boot is the normal one, need to shutdown other cpus
 327        * into our wait loop and quiesce interrupts.
 328        * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
 329        * stopping other CPUs and collecting their pt_regs is done before
 330        * using debugger IPI.
 331        */
 332
 333        if (crashing_cpu == -1)
 334                kexec_prepare_cpus();
 335
 336        pr_debug("kexec: Starting switchover sequence.\n");
 337
 338        /* switch to a staticly allocated stack.  Based on irq stack code.
 339         * We setup preempt_count to avoid using VMX in memcpy.
 340         * XXX: the task struct will likely be invalid once we do the copy!
 341         */
 342        kexec_stack.thread_info.task = current_thread_info()->task;
 343        kexec_stack.thread_info.flags = 0;
 344        kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
 345        kexec_stack.thread_info.cpu = current_thread_info()->cpu;
 346
 347        /* We need a static PACA, too; copy this CPU's PACA over and switch to
 348         * it.  Also poison per_cpu_offset to catch anyone using non-static
 349         * data.
 350         */
 351        memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
 352        kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
 353        paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
 354                kexec_paca.paca_index;
 355        setup_paca(&kexec_paca);
 356
 357        /* XXX: If anyone does 'dynamic lppacas' this will also need to be
 358         * switched to a static version!
 359         */
 360
 361        /* Some things are best done in assembly.  Finding globals with
 362         * a toc is easier in C, so pass in what we can.
 363         */
 364        kexec_sequence(&kexec_stack, image->start, image,
 365                        page_address(image->control_code_page),
 366                        ppc_md.hpte_clear_all);
 367        /* NOTREACHED */
 368}
 369
 370/* Values we need to export to the second kernel via the device tree. */
 371static unsigned long htab_base;
 372
 373static struct property htab_base_prop = {
 374        .name = "linux,htab-base",
 375        .length = sizeof(unsigned long),
 376        .value = &htab_base,
 377};
 378
 379static struct property htab_size_prop = {
 380        .name = "linux,htab-size",
 381        .length = sizeof(unsigned long),
 382        .value = &htab_size_bytes,
 383};
 384
 385static int __init export_htab_values(void)
 386{
 387        struct device_node *node;
 388        struct property *prop;
 389
 390        /* On machines with no htab htab_address is NULL */
 391        if (!htab_address)
 392                return -ENODEV;
 393
 394        node = of_find_node_by_path("/chosen");
 395        if (!node)
 396                return -ENODEV;
 397
 398        /* remove any stale propertys so ours can be found */
 399        prop = of_find_property(node, htab_base_prop.name, NULL);
 400        if (prop)
 401                of_remove_property(node, prop);
 402        prop = of_find_property(node, htab_size_prop.name, NULL);
 403        if (prop)
 404                of_remove_property(node, prop);
 405
 406        htab_base = __pa(htab_address);
 407        of_add_property(node, &htab_base_prop);
 408        of_add_property(node, &htab_size_prop);
 409
 410        of_node_put(node);
 411        return 0;
 412}
 413late_initcall(export_htab_values);
 414