linux/arch/powerpc/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/slab.h>
  26#include <linux/user.h>
  27#include <linux/elf.h>
  28#include <linux/init.h>
  29#include <linux/prctl.h>
  30#include <linux/init_task.h>
  31#include <linux/export.h>
  32#include <linux/kallsyms.h>
  33#include <linux/mqueue.h>
  34#include <linux/hardirq.h>
  35#include <linux/utsname.h>
  36#include <linux/ftrace.h>
  37#include <linux/kernel_stat.h>
  38#include <linux/personality.h>
  39#include <linux/random.h>
  40#include <linux/hw_breakpoint.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/uaccess.h>
  44#include <asm/io.h>
  45#include <asm/processor.h>
  46#include <asm/mmu.h>
  47#include <asm/prom.h>
  48#include <asm/machdep.h>
  49#include <asm/time.h>
  50#include <asm/runlatch.h>
  51#include <asm/syscalls.h>
  52#include <asm/switch_to.h>
  53#include <asm/tm.h>
  54#include <asm/debug.h>
  55#ifdef CONFIG_PPC64
  56#include <asm/firmware.h>
  57#endif
  58#include <linux/kprobes.h>
  59#include <linux/kdebug.h>
  60
  61/* Transactional Memory debug */
  62#ifdef TM_DEBUG_SW
  63#define TM_DEBUG(x...) printk(KERN_INFO x)
  64#else
  65#define TM_DEBUG(x...) do { } while(0)
  66#endif
  67
  68extern unsigned long _get_SP(void);
  69
  70#ifndef CONFIG_SMP
  71struct task_struct *last_task_used_math = NULL;
  72struct task_struct *last_task_used_altivec = NULL;
  73struct task_struct *last_task_used_vsx = NULL;
  74struct task_struct *last_task_used_spe = NULL;
  75#endif
  76
  77/*
  78 * Make sure the floating-point register state in the
  79 * the thread_struct is up to date for task tsk.
  80 */
  81void flush_fp_to_thread(struct task_struct *tsk)
  82{
  83        if (tsk->thread.regs) {
  84                /*
  85                 * We need to disable preemption here because if we didn't,
  86                 * another process could get scheduled after the regs->msr
  87                 * test but before we have finished saving the FP registers
  88                 * to the thread_struct.  That process could take over the
  89                 * FPU, and then when we get scheduled again we would store
  90                 * bogus values for the remaining FP registers.
  91                 */
  92                preempt_disable();
  93                if (tsk->thread.regs->msr & MSR_FP) {
  94#ifdef CONFIG_SMP
  95                        /*
  96                         * This should only ever be called for current or
  97                         * for a stopped child process.  Since we save away
  98                         * the FP register state on context switch on SMP,
  99                         * there is something wrong if a stopped child appears
 100                         * to still have its FP state in the CPU registers.
 101                         */
 102                        BUG_ON(tsk != current);
 103#endif
 104                        giveup_fpu(tsk);
 105                }
 106                preempt_enable();
 107        }
 108}
 109EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 110
 111void enable_kernel_fp(void)
 112{
 113        WARN_ON(preemptible());
 114
 115#ifdef CONFIG_SMP
 116        if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
 117                giveup_fpu(current);
 118        else
 119                giveup_fpu(NULL);       /* just enables FP for kernel */
 120#else
 121        giveup_fpu(last_task_used_math);
 122#endif /* CONFIG_SMP */
 123}
 124EXPORT_SYMBOL(enable_kernel_fp);
 125
 126#ifdef CONFIG_ALTIVEC
 127void enable_kernel_altivec(void)
 128{
 129        WARN_ON(preemptible());
 130
 131#ifdef CONFIG_SMP
 132        if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
 133                giveup_altivec(current);
 134        else
 135                giveup_altivec_notask();
 136#else
 137        giveup_altivec(last_task_used_altivec);
 138#endif /* CONFIG_SMP */
 139}
 140EXPORT_SYMBOL(enable_kernel_altivec);
 141
 142/*
 143 * Make sure the VMX/Altivec register state in the
 144 * the thread_struct is up to date for task tsk.
 145 */
 146void flush_altivec_to_thread(struct task_struct *tsk)
 147{
 148        if (tsk->thread.regs) {
 149                preempt_disable();
 150                if (tsk->thread.regs->msr & MSR_VEC) {
 151#ifdef CONFIG_SMP
 152                        BUG_ON(tsk != current);
 153#endif
 154                        giveup_altivec(tsk);
 155                }
 156                preempt_enable();
 157        }
 158}
 159EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 160#endif /* CONFIG_ALTIVEC */
 161
 162#ifdef CONFIG_VSX
 163#if 0
 164/* not currently used, but some crazy RAID module might want to later */
 165void enable_kernel_vsx(void)
 166{
 167        WARN_ON(preemptible());
 168
 169#ifdef CONFIG_SMP
 170        if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
 171                giveup_vsx(current);
 172        else
 173                giveup_vsx(NULL);       /* just enable vsx for kernel - force */
 174#else
 175        giveup_vsx(last_task_used_vsx);
 176#endif /* CONFIG_SMP */
 177}
 178EXPORT_SYMBOL(enable_kernel_vsx);
 179#endif
 180
 181void giveup_vsx(struct task_struct *tsk)
 182{
 183        giveup_fpu(tsk);
 184        giveup_altivec(tsk);
 185        __giveup_vsx(tsk);
 186}
 187
 188void flush_vsx_to_thread(struct task_struct *tsk)
 189{
 190        if (tsk->thread.regs) {
 191                preempt_disable();
 192                if (tsk->thread.regs->msr & MSR_VSX) {
 193#ifdef CONFIG_SMP
 194                        BUG_ON(tsk != current);
 195#endif
 196                        giveup_vsx(tsk);
 197                }
 198                preempt_enable();
 199        }
 200}
 201EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 202#endif /* CONFIG_VSX */
 203
 204#ifdef CONFIG_SPE
 205
 206void enable_kernel_spe(void)
 207{
 208        WARN_ON(preemptible());
 209
 210#ifdef CONFIG_SMP
 211        if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
 212                giveup_spe(current);
 213        else
 214                giveup_spe(NULL);       /* just enable SPE for kernel - force */
 215#else
 216        giveup_spe(last_task_used_spe);
 217#endif /* __SMP __ */
 218}
 219EXPORT_SYMBOL(enable_kernel_spe);
 220
 221void flush_spe_to_thread(struct task_struct *tsk)
 222{
 223        if (tsk->thread.regs) {
 224                preempt_disable();
 225                if (tsk->thread.regs->msr & MSR_SPE) {
 226#ifdef CONFIG_SMP
 227                        BUG_ON(tsk != current);
 228#endif
 229                        tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 230                        giveup_spe(tsk);
 231                }
 232                preempt_enable();
 233        }
 234}
 235#endif /* CONFIG_SPE */
 236
 237#ifndef CONFIG_SMP
 238/*
 239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 240 * and the current task has some state, discard it.
 241 */
 242void discard_lazy_cpu_state(void)
 243{
 244        preempt_disable();
 245        if (last_task_used_math == current)
 246                last_task_used_math = NULL;
 247#ifdef CONFIG_ALTIVEC
 248        if (last_task_used_altivec == current)
 249                last_task_used_altivec = NULL;
 250#endif /* CONFIG_ALTIVEC */
 251#ifdef CONFIG_VSX
 252        if (last_task_used_vsx == current)
 253                last_task_used_vsx = NULL;
 254#endif /* CONFIG_VSX */
 255#ifdef CONFIG_SPE
 256        if (last_task_used_spe == current)
 257                last_task_used_spe = NULL;
 258#endif
 259        preempt_enable();
 260}
 261#endif /* CONFIG_SMP */
 262
 263#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 264void do_send_trap(struct pt_regs *regs, unsigned long address,
 265                  unsigned long error_code, int signal_code, int breakpt)
 266{
 267        siginfo_t info;
 268
 269        current->thread.trap_nr = signal_code;
 270        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 271                        11, SIGSEGV) == NOTIFY_STOP)
 272                return;
 273
 274        /* Deliver the signal to userspace */
 275        info.si_signo = SIGTRAP;
 276        info.si_errno = breakpt;        /* breakpoint or watchpoint id */
 277        info.si_code = signal_code;
 278        info.si_addr = (void __user *)address;
 279        force_sig_info(SIGTRAP, &info, current);
 280}
 281#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 282void do_break (struct pt_regs *regs, unsigned long address,
 283                    unsigned long error_code)
 284{
 285        siginfo_t info;
 286
 287        current->thread.trap_nr = TRAP_HWBKPT;
 288        if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 289                        11, SIGSEGV) == NOTIFY_STOP)
 290                return;
 291
 292        if (debugger_break_match(regs))
 293                return;
 294
 295        /* Clear the breakpoint */
 296        hw_breakpoint_disable();
 297
 298        /* Deliver the signal to userspace */
 299        info.si_signo = SIGTRAP;
 300        info.si_errno = 0;
 301        info.si_code = TRAP_HWBKPT;
 302        info.si_addr = (void __user *)address;
 303        force_sig_info(SIGTRAP, &info, current);
 304}
 305#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 306
 307static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 308
 309#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 310/*
 311 * Set the debug registers back to their default "safe" values.
 312 */
 313static void set_debug_reg_defaults(struct thread_struct *thread)
 314{
 315        thread->iac1 = thread->iac2 = 0;
 316#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 317        thread->iac3 = thread->iac4 = 0;
 318#endif
 319        thread->dac1 = thread->dac2 = 0;
 320#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 321        thread->dvc1 = thread->dvc2 = 0;
 322#endif
 323        thread->dbcr0 = 0;
 324#ifdef CONFIG_BOOKE
 325        /*
 326         * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 327         */
 328        thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |   \
 329                        DBCR1_IAC3US | DBCR1_IAC4US;
 330        /*
 331         * Force Data Address Compare User/Supervisor bits to be User-only
 332         * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 333         */
 334        thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 335#else
 336        thread->dbcr1 = 0;
 337#endif
 338}
 339
 340static void prime_debug_regs(struct thread_struct *thread)
 341{
 342        /*
 343         * We could have inherited MSR_DE from userspace, since
 344         * it doesn't get cleared on exception entry.  Make sure
 345         * MSR_DE is clear before we enable any debug events.
 346         */
 347        mtmsr(mfmsr() & ~MSR_DE);
 348
 349        mtspr(SPRN_IAC1, thread->iac1);
 350        mtspr(SPRN_IAC2, thread->iac2);
 351#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 352        mtspr(SPRN_IAC3, thread->iac3);
 353        mtspr(SPRN_IAC4, thread->iac4);
 354#endif
 355        mtspr(SPRN_DAC1, thread->dac1);
 356        mtspr(SPRN_DAC2, thread->dac2);
 357#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 358        mtspr(SPRN_DVC1, thread->dvc1);
 359        mtspr(SPRN_DVC2, thread->dvc2);
 360#endif
 361        mtspr(SPRN_DBCR0, thread->dbcr0);
 362        mtspr(SPRN_DBCR1, thread->dbcr1);
 363#ifdef CONFIG_BOOKE
 364        mtspr(SPRN_DBCR2, thread->dbcr2);
 365#endif
 366}
 367/*
 368 * Unless neither the old or new thread are making use of the
 369 * debug registers, set the debug registers from the values
 370 * stored in the new thread.
 371 */
 372static void switch_booke_debug_regs(struct thread_struct *new_thread)
 373{
 374        if ((current->thread.dbcr0 & DBCR0_IDM)
 375                || (new_thread->dbcr0 & DBCR0_IDM))
 376                        prime_debug_regs(new_thread);
 377}
 378#else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
 379#ifndef CONFIG_HAVE_HW_BREAKPOINT
 380static void set_debug_reg_defaults(struct thread_struct *thread)
 381{
 382        thread->hw_brk.address = 0;
 383        thread->hw_brk.type = 0;
 384        set_breakpoint(&thread->hw_brk);
 385}
 386#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 387#endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
 388
 389#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 390static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 391{
 392        mtspr(SPRN_DAC1, dabr);
 393#ifdef CONFIG_PPC_47x
 394        isync();
 395#endif
 396        return 0;
 397}
 398#elif defined(CONFIG_PPC_BOOK3S)
 399static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 400{
 401        mtspr(SPRN_DABR, dabr);
 402        if (cpu_has_feature(CPU_FTR_DABRX))
 403                mtspr(SPRN_DABRX, dabrx);
 404        return 0;
 405}
 406#else
 407static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 408{
 409        return -EINVAL;
 410}
 411#endif
 412
 413static inline int set_dabr(struct arch_hw_breakpoint *brk)
 414{
 415        unsigned long dabr, dabrx;
 416
 417        dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 418        dabrx = ((brk->type >> 3) & 0x7);
 419
 420        if (ppc_md.set_dabr)
 421                return ppc_md.set_dabr(dabr, dabrx);
 422
 423        return __set_dabr(dabr, dabrx);
 424}
 425
 426static inline int set_dawr(struct arch_hw_breakpoint *brk)
 427{
 428        unsigned long dawr, dawrx, mrd;
 429
 430        dawr = brk->address;
 431
 432        dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 433                                   << (63 - 58); //* read/write bits */
 434        dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 435                                   << (63 - 59); //* translate */
 436        dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 437                                   >> 3; //* PRIM bits */
 438        /* dawr length is stored in field MDR bits 48:53.  Matches range in
 439           doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 440           0b111111=64DW.
 441           brk->len is in bytes.
 442           This aligns up to double word size, shifts and does the bias.
 443        */
 444        mrd = ((brk->len + 7) >> 3) - 1;
 445        dawrx |= (mrd & 0x3f) << (63 - 53);
 446
 447        if (ppc_md.set_dawr)
 448                return ppc_md.set_dawr(dawr, dawrx);
 449        mtspr(SPRN_DAWR, dawr);
 450        mtspr(SPRN_DAWRX, dawrx);
 451        return 0;
 452}
 453
 454int set_breakpoint(struct arch_hw_breakpoint *brk)
 455{
 456        __get_cpu_var(current_brk) = *brk;
 457
 458        if (cpu_has_feature(CPU_FTR_DAWR))
 459                return set_dawr(brk);
 460
 461        return set_dabr(brk);
 462}
 463
 464#ifdef CONFIG_PPC64
 465DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 466#endif
 467
 468static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 469                              struct arch_hw_breakpoint *b)
 470{
 471        if (a->address != b->address)
 472                return false;
 473        if (a->type != b->type)
 474                return false;
 475        if (a->len != b->len)
 476                return false;
 477        return true;
 478}
 479#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 480static inline void tm_reclaim_task(struct task_struct *tsk)
 481{
 482        /* We have to work out if we're switching from/to a task that's in the
 483         * middle of a transaction.
 484         *
 485         * In switching we need to maintain a 2nd register state as
 486         * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 487         * checkpointed (tbegin) state in ckpt_regs and saves the transactional
 488         * (current) FPRs into oldtask->thread.transact_fpr[].
 489         *
 490         * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 491         */
 492        struct thread_struct *thr = &tsk->thread;
 493
 494        if (!thr->regs)
 495                return;
 496
 497        if (!MSR_TM_ACTIVE(thr->regs->msr))
 498                goto out_and_saveregs;
 499
 500        /* Stash the original thread MSR, as giveup_fpu et al will
 501         * modify it.  We hold onto it to see whether the task used
 502         * FP & vector regs.
 503         */
 504        thr->tm_orig_msr = thr->regs->msr;
 505
 506        TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 507                 "ccr=%lx, msr=%lx, trap=%lx)\n",
 508                 tsk->pid, thr->regs->nip,
 509                 thr->regs->ccr, thr->regs->msr,
 510                 thr->regs->trap);
 511
 512        tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
 513
 514        TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 515                 tsk->pid);
 516
 517out_and_saveregs:
 518        /* Always save the regs here, even if a transaction's not active.
 519         * This context-switches a thread's TM info SPRs.  We do it here to
 520         * be consistent with the restore path (in recheckpoint) which
 521         * cannot happen later in _switch().
 522         */
 523        tm_save_sprs(thr);
 524}
 525
 526static inline void tm_recheckpoint_new_task(struct task_struct *new)
 527{
 528        unsigned long msr;
 529
 530        if (!cpu_has_feature(CPU_FTR_TM))
 531                return;
 532
 533        /* Recheckpoint the registers of the thread we're about to switch to.
 534         *
 535         * If the task was using FP, we non-lazily reload both the original and
 536         * the speculative FP register states.  This is because the kernel
 537         * doesn't see if/when a TM rollback occurs, so if we take an FP
 538         * unavoidable later, we are unable to determine which set of FP regs
 539         * need to be restored.
 540         */
 541        if (!new->thread.regs)
 542                return;
 543
 544        /* The TM SPRs are restored here, so that TEXASR.FS can be set
 545         * before the trecheckpoint and no explosion occurs.
 546         */
 547        tm_restore_sprs(&new->thread);
 548
 549        if (!MSR_TM_ACTIVE(new->thread.regs->msr))
 550                return;
 551        msr = new->thread.tm_orig_msr;
 552        /* Recheckpoint to restore original checkpointed register state. */
 553        TM_DEBUG("*** tm_recheckpoint of pid %d "
 554                 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
 555                 new->pid, new->thread.regs->msr, msr);
 556
 557        /* This loads the checkpointed FP/VEC state, if used */
 558        tm_recheckpoint(&new->thread, msr);
 559
 560        /* This loads the speculative FP/VEC state, if used */
 561        if (msr & MSR_FP) {
 562                do_load_up_transact_fpu(&new->thread);
 563                new->thread.regs->msr |=
 564                        (MSR_FP | new->thread.fpexc_mode);
 565        }
 566#ifdef CONFIG_ALTIVEC
 567        if (msr & MSR_VEC) {
 568                do_load_up_transact_altivec(&new->thread);
 569                new->thread.regs->msr |= MSR_VEC;
 570        }
 571#endif
 572        /* We may as well turn on VSX too since all the state is restored now */
 573        if (msr & MSR_VSX)
 574                new->thread.regs->msr |= MSR_VSX;
 575
 576        TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 577                 "(kernel msr 0x%lx)\n",
 578                 new->pid, mfmsr());
 579}
 580
 581static inline void __switch_to_tm(struct task_struct *prev)
 582{
 583        if (cpu_has_feature(CPU_FTR_TM)) {
 584                tm_enable();
 585                tm_reclaim_task(prev);
 586        }
 587}
 588#else
 589#define tm_recheckpoint_new_task(new)
 590#define __switch_to_tm(prev)
 591#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 592
 593struct task_struct *__switch_to(struct task_struct *prev,
 594        struct task_struct *new)
 595{
 596        struct thread_struct *new_thread, *old_thread;
 597        unsigned long flags;
 598        struct task_struct *last;
 599#ifdef CONFIG_PPC_BOOK3S_64
 600        struct ppc64_tlb_batch *batch;
 601#endif
 602
 603        /* Back up the TAR across context switches.
 604         * Note that the TAR is not available for use in the kernel.  (To
 605         * provide this, the TAR should be backed up/restored on exception
 606         * entry/exit instead, and be in pt_regs.  FIXME, this should be in
 607         * pt_regs anyway (for debug).)
 608         * Save the TAR here before we do treclaim/trecheckpoint as these
 609         * will change the TAR.
 610         */
 611        save_tar(&prev->thread);
 612
 613        __switch_to_tm(prev);
 614
 615#ifdef CONFIG_SMP
 616        /* avoid complexity of lazy save/restore of fpu
 617         * by just saving it every time we switch out if
 618         * this task used the fpu during the last quantum.
 619         *
 620         * If it tries to use the fpu again, it'll trap and
 621         * reload its fp regs.  So we don't have to do a restore
 622         * every switch, just a save.
 623         *  -- Cort
 624         */
 625        if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
 626                giveup_fpu(prev);
 627#ifdef CONFIG_ALTIVEC
 628        /*
 629         * If the previous thread used altivec in the last quantum
 630         * (thus changing altivec regs) then save them.
 631         * We used to check the VRSAVE register but not all apps
 632         * set it, so we don't rely on it now (and in fact we need
 633         * to save & restore VSCR even if VRSAVE == 0).  -- paulus
 634         *
 635         * On SMP we always save/restore altivec regs just to avoid the
 636         * complexity of changing processors.
 637         *  -- Cort
 638         */
 639        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
 640                giveup_altivec(prev);
 641#endif /* CONFIG_ALTIVEC */
 642#ifdef CONFIG_VSX
 643        if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
 644                /* VMX and FPU registers are already save here */
 645                __giveup_vsx(prev);
 646#endif /* CONFIG_VSX */
 647#ifdef CONFIG_SPE
 648        /*
 649         * If the previous thread used spe in the last quantum
 650         * (thus changing spe regs) then save them.
 651         *
 652         * On SMP we always save/restore spe regs just to avoid the
 653         * complexity of changing processors.
 654         */
 655        if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
 656                giveup_spe(prev);
 657#endif /* CONFIG_SPE */
 658
 659#else  /* CONFIG_SMP */
 660#ifdef CONFIG_ALTIVEC
 661        /* Avoid the trap.  On smp this this never happens since
 662         * we don't set last_task_used_altivec -- Cort
 663         */
 664        if (new->thread.regs && last_task_used_altivec == new)
 665                new->thread.regs->msr |= MSR_VEC;
 666#endif /* CONFIG_ALTIVEC */
 667#ifdef CONFIG_VSX
 668        if (new->thread.regs && last_task_used_vsx == new)
 669                new->thread.regs->msr |= MSR_VSX;
 670#endif /* CONFIG_VSX */
 671#ifdef CONFIG_SPE
 672        /* Avoid the trap.  On smp this this never happens since
 673         * we don't set last_task_used_spe
 674         */
 675        if (new->thread.regs && last_task_used_spe == new)
 676                new->thread.regs->msr |= MSR_SPE;
 677#endif /* CONFIG_SPE */
 678
 679#endif /* CONFIG_SMP */
 680
 681#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 682        switch_booke_debug_regs(&new->thread);
 683#else
 684/*
 685 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 686 * schedule DABR
 687 */
 688#ifndef CONFIG_HAVE_HW_BREAKPOINT
 689        if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
 690                set_breakpoint(&new->thread.hw_brk);
 691#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 692#endif
 693
 694
 695        new_thread = &new->thread;
 696        old_thread = &current->thread;
 697
 698#ifdef CONFIG_PPC64
 699        /*
 700         * Collect processor utilization data per process
 701         */
 702        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 703                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 704                long unsigned start_tb, current_tb;
 705                start_tb = old_thread->start_tb;
 706                cu->current_tb = current_tb = mfspr(SPRN_PURR);
 707                old_thread->accum_tb += (current_tb - start_tb);
 708                new_thread->start_tb = current_tb;
 709        }
 710#endif /* CONFIG_PPC64 */
 711
 712#ifdef CONFIG_PPC_BOOK3S_64
 713        batch = &__get_cpu_var(ppc64_tlb_batch);
 714        if (batch->active) {
 715                current_thread_info()->local_flags |= _TLF_LAZY_MMU;
 716                if (batch->index)
 717                        __flush_tlb_pending(batch);
 718                batch->active = 0;
 719        }
 720#endif /* CONFIG_PPC_BOOK3S_64 */
 721
 722        local_irq_save(flags);
 723
 724        /*
 725         * We can't take a PMU exception inside _switch() since there is a
 726         * window where the kernel stack SLB and the kernel stack are out
 727         * of sync. Hard disable here.
 728         */
 729        hard_irq_disable();
 730
 731        tm_recheckpoint_new_task(new);
 732
 733        last = _switch(old_thread, new_thread);
 734
 735#ifdef CONFIG_PPC_BOOK3S_64
 736        if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
 737                current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
 738                batch = &__get_cpu_var(ppc64_tlb_batch);
 739                batch->active = 1;
 740        }
 741#endif /* CONFIG_PPC_BOOK3S_64 */
 742
 743        local_irq_restore(flags);
 744
 745        return last;
 746}
 747
 748static int instructions_to_print = 16;
 749
 750static void show_instructions(struct pt_regs *regs)
 751{
 752        int i;
 753        unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
 754                        sizeof(int));
 755
 756        printk("Instruction dump:");
 757
 758        for (i = 0; i < instructions_to_print; i++) {
 759                int instr;
 760
 761                if (!(i % 8))
 762                        printk("\n");
 763
 764#if !defined(CONFIG_BOOKE)
 765                /* If executing with the IMMU off, adjust pc rather
 766                 * than print XXXXXXXX.
 767                 */
 768                if (!(regs->msr & MSR_IR))
 769                        pc = (unsigned long)phys_to_virt(pc);
 770#endif
 771
 772                /* We use __get_user here *only* to avoid an OOPS on a
 773                 * bad address because the pc *should* only be a
 774                 * kernel address.
 775                 */
 776                if (!__kernel_text_address(pc) ||
 777                     __get_user(instr, (unsigned int __user *)pc)) {
 778                        printk(KERN_CONT "XXXXXXXX ");
 779                } else {
 780                        if (regs->nip == pc)
 781                                printk(KERN_CONT "<%08x> ", instr);
 782                        else
 783                                printk(KERN_CONT "%08x ", instr);
 784                }
 785
 786                pc += sizeof(int);
 787        }
 788
 789        printk("\n");
 790}
 791
 792static struct regbit {
 793        unsigned long bit;
 794        const char *name;
 795} msr_bits[] = {
 796#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
 797        {MSR_SF,        "SF"},
 798        {MSR_HV,        "HV"},
 799#endif
 800        {MSR_VEC,       "VEC"},
 801        {MSR_VSX,       "VSX"},
 802#ifdef CONFIG_BOOKE
 803        {MSR_CE,        "CE"},
 804#endif
 805        {MSR_EE,        "EE"},
 806        {MSR_PR,        "PR"},
 807        {MSR_FP,        "FP"},
 808        {MSR_ME,        "ME"},
 809#ifdef CONFIG_BOOKE
 810        {MSR_DE,        "DE"},
 811#else
 812        {MSR_SE,        "SE"},
 813        {MSR_BE,        "BE"},
 814#endif
 815        {MSR_IR,        "IR"},
 816        {MSR_DR,        "DR"},
 817        {MSR_PMM,       "PMM"},
 818#ifndef CONFIG_BOOKE
 819        {MSR_RI,        "RI"},
 820        {MSR_LE,        "LE"},
 821#endif
 822        {0,             NULL}
 823};
 824
 825static void printbits(unsigned long val, struct regbit *bits)
 826{
 827        const char *sep = "";
 828
 829        printk("<");
 830        for (; bits->bit; ++bits)
 831                if (val & bits->bit) {
 832                        printk("%s%s", sep, bits->name);
 833                        sep = ",";
 834                }
 835        printk(">");
 836}
 837
 838#ifdef CONFIG_PPC64
 839#define REG             "%016lx"
 840#define REGS_PER_LINE   4
 841#define LAST_VOLATILE   13
 842#else
 843#define REG             "%08lx"
 844#define REGS_PER_LINE   8
 845#define LAST_VOLATILE   12
 846#endif
 847
 848void show_regs(struct pt_regs * regs)
 849{
 850        int i, trap;
 851
 852        show_regs_print_info(KERN_DEFAULT);
 853
 854        printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
 855               regs->nip, regs->link, regs->ctr);
 856        printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
 857               regs, regs->trap, print_tainted(), init_utsname()->release);
 858        printk("MSR: "REG" ", regs->msr);
 859        printbits(regs->msr, msr_bits);
 860        printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
 861#ifdef CONFIG_PPC64
 862        printk("SOFTE: %ld\n", regs->softe);
 863#endif
 864        trap = TRAP(regs);
 865        if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
 866                printk("CFAR: "REG"\n", regs->orig_gpr3);
 867        if (trap == 0x300 || trap == 0x600)
 868#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
 869                printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
 870#else
 871                printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
 872#endif
 873
 874        for (i = 0;  i < 32;  i++) {
 875                if ((i % REGS_PER_LINE) == 0)
 876                        printk("\nGPR%02d: ", i);
 877                printk(REG " ", regs->gpr[i]);
 878                if (i == LAST_VOLATILE && !FULL_REGS(regs))
 879                        break;
 880        }
 881        printk("\n");
 882#ifdef CONFIG_KALLSYMS
 883        /*
 884         * Lookup NIP late so we have the best change of getting the
 885         * above info out without failing
 886         */
 887        printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
 888        printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
 889#endif
 890#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 891        printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
 892#endif
 893        show_stack(current, (unsigned long *) regs->gpr[1]);
 894        if (!user_mode(regs))
 895                show_instructions(regs);
 896}
 897
 898void exit_thread(void)
 899{
 900        discard_lazy_cpu_state();
 901}
 902
 903void flush_thread(void)
 904{
 905        discard_lazy_cpu_state();
 906
 907#ifdef CONFIG_HAVE_HW_BREAKPOINT
 908        flush_ptrace_hw_breakpoint(current);
 909#else /* CONFIG_HAVE_HW_BREAKPOINT */
 910        set_debug_reg_defaults(&current->thread);
 911#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 912}
 913
 914void
 915release_thread(struct task_struct *t)
 916{
 917}
 918
 919/*
 920 * this gets called so that we can store coprocessor state into memory and
 921 * copy the current task into the new thread.
 922 */
 923int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 924{
 925        flush_fp_to_thread(src);
 926        flush_altivec_to_thread(src);
 927        flush_vsx_to_thread(src);
 928        flush_spe_to_thread(src);
 929
 930        *dst = *src;
 931
 932        clear_task_ebb(dst);
 933
 934        return 0;
 935}
 936
 937/*
 938 * Copy a thread..
 939 */
 940extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
 941
 942int copy_thread(unsigned long clone_flags, unsigned long usp,
 943                unsigned long arg, struct task_struct *p)
 944{
 945        struct pt_regs *childregs, *kregs;
 946        extern void ret_from_fork(void);
 947        extern void ret_from_kernel_thread(void);
 948        void (*f)(void);
 949        unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 950
 951        /* Copy registers */
 952        sp -= sizeof(struct pt_regs);
 953        childregs = (struct pt_regs *) sp;
 954        if (unlikely(p->flags & PF_KTHREAD)) {
 955                struct thread_info *ti = (void *)task_stack_page(p);
 956                memset(childregs, 0, sizeof(struct pt_regs));
 957                childregs->gpr[1] = sp + sizeof(struct pt_regs);
 958                childregs->gpr[14] = usp;       /* function */
 959#ifdef CONFIG_PPC64
 960                clear_tsk_thread_flag(p, TIF_32BIT);
 961                childregs->softe = 1;
 962#endif
 963                childregs->gpr[15] = arg;
 964                p->thread.regs = NULL;  /* no user register state */
 965                ti->flags |= _TIF_RESTOREALL;
 966                f = ret_from_kernel_thread;
 967        } else {
 968                struct pt_regs *regs = current_pt_regs();
 969                CHECK_FULL_REGS(regs);
 970                *childregs = *regs;
 971                if (usp)
 972                        childregs->gpr[1] = usp;
 973                p->thread.regs = childregs;
 974                childregs->gpr[3] = 0;  /* Result from fork() */
 975                if (clone_flags & CLONE_SETTLS) {
 976#ifdef CONFIG_PPC64
 977                        if (!is_32bit_task())
 978                                childregs->gpr[13] = childregs->gpr[6];
 979                        else
 980#endif
 981                                childregs->gpr[2] = childregs->gpr[6];
 982                }
 983
 984                f = ret_from_fork;
 985        }
 986        sp -= STACK_FRAME_OVERHEAD;
 987
 988        /*
 989         * The way this works is that at some point in the future
 990         * some task will call _switch to switch to the new task.
 991         * That will pop off the stack frame created below and start
 992         * the new task running at ret_from_fork.  The new task will
 993         * do some house keeping and then return from the fork or clone
 994         * system call, using the stack frame created above.
 995         */
 996        ((unsigned long *)sp)[0] = 0;
 997        sp -= sizeof(struct pt_regs);
 998        kregs = (struct pt_regs *) sp;
 999        sp -= STACK_FRAME_OVERHEAD;
1000        p->thread.ksp = sp;
1001        p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1002                                _ALIGN_UP(sizeof(struct thread_info), 16);
1003
1004#ifdef CONFIG_HAVE_HW_BREAKPOINT
1005        p->thread.ptrace_bps[0] = NULL;
1006#endif
1007
1008#ifdef CONFIG_PPC_STD_MMU_64
1009        if (mmu_has_feature(MMU_FTR_SLB)) {
1010                unsigned long sp_vsid;
1011                unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1012
1013                if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1014                        sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1015                                << SLB_VSID_SHIFT_1T;
1016                else
1017                        sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1018                                << SLB_VSID_SHIFT;
1019                sp_vsid |= SLB_VSID_KERNEL | llp;
1020                p->thread.ksp_vsid = sp_vsid;
1021        }
1022#endif /* CONFIG_PPC_STD_MMU_64 */
1023#ifdef CONFIG_PPC64 
1024        if (cpu_has_feature(CPU_FTR_DSCR)) {
1025                p->thread.dscr_inherit = current->thread.dscr_inherit;
1026                p->thread.dscr = current->thread.dscr;
1027        }
1028        if (cpu_has_feature(CPU_FTR_HAS_PPR))
1029                p->thread.ppr = INIT_PPR;
1030#endif
1031        /*
1032         * The PPC64 ABI makes use of a TOC to contain function 
1033         * pointers.  The function (ret_from_except) is actually a pointer
1034         * to the TOC entry.  The first entry is a pointer to the actual
1035         * function.
1036         */
1037#ifdef CONFIG_PPC64
1038        kregs->nip = *((unsigned long *)f);
1039#else
1040        kregs->nip = (unsigned long)f;
1041#endif
1042        return 0;
1043}
1044
1045/*
1046 * Set up a thread for executing a new program
1047 */
1048void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1049{
1050#ifdef CONFIG_PPC64
1051        unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1052#endif
1053
1054        /*
1055         * If we exec out of a kernel thread then thread.regs will not be
1056         * set.  Do it now.
1057         */
1058        if (!current->thread.regs) {
1059                struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1060                current->thread.regs = regs - 1;
1061        }
1062
1063        memset(regs->gpr, 0, sizeof(regs->gpr));
1064        regs->ctr = 0;
1065        regs->link = 0;
1066        regs->xer = 0;
1067        regs->ccr = 0;
1068        regs->gpr[1] = sp;
1069
1070        /*
1071         * We have just cleared all the nonvolatile GPRs, so make
1072         * FULL_REGS(regs) return true.  This is necessary to allow
1073         * ptrace to examine the thread immediately after exec.
1074         */
1075        regs->trap &= ~1UL;
1076
1077#ifdef CONFIG_PPC32
1078        regs->mq = 0;
1079        regs->nip = start;
1080        regs->msr = MSR_USER;
1081#else
1082        if (!is_32bit_task()) {
1083                unsigned long entry, toc;
1084
1085                /* start is a relocated pointer to the function descriptor for
1086                 * the elf _start routine.  The first entry in the function
1087                 * descriptor is the entry address of _start and the second
1088                 * entry is the TOC value we need to use.
1089                 */
1090                __get_user(entry, (unsigned long __user *)start);
1091                __get_user(toc, (unsigned long __user *)start+1);
1092
1093                /* Check whether the e_entry function descriptor entries
1094                 * need to be relocated before we can use them.
1095                 */
1096                if (load_addr != 0) {
1097                        entry += load_addr;
1098                        toc   += load_addr;
1099                }
1100                regs->nip = entry;
1101                regs->gpr[2] = toc;
1102                regs->msr = MSR_USER64;
1103        } else {
1104                regs->nip = start;
1105                regs->gpr[2] = 0;
1106                regs->msr = MSR_USER32;
1107        }
1108#endif
1109        discard_lazy_cpu_state();
1110#ifdef CONFIG_VSX
1111        current->thread.used_vsr = 0;
1112#endif
1113        memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1114        current->thread.fpscr.val = 0;
1115#ifdef CONFIG_ALTIVEC
1116        memset(current->thread.vr, 0, sizeof(current->thread.vr));
1117        memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1118        current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1119        current->thread.vrsave = 0;
1120        current->thread.used_vr = 0;
1121#endif /* CONFIG_ALTIVEC */
1122#ifdef CONFIG_SPE
1123        memset(current->thread.evr, 0, sizeof(current->thread.evr));
1124        current->thread.acc = 0;
1125        current->thread.spefscr = 0;
1126        current->thread.used_spe = 0;
1127#endif /* CONFIG_SPE */
1128#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1129        if (cpu_has_feature(CPU_FTR_TM))
1130                regs->msr |= MSR_TM;
1131        current->thread.tm_tfhar = 0;
1132        current->thread.tm_texasr = 0;
1133        current->thread.tm_tfiar = 0;
1134#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1135}
1136
1137#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1138                | PR_FP_EXC_RES | PR_FP_EXC_INV)
1139
1140int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1141{
1142        struct pt_regs *regs = tsk->thread.regs;
1143
1144        /* This is a bit hairy.  If we are an SPE enabled  processor
1145         * (have embedded fp) we store the IEEE exception enable flags in
1146         * fpexc_mode.  fpexc_mode is also used for setting FP exception
1147         * mode (asyn, precise, disabled) for 'Classic' FP. */
1148        if (val & PR_FP_EXC_SW_ENABLE) {
1149#ifdef CONFIG_SPE
1150                if (cpu_has_feature(CPU_FTR_SPE)) {
1151                        tsk->thread.fpexc_mode = val &
1152                                (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1153                        return 0;
1154                } else {
1155                        return -EINVAL;
1156                }
1157#else
1158                return -EINVAL;
1159#endif
1160        }
1161
1162        /* on a CONFIG_SPE this does not hurt us.  The bits that
1163         * __pack_fe01 use do not overlap with bits used for
1164         * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1165         * on CONFIG_SPE implementations are reserved so writing to
1166         * them does not change anything */
1167        if (val > PR_FP_EXC_PRECISE)
1168                return -EINVAL;
1169        tsk->thread.fpexc_mode = __pack_fe01(val);
1170        if (regs != NULL && (regs->msr & MSR_FP) != 0)
1171                regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1172                        | tsk->thread.fpexc_mode;
1173        return 0;
1174}
1175
1176int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1177{
1178        unsigned int val;
1179
1180        if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1181#ifdef CONFIG_SPE
1182                if (cpu_has_feature(CPU_FTR_SPE))
1183                        val = tsk->thread.fpexc_mode;
1184                else
1185                        return -EINVAL;
1186#else
1187                return -EINVAL;
1188#endif
1189        else
1190                val = __unpack_fe01(tsk->thread.fpexc_mode);
1191        return put_user(val, (unsigned int __user *) adr);
1192}
1193
1194int set_endian(struct task_struct *tsk, unsigned int val)
1195{
1196        struct pt_regs *regs = tsk->thread.regs;
1197
1198        if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1199            (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1200                return -EINVAL;
1201
1202        if (regs == NULL)
1203                return -EINVAL;
1204
1205        if (val == PR_ENDIAN_BIG)
1206                regs->msr &= ~MSR_LE;
1207        else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1208                regs->msr |= MSR_LE;
1209        else
1210                return -EINVAL;
1211
1212        return 0;
1213}
1214
1215int get_endian(struct task_struct *tsk, unsigned long adr)
1216{
1217        struct pt_regs *regs = tsk->thread.regs;
1218        unsigned int val;
1219
1220        if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1221            !cpu_has_feature(CPU_FTR_REAL_LE))
1222                return -EINVAL;
1223
1224        if (regs == NULL)
1225                return -EINVAL;
1226
1227        if (regs->msr & MSR_LE) {
1228                if (cpu_has_feature(CPU_FTR_REAL_LE))
1229                        val = PR_ENDIAN_LITTLE;
1230                else
1231                        val = PR_ENDIAN_PPC_LITTLE;
1232        } else
1233                val = PR_ENDIAN_BIG;
1234
1235        return put_user(val, (unsigned int __user *)adr);
1236}
1237
1238int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1239{
1240        tsk->thread.align_ctl = val;
1241        return 0;
1242}
1243
1244int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1245{
1246        return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1247}
1248
1249static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1250                                  unsigned long nbytes)
1251{
1252        unsigned long stack_page;
1253        unsigned long cpu = task_cpu(p);
1254
1255        /*
1256         * Avoid crashing if the stack has overflowed and corrupted
1257         * task_cpu(p), which is in the thread_info struct.
1258         */
1259        if (cpu < NR_CPUS && cpu_possible(cpu)) {
1260                stack_page = (unsigned long) hardirq_ctx[cpu];
1261                if (sp >= stack_page + sizeof(struct thread_struct)
1262                    && sp <= stack_page + THREAD_SIZE - nbytes)
1263                        return 1;
1264
1265                stack_page = (unsigned long) softirq_ctx[cpu];
1266                if (sp >= stack_page + sizeof(struct thread_struct)
1267                    && sp <= stack_page + THREAD_SIZE - nbytes)
1268                        return 1;
1269        }
1270        return 0;
1271}
1272
1273int validate_sp(unsigned long sp, struct task_struct *p,
1274                       unsigned long nbytes)
1275{
1276        unsigned long stack_page = (unsigned long)task_stack_page(p);
1277
1278        if (sp >= stack_page + sizeof(struct thread_struct)
1279            && sp <= stack_page + THREAD_SIZE - nbytes)
1280                return 1;
1281
1282        return valid_irq_stack(sp, p, nbytes);
1283}
1284
1285EXPORT_SYMBOL(validate_sp);
1286
1287unsigned long get_wchan(struct task_struct *p)
1288{
1289        unsigned long ip, sp;
1290        int count = 0;
1291
1292        if (!p || p == current || p->state == TASK_RUNNING)
1293                return 0;
1294
1295        sp = p->thread.ksp;
1296        if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1297                return 0;
1298
1299        do {
1300                sp = *(unsigned long *)sp;
1301                if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1302                        return 0;
1303                if (count > 0) {
1304                        ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1305                        if (!in_sched_functions(ip))
1306                                return ip;
1307                }
1308        } while (count++ < 16);
1309        return 0;
1310}
1311
1312static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1313
1314void show_stack(struct task_struct *tsk, unsigned long *stack)
1315{
1316        unsigned long sp, ip, lr, newsp;
1317        int count = 0;
1318        int firstframe = 1;
1319#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1320        int curr_frame = current->curr_ret_stack;
1321        extern void return_to_handler(void);
1322        unsigned long rth = (unsigned long)return_to_handler;
1323        unsigned long mrth = -1;
1324#ifdef CONFIG_PPC64
1325        extern void mod_return_to_handler(void);
1326        rth = *(unsigned long *)rth;
1327        mrth = (unsigned long)mod_return_to_handler;
1328        mrth = *(unsigned long *)mrth;
1329#endif
1330#endif
1331
1332        sp = (unsigned long) stack;
1333        if (tsk == NULL)
1334                tsk = current;
1335        if (sp == 0) {
1336                if (tsk == current)
1337                        asm("mr %0,1" : "=r" (sp));
1338                else
1339                        sp = tsk->thread.ksp;
1340        }
1341
1342        lr = 0;
1343        printk("Call Trace:\n");
1344        do {
1345                if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1346                        return;
1347
1348                stack = (unsigned long *) sp;
1349                newsp = stack[0];
1350                ip = stack[STACK_FRAME_LR_SAVE];
1351                if (!firstframe || ip != lr) {
1352                        printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1353#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1354                        if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1355                                printk(" (%pS)",
1356                                       (void *)current->ret_stack[curr_frame].ret);
1357                                curr_frame--;
1358                        }
1359#endif
1360                        if (firstframe)
1361                                printk(" (unreliable)");
1362                        printk("\n");
1363                }
1364                firstframe = 0;
1365
1366                /*
1367                 * See if this is an exception frame.
1368                 * We look for the "regshere" marker in the current frame.
1369                 */
1370                if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1371                    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1372                        struct pt_regs *regs = (struct pt_regs *)
1373                                (sp + STACK_FRAME_OVERHEAD);
1374                        lr = regs->link;
1375                        printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1376                               regs->trap, (void *)regs->nip, (void *)lr);
1377                        firstframe = 1;
1378                }
1379
1380                sp = newsp;
1381        } while (count++ < kstack_depth_to_print);
1382}
1383
1384#ifdef CONFIG_PPC64
1385/* Called with hard IRQs off */
1386void notrace __ppc64_runlatch_on(void)
1387{
1388        struct thread_info *ti = current_thread_info();
1389        unsigned long ctrl;
1390
1391        ctrl = mfspr(SPRN_CTRLF);
1392        ctrl |= CTRL_RUNLATCH;
1393        mtspr(SPRN_CTRLT, ctrl);
1394
1395        ti->local_flags |= _TLF_RUNLATCH;
1396}
1397
1398/* Called with hard IRQs off */
1399void notrace __ppc64_runlatch_off(void)
1400{
1401        struct thread_info *ti = current_thread_info();
1402        unsigned long ctrl;
1403
1404        ti->local_flags &= ~_TLF_RUNLATCH;
1405
1406        ctrl = mfspr(SPRN_CTRLF);
1407        ctrl &= ~CTRL_RUNLATCH;
1408        mtspr(SPRN_CTRLT, ctrl);
1409}
1410#endif /* CONFIG_PPC64 */
1411
1412unsigned long arch_align_stack(unsigned long sp)
1413{
1414        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1415                sp -= get_random_int() & ~PAGE_MASK;
1416        return sp & ~0xf;
1417}
1418
1419static inline unsigned long brk_rnd(void)
1420{
1421        unsigned long rnd = 0;
1422
1423        /* 8MB for 32bit, 1GB for 64bit */
1424        if (is_32bit_task())
1425                rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1426        else
1427                rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1428
1429        return rnd << PAGE_SHIFT;
1430}
1431
1432unsigned long arch_randomize_brk(struct mm_struct *mm)
1433{
1434        unsigned long base = mm->brk;
1435        unsigned long ret;
1436
1437#ifdef CONFIG_PPC_STD_MMU_64
1438        /*
1439         * If we are using 1TB segments and we are allowed to randomise
1440         * the heap, we can put it above 1TB so it is backed by a 1TB
1441         * segment. Otherwise the heap will be in the bottom 1TB
1442         * which always uses 256MB segments and this may result in a
1443         * performance penalty.
1444         */
1445        if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1446                base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1447#endif
1448
1449        ret = PAGE_ALIGN(base + brk_rnd());
1450
1451        if (ret < mm->brk)
1452                return mm->brk;
1453
1454        return ret;
1455}
1456
1457unsigned long randomize_et_dyn(unsigned long base)
1458{
1459        unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1460
1461        if (ret < base)
1462                return base;
1463
1464        return ret;
1465}
1466