linux/arch/powerpc/kvm/book3s_64_mmu_hv.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program; if not, write to the Free Software
  13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  14 *
  15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16 */
  17
  18#include <linux/types.h>
  19#include <linux/string.h>
  20#include <linux/kvm.h>
  21#include <linux/kvm_host.h>
  22#include <linux/highmem.h>
  23#include <linux/gfp.h>
  24#include <linux/slab.h>
  25#include <linux/hugetlb.h>
  26#include <linux/vmalloc.h>
  27#include <linux/srcu.h>
  28#include <linux/anon_inodes.h>
  29#include <linux/file.h>
  30
  31#include <asm/tlbflush.h>
  32#include <asm/kvm_ppc.h>
  33#include <asm/kvm_book3s.h>
  34#include <asm/mmu-hash64.h>
  35#include <asm/hvcall.h>
  36#include <asm/synch.h>
  37#include <asm/ppc-opcode.h>
  38#include <asm/cputable.h>
  39
  40/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
  41#define MAX_LPID_970    63
  42
  43/* Power architecture requires HPT is at least 256kB */
  44#define PPC_MIN_HPT_ORDER       18
  45
  46static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  47                                long pte_index, unsigned long pteh,
  48                                unsigned long ptel, unsigned long *pte_idx_ret);
  49static void kvmppc_rmap_reset(struct kvm *kvm);
  50
  51long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  52{
  53        unsigned long hpt;
  54        struct revmap_entry *rev;
  55        struct kvmppc_linear_info *li;
  56        long order = kvm_hpt_order;
  57
  58        if (htab_orderp) {
  59                order = *htab_orderp;
  60                if (order < PPC_MIN_HPT_ORDER)
  61                        order = PPC_MIN_HPT_ORDER;
  62        }
  63
  64        /*
  65         * If the user wants a different size from default,
  66         * try first to allocate it from the kernel page allocator.
  67         */
  68        hpt = 0;
  69        if (order != kvm_hpt_order) {
  70                hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  71                                       __GFP_NOWARN, order - PAGE_SHIFT);
  72                if (!hpt)
  73                        --order;
  74        }
  75
  76        /* Next try to allocate from the preallocated pool */
  77        if (!hpt) {
  78                li = kvm_alloc_hpt();
  79                if (li) {
  80                        hpt = (ulong)li->base_virt;
  81                        kvm->arch.hpt_li = li;
  82                        order = kvm_hpt_order;
  83                }
  84        }
  85
  86        /* Lastly try successively smaller sizes from the page allocator */
  87        while (!hpt && order > PPC_MIN_HPT_ORDER) {
  88                hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  89                                       __GFP_NOWARN, order - PAGE_SHIFT);
  90                if (!hpt)
  91                        --order;
  92        }
  93
  94        if (!hpt)
  95                return -ENOMEM;
  96
  97        kvm->arch.hpt_virt = hpt;
  98        kvm->arch.hpt_order = order;
  99        /* HPTEs are 2**4 bytes long */
 100        kvm->arch.hpt_npte = 1ul << (order - 4);
 101        /* 128 (2**7) bytes in each HPTEG */
 102        kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
 103
 104        /* Allocate reverse map array */
 105        rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
 106        if (!rev) {
 107                pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
 108                goto out_freehpt;
 109        }
 110        kvm->arch.revmap = rev;
 111        kvm->arch.sdr1 = __pa(hpt) | (order - 18);
 112
 113        pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
 114                hpt, order, kvm->arch.lpid);
 115
 116        if (htab_orderp)
 117                *htab_orderp = order;
 118        return 0;
 119
 120 out_freehpt:
 121        if (kvm->arch.hpt_li)
 122                kvm_release_hpt(kvm->arch.hpt_li);
 123        else
 124                free_pages(hpt, order - PAGE_SHIFT);
 125        return -ENOMEM;
 126}
 127
 128long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
 129{
 130        long err = -EBUSY;
 131        long order;
 132
 133        mutex_lock(&kvm->lock);
 134        if (kvm->arch.rma_setup_done) {
 135                kvm->arch.rma_setup_done = 0;
 136                /* order rma_setup_done vs. vcpus_running */
 137                smp_mb();
 138                if (atomic_read(&kvm->arch.vcpus_running)) {
 139                        kvm->arch.rma_setup_done = 1;
 140                        goto out;
 141                }
 142        }
 143        if (kvm->arch.hpt_virt) {
 144                order = kvm->arch.hpt_order;
 145                /* Set the entire HPT to 0, i.e. invalid HPTEs */
 146                memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
 147                /*
 148                 * Reset all the reverse-mapping chains for all memslots
 149                 */
 150                kvmppc_rmap_reset(kvm);
 151                /* Ensure that each vcpu will flush its TLB on next entry. */
 152                cpumask_setall(&kvm->arch.need_tlb_flush);
 153                *htab_orderp = order;
 154                err = 0;
 155        } else {
 156                err = kvmppc_alloc_hpt(kvm, htab_orderp);
 157                order = *htab_orderp;
 158        }
 159 out:
 160        mutex_unlock(&kvm->lock);
 161        return err;
 162}
 163
 164void kvmppc_free_hpt(struct kvm *kvm)
 165{
 166        kvmppc_free_lpid(kvm->arch.lpid);
 167        vfree(kvm->arch.revmap);
 168        if (kvm->arch.hpt_li)
 169                kvm_release_hpt(kvm->arch.hpt_li);
 170        else
 171                free_pages(kvm->arch.hpt_virt,
 172                           kvm->arch.hpt_order - PAGE_SHIFT);
 173}
 174
 175/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
 176static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
 177{
 178        return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
 179}
 180
 181/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
 182static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
 183{
 184        return (pgsize == 0x10000) ? 0x1000 : 0;
 185}
 186
 187void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
 188                     unsigned long porder)
 189{
 190        unsigned long i;
 191        unsigned long npages;
 192        unsigned long hp_v, hp_r;
 193        unsigned long addr, hash;
 194        unsigned long psize;
 195        unsigned long hp0, hp1;
 196        unsigned long idx_ret;
 197        long ret;
 198        struct kvm *kvm = vcpu->kvm;
 199
 200        psize = 1ul << porder;
 201        npages = memslot->npages >> (porder - PAGE_SHIFT);
 202
 203        /* VRMA can't be > 1TB */
 204        if (npages > 1ul << (40 - porder))
 205                npages = 1ul << (40 - porder);
 206        /* Can't use more than 1 HPTE per HPTEG */
 207        if (npages > kvm->arch.hpt_mask + 1)
 208                npages = kvm->arch.hpt_mask + 1;
 209
 210        hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
 211                HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
 212        hp1 = hpte1_pgsize_encoding(psize) |
 213                HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
 214
 215        for (i = 0; i < npages; ++i) {
 216                addr = i << porder;
 217                /* can't use hpt_hash since va > 64 bits */
 218                hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
 219                /*
 220                 * We assume that the hash table is empty and no
 221                 * vcpus are using it at this stage.  Since we create
 222                 * at most one HPTE per HPTEG, we just assume entry 7
 223                 * is available and use it.
 224                 */
 225                hash = (hash << 3) + 7;
 226                hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
 227                hp_r = hp1 | addr;
 228                ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
 229                                                 &idx_ret);
 230                if (ret != H_SUCCESS) {
 231                        pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
 232                               addr, ret);
 233                        break;
 234                }
 235        }
 236}
 237
 238int kvmppc_mmu_hv_init(void)
 239{
 240        unsigned long host_lpid, rsvd_lpid;
 241
 242        if (!cpu_has_feature(CPU_FTR_HVMODE))
 243                return -EINVAL;
 244
 245        /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
 246        if (cpu_has_feature(CPU_FTR_ARCH_206)) {
 247                host_lpid = mfspr(SPRN_LPID);   /* POWER7 */
 248                rsvd_lpid = LPID_RSVD;
 249        } else {
 250                host_lpid = 0;                  /* PPC970 */
 251                rsvd_lpid = MAX_LPID_970;
 252        }
 253
 254        kvmppc_init_lpid(rsvd_lpid + 1);
 255
 256        kvmppc_claim_lpid(host_lpid);
 257        /* rsvd_lpid is reserved for use in partition switching */
 258        kvmppc_claim_lpid(rsvd_lpid);
 259
 260        return 0;
 261}
 262
 263void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
 264{
 265}
 266
 267static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
 268{
 269        kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
 270}
 271
 272/*
 273 * This is called to get a reference to a guest page if there isn't
 274 * one already in the memslot->arch.slot_phys[] array.
 275 */
 276static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
 277                                  struct kvm_memory_slot *memslot,
 278                                  unsigned long psize)
 279{
 280        unsigned long start;
 281        long np, err;
 282        struct page *page, *hpage, *pages[1];
 283        unsigned long s, pgsize;
 284        unsigned long *physp;
 285        unsigned int is_io, got, pgorder;
 286        struct vm_area_struct *vma;
 287        unsigned long pfn, i, npages;
 288
 289        physp = memslot->arch.slot_phys;
 290        if (!physp)
 291                return -EINVAL;
 292        if (physp[gfn - memslot->base_gfn])
 293                return 0;
 294
 295        is_io = 0;
 296        got = 0;
 297        page = NULL;
 298        pgsize = psize;
 299        err = -EINVAL;
 300        start = gfn_to_hva_memslot(memslot, gfn);
 301
 302        /* Instantiate and get the page we want access to */
 303        np = get_user_pages_fast(start, 1, 1, pages);
 304        if (np != 1) {
 305                /* Look up the vma for the page */
 306                down_read(&current->mm->mmap_sem);
 307                vma = find_vma(current->mm, start);
 308                if (!vma || vma->vm_start > start ||
 309                    start + psize > vma->vm_end ||
 310                    !(vma->vm_flags & VM_PFNMAP))
 311                        goto up_err;
 312                is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
 313                pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 314                /* check alignment of pfn vs. requested page size */
 315                if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
 316                        goto up_err;
 317                up_read(&current->mm->mmap_sem);
 318
 319        } else {
 320                page = pages[0];
 321                got = KVMPPC_GOT_PAGE;
 322
 323                /* See if this is a large page */
 324                s = PAGE_SIZE;
 325                if (PageHuge(page)) {
 326                        hpage = compound_head(page);
 327                        s <<= compound_order(hpage);
 328                        /* Get the whole large page if slot alignment is ok */
 329                        if (s > psize && slot_is_aligned(memslot, s) &&
 330                            !(memslot->userspace_addr & (s - 1))) {
 331                                start &= ~(s - 1);
 332                                pgsize = s;
 333                                get_page(hpage);
 334                                put_page(page);
 335                                page = hpage;
 336                        }
 337                }
 338                if (s < psize)
 339                        goto out;
 340                pfn = page_to_pfn(page);
 341        }
 342
 343        npages = pgsize >> PAGE_SHIFT;
 344        pgorder = __ilog2(npages);
 345        physp += (gfn - memslot->base_gfn) & ~(npages - 1);
 346        spin_lock(&kvm->arch.slot_phys_lock);
 347        for (i = 0; i < npages; ++i) {
 348                if (!physp[i]) {
 349                        physp[i] = ((pfn + i) << PAGE_SHIFT) +
 350                                got + is_io + pgorder;
 351                        got = 0;
 352                }
 353        }
 354        spin_unlock(&kvm->arch.slot_phys_lock);
 355        err = 0;
 356
 357 out:
 358        if (got)
 359                put_page(page);
 360        return err;
 361
 362 up_err:
 363        up_read(&current->mm->mmap_sem);
 364        return err;
 365}
 366
 367long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
 368                                long pte_index, unsigned long pteh,
 369                                unsigned long ptel, unsigned long *pte_idx_ret)
 370{
 371        unsigned long psize, gpa, gfn;
 372        struct kvm_memory_slot *memslot;
 373        long ret;
 374
 375        if (kvm->arch.using_mmu_notifiers)
 376                goto do_insert;
 377
 378        psize = hpte_page_size(pteh, ptel);
 379        if (!psize)
 380                return H_PARAMETER;
 381
 382        pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
 383
 384        /* Find the memslot (if any) for this address */
 385        gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
 386        gfn = gpa >> PAGE_SHIFT;
 387        memslot = gfn_to_memslot(kvm, gfn);
 388        if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
 389                if (!slot_is_aligned(memslot, psize))
 390                        return H_PARAMETER;
 391                if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
 392                        return H_PARAMETER;
 393        }
 394
 395 do_insert:
 396        /* Protect linux PTE lookup from page table destruction */
 397        rcu_read_lock_sched();  /* this disables preemption too */
 398        ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
 399                                current->mm->pgd, false, pte_idx_ret);
 400        rcu_read_unlock_sched();
 401        if (ret == H_TOO_HARD) {
 402                /* this can't happen */
 403                pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
 404                ret = H_RESOURCE;       /* or something */
 405        }
 406        return ret;
 407
 408}
 409
 410/*
 411 * We come here on a H_ENTER call from the guest when we are not
 412 * using mmu notifiers and we don't have the requested page pinned
 413 * already.
 414 */
 415long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
 416                             long pte_index, unsigned long pteh,
 417                             unsigned long ptel)
 418{
 419        return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
 420                                          pteh, ptel, &vcpu->arch.gpr[4]);
 421}
 422
 423static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
 424                                                         gva_t eaddr)
 425{
 426        u64 mask;
 427        int i;
 428
 429        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 430                if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
 431                        continue;
 432
 433                if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
 434                        mask = ESID_MASK_1T;
 435                else
 436                        mask = ESID_MASK;
 437
 438                if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
 439                        return &vcpu->arch.slb[i];
 440        }
 441        return NULL;
 442}
 443
 444static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
 445                        unsigned long ea)
 446{
 447        unsigned long ra_mask;
 448
 449        ra_mask = hpte_page_size(v, r) - 1;
 450        return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
 451}
 452
 453static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 454                        struct kvmppc_pte *gpte, bool data)
 455{
 456        struct kvm *kvm = vcpu->kvm;
 457        struct kvmppc_slb *slbe;
 458        unsigned long slb_v;
 459        unsigned long pp, key;
 460        unsigned long v, gr;
 461        unsigned long *hptep;
 462        int index;
 463        int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
 464
 465        /* Get SLB entry */
 466        if (virtmode) {
 467                slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
 468                if (!slbe)
 469                        return -EINVAL;
 470                slb_v = slbe->origv;
 471        } else {
 472                /* real mode access */
 473                slb_v = vcpu->kvm->arch.vrma_slb_v;
 474        }
 475
 476        /* Find the HPTE in the hash table */
 477        index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
 478                                         HPTE_V_VALID | HPTE_V_ABSENT);
 479        if (index < 0)
 480                return -ENOENT;
 481        hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
 482        v = hptep[0] & ~HPTE_V_HVLOCK;
 483        gr = kvm->arch.revmap[index].guest_rpte;
 484
 485        /* Unlock the HPTE */
 486        asm volatile("lwsync" : : : "memory");
 487        hptep[0] = v;
 488
 489        gpte->eaddr = eaddr;
 490        gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
 491
 492        /* Get PP bits and key for permission check */
 493        pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
 494        key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
 495        key &= slb_v;
 496
 497        /* Calculate permissions */
 498        gpte->may_read = hpte_read_permission(pp, key);
 499        gpte->may_write = hpte_write_permission(pp, key);
 500        gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
 501
 502        /* Storage key permission check for POWER7 */
 503        if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
 504                int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
 505                if (amrfield & 1)
 506                        gpte->may_read = 0;
 507                if (amrfield & 2)
 508                        gpte->may_write = 0;
 509        }
 510
 511        /* Get the guest physical address */
 512        gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
 513        return 0;
 514}
 515
 516/*
 517 * Quick test for whether an instruction is a load or a store.
 518 * If the instruction is a load or a store, then this will indicate
 519 * which it is, at least on server processors.  (Embedded processors
 520 * have some external PID instructions that don't follow the rule
 521 * embodied here.)  If the instruction isn't a load or store, then
 522 * this doesn't return anything useful.
 523 */
 524static int instruction_is_store(unsigned int instr)
 525{
 526        unsigned int mask;
 527
 528        mask = 0x10000000;
 529        if ((instr & 0xfc000000) == 0x7c000000)
 530                mask = 0x100;           /* major opcode 31 */
 531        return (instr & mask) != 0;
 532}
 533
 534static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
 535                                  unsigned long gpa, gva_t ea, int is_store)
 536{
 537        int ret;
 538        u32 last_inst;
 539        unsigned long srr0 = kvmppc_get_pc(vcpu);
 540
 541        /* We try to load the last instruction.  We don't let
 542         * emulate_instruction do it as it doesn't check what
 543         * kvmppc_ld returns.
 544         * If we fail, we just return to the guest and try executing it again.
 545         */
 546        if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
 547                ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
 548                if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
 549                        return RESUME_GUEST;
 550                vcpu->arch.last_inst = last_inst;
 551        }
 552
 553        /*
 554         * WARNING: We do not know for sure whether the instruction we just
 555         * read from memory is the same that caused the fault in the first
 556         * place.  If the instruction we read is neither an load or a store,
 557         * then it can't access memory, so we don't need to worry about
 558         * enforcing access permissions.  So, assuming it is a load or
 559         * store, we just check that its direction (load or store) is
 560         * consistent with the original fault, since that's what we
 561         * checked the access permissions against.  If there is a mismatch
 562         * we just return and retry the instruction.
 563         */
 564
 565        if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
 566                return RESUME_GUEST;
 567
 568        /*
 569         * Emulated accesses are emulated by looking at the hash for
 570         * translation once, then performing the access later. The
 571         * translation could be invalidated in the meantime in which
 572         * point performing the subsequent memory access on the old
 573         * physical address could possibly be a security hole for the
 574         * guest (but not the host).
 575         *
 576         * This is less of an issue for MMIO stores since they aren't
 577         * globally visible. It could be an issue for MMIO loads to
 578         * a certain extent but we'll ignore it for now.
 579         */
 580
 581        vcpu->arch.paddr_accessed = gpa;
 582        vcpu->arch.vaddr_accessed = ea;
 583        return kvmppc_emulate_mmio(run, vcpu);
 584}
 585
 586int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 587                                unsigned long ea, unsigned long dsisr)
 588{
 589        struct kvm *kvm = vcpu->kvm;
 590        unsigned long *hptep, hpte[3], r;
 591        unsigned long mmu_seq, psize, pte_size;
 592        unsigned long gpa, gfn, hva, pfn;
 593        struct kvm_memory_slot *memslot;
 594        unsigned long *rmap;
 595        struct revmap_entry *rev;
 596        struct page *page, *pages[1];
 597        long index, ret, npages;
 598        unsigned long is_io;
 599        unsigned int writing, write_ok;
 600        struct vm_area_struct *vma;
 601        unsigned long rcbits;
 602
 603        /*
 604         * Real-mode code has already searched the HPT and found the
 605         * entry we're interested in.  Lock the entry and check that
 606         * it hasn't changed.  If it has, just return and re-execute the
 607         * instruction.
 608         */
 609        if (ea != vcpu->arch.pgfault_addr)
 610                return RESUME_GUEST;
 611        index = vcpu->arch.pgfault_index;
 612        hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
 613        rev = &kvm->arch.revmap[index];
 614        preempt_disable();
 615        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 616                cpu_relax();
 617        hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
 618        hpte[1] = hptep[1];
 619        hpte[2] = r = rev->guest_rpte;
 620        asm volatile("lwsync" : : : "memory");
 621        hptep[0] = hpte[0];
 622        preempt_enable();
 623
 624        if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
 625            hpte[1] != vcpu->arch.pgfault_hpte[1])
 626                return RESUME_GUEST;
 627
 628        /* Translate the logical address and get the page */
 629        psize = hpte_page_size(hpte[0], r);
 630        gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
 631        gfn = gpa >> PAGE_SHIFT;
 632        memslot = gfn_to_memslot(kvm, gfn);
 633
 634        /* No memslot means it's an emulated MMIO region */
 635        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 636                return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
 637                                              dsisr & DSISR_ISSTORE);
 638
 639        if (!kvm->arch.using_mmu_notifiers)
 640                return -EFAULT;         /* should never get here */
 641
 642        /* used to check for invalidations in progress */
 643        mmu_seq = kvm->mmu_notifier_seq;
 644        smp_rmb();
 645
 646        is_io = 0;
 647        pfn = 0;
 648        page = NULL;
 649        pte_size = PAGE_SIZE;
 650        writing = (dsisr & DSISR_ISSTORE) != 0;
 651        /* If writing != 0, then the HPTE must allow writing, if we get here */
 652        write_ok = writing;
 653        hva = gfn_to_hva_memslot(memslot, gfn);
 654        npages = get_user_pages_fast(hva, 1, writing, pages);
 655        if (npages < 1) {
 656                /* Check if it's an I/O mapping */
 657                down_read(&current->mm->mmap_sem);
 658                vma = find_vma(current->mm, hva);
 659                if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
 660                    (vma->vm_flags & VM_PFNMAP)) {
 661                        pfn = vma->vm_pgoff +
 662                                ((hva - vma->vm_start) >> PAGE_SHIFT);
 663                        pte_size = psize;
 664                        is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
 665                        write_ok = vma->vm_flags & VM_WRITE;
 666                }
 667                up_read(&current->mm->mmap_sem);
 668                if (!pfn)
 669                        return -EFAULT;
 670        } else {
 671                page = pages[0];
 672                if (PageHuge(page)) {
 673                        page = compound_head(page);
 674                        pte_size <<= compound_order(page);
 675                }
 676                /* if the guest wants write access, see if that is OK */
 677                if (!writing && hpte_is_writable(r)) {
 678                        unsigned int hugepage_shift;
 679                        pte_t *ptep, pte;
 680
 681                        /*
 682                         * We need to protect against page table destruction
 683                         * while looking up and updating the pte.
 684                         */
 685                        rcu_read_lock_sched();
 686                        ptep = find_linux_pte_or_hugepte(current->mm->pgd,
 687                                                         hva, &hugepage_shift);
 688                        if (ptep) {
 689                                pte = kvmppc_read_update_linux_pte(ptep, 1,
 690                                                           hugepage_shift);
 691                                if (pte_write(pte))
 692                                        write_ok = 1;
 693                        }
 694                        rcu_read_unlock_sched();
 695                }
 696                pfn = page_to_pfn(page);
 697        }
 698
 699        ret = -EFAULT;
 700        if (psize > pte_size)
 701                goto out_put;
 702
 703        /* Check WIMG vs. the actual page we're accessing */
 704        if (!hpte_cache_flags_ok(r, is_io)) {
 705                if (is_io)
 706                        return -EFAULT;
 707                /*
 708                 * Allow guest to map emulated device memory as
 709                 * uncacheable, but actually make it cacheable.
 710                 */
 711                r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
 712        }
 713
 714        /* Set the HPTE to point to pfn */
 715        r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
 716        if (hpte_is_writable(r) && !write_ok)
 717                r = hpte_make_readonly(r);
 718        ret = RESUME_GUEST;
 719        preempt_disable();
 720        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 721                cpu_relax();
 722        if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
 723            rev->guest_rpte != hpte[2])
 724                /* HPTE has been changed under us; let the guest retry */
 725                goto out_unlock;
 726        hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 727
 728        rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
 729        lock_rmap(rmap);
 730
 731        /* Check if we might have been invalidated; let the guest retry if so */
 732        ret = RESUME_GUEST;
 733        if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
 734                unlock_rmap(rmap);
 735                goto out_unlock;
 736        }
 737
 738        /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
 739        rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 740        r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 741
 742        if (hptep[0] & HPTE_V_VALID) {
 743                /* HPTE was previously valid, so we need to invalidate it */
 744                unlock_rmap(rmap);
 745                hptep[0] |= HPTE_V_ABSENT;
 746                kvmppc_invalidate_hpte(kvm, hptep, index);
 747                /* don't lose previous R and C bits */
 748                r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
 749        } else {
 750                kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
 751        }
 752
 753        hptep[1] = r;
 754        eieio();
 755        hptep[0] = hpte[0];
 756        asm volatile("ptesync" : : : "memory");
 757        preempt_enable();
 758        if (page && hpte_is_writable(r))
 759                SetPageDirty(page);
 760
 761 out_put:
 762        if (page) {
 763                /*
 764                 * We drop pages[0] here, not page because page might
 765                 * have been set to the head page of a compound, but
 766                 * we have to drop the reference on the correct tail
 767                 * page to match the get inside gup()
 768                 */
 769                put_page(pages[0]);
 770        }
 771        return ret;
 772
 773 out_unlock:
 774        hptep[0] &= ~HPTE_V_HVLOCK;
 775        preempt_enable();
 776        goto out_put;
 777}
 778
 779static void kvmppc_rmap_reset(struct kvm *kvm)
 780{
 781        struct kvm_memslots *slots;
 782        struct kvm_memory_slot *memslot;
 783        int srcu_idx;
 784
 785        srcu_idx = srcu_read_lock(&kvm->srcu);
 786        slots = kvm->memslots;
 787        kvm_for_each_memslot(memslot, slots) {
 788                /*
 789                 * This assumes it is acceptable to lose reference and
 790                 * change bits across a reset.
 791                 */
 792                memset(memslot->arch.rmap, 0,
 793                       memslot->npages * sizeof(*memslot->arch.rmap));
 794        }
 795        srcu_read_unlock(&kvm->srcu, srcu_idx);
 796}
 797
 798static int kvm_handle_hva_range(struct kvm *kvm,
 799                                unsigned long start,
 800                                unsigned long end,
 801                                int (*handler)(struct kvm *kvm,
 802                                               unsigned long *rmapp,
 803                                               unsigned long gfn))
 804{
 805        int ret;
 806        int retval = 0;
 807        struct kvm_memslots *slots;
 808        struct kvm_memory_slot *memslot;
 809
 810        slots = kvm_memslots(kvm);
 811        kvm_for_each_memslot(memslot, slots) {
 812                unsigned long hva_start, hva_end;
 813                gfn_t gfn, gfn_end;
 814
 815                hva_start = max(start, memslot->userspace_addr);
 816                hva_end = min(end, memslot->userspace_addr +
 817                                        (memslot->npages << PAGE_SHIFT));
 818                if (hva_start >= hva_end)
 819                        continue;
 820                /*
 821                 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 822                 * {gfn, gfn+1, ..., gfn_end-1}.
 823                 */
 824                gfn = hva_to_gfn_memslot(hva_start, memslot);
 825                gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 826
 827                for (; gfn < gfn_end; ++gfn) {
 828                        gfn_t gfn_offset = gfn - memslot->base_gfn;
 829
 830                        ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
 831                        retval |= ret;
 832                }
 833        }
 834
 835        return retval;
 836}
 837
 838static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 839                          int (*handler)(struct kvm *kvm, unsigned long *rmapp,
 840                                         unsigned long gfn))
 841{
 842        return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
 843}
 844
 845static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
 846                           unsigned long gfn)
 847{
 848        struct revmap_entry *rev = kvm->arch.revmap;
 849        unsigned long h, i, j;
 850        unsigned long *hptep;
 851        unsigned long ptel, psize, rcbits;
 852
 853        for (;;) {
 854                lock_rmap(rmapp);
 855                if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 856                        unlock_rmap(rmapp);
 857                        break;
 858                }
 859
 860                /*
 861                 * To avoid an ABBA deadlock with the HPTE lock bit,
 862                 * we can't spin on the HPTE lock while holding the
 863                 * rmap chain lock.
 864                 */
 865                i = *rmapp & KVMPPC_RMAP_INDEX;
 866                hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
 867                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 868                        /* unlock rmap before spinning on the HPTE lock */
 869                        unlock_rmap(rmapp);
 870                        while (hptep[0] & HPTE_V_HVLOCK)
 871                                cpu_relax();
 872                        continue;
 873                }
 874                j = rev[i].forw;
 875                if (j == i) {
 876                        /* chain is now empty */
 877                        *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 878                } else {
 879                        /* remove i from chain */
 880                        h = rev[i].back;
 881                        rev[h].forw = j;
 882                        rev[j].back = h;
 883                        rev[i].forw = rev[i].back = i;
 884                        *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
 885                }
 886
 887                /* Now check and modify the HPTE */
 888                ptel = rev[i].guest_rpte;
 889                psize = hpte_page_size(hptep[0], ptel);
 890                if ((hptep[0] & HPTE_V_VALID) &&
 891                    hpte_rpn(ptel, psize) == gfn) {
 892                        if (kvm->arch.using_mmu_notifiers)
 893                                hptep[0] |= HPTE_V_ABSENT;
 894                        kvmppc_invalidate_hpte(kvm, hptep, i);
 895                        /* Harvest R and C */
 896                        rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
 897                        *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 898                        if (rcbits & ~rev[i].guest_rpte) {
 899                                rev[i].guest_rpte = ptel | rcbits;
 900                                note_hpte_modification(kvm, &rev[i]);
 901                        }
 902                }
 903                unlock_rmap(rmapp);
 904                hptep[0] &= ~HPTE_V_HVLOCK;
 905        }
 906        return 0;
 907}
 908
 909int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
 910{
 911        if (kvm->arch.using_mmu_notifiers)
 912                kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
 913        return 0;
 914}
 915
 916int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
 917{
 918        if (kvm->arch.using_mmu_notifiers)
 919                kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
 920        return 0;
 921}
 922
 923void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
 924{
 925        unsigned long *rmapp;
 926        unsigned long gfn;
 927        unsigned long n;
 928
 929        rmapp = memslot->arch.rmap;
 930        gfn = memslot->base_gfn;
 931        for (n = memslot->npages; n; --n) {
 932                /*
 933                 * Testing the present bit without locking is OK because
 934                 * the memslot has been marked invalid already, and hence
 935                 * no new HPTEs referencing this page can be created,
 936                 * thus the present bit can't go from 0 to 1.
 937                 */
 938                if (*rmapp & KVMPPC_RMAP_PRESENT)
 939                        kvm_unmap_rmapp(kvm, rmapp, gfn);
 940                ++rmapp;
 941                ++gfn;
 942        }
 943}
 944
 945static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 946                         unsigned long gfn)
 947{
 948        struct revmap_entry *rev = kvm->arch.revmap;
 949        unsigned long head, i, j;
 950        unsigned long *hptep;
 951        int ret = 0;
 952
 953 retry:
 954        lock_rmap(rmapp);
 955        if (*rmapp & KVMPPC_RMAP_REFERENCED) {
 956                *rmapp &= ~KVMPPC_RMAP_REFERENCED;
 957                ret = 1;
 958        }
 959        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 960                unlock_rmap(rmapp);
 961                return ret;
 962        }
 963
 964        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 965        do {
 966                hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
 967                j = rev[i].forw;
 968
 969                /* If this HPTE isn't referenced, ignore it */
 970                if (!(hptep[1] & HPTE_R_R))
 971                        continue;
 972
 973                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 974                        /* unlock rmap before spinning on the HPTE lock */
 975                        unlock_rmap(rmapp);
 976                        while (hptep[0] & HPTE_V_HVLOCK)
 977                                cpu_relax();
 978                        goto retry;
 979                }
 980
 981                /* Now check and modify the HPTE */
 982                if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
 983                        kvmppc_clear_ref_hpte(kvm, hptep, i);
 984                        if (!(rev[i].guest_rpte & HPTE_R_R)) {
 985                                rev[i].guest_rpte |= HPTE_R_R;
 986                                note_hpte_modification(kvm, &rev[i]);
 987                        }
 988                        ret = 1;
 989                }
 990                hptep[0] &= ~HPTE_V_HVLOCK;
 991        } while ((i = j) != head);
 992
 993        unlock_rmap(rmapp);
 994        return ret;
 995}
 996
 997int kvm_age_hva(struct kvm *kvm, unsigned long hva)
 998{
 999        if (!kvm->arch.using_mmu_notifiers)
1000                return 0;
1001        return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
1002}
1003
1004static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1005                              unsigned long gfn)
1006{
1007        struct revmap_entry *rev = kvm->arch.revmap;
1008        unsigned long head, i, j;
1009        unsigned long *hp;
1010        int ret = 1;
1011
1012        if (*rmapp & KVMPPC_RMAP_REFERENCED)
1013                return 1;
1014
1015        lock_rmap(rmapp);
1016        if (*rmapp & KVMPPC_RMAP_REFERENCED)
1017                goto out;
1018
1019        if (*rmapp & KVMPPC_RMAP_PRESENT) {
1020                i = head = *rmapp & KVMPPC_RMAP_INDEX;
1021                do {
1022                        hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1023                        j = rev[i].forw;
1024                        if (hp[1] & HPTE_R_R)
1025                                goto out;
1026                } while ((i = j) != head);
1027        }
1028        ret = 0;
1029
1030 out:
1031        unlock_rmap(rmapp);
1032        return ret;
1033}
1034
1035int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1036{
1037        if (!kvm->arch.using_mmu_notifiers)
1038                return 0;
1039        return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1040}
1041
1042void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1043{
1044        if (!kvm->arch.using_mmu_notifiers)
1045                return;
1046        kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1047}
1048
1049static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1050{
1051        struct revmap_entry *rev = kvm->arch.revmap;
1052        unsigned long head, i, j;
1053        unsigned long *hptep;
1054        int ret = 0;
1055
1056 retry:
1057        lock_rmap(rmapp);
1058        if (*rmapp & KVMPPC_RMAP_CHANGED) {
1059                *rmapp &= ~KVMPPC_RMAP_CHANGED;
1060                ret = 1;
1061        }
1062        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1063                unlock_rmap(rmapp);
1064                return ret;
1065        }
1066
1067        i = head = *rmapp & KVMPPC_RMAP_INDEX;
1068        do {
1069                hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1070                j = rev[i].forw;
1071
1072                if (!(hptep[1] & HPTE_R_C))
1073                        continue;
1074
1075                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1076                        /* unlock rmap before spinning on the HPTE lock */
1077                        unlock_rmap(rmapp);
1078                        while (hptep[0] & HPTE_V_HVLOCK)
1079                                cpu_relax();
1080                        goto retry;
1081                }
1082
1083                /* Now check and modify the HPTE */
1084                if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1085                        /* need to make it temporarily absent to clear C */
1086                        hptep[0] |= HPTE_V_ABSENT;
1087                        kvmppc_invalidate_hpte(kvm, hptep, i);
1088                        hptep[1] &= ~HPTE_R_C;
1089                        eieio();
1090                        hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1091                        if (!(rev[i].guest_rpte & HPTE_R_C)) {
1092                                rev[i].guest_rpte |= HPTE_R_C;
1093                                note_hpte_modification(kvm, &rev[i]);
1094                        }
1095                        ret = 1;
1096                }
1097                hptep[0] &= ~HPTE_V_HVLOCK;
1098        } while ((i = j) != head);
1099
1100        unlock_rmap(rmapp);
1101        return ret;
1102}
1103
1104static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1105                              struct kvm_memory_slot *memslot,
1106                              unsigned long *map)
1107{
1108        unsigned long gfn;
1109
1110        if (!vpa->dirty || !vpa->pinned_addr)
1111                return;
1112        gfn = vpa->gpa >> PAGE_SHIFT;
1113        if (gfn < memslot->base_gfn ||
1114            gfn >= memslot->base_gfn + memslot->npages)
1115                return;
1116
1117        vpa->dirty = false;
1118        if (map)
1119                __set_bit_le(gfn - memslot->base_gfn, map);
1120}
1121
1122long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1123                             unsigned long *map)
1124{
1125        unsigned long i;
1126        unsigned long *rmapp;
1127        struct kvm_vcpu *vcpu;
1128
1129        preempt_disable();
1130        rmapp = memslot->arch.rmap;
1131        for (i = 0; i < memslot->npages; ++i) {
1132                if (kvm_test_clear_dirty(kvm, rmapp) && map)
1133                        __set_bit_le(i, map);
1134                ++rmapp;
1135        }
1136
1137        /* Harvest dirty bits from VPA and DTL updates */
1138        /* Note: we never modify the SLB shadow buffer areas */
1139        kvm_for_each_vcpu(i, vcpu, kvm) {
1140                spin_lock(&vcpu->arch.vpa_update_lock);
1141                harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1142                harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1143                spin_unlock(&vcpu->arch.vpa_update_lock);
1144        }
1145        preempt_enable();
1146        return 0;
1147}
1148
1149void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1150                            unsigned long *nb_ret)
1151{
1152        struct kvm_memory_slot *memslot;
1153        unsigned long gfn = gpa >> PAGE_SHIFT;
1154        struct page *page, *pages[1];
1155        int npages;
1156        unsigned long hva, offset;
1157        unsigned long pa;
1158        unsigned long *physp;
1159        int srcu_idx;
1160
1161        srcu_idx = srcu_read_lock(&kvm->srcu);
1162        memslot = gfn_to_memslot(kvm, gfn);
1163        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1164                goto err;
1165        if (!kvm->arch.using_mmu_notifiers) {
1166                physp = memslot->arch.slot_phys;
1167                if (!physp)
1168                        goto err;
1169                physp += gfn - memslot->base_gfn;
1170                pa = *physp;
1171                if (!pa) {
1172                        if (kvmppc_get_guest_page(kvm, gfn, memslot,
1173                                                  PAGE_SIZE) < 0)
1174                                goto err;
1175                        pa = *physp;
1176                }
1177                page = pfn_to_page(pa >> PAGE_SHIFT);
1178                get_page(page);
1179        } else {
1180                hva = gfn_to_hva_memslot(memslot, gfn);
1181                npages = get_user_pages_fast(hva, 1, 1, pages);
1182                if (npages < 1)
1183                        goto err;
1184                page = pages[0];
1185        }
1186        srcu_read_unlock(&kvm->srcu, srcu_idx);
1187
1188        offset = gpa & (PAGE_SIZE - 1);
1189        if (nb_ret)
1190                *nb_ret = PAGE_SIZE - offset;
1191        return page_address(page) + offset;
1192
1193 err:
1194        srcu_read_unlock(&kvm->srcu, srcu_idx);
1195        return NULL;
1196}
1197
1198void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1199                             bool dirty)
1200{
1201        struct page *page = virt_to_page(va);
1202        struct kvm_memory_slot *memslot;
1203        unsigned long gfn;
1204        unsigned long *rmap;
1205        int srcu_idx;
1206
1207        put_page(page);
1208
1209        if (!dirty || !kvm->arch.using_mmu_notifiers)
1210                return;
1211
1212        /* We need to mark this page dirty in the rmap chain */
1213        gfn = gpa >> PAGE_SHIFT;
1214        srcu_idx = srcu_read_lock(&kvm->srcu);
1215        memslot = gfn_to_memslot(kvm, gfn);
1216        if (memslot) {
1217                rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1218                lock_rmap(rmap);
1219                *rmap |= KVMPPC_RMAP_CHANGED;
1220                unlock_rmap(rmap);
1221        }
1222        srcu_read_unlock(&kvm->srcu, srcu_idx);
1223}
1224
1225/*
1226 * Functions for reading and writing the hash table via reads and
1227 * writes on a file descriptor.
1228 *
1229 * Reads return the guest view of the hash table, which has to be
1230 * pieced together from the real hash table and the guest_rpte
1231 * values in the revmap array.
1232 *
1233 * On writes, each HPTE written is considered in turn, and if it
1234 * is valid, it is written to the HPT as if an H_ENTER with the
1235 * exact flag set was done.  When the invalid count is non-zero
1236 * in the header written to the stream, the kernel will make
1237 * sure that that many HPTEs are invalid, and invalidate them
1238 * if not.
1239 */
1240
1241struct kvm_htab_ctx {
1242        unsigned long   index;
1243        unsigned long   flags;
1244        struct kvm      *kvm;
1245        int             first_pass;
1246};
1247
1248#define HPTE_SIZE       (2 * sizeof(unsigned long))
1249
1250/*
1251 * Returns 1 if this HPT entry has been modified or has pending
1252 * R/C bit changes.
1253 */
1254static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
1255{
1256        unsigned long rcbits_unset;
1257
1258        if (revp->guest_rpte & HPTE_GR_MODIFIED)
1259                return 1;
1260
1261        /* Also need to consider changes in reference and changed bits */
1262        rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1263        if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
1264                return 1;
1265
1266        return 0;
1267}
1268
1269static long record_hpte(unsigned long flags, unsigned long *hptp,
1270                        unsigned long *hpte, struct revmap_entry *revp,
1271                        int want_valid, int first_pass)
1272{
1273        unsigned long v, r;
1274        unsigned long rcbits_unset;
1275        int ok = 1;
1276        int valid, dirty;
1277
1278        /* Unmodified entries are uninteresting except on the first pass */
1279        dirty = hpte_dirty(revp, hptp);
1280        if (!first_pass && !dirty)
1281                return 0;
1282
1283        valid = 0;
1284        if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1285                valid = 1;
1286                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1287                    !(hptp[0] & HPTE_V_BOLTED))
1288                        valid = 0;
1289        }
1290        if (valid != want_valid)
1291                return 0;
1292
1293        v = r = 0;
1294        if (valid || dirty) {
1295                /* lock the HPTE so it's stable and read it */
1296                preempt_disable();
1297                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1298                        cpu_relax();
1299                v = hptp[0];
1300
1301                /* re-evaluate valid and dirty from synchronized HPTE value */
1302                valid = !!(v & HPTE_V_VALID);
1303                dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1304
1305                /* Harvest R and C into guest view if necessary */
1306                rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1307                if (valid && (rcbits_unset & hptp[1])) {
1308                        revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
1309                                HPTE_GR_MODIFIED;
1310                        dirty = 1;
1311                }
1312
1313                if (v & HPTE_V_ABSENT) {
1314                        v &= ~HPTE_V_ABSENT;
1315                        v |= HPTE_V_VALID;
1316                        valid = 1;
1317                }
1318                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1319                        valid = 0;
1320
1321                r = revp->guest_rpte;
1322                /* only clear modified if this is the right sort of entry */
1323                if (valid == want_valid && dirty) {
1324                        r &= ~HPTE_GR_MODIFIED;
1325                        revp->guest_rpte = r;
1326                }
1327                asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1328                hptp[0] &= ~HPTE_V_HVLOCK;
1329                preempt_enable();
1330                if (!(valid == want_valid && (first_pass || dirty)))
1331                        ok = 0;
1332        }
1333        hpte[0] = v;
1334        hpte[1] = r;
1335        return ok;
1336}
1337
1338static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1339                             size_t count, loff_t *ppos)
1340{
1341        struct kvm_htab_ctx *ctx = file->private_data;
1342        struct kvm *kvm = ctx->kvm;
1343        struct kvm_get_htab_header hdr;
1344        unsigned long *hptp;
1345        struct revmap_entry *revp;
1346        unsigned long i, nb, nw;
1347        unsigned long __user *lbuf;
1348        struct kvm_get_htab_header __user *hptr;
1349        unsigned long flags;
1350        int first_pass;
1351        unsigned long hpte[2];
1352
1353        if (!access_ok(VERIFY_WRITE, buf, count))
1354                return -EFAULT;
1355
1356        first_pass = ctx->first_pass;
1357        flags = ctx->flags;
1358
1359        i = ctx->index;
1360        hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1361        revp = kvm->arch.revmap + i;
1362        lbuf = (unsigned long __user *)buf;
1363
1364        nb = 0;
1365        while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1366                /* Initialize header */
1367                hptr = (struct kvm_get_htab_header __user *)buf;
1368                hdr.n_valid = 0;
1369                hdr.n_invalid = 0;
1370                nw = nb;
1371                nb += sizeof(hdr);
1372                lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1373
1374                /* Skip uninteresting entries, i.e. clean on not-first pass */
1375                if (!first_pass) {
1376                        while (i < kvm->arch.hpt_npte &&
1377                               !hpte_dirty(revp, hptp)) {
1378                                ++i;
1379                                hptp += 2;
1380                                ++revp;
1381                        }
1382                }
1383                hdr.index = i;
1384
1385                /* Grab a series of valid entries */
1386                while (i < kvm->arch.hpt_npte &&
1387                       hdr.n_valid < 0xffff &&
1388                       nb + HPTE_SIZE < count &&
1389                       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1390                        /* valid entry, write it out */
1391                        ++hdr.n_valid;
1392                        if (__put_user(hpte[0], lbuf) ||
1393                            __put_user(hpte[1], lbuf + 1))
1394                                return -EFAULT;
1395                        nb += HPTE_SIZE;
1396                        lbuf += 2;
1397                        ++i;
1398                        hptp += 2;
1399                        ++revp;
1400                }
1401                /* Now skip invalid entries while we can */
1402                while (i < kvm->arch.hpt_npte &&
1403                       hdr.n_invalid < 0xffff &&
1404                       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1405                        /* found an invalid entry */
1406                        ++hdr.n_invalid;
1407                        ++i;
1408                        hptp += 2;
1409                        ++revp;
1410                }
1411
1412                if (hdr.n_valid || hdr.n_invalid) {
1413                        /* write back the header */
1414                        if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1415                                return -EFAULT;
1416                        nw = nb;
1417                        buf = (char __user *)lbuf;
1418                } else {
1419                        nb = nw;
1420                }
1421
1422                /* Check if we've wrapped around the hash table */
1423                if (i >= kvm->arch.hpt_npte) {
1424                        i = 0;
1425                        ctx->first_pass = 0;
1426                        break;
1427                }
1428        }
1429
1430        ctx->index = i;
1431
1432        return nb;
1433}
1434
1435static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1436                              size_t count, loff_t *ppos)
1437{
1438        struct kvm_htab_ctx *ctx = file->private_data;
1439        struct kvm *kvm = ctx->kvm;
1440        struct kvm_get_htab_header hdr;
1441        unsigned long i, j;
1442        unsigned long v, r;
1443        unsigned long __user *lbuf;
1444        unsigned long *hptp;
1445        unsigned long tmp[2];
1446        ssize_t nb;
1447        long int err, ret;
1448        int rma_setup;
1449
1450        if (!access_ok(VERIFY_READ, buf, count))
1451                return -EFAULT;
1452
1453        /* lock out vcpus from running while we're doing this */
1454        mutex_lock(&kvm->lock);
1455        rma_setup = kvm->arch.rma_setup_done;
1456        if (rma_setup) {
1457                kvm->arch.rma_setup_done = 0;   /* temporarily */
1458                /* order rma_setup_done vs. vcpus_running */
1459                smp_mb();
1460                if (atomic_read(&kvm->arch.vcpus_running)) {
1461                        kvm->arch.rma_setup_done = 1;
1462                        mutex_unlock(&kvm->lock);
1463                        return -EBUSY;
1464                }
1465        }
1466
1467        err = 0;
1468        for (nb = 0; nb + sizeof(hdr) <= count; ) {
1469                err = -EFAULT;
1470                if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1471                        break;
1472
1473                err = 0;
1474                if (nb + hdr.n_valid * HPTE_SIZE > count)
1475                        break;
1476
1477                nb += sizeof(hdr);
1478                buf += sizeof(hdr);
1479
1480                err = -EINVAL;
1481                i = hdr.index;
1482                if (i >= kvm->arch.hpt_npte ||
1483                    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1484                        break;
1485
1486                hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1487                lbuf = (unsigned long __user *)buf;
1488                for (j = 0; j < hdr.n_valid; ++j) {
1489                        err = -EFAULT;
1490                        if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1491                                goto out;
1492                        err = -EINVAL;
1493                        if (!(v & HPTE_V_VALID))
1494                                goto out;
1495                        lbuf += 2;
1496                        nb += HPTE_SIZE;
1497
1498                        if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1499                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1500                        err = -EIO;
1501                        ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1502                                                         tmp);
1503                        if (ret != H_SUCCESS) {
1504                                pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1505                                       "r=%lx\n", ret, i, v, r);
1506                                goto out;
1507                        }
1508                        if (!rma_setup && is_vrma_hpte(v)) {
1509                                unsigned long psize = hpte_page_size(v, r);
1510                                unsigned long senc = slb_pgsize_encoding(psize);
1511                                unsigned long lpcr;
1512
1513                                kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1514                                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
1515                                lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1516                                lpcr |= senc << (LPCR_VRMASD_SH - 4);
1517                                kvm->arch.lpcr = lpcr;
1518                                rma_setup = 1;
1519                        }
1520                        ++i;
1521                        hptp += 2;
1522                }
1523
1524                for (j = 0; j < hdr.n_invalid; ++j) {
1525                        if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1526                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1527                        ++i;
1528                        hptp += 2;
1529                }
1530                err = 0;
1531        }
1532
1533 out:
1534        /* Order HPTE updates vs. rma_setup_done */
1535        smp_wmb();
1536        kvm->arch.rma_setup_done = rma_setup;
1537        mutex_unlock(&kvm->lock);
1538
1539        if (err)
1540                return err;
1541        return nb;
1542}
1543
1544static int kvm_htab_release(struct inode *inode, struct file *filp)
1545{
1546        struct kvm_htab_ctx *ctx = filp->private_data;
1547
1548        filp->private_data = NULL;
1549        if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1550                atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1551        kvm_put_kvm(ctx->kvm);
1552        kfree(ctx);
1553        return 0;
1554}
1555
1556static const struct file_operations kvm_htab_fops = {
1557        .read           = kvm_htab_read,
1558        .write          = kvm_htab_write,
1559        .llseek         = default_llseek,
1560        .release        = kvm_htab_release,
1561};
1562
1563int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1564{
1565        int ret;
1566        struct kvm_htab_ctx *ctx;
1567        int rwflag;
1568
1569        /* reject flags we don't recognize */
1570        if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1571                return -EINVAL;
1572        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1573        if (!ctx)
1574                return -ENOMEM;
1575        kvm_get_kvm(kvm);
1576        ctx->kvm = kvm;
1577        ctx->index = ghf->start_index;
1578        ctx->flags = ghf->flags;
1579        ctx->first_pass = 1;
1580
1581        rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1582        ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag);
1583        if (ret < 0) {
1584                kvm_put_kvm(kvm);
1585                return ret;
1586        }
1587
1588        if (rwflag == O_RDONLY) {
1589                mutex_lock(&kvm->slots_lock);
1590                atomic_inc(&kvm->arch.hpte_mod_interest);
1591                /* make sure kvmppc_do_h_enter etc. see the increment */
1592                synchronize_srcu_expedited(&kvm->srcu);
1593                mutex_unlock(&kvm->slots_lock);
1594        }
1595
1596        return ret;
1597}
1598
1599void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1600{
1601        struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1602
1603        if (cpu_has_feature(CPU_FTR_ARCH_206))
1604                vcpu->arch.slb_nr = 32;         /* POWER7 */
1605        else
1606                vcpu->arch.slb_nr = 64;
1607
1608        mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1609        mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1610
1611        vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1612}
1613