linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/user.h>
  26#include <linux/interrupt.h>
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/prctl.h>
  30#include <linux/delay.h>
  31#include <linux/kprobes.h>
  32#include <linux/kexec.h>
  33#include <linux/backlight.h>
  34#include <linux/bug.h>
  35#include <linux/kdebug.h>
  36#include <linux/debugfs.h>
  37#include <linux/ratelimit.h>
  38#include <linux/context_tracking.h>
  39
  40#include <asm/emulated_ops.h>
  41#include <asm/pgtable.h>
  42#include <asm/uaccess.h>
  43#include <asm/io.h>
  44#include <asm/machdep.h>
  45#include <asm/rtas.h>
  46#include <asm/pmc.h>
  47#include <asm/reg.h>
  48#ifdef CONFIG_PMAC_BACKLIGHT
  49#include <asm/backlight.h>
  50#endif
  51#ifdef CONFIG_PPC64
  52#include <asm/firmware.h>
  53#include <asm/processor.h>
  54#include <asm/tm.h>
  55#endif
  56#include <asm/kexec.h>
  57#include <asm/ppc-opcode.h>
  58#include <asm/rio.h>
  59#include <asm/fadump.h>
  60#include <asm/switch_to.h>
  61#include <asm/tm.h>
  62#include <asm/debug.h>
  63
  64#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  65int (*__debugger)(struct pt_regs *regs) __read_mostly;
  66int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  67int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  68int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  69int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  70int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  71int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  72
  73EXPORT_SYMBOL(__debugger);
  74EXPORT_SYMBOL(__debugger_ipi);
  75EXPORT_SYMBOL(__debugger_bpt);
  76EXPORT_SYMBOL(__debugger_sstep);
  77EXPORT_SYMBOL(__debugger_iabr_match);
  78EXPORT_SYMBOL(__debugger_break_match);
  79EXPORT_SYMBOL(__debugger_fault_handler);
  80#endif
  81
  82/* Transactional Memory trap debug */
  83#ifdef TM_DEBUG_SW
  84#define TM_DEBUG(x...) printk(KERN_INFO x)
  85#else
  86#define TM_DEBUG(x...) do { } while(0)
  87#endif
  88
  89/*
  90 * Trap & Exception support
  91 */
  92
  93#ifdef CONFIG_PMAC_BACKLIGHT
  94static void pmac_backlight_unblank(void)
  95{
  96        mutex_lock(&pmac_backlight_mutex);
  97        if (pmac_backlight) {
  98                struct backlight_properties *props;
  99
 100                props = &pmac_backlight->props;
 101                props->brightness = props->max_brightness;
 102                props->power = FB_BLANK_UNBLANK;
 103                backlight_update_status(pmac_backlight);
 104        }
 105        mutex_unlock(&pmac_backlight_mutex);
 106}
 107#else
 108static inline void pmac_backlight_unblank(void) { }
 109#endif
 110
 111static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 112static int die_owner = -1;
 113static unsigned int die_nest_count;
 114static int die_counter;
 115
 116static unsigned __kprobes long oops_begin(struct pt_regs *regs)
 117{
 118        int cpu;
 119        unsigned long flags;
 120
 121        if (debugger(regs))
 122                return 1;
 123
 124        oops_enter();
 125
 126        /* racy, but better than risking deadlock. */
 127        raw_local_irq_save(flags);
 128        cpu = smp_processor_id();
 129        if (!arch_spin_trylock(&die_lock)) {
 130                if (cpu == die_owner)
 131                        /* nested oops. should stop eventually */;
 132                else
 133                        arch_spin_lock(&die_lock);
 134        }
 135        die_nest_count++;
 136        die_owner = cpu;
 137        console_verbose();
 138        bust_spinlocks(1);
 139        if (machine_is(powermac))
 140                pmac_backlight_unblank();
 141        return flags;
 142}
 143
 144static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
 145                               int signr)
 146{
 147        bust_spinlocks(0);
 148        die_owner = -1;
 149        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 150        die_nest_count--;
 151        oops_exit();
 152        printk("\n");
 153        if (!die_nest_count)
 154                /* Nest count reaches zero, release the lock. */
 155                arch_spin_unlock(&die_lock);
 156        raw_local_irq_restore(flags);
 157
 158        crash_fadump(regs, "die oops");
 159
 160        /*
 161         * A system reset (0x100) is a request to dump, so we always send
 162         * it through the crashdump code.
 163         */
 164        if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 165                crash_kexec(regs);
 166
 167                /*
 168                 * We aren't the primary crash CPU. We need to send it
 169                 * to a holding pattern to avoid it ending up in the panic
 170                 * code.
 171                 */
 172                crash_kexec_secondary(regs);
 173        }
 174
 175        if (!signr)
 176                return;
 177
 178        /*
 179         * While our oops output is serialised by a spinlock, output
 180         * from panic() called below can race and corrupt it. If we
 181         * know we are going to panic, delay for 1 second so we have a
 182         * chance to get clean backtraces from all CPUs that are oopsing.
 183         */
 184        if (in_interrupt() || panic_on_oops || !current->pid ||
 185            is_global_init(current)) {
 186                mdelay(MSEC_PER_SEC);
 187        }
 188
 189        if (in_interrupt())
 190                panic("Fatal exception in interrupt");
 191        if (panic_on_oops)
 192                panic("Fatal exception");
 193        do_exit(signr);
 194}
 195
 196static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
 197{
 198        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 199#ifdef CONFIG_PREEMPT
 200        printk("PREEMPT ");
 201#endif
 202#ifdef CONFIG_SMP
 203        printk("SMP NR_CPUS=%d ", NR_CPUS);
 204#endif
 205#ifdef CONFIG_DEBUG_PAGEALLOC
 206        printk("DEBUG_PAGEALLOC ");
 207#endif
 208#ifdef CONFIG_NUMA
 209        printk("NUMA ");
 210#endif
 211        printk("%s\n", ppc_md.name ? ppc_md.name : "");
 212
 213        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 214                return 1;
 215
 216        print_modules();
 217        show_regs(regs);
 218
 219        return 0;
 220}
 221
 222void die(const char *str, struct pt_regs *regs, long err)
 223{
 224        unsigned long flags = oops_begin(regs);
 225
 226        if (__die(str, regs, err))
 227                err = 0;
 228        oops_end(flags, regs, err);
 229}
 230
 231void user_single_step_siginfo(struct task_struct *tsk,
 232                                struct pt_regs *regs, siginfo_t *info)
 233{
 234        memset(info, 0, sizeof(*info));
 235        info->si_signo = SIGTRAP;
 236        info->si_code = TRAP_TRACE;
 237        info->si_addr = (void __user *)regs->nip;
 238}
 239
 240void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 241{
 242        siginfo_t info;
 243        const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 244                        "at %08lx nip %08lx lr %08lx code %x\n";
 245        const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 246                        "at %016lx nip %016lx lr %016lx code %x\n";
 247
 248        if (!user_mode(regs)) {
 249                die("Exception in kernel mode", regs, signr);
 250                return;
 251        }
 252
 253        if (show_unhandled_signals && unhandled_signal(current, signr)) {
 254                printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 255                                   current->comm, current->pid, signr,
 256                                   addr, regs->nip, regs->link, code);
 257        }
 258
 259        if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 260                local_irq_enable();
 261
 262        current->thread.trap_nr = code;
 263        memset(&info, 0, sizeof(info));
 264        info.si_signo = signr;
 265        info.si_code = code;
 266        info.si_addr = (void __user *) addr;
 267        force_sig_info(signr, &info, current);
 268}
 269
 270#ifdef CONFIG_PPC64
 271void system_reset_exception(struct pt_regs *regs)
 272{
 273        /* See if any machine dependent calls */
 274        if (ppc_md.system_reset_exception) {
 275                if (ppc_md.system_reset_exception(regs))
 276                        return;
 277        }
 278
 279        die("System Reset", regs, SIGABRT);
 280
 281        /* Must die if the interrupt is not recoverable */
 282        if (!(regs->msr & MSR_RI))
 283                panic("Unrecoverable System Reset");
 284
 285        /* What should we do here? We could issue a shutdown or hard reset. */
 286}
 287#endif
 288
 289/*
 290 * I/O accesses can cause machine checks on powermacs.
 291 * Check if the NIP corresponds to the address of a sync
 292 * instruction for which there is an entry in the exception
 293 * table.
 294 * Note that the 601 only takes a machine check on TEA
 295 * (transfer error ack) signal assertion, and does not
 296 * set any of the top 16 bits of SRR1.
 297 *  -- paulus.
 298 */
 299static inline int check_io_access(struct pt_regs *regs)
 300{
 301#ifdef CONFIG_PPC32
 302        unsigned long msr = regs->msr;
 303        const struct exception_table_entry *entry;
 304        unsigned int *nip = (unsigned int *)regs->nip;
 305
 306        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 307            && (entry = search_exception_tables(regs->nip)) != NULL) {
 308                /*
 309                 * Check that it's a sync instruction, or somewhere
 310                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 311                 * As the address is in the exception table
 312                 * we should be able to read the instr there.
 313                 * For the debug message, we look at the preceding
 314                 * load or store.
 315                 */
 316                if (*nip == 0x60000000)         /* nop */
 317                        nip -= 2;
 318                else if (*nip == 0x4c00012c)    /* isync */
 319                        --nip;
 320                if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
 321                        /* sync or twi */
 322                        unsigned int rb;
 323
 324                        --nip;
 325                        rb = (*nip >> 11) & 0x1f;
 326                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 327                               (*nip & 0x100)? "OUT to": "IN from",
 328                               regs->gpr[rb] - _IO_BASE, nip);
 329                        regs->msr |= MSR_RI;
 330                        regs->nip = entry->fixup;
 331                        return 1;
 332                }
 333        }
 334#endif /* CONFIG_PPC32 */
 335        return 0;
 336}
 337
 338#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 339/* On 4xx, the reason for the machine check or program exception
 340   is in the ESR. */
 341#define get_reason(regs)        ((regs)->dsisr)
 342#ifndef CONFIG_FSL_BOOKE
 343#define get_mc_reason(regs)     ((regs)->dsisr)
 344#else
 345#define get_mc_reason(regs)     (mfspr(SPRN_MCSR))
 346#endif
 347#define REASON_FP               ESR_FP
 348#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 349#define REASON_PRIVILEGED       ESR_PPR
 350#define REASON_TRAP             ESR_PTR
 351
 352/* single-step stuff */
 353#define single_stepping(regs)   (current->thread.dbcr0 & DBCR0_IC)
 354#define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
 355
 356#else
 357/* On non-4xx, the reason for the machine check or program
 358   exception is in the MSR. */
 359#define get_reason(regs)        ((regs)->msr)
 360#define get_mc_reason(regs)     ((regs)->msr)
 361#define REASON_TM               0x200000
 362#define REASON_FP               0x100000
 363#define REASON_ILLEGAL          0x80000
 364#define REASON_PRIVILEGED       0x40000
 365#define REASON_TRAP             0x20000
 366
 367#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 368#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
 369#endif
 370
 371#if defined(CONFIG_4xx)
 372int machine_check_4xx(struct pt_regs *regs)
 373{
 374        unsigned long reason = get_mc_reason(regs);
 375
 376        if (reason & ESR_IMCP) {
 377                printk("Instruction");
 378                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 379        } else
 380                printk("Data");
 381        printk(" machine check in kernel mode.\n");
 382
 383        return 0;
 384}
 385
 386int machine_check_440A(struct pt_regs *regs)
 387{
 388        unsigned long reason = get_mc_reason(regs);
 389
 390        printk("Machine check in kernel mode.\n");
 391        if (reason & ESR_IMCP){
 392                printk("Instruction Synchronous Machine Check exception\n");
 393                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 394        }
 395        else {
 396                u32 mcsr = mfspr(SPRN_MCSR);
 397                if (mcsr & MCSR_IB)
 398                        printk("Instruction Read PLB Error\n");
 399                if (mcsr & MCSR_DRB)
 400                        printk("Data Read PLB Error\n");
 401                if (mcsr & MCSR_DWB)
 402                        printk("Data Write PLB Error\n");
 403                if (mcsr & MCSR_TLBP)
 404                        printk("TLB Parity Error\n");
 405                if (mcsr & MCSR_ICP){
 406                        flush_instruction_cache();
 407                        printk("I-Cache Parity Error\n");
 408                }
 409                if (mcsr & MCSR_DCSP)
 410                        printk("D-Cache Search Parity Error\n");
 411                if (mcsr & MCSR_DCFP)
 412                        printk("D-Cache Flush Parity Error\n");
 413                if (mcsr & MCSR_IMPE)
 414                        printk("Machine Check exception is imprecise\n");
 415
 416                /* Clear MCSR */
 417                mtspr(SPRN_MCSR, mcsr);
 418        }
 419        return 0;
 420}
 421
 422int machine_check_47x(struct pt_regs *regs)
 423{
 424        unsigned long reason = get_mc_reason(regs);
 425        u32 mcsr;
 426
 427        printk(KERN_ERR "Machine check in kernel mode.\n");
 428        if (reason & ESR_IMCP) {
 429                printk(KERN_ERR
 430                       "Instruction Synchronous Machine Check exception\n");
 431                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 432                return 0;
 433        }
 434        mcsr = mfspr(SPRN_MCSR);
 435        if (mcsr & MCSR_IB)
 436                printk(KERN_ERR "Instruction Read PLB Error\n");
 437        if (mcsr & MCSR_DRB)
 438                printk(KERN_ERR "Data Read PLB Error\n");
 439        if (mcsr & MCSR_DWB)
 440                printk(KERN_ERR "Data Write PLB Error\n");
 441        if (mcsr & MCSR_TLBP)
 442                printk(KERN_ERR "TLB Parity Error\n");
 443        if (mcsr & MCSR_ICP) {
 444                flush_instruction_cache();
 445                printk(KERN_ERR "I-Cache Parity Error\n");
 446        }
 447        if (mcsr & MCSR_DCSP)
 448                printk(KERN_ERR "D-Cache Search Parity Error\n");
 449        if (mcsr & PPC47x_MCSR_GPR)
 450                printk(KERN_ERR "GPR Parity Error\n");
 451        if (mcsr & PPC47x_MCSR_FPR)
 452                printk(KERN_ERR "FPR Parity Error\n");
 453        if (mcsr & PPC47x_MCSR_IPR)
 454                printk(KERN_ERR "Machine Check exception is imprecise\n");
 455
 456        /* Clear MCSR */
 457        mtspr(SPRN_MCSR, mcsr);
 458
 459        return 0;
 460}
 461#elif defined(CONFIG_E500)
 462int machine_check_e500mc(struct pt_regs *regs)
 463{
 464        unsigned long mcsr = mfspr(SPRN_MCSR);
 465        unsigned long reason = mcsr;
 466        int recoverable = 1;
 467
 468        if (reason & MCSR_LD) {
 469                recoverable = fsl_rio_mcheck_exception(regs);
 470                if (recoverable == 1)
 471                        goto silent_out;
 472        }
 473
 474        printk("Machine check in kernel mode.\n");
 475        printk("Caused by (from MCSR=%lx): ", reason);
 476
 477        if (reason & MCSR_MCP)
 478                printk("Machine Check Signal\n");
 479
 480        if (reason & MCSR_ICPERR) {
 481                printk("Instruction Cache Parity Error\n");
 482
 483                /*
 484                 * This is recoverable by invalidating the i-cache.
 485                 */
 486                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 487                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 488                        ;
 489
 490                /*
 491                 * This will generally be accompanied by an instruction
 492                 * fetch error report -- only treat MCSR_IF as fatal
 493                 * if it wasn't due to an L1 parity error.
 494                 */
 495                reason &= ~MCSR_IF;
 496        }
 497
 498        if (reason & MCSR_DCPERR_MC) {
 499                printk("Data Cache Parity Error\n");
 500
 501                /*
 502                 * In write shadow mode we auto-recover from the error, but it
 503                 * may still get logged and cause a machine check.  We should
 504                 * only treat the non-write shadow case as non-recoverable.
 505                 */
 506                if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 507                        recoverable = 0;
 508        }
 509
 510        if (reason & MCSR_L2MMU_MHIT) {
 511                printk("Hit on multiple TLB entries\n");
 512                recoverable = 0;
 513        }
 514
 515        if (reason & MCSR_NMI)
 516                printk("Non-maskable interrupt\n");
 517
 518        if (reason & MCSR_IF) {
 519                printk("Instruction Fetch Error Report\n");
 520                recoverable = 0;
 521        }
 522
 523        if (reason & MCSR_LD) {
 524                printk("Load Error Report\n");
 525                recoverable = 0;
 526        }
 527
 528        if (reason & MCSR_ST) {
 529                printk("Store Error Report\n");
 530                recoverable = 0;
 531        }
 532
 533        if (reason & MCSR_LDG) {
 534                printk("Guarded Load Error Report\n");
 535                recoverable = 0;
 536        }
 537
 538        if (reason & MCSR_TLBSYNC)
 539                printk("Simultaneous tlbsync operations\n");
 540
 541        if (reason & MCSR_BSL2_ERR) {
 542                printk("Level 2 Cache Error\n");
 543                recoverable = 0;
 544        }
 545
 546        if (reason & MCSR_MAV) {
 547                u64 addr;
 548
 549                addr = mfspr(SPRN_MCAR);
 550                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 551
 552                printk("Machine Check %s Address: %#llx\n",
 553                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 554        }
 555
 556silent_out:
 557        mtspr(SPRN_MCSR, mcsr);
 558        return mfspr(SPRN_MCSR) == 0 && recoverable;
 559}
 560
 561int machine_check_e500(struct pt_regs *regs)
 562{
 563        unsigned long reason = get_mc_reason(regs);
 564
 565        if (reason & MCSR_BUS_RBERR) {
 566                if (fsl_rio_mcheck_exception(regs))
 567                        return 1;
 568        }
 569
 570        printk("Machine check in kernel mode.\n");
 571        printk("Caused by (from MCSR=%lx): ", reason);
 572
 573        if (reason & MCSR_MCP)
 574                printk("Machine Check Signal\n");
 575        if (reason & MCSR_ICPERR)
 576                printk("Instruction Cache Parity Error\n");
 577        if (reason & MCSR_DCP_PERR)
 578                printk("Data Cache Push Parity Error\n");
 579        if (reason & MCSR_DCPERR)
 580                printk("Data Cache Parity Error\n");
 581        if (reason & MCSR_BUS_IAERR)
 582                printk("Bus - Instruction Address Error\n");
 583        if (reason & MCSR_BUS_RAERR)
 584                printk("Bus - Read Address Error\n");
 585        if (reason & MCSR_BUS_WAERR)
 586                printk("Bus - Write Address Error\n");
 587        if (reason & MCSR_BUS_IBERR)
 588                printk("Bus - Instruction Data Error\n");
 589        if (reason & MCSR_BUS_RBERR)
 590                printk("Bus - Read Data Bus Error\n");
 591        if (reason & MCSR_BUS_WBERR)
 592                printk("Bus - Read Data Bus Error\n");
 593        if (reason & MCSR_BUS_IPERR)
 594                printk("Bus - Instruction Parity Error\n");
 595        if (reason & MCSR_BUS_RPERR)
 596                printk("Bus - Read Parity Error\n");
 597
 598        return 0;
 599}
 600
 601int machine_check_generic(struct pt_regs *regs)
 602{
 603        return 0;
 604}
 605#elif defined(CONFIG_E200)
 606int machine_check_e200(struct pt_regs *regs)
 607{
 608        unsigned long reason = get_mc_reason(regs);
 609
 610        printk("Machine check in kernel mode.\n");
 611        printk("Caused by (from MCSR=%lx): ", reason);
 612
 613        if (reason & MCSR_MCP)
 614                printk("Machine Check Signal\n");
 615        if (reason & MCSR_CP_PERR)
 616                printk("Cache Push Parity Error\n");
 617        if (reason & MCSR_CPERR)
 618                printk("Cache Parity Error\n");
 619        if (reason & MCSR_EXCP_ERR)
 620                printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 621        if (reason & MCSR_BUS_IRERR)
 622                printk("Bus - Read Bus Error on instruction fetch\n");
 623        if (reason & MCSR_BUS_DRERR)
 624                printk("Bus - Read Bus Error on data load\n");
 625        if (reason & MCSR_BUS_WRERR)
 626                printk("Bus - Write Bus Error on buffered store or cache line push\n");
 627
 628        return 0;
 629}
 630#else
 631int machine_check_generic(struct pt_regs *regs)
 632{
 633        unsigned long reason = get_mc_reason(regs);
 634
 635        printk("Machine check in kernel mode.\n");
 636        printk("Caused by (from SRR1=%lx): ", reason);
 637        switch (reason & 0x601F0000) {
 638        case 0x80000:
 639                printk("Machine check signal\n");
 640                break;
 641        case 0:         /* for 601 */
 642        case 0x40000:
 643        case 0x140000:  /* 7450 MSS error and TEA */
 644                printk("Transfer error ack signal\n");
 645                break;
 646        case 0x20000:
 647                printk("Data parity error signal\n");
 648                break;
 649        case 0x10000:
 650                printk("Address parity error signal\n");
 651                break;
 652        case 0x20000000:
 653                printk("L1 Data Cache error\n");
 654                break;
 655        case 0x40000000:
 656                printk("L1 Instruction Cache error\n");
 657                break;
 658        case 0x00100000:
 659                printk("L2 data cache parity error\n");
 660                break;
 661        default:
 662                printk("Unknown values in msr\n");
 663        }
 664        return 0;
 665}
 666#endif /* everything else */
 667
 668void machine_check_exception(struct pt_regs *regs)
 669{
 670        enum ctx_state prev_state = exception_enter();
 671        int recover = 0;
 672
 673        __get_cpu_var(irq_stat).mce_exceptions++;
 674
 675        /* See if any machine dependent calls. In theory, we would want
 676         * to call the CPU first, and call the ppc_md. one if the CPU
 677         * one returns a positive number. However there is existing code
 678         * that assumes the board gets a first chance, so let's keep it
 679         * that way for now and fix things later. --BenH.
 680         */
 681        if (ppc_md.machine_check_exception)
 682                recover = ppc_md.machine_check_exception(regs);
 683        else if (cur_cpu_spec->machine_check)
 684                recover = cur_cpu_spec->machine_check(regs);
 685
 686        if (recover > 0)
 687                goto bail;
 688
 689#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
 690        /* the qspan pci read routines can cause machine checks -- Cort
 691         *
 692         * yuck !!! that totally needs to go away ! There are better ways
 693         * to deal with that than having a wart in the mcheck handler.
 694         * -- BenH
 695         */
 696        bad_page_fault(regs, regs->dar, SIGBUS);
 697        goto bail;
 698#endif
 699
 700        if (debugger_fault_handler(regs))
 701                goto bail;
 702
 703        if (check_io_access(regs))
 704                goto bail;
 705
 706        die("Machine check", regs, SIGBUS);
 707
 708        /* Must die if the interrupt is not recoverable */
 709        if (!(regs->msr & MSR_RI))
 710                panic("Unrecoverable Machine check");
 711
 712bail:
 713        exception_exit(prev_state);
 714}
 715
 716void SMIException(struct pt_regs *regs)
 717{
 718        die("System Management Interrupt", regs, SIGABRT);
 719}
 720
 721void unknown_exception(struct pt_regs *regs)
 722{
 723        enum ctx_state prev_state = exception_enter();
 724
 725        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 726               regs->nip, regs->msr, regs->trap);
 727
 728        _exception(SIGTRAP, regs, 0, 0);
 729
 730        exception_exit(prev_state);
 731}
 732
 733void instruction_breakpoint_exception(struct pt_regs *regs)
 734{
 735        enum ctx_state prev_state = exception_enter();
 736
 737        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 738                                        5, SIGTRAP) == NOTIFY_STOP)
 739                goto bail;
 740        if (debugger_iabr_match(regs))
 741                goto bail;
 742        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 743
 744bail:
 745        exception_exit(prev_state);
 746}
 747
 748void RunModeException(struct pt_regs *regs)
 749{
 750        _exception(SIGTRAP, regs, 0, 0);
 751}
 752
 753void __kprobes single_step_exception(struct pt_regs *regs)
 754{
 755        enum ctx_state prev_state = exception_enter();
 756
 757        clear_single_step(regs);
 758
 759        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 760                                        5, SIGTRAP) == NOTIFY_STOP)
 761                goto bail;
 762        if (debugger_sstep(regs))
 763                goto bail;
 764
 765        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 766
 767bail:
 768        exception_exit(prev_state);
 769}
 770
 771/*
 772 * After we have successfully emulated an instruction, we have to
 773 * check if the instruction was being single-stepped, and if so,
 774 * pretend we got a single-step exception.  This was pointed out
 775 * by Kumar Gala.  -- paulus
 776 */
 777static void emulate_single_step(struct pt_regs *regs)
 778{
 779        if (single_stepping(regs))
 780                single_step_exception(regs);
 781}
 782
 783static inline int __parse_fpscr(unsigned long fpscr)
 784{
 785        int ret = 0;
 786
 787        /* Invalid operation */
 788        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 789                ret = FPE_FLTINV;
 790
 791        /* Overflow */
 792        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 793                ret = FPE_FLTOVF;
 794
 795        /* Underflow */
 796        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 797                ret = FPE_FLTUND;
 798
 799        /* Divide by zero */
 800        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 801                ret = FPE_FLTDIV;
 802
 803        /* Inexact result */
 804        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 805                ret = FPE_FLTRES;
 806
 807        return ret;
 808}
 809
 810static void parse_fpe(struct pt_regs *regs)
 811{
 812        int code = 0;
 813
 814        flush_fp_to_thread(current);
 815
 816        code = __parse_fpscr(current->thread.fpscr.val);
 817
 818        _exception(SIGFPE, regs, code, regs->nip);
 819}
 820
 821/*
 822 * Illegal instruction emulation support.  Originally written to
 823 * provide the PVR to user applications using the mfspr rd, PVR.
 824 * Return non-zero if we can't emulate, or -EFAULT if the associated
 825 * memory access caused an access fault.  Return zero on success.
 826 *
 827 * There are a couple of ways to do this, either "decode" the instruction
 828 * or directly match lots of bits.  In this case, matching lots of
 829 * bits is faster and easier.
 830 *
 831 */
 832static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 833{
 834        u8 rT = (instword >> 21) & 0x1f;
 835        u8 rA = (instword >> 16) & 0x1f;
 836        u8 NB_RB = (instword >> 11) & 0x1f;
 837        u32 num_bytes;
 838        unsigned long EA;
 839        int pos = 0;
 840
 841        /* Early out if we are an invalid form of lswx */
 842        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 843                if ((rT == rA) || (rT == NB_RB))
 844                        return -EINVAL;
 845
 846        EA = (rA == 0) ? 0 : regs->gpr[rA];
 847
 848        switch (instword & PPC_INST_STRING_MASK) {
 849                case PPC_INST_LSWX:
 850                case PPC_INST_STSWX:
 851                        EA += NB_RB;
 852                        num_bytes = regs->xer & 0x7f;
 853                        break;
 854                case PPC_INST_LSWI:
 855                case PPC_INST_STSWI:
 856                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 857                        break;
 858                default:
 859                        return -EINVAL;
 860        }
 861
 862        while (num_bytes != 0)
 863        {
 864                u8 val;
 865                u32 shift = 8 * (3 - (pos & 0x3));
 866
 867                /* if process is 32-bit, clear upper 32 bits of EA */
 868                if ((regs->msr & MSR_64BIT) == 0)
 869                        EA &= 0xFFFFFFFF;
 870
 871                switch ((instword & PPC_INST_STRING_MASK)) {
 872                        case PPC_INST_LSWX:
 873                        case PPC_INST_LSWI:
 874                                if (get_user(val, (u8 __user *)EA))
 875                                        return -EFAULT;
 876                                /* first time updating this reg,
 877                                 * zero it out */
 878                                if (pos == 0)
 879                                        regs->gpr[rT] = 0;
 880                                regs->gpr[rT] |= val << shift;
 881                                break;
 882                        case PPC_INST_STSWI:
 883                        case PPC_INST_STSWX:
 884                                val = regs->gpr[rT] >> shift;
 885                                if (put_user(val, (u8 __user *)EA))
 886                                        return -EFAULT;
 887                                break;
 888                }
 889                /* move EA to next address */
 890                EA += 1;
 891                num_bytes--;
 892
 893                /* manage our position within the register */
 894                if (++pos == 4) {
 895                        pos = 0;
 896                        if (++rT == 32)
 897                                rT = 0;
 898                }
 899        }
 900
 901        return 0;
 902}
 903
 904static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 905{
 906        u32 ra,rs;
 907        unsigned long tmp;
 908
 909        ra = (instword >> 16) & 0x1f;
 910        rs = (instword >> 21) & 0x1f;
 911
 912        tmp = regs->gpr[rs];
 913        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 914        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 915        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 916        regs->gpr[ra] = tmp;
 917
 918        return 0;
 919}
 920
 921static int emulate_isel(struct pt_regs *regs, u32 instword)
 922{
 923        u8 rT = (instword >> 21) & 0x1f;
 924        u8 rA = (instword >> 16) & 0x1f;
 925        u8 rB = (instword >> 11) & 0x1f;
 926        u8 BC = (instword >> 6) & 0x1f;
 927        u8 bit;
 928        unsigned long tmp;
 929
 930        tmp = (rA == 0) ? 0 : regs->gpr[rA];
 931        bit = (regs->ccr >> (31 - BC)) & 0x1;
 932
 933        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
 934
 935        return 0;
 936}
 937
 938#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 939static inline bool tm_abort_check(struct pt_regs *regs, int cause)
 940{
 941        /* If we're emulating a load/store in an active transaction, we cannot
 942         * emulate it as the kernel operates in transaction suspended context.
 943         * We need to abort the transaction.  This creates a persistent TM
 944         * abort so tell the user what caused it with a new code.
 945         */
 946        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
 947                tm_enable();
 948                tm_abort(cause);
 949                return true;
 950        }
 951        return false;
 952}
 953#else
 954static inline bool tm_abort_check(struct pt_regs *regs, int reason)
 955{
 956        return false;
 957}
 958#endif
 959
 960static int emulate_instruction(struct pt_regs *regs)
 961{
 962        u32 instword;
 963        u32 rd;
 964
 965        if (!user_mode(regs) || (regs->msr & MSR_LE))
 966                return -EINVAL;
 967        CHECK_FULL_REGS(regs);
 968
 969        if (get_user(instword, (u32 __user *)(regs->nip)))
 970                return -EFAULT;
 971
 972        /* Emulate the mfspr rD, PVR. */
 973        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
 974                PPC_WARN_EMULATED(mfpvr, regs);
 975                rd = (instword >> 21) & 0x1f;
 976                regs->gpr[rd] = mfspr(SPRN_PVR);
 977                return 0;
 978        }
 979
 980        /* Emulating the dcba insn is just a no-op.  */
 981        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
 982                PPC_WARN_EMULATED(dcba, regs);
 983                return 0;
 984        }
 985
 986        /* Emulate the mcrxr insn.  */
 987        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
 988                int shift = (instword >> 21) & 0x1c;
 989                unsigned long msk = 0xf0000000UL >> shift;
 990
 991                PPC_WARN_EMULATED(mcrxr, regs);
 992                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
 993                regs->xer &= ~0xf0000000UL;
 994                return 0;
 995        }
 996
 997        /* Emulate load/store string insn. */
 998        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
 999                if (tm_abort_check(regs,
1000                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1001                        return -EINVAL;
1002                PPC_WARN_EMULATED(string, regs);
1003                return emulate_string_inst(regs, instword);
1004        }
1005
1006        /* Emulate the popcntb (Population Count Bytes) instruction. */
1007        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1008                PPC_WARN_EMULATED(popcntb, regs);
1009                return emulate_popcntb_inst(regs, instword);
1010        }
1011
1012        /* Emulate isel (Integer Select) instruction */
1013        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1014                PPC_WARN_EMULATED(isel, regs);
1015                return emulate_isel(regs, instword);
1016        }
1017
1018#ifdef CONFIG_PPC64
1019        /* Emulate the mfspr rD, DSCR. */
1020        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1021                PPC_INST_MFSPR_DSCR_USER) ||
1022             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1023                PPC_INST_MFSPR_DSCR)) &&
1024                        cpu_has_feature(CPU_FTR_DSCR)) {
1025                PPC_WARN_EMULATED(mfdscr, regs);
1026                rd = (instword >> 21) & 0x1f;
1027                regs->gpr[rd] = mfspr(SPRN_DSCR);
1028                return 0;
1029        }
1030        /* Emulate the mtspr DSCR, rD. */
1031        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1032                PPC_INST_MTSPR_DSCR_USER) ||
1033             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1034                PPC_INST_MTSPR_DSCR)) &&
1035                        cpu_has_feature(CPU_FTR_DSCR)) {
1036                PPC_WARN_EMULATED(mtdscr, regs);
1037                rd = (instword >> 21) & 0x1f;
1038                current->thread.dscr = regs->gpr[rd];
1039                current->thread.dscr_inherit = 1;
1040                mtspr(SPRN_DSCR, current->thread.dscr);
1041                return 0;
1042        }
1043#endif
1044
1045        return -EINVAL;
1046}
1047
1048int is_valid_bugaddr(unsigned long addr)
1049{
1050        return is_kernel_addr(addr);
1051}
1052
1053void __kprobes program_check_exception(struct pt_regs *regs)
1054{
1055        enum ctx_state prev_state = exception_enter();
1056        unsigned int reason = get_reason(regs);
1057        extern int do_mathemu(struct pt_regs *regs);
1058
1059        /* We can now get here via a FP Unavailable exception if the core
1060         * has no FPU, in that case the reason flags will be 0 */
1061
1062        if (reason & REASON_FP) {
1063                /* IEEE FP exception */
1064                parse_fpe(regs);
1065                goto bail;
1066        }
1067        if (reason & REASON_TRAP) {
1068                /* Debugger is first in line to stop recursive faults in
1069                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1070                if (debugger_bpt(regs))
1071                        goto bail;
1072
1073                /* trap exception */
1074                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1075                                == NOTIFY_STOP)
1076                        goto bail;
1077
1078                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1079                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1080                        regs->nip += 4;
1081                        goto bail;
1082                }
1083                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1084                goto bail;
1085        }
1086#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1087        if (reason & REASON_TM) {
1088                /* This is a TM "Bad Thing Exception" program check.
1089                 * This occurs when:
1090                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1091                 *    transition in TM states.
1092                 * -  A trechkpt is attempted when transactional.
1093                 * -  A treclaim is attempted when non transactional.
1094                 * -  A tend is illegally attempted.
1095                 * -  writing a TM SPR when transactional.
1096                 */
1097                if (!user_mode(regs) &&
1098                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1099                        regs->nip += 4;
1100                        goto bail;
1101                }
1102                /* If usermode caused this, it's done something illegal and
1103                 * gets a SIGILL slap on the wrist.  We call it an illegal
1104                 * operand to distinguish from the instruction just being bad
1105                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1106                 * illegal /placement/ of a valid instruction.
1107                 */
1108                if (user_mode(regs)) {
1109                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1110                        goto bail;
1111                } else {
1112                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1113                               "at %lx (msr 0x%x)\n", regs->nip, reason);
1114                        die("Unrecoverable exception", regs, SIGABRT);
1115                }
1116        }
1117#endif
1118
1119        /* We restore the interrupt state now */
1120        if (!arch_irq_disabled_regs(regs))
1121                local_irq_enable();
1122
1123#ifdef CONFIG_MATH_EMULATION
1124        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1125         * but there seems to be a hardware bug on the 405GP (RevD)
1126         * that means ESR is sometimes set incorrectly - either to
1127         * ESR_DST (!?) or 0.  In the process of chasing this with the
1128         * hardware people - not sure if it can happen on any illegal
1129         * instruction or only on FP instructions, whether there is a
1130         * pattern to occurrences etc. -dgibson 31/Mar/2003
1131         */
1132
1133        /*
1134         * If we support a HW FPU, we need to ensure the FP state
1135         * if flushed into the thread_struct before attempting
1136         * emulation
1137         */
1138#ifdef CONFIG_PPC_FPU
1139        flush_fp_to_thread(current);
1140#endif
1141        switch (do_mathemu(regs)) {
1142        case 0:
1143                emulate_single_step(regs);
1144                goto bail;
1145        case 1: {
1146                        int code = 0;
1147                        code = __parse_fpscr(current->thread.fpscr.val);
1148                        _exception(SIGFPE, regs, code, regs->nip);
1149                        goto bail;
1150                }
1151        case -EFAULT:
1152                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1153                goto bail;
1154        }
1155        /* fall through on any other errors */
1156#endif /* CONFIG_MATH_EMULATION */
1157
1158        /* Try to emulate it if we should. */
1159        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1160                switch (emulate_instruction(regs)) {
1161                case 0:
1162                        regs->nip += 4;
1163                        emulate_single_step(regs);
1164                        goto bail;
1165                case -EFAULT:
1166                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1167                        goto bail;
1168                }
1169        }
1170
1171        if (reason & REASON_PRIVILEGED)
1172                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1173        else
1174                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1175
1176bail:
1177        exception_exit(prev_state);
1178}
1179
1180/*
1181 * This occurs when running in hypervisor mode on POWER6 or later
1182 * and an illegal instruction is encountered.
1183 */
1184void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1185{
1186        regs->msr |= REASON_ILLEGAL;
1187        program_check_exception(regs);
1188}
1189
1190void alignment_exception(struct pt_regs *regs)
1191{
1192        enum ctx_state prev_state = exception_enter();
1193        int sig, code, fixed = 0;
1194
1195        /* We restore the interrupt state now */
1196        if (!arch_irq_disabled_regs(regs))
1197                local_irq_enable();
1198
1199        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1200                goto bail;
1201
1202        /* we don't implement logging of alignment exceptions */
1203        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1204                fixed = fix_alignment(regs);
1205
1206        if (fixed == 1) {
1207                regs->nip += 4; /* skip over emulated instruction */
1208                emulate_single_step(regs);
1209                goto bail;
1210        }
1211
1212        /* Operand address was bad */
1213        if (fixed == -EFAULT) {
1214                sig = SIGSEGV;
1215                code = SEGV_ACCERR;
1216        } else {
1217                sig = SIGBUS;
1218                code = BUS_ADRALN;
1219        }
1220        if (user_mode(regs))
1221                _exception(sig, regs, code, regs->dar);
1222        else
1223                bad_page_fault(regs, regs->dar, sig);
1224
1225bail:
1226        exception_exit(prev_state);
1227}
1228
1229void StackOverflow(struct pt_regs *regs)
1230{
1231        printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1232               current, regs->gpr[1]);
1233        debugger(regs);
1234        show_regs(regs);
1235        panic("kernel stack overflow");
1236}
1237
1238void nonrecoverable_exception(struct pt_regs *regs)
1239{
1240        printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1241               regs->nip, regs->msr);
1242        debugger(regs);
1243        die("nonrecoverable exception", regs, SIGKILL);
1244}
1245
1246void trace_syscall(struct pt_regs *regs)
1247{
1248        printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1249               current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1250               regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1251}
1252
1253void kernel_fp_unavailable_exception(struct pt_regs *regs)
1254{
1255        enum ctx_state prev_state = exception_enter();
1256
1257        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1258                          "%lx at %lx\n", regs->trap, regs->nip);
1259        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1260
1261        exception_exit(prev_state);
1262}
1263
1264void altivec_unavailable_exception(struct pt_regs *regs)
1265{
1266        enum ctx_state prev_state = exception_enter();
1267
1268        if (user_mode(regs)) {
1269                /* A user program has executed an altivec instruction,
1270                   but this kernel doesn't support altivec. */
1271                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1272                goto bail;
1273        }
1274
1275        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1276                        "%lx at %lx\n", regs->trap, regs->nip);
1277        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1278
1279bail:
1280        exception_exit(prev_state);
1281}
1282
1283void vsx_unavailable_exception(struct pt_regs *regs)
1284{
1285        if (user_mode(regs)) {
1286                /* A user program has executed an vsx instruction,
1287                   but this kernel doesn't support vsx. */
1288                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1289                return;
1290        }
1291
1292        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1293                        "%lx at %lx\n", regs->trap, regs->nip);
1294        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1295}
1296
1297#ifdef CONFIG_PPC64
1298void facility_unavailable_exception(struct pt_regs *regs)
1299{
1300        static char *facility_strings[] = {
1301                [FSCR_FP_LG] = "FPU",
1302                [FSCR_VECVSX_LG] = "VMX/VSX",
1303                [FSCR_DSCR_LG] = "DSCR",
1304                [FSCR_PM_LG] = "PMU SPRs",
1305                [FSCR_BHRB_LG] = "BHRB",
1306                [FSCR_TM_LG] = "TM",
1307                [FSCR_EBB_LG] = "EBB",
1308                [FSCR_TAR_LG] = "TAR",
1309        };
1310        char *facility = "unknown";
1311        u64 value;
1312        u8 status;
1313        bool hv;
1314
1315        hv = (regs->trap == 0xf80);
1316        if (hv)
1317                value = mfspr(SPRN_HFSCR);
1318        else
1319                value = mfspr(SPRN_FSCR);
1320
1321        status = value >> 56;
1322        if (status == FSCR_DSCR_LG) {
1323                /* User is acessing the DSCR.  Set the inherit bit and allow
1324                 * the user to set it directly in future by setting via the
1325                 * H/FSCR DSCR bit.
1326                 */
1327                current->thread.dscr_inherit = 1;
1328                if (hv)
1329                        mtspr(SPRN_HFSCR, value | HFSCR_DSCR);
1330                else
1331                        mtspr(SPRN_FSCR,  value | FSCR_DSCR);
1332                return;
1333        }
1334
1335        if ((status < ARRAY_SIZE(facility_strings)) &&
1336            facility_strings[status])
1337                facility = facility_strings[status];
1338
1339        /* We restore the interrupt state now */
1340        if (!arch_irq_disabled_regs(regs))
1341                local_irq_enable();
1342
1343        pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1344               hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1345
1346        if (user_mode(regs)) {
1347                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1348                return;
1349        }
1350
1351        die("Unexpected facility unavailable exception", regs, SIGABRT);
1352}
1353#endif
1354
1355#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1356
1357extern void do_load_up_fpu(struct pt_regs *regs);
1358
1359void fp_unavailable_tm(struct pt_regs *regs)
1360{
1361        /* Note:  This does not handle any kind of FP laziness. */
1362
1363        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1364                 regs->nip, regs->msr);
1365        tm_enable();
1366
1367        /* We can only have got here if the task started using FP after
1368         * beginning the transaction.  So, the transactional regs are just a
1369         * copy of the checkpointed ones.  But, we still need to recheckpoint
1370         * as we're enabling FP for the process; it will return, abort the
1371         * transaction, and probably retry but now with FP enabled.  So the
1372         * checkpointed FP registers need to be loaded.
1373         */
1374        tm_reclaim(&current->thread, current->thread.regs->msr,
1375                   TM_CAUSE_FAC_UNAV);
1376        /* Reclaim didn't save out any FPRs to transact_fprs. */
1377
1378        /* Enable FP for the task: */
1379        regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1380
1381        /* This loads and recheckpoints the FP registers from
1382         * thread.fpr[].  They will remain in registers after the
1383         * checkpoint so we don't need to reload them after.
1384         */
1385        tm_recheckpoint(&current->thread, regs->msr);
1386}
1387
1388#ifdef CONFIG_ALTIVEC
1389extern void do_load_up_altivec(struct pt_regs *regs);
1390
1391void altivec_unavailable_tm(struct pt_regs *regs)
1392{
1393        /* See the comments in fp_unavailable_tm().  This function operates
1394         * the same way.
1395         */
1396
1397        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1398                 "MSR=%lx\n",
1399                 regs->nip, regs->msr);
1400        tm_enable();
1401        tm_reclaim(&current->thread, current->thread.regs->msr,
1402                   TM_CAUSE_FAC_UNAV);
1403        regs->msr |= MSR_VEC;
1404        tm_recheckpoint(&current->thread, regs->msr);
1405        current->thread.used_vr = 1;
1406}
1407#endif
1408
1409#ifdef CONFIG_VSX
1410void vsx_unavailable_tm(struct pt_regs *regs)
1411{
1412        /* See the comments in fp_unavailable_tm().  This works similarly,
1413         * though we're loading both FP and VEC registers in here.
1414         *
1415         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1416         * regs.  Either way, set MSR_VSX.
1417         */
1418
1419        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1420                 "MSR=%lx\n",
1421                 regs->nip, regs->msr);
1422
1423        tm_enable();
1424        /* This reclaims FP and/or VR regs if they're already enabled */
1425        tm_reclaim(&current->thread, current->thread.regs->msr,
1426                   TM_CAUSE_FAC_UNAV);
1427
1428        regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1429                MSR_VSX;
1430        /* This loads & recheckpoints FP and VRs. */
1431        tm_recheckpoint(&current->thread, regs->msr);
1432        current->thread.used_vsr = 1;
1433}
1434#endif
1435#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1436
1437void performance_monitor_exception(struct pt_regs *regs)
1438{
1439        __get_cpu_var(irq_stat).pmu_irqs++;
1440
1441        perf_irq(regs);
1442}
1443
1444#ifdef CONFIG_8xx
1445void SoftwareEmulation(struct pt_regs *regs)
1446{
1447        extern int do_mathemu(struct pt_regs *);
1448#if defined(CONFIG_MATH_EMULATION)
1449        int errcode;
1450#endif
1451
1452        CHECK_FULL_REGS(regs);
1453
1454        if (!user_mode(regs)) {
1455                debugger(regs);
1456                die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1457        }
1458
1459#ifdef CONFIG_MATH_EMULATION
1460        errcode = do_mathemu(regs);
1461        if (errcode >= 0)
1462                PPC_WARN_EMULATED(math, regs);
1463
1464        switch (errcode) {
1465        case 0:
1466                emulate_single_step(regs);
1467                return;
1468        case 1: {
1469                        int code = 0;
1470                        code = __parse_fpscr(current->thread.fpscr.val);
1471                        _exception(SIGFPE, regs, code, regs->nip);
1472                        return;
1473                }
1474        case -EFAULT:
1475                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1476                return;
1477        default:
1478                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1479                return;
1480        }
1481#else
1482        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1483#endif
1484}
1485#endif /* CONFIG_8xx */
1486
1487#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1488static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1489{
1490        int changed = 0;
1491        /*
1492         * Determine the cause of the debug event, clear the
1493         * event flags and send a trap to the handler. Torez
1494         */
1495        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1496                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1497#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1498                current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1499#endif
1500                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1501                             5);
1502                changed |= 0x01;
1503        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1504                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1505                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1506                             6);
1507                changed |= 0x01;
1508        }  else if (debug_status & DBSR_IAC1) {
1509                current->thread.dbcr0 &= ~DBCR0_IAC1;
1510                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1511                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1512                             1);
1513                changed |= 0x01;
1514        }  else if (debug_status & DBSR_IAC2) {
1515                current->thread.dbcr0 &= ~DBCR0_IAC2;
1516                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1517                             2);
1518                changed |= 0x01;
1519        }  else if (debug_status & DBSR_IAC3) {
1520                current->thread.dbcr0 &= ~DBCR0_IAC3;
1521                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1522                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1523                             3);
1524                changed |= 0x01;
1525        }  else if (debug_status & DBSR_IAC4) {
1526                current->thread.dbcr0 &= ~DBCR0_IAC4;
1527                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1528                             4);
1529                changed |= 0x01;
1530        }
1531        /*
1532         * At the point this routine was called, the MSR(DE) was turned off.
1533         * Check all other debug flags and see if that bit needs to be turned
1534         * back on or not.
1535         */
1536        if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1537                regs->msr |= MSR_DE;
1538        else
1539                /* Make sure the IDM flag is off */
1540                current->thread.dbcr0 &= ~DBCR0_IDM;
1541
1542        if (changed & 0x01)
1543                mtspr(SPRN_DBCR0, current->thread.dbcr0);
1544}
1545
1546void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1547{
1548        current->thread.dbsr = debug_status;
1549
1550        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1551         * on server, it stops on the target of the branch. In order to simulate
1552         * the server behaviour, we thus restart right away with a single step
1553         * instead of stopping here when hitting a BT
1554         */
1555        if (debug_status & DBSR_BT) {
1556                regs->msr &= ~MSR_DE;
1557
1558                /* Disable BT */
1559                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1560                /* Clear the BT event */
1561                mtspr(SPRN_DBSR, DBSR_BT);
1562
1563                /* Do the single step trick only when coming from userspace */
1564                if (user_mode(regs)) {
1565                        current->thread.dbcr0 &= ~DBCR0_BT;
1566                        current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1567                        regs->msr |= MSR_DE;
1568                        return;
1569                }
1570
1571                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1572                               5, SIGTRAP) == NOTIFY_STOP) {
1573                        return;
1574                }
1575                if (debugger_sstep(regs))
1576                        return;
1577        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
1578                regs->msr &= ~MSR_DE;
1579
1580                /* Disable instruction completion */
1581                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1582                /* Clear the instruction completion event */
1583                mtspr(SPRN_DBSR, DBSR_IC);
1584
1585                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1586                               5, SIGTRAP) == NOTIFY_STOP) {
1587                        return;
1588                }
1589
1590                if (debugger_sstep(regs))
1591                        return;
1592
1593                if (user_mode(regs)) {
1594                        current->thread.dbcr0 &= ~DBCR0_IC;
1595                        if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1596                                               current->thread.dbcr1))
1597                                regs->msr |= MSR_DE;
1598                        else
1599                                /* Make sure the IDM bit is off */
1600                                current->thread.dbcr0 &= ~DBCR0_IDM;
1601                }
1602
1603                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1604        } else
1605                handle_debug(regs, debug_status);
1606}
1607#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1608
1609#if !defined(CONFIG_TAU_INT)
1610void TAUException(struct pt_regs *regs)
1611{
1612        printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1613               regs->nip, regs->msr, regs->trap, print_tainted());
1614}
1615#endif /* CONFIG_INT_TAU */
1616
1617#ifdef CONFIG_ALTIVEC
1618void altivec_assist_exception(struct pt_regs *regs)
1619{
1620        int err;
1621
1622        if (!user_mode(regs)) {
1623                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1624                       " at %lx\n", regs->nip);
1625                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1626        }
1627
1628        flush_altivec_to_thread(current);
1629
1630        PPC_WARN_EMULATED(altivec, regs);
1631        err = emulate_altivec(regs);
1632        if (err == 0) {
1633                regs->nip += 4;         /* skip emulated instruction */
1634                emulate_single_step(regs);
1635                return;
1636        }
1637
1638        if (err == -EFAULT) {
1639                /* got an error reading the instruction */
1640                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1641        } else {
1642                /* didn't recognize the instruction */
1643                /* XXX quick hack for now: set the non-Java bit in the VSCR */
1644                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1645                                   "in %s at %lx\n", current->comm, regs->nip);
1646                current->thread.vscr.u[3] |= 0x10000;
1647        }
1648}
1649#endif /* CONFIG_ALTIVEC */
1650
1651#ifdef CONFIG_VSX
1652void vsx_assist_exception(struct pt_regs *regs)
1653{
1654        if (!user_mode(regs)) {
1655                printk(KERN_EMERG "VSX assist exception in kernel mode"
1656                       " at %lx\n", regs->nip);
1657                die("Kernel VSX assist exception", regs, SIGILL);
1658        }
1659
1660        flush_vsx_to_thread(current);
1661        printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1662        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1663}
1664#endif /* CONFIG_VSX */
1665
1666#ifdef CONFIG_FSL_BOOKE
1667void CacheLockingException(struct pt_regs *regs, unsigned long address,
1668                           unsigned long error_code)
1669{
1670        /* We treat cache locking instructions from the user
1671         * as priv ops, in the future we could try to do
1672         * something smarter
1673         */
1674        if (error_code & (ESR_DLK|ESR_ILK))
1675                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1676        return;
1677}
1678#endif /* CONFIG_FSL_BOOKE */
1679
1680#ifdef CONFIG_SPE
1681void SPEFloatingPointException(struct pt_regs *regs)
1682{
1683        extern int do_spe_mathemu(struct pt_regs *regs);
1684        unsigned long spefscr;
1685        int fpexc_mode;
1686        int code = 0;
1687        int err;
1688
1689        flush_spe_to_thread(current);
1690
1691        spefscr = current->thread.spefscr;
1692        fpexc_mode = current->thread.fpexc_mode;
1693
1694        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1695                code = FPE_FLTOVF;
1696        }
1697        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1698                code = FPE_FLTUND;
1699        }
1700        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1701                code = FPE_FLTDIV;
1702        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1703                code = FPE_FLTINV;
1704        }
1705        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1706                code = FPE_FLTRES;
1707
1708        err = do_spe_mathemu(regs);
1709        if (err == 0) {
1710                regs->nip += 4;         /* skip emulated instruction */
1711                emulate_single_step(regs);
1712                return;
1713        }
1714
1715        if (err == -EFAULT) {
1716                /* got an error reading the instruction */
1717                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1718        } else if (err == -EINVAL) {
1719                /* didn't recognize the instruction */
1720                printk(KERN_ERR "unrecognized spe instruction "
1721                       "in %s at %lx\n", current->comm, regs->nip);
1722        } else {
1723                _exception(SIGFPE, regs, code, regs->nip);
1724        }
1725
1726        return;
1727}
1728
1729void SPEFloatingPointRoundException(struct pt_regs *regs)
1730{
1731        extern int speround_handler(struct pt_regs *regs);
1732        int err;
1733
1734        preempt_disable();
1735        if (regs->msr & MSR_SPE)
1736                giveup_spe(current);
1737        preempt_enable();
1738
1739        regs->nip -= 4;
1740        err = speround_handler(regs);
1741        if (err == 0) {
1742                regs->nip += 4;         /* skip emulated instruction */
1743                emulate_single_step(regs);
1744                return;
1745        }
1746
1747        if (err == -EFAULT) {
1748                /* got an error reading the instruction */
1749                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1750        } else if (err == -EINVAL) {
1751                /* didn't recognize the instruction */
1752                printk(KERN_ERR "unrecognized spe instruction "
1753                       "in %s at %lx\n", current->comm, regs->nip);
1754        } else {
1755                _exception(SIGFPE, regs, 0, regs->nip);
1756                return;
1757        }
1758}
1759#endif
1760
1761/*
1762 * We enter here if we get an unrecoverable exception, that is, one
1763 * that happened at a point where the RI (recoverable interrupt) bit
1764 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1765 * we therefore lost state by taking this exception.
1766 */
1767void unrecoverable_exception(struct pt_regs *regs)
1768{
1769        printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1770               regs->trap, regs->nip);
1771        die("Unrecoverable exception", regs, SIGABRT);
1772}
1773
1774#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1775/*
1776 * Default handler for a Watchdog exception,
1777 * spins until a reboot occurs
1778 */
1779void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1780{
1781        /* Generic WatchdogHandler, implement your own */
1782        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1783        return;
1784}
1785
1786void WatchdogException(struct pt_regs *regs)
1787{
1788        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1789        WatchdogHandler(regs);
1790}
1791#endif
1792
1793/*
1794 * We enter here if we discover during exception entry that we are
1795 * running in supervisor mode with a userspace value in the stack pointer.
1796 */
1797void kernel_bad_stack(struct pt_regs *regs)
1798{
1799        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1800               regs->gpr[1], regs->nip);
1801        die("Bad kernel stack pointer", regs, SIGABRT);
1802}
1803
1804void __init trap_init(void)
1805{
1806}
1807
1808
1809#ifdef CONFIG_PPC_EMULATED_STATS
1810
1811#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
1812
1813struct ppc_emulated ppc_emulated = {
1814#ifdef CONFIG_ALTIVEC
1815        WARN_EMULATED_SETUP(altivec),
1816#endif
1817        WARN_EMULATED_SETUP(dcba),
1818        WARN_EMULATED_SETUP(dcbz),
1819        WARN_EMULATED_SETUP(fp_pair),
1820        WARN_EMULATED_SETUP(isel),
1821        WARN_EMULATED_SETUP(mcrxr),
1822        WARN_EMULATED_SETUP(mfpvr),
1823        WARN_EMULATED_SETUP(multiple),
1824        WARN_EMULATED_SETUP(popcntb),
1825        WARN_EMULATED_SETUP(spe),
1826        WARN_EMULATED_SETUP(string),
1827        WARN_EMULATED_SETUP(unaligned),
1828#ifdef CONFIG_MATH_EMULATION
1829        WARN_EMULATED_SETUP(math),
1830#endif
1831#ifdef CONFIG_VSX
1832        WARN_EMULATED_SETUP(vsx),
1833#endif
1834#ifdef CONFIG_PPC64
1835        WARN_EMULATED_SETUP(mfdscr),
1836        WARN_EMULATED_SETUP(mtdscr),
1837#endif
1838};
1839
1840u32 ppc_warn_emulated;
1841
1842void ppc_warn_emulated_print(const char *type)
1843{
1844        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1845                            type);
1846}
1847
1848static int __init ppc_warn_emulated_init(void)
1849{
1850        struct dentry *dir, *d;
1851        unsigned int i;
1852        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1853
1854        if (!powerpc_debugfs_root)
1855                return -ENODEV;
1856
1857        dir = debugfs_create_dir("emulated_instructions",
1858                                 powerpc_debugfs_root);
1859        if (!dir)
1860                return -ENOMEM;
1861
1862        d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1863                               &ppc_warn_emulated);
1864        if (!d)
1865                goto fail;
1866
1867        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1868                d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1869                                       (u32 *)&entries[i].val.counter);
1870                if (!d)
1871                        goto fail;
1872        }
1873
1874        return 0;
1875
1876fail:
1877        debugfs_remove_recursive(dir);
1878        return -ENOMEM;
1879}
1880
1881device_initcall(ppc_warn_emulated_init);
1882
1883#endif /* CONFIG_PPC_EMULATED_STATS */
1884