linux/arch/powerpc/mm/numa.c
<<
>>
Prefs
   1/*
   2 * pSeries NUMA support
   3 *
   4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/threads.h>
  12#include <linux/bootmem.h>
  13#include <linux/init.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/export.h>
  17#include <linux/nodemask.h>
  18#include <linux/cpu.h>
  19#include <linux/notifier.h>
  20#include <linux/memblock.h>
  21#include <linux/of.h>
  22#include <linux/pfn.h>
  23#include <linux/cpuset.h>
  24#include <linux/node.h>
  25#include <linux/stop_machine.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/uaccess.h>
  29#include <linux/slab.h>
  30#include <asm/cputhreads.h>
  31#include <asm/sparsemem.h>
  32#include <asm/prom.h>
  33#include <asm/smp.h>
  34#include <asm/firmware.h>
  35#include <asm/paca.h>
  36#include <asm/hvcall.h>
  37#include <asm/setup.h>
  38#include <asm/vdso.h>
  39
  40static int numa_enabled = 1;
  41
  42static char *cmdline __initdata;
  43
  44static int numa_debug;
  45#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  46
  47int numa_cpu_lookup_table[NR_CPUS];
  48cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  49struct pglist_data *node_data[MAX_NUMNODES];
  50
  51EXPORT_SYMBOL(numa_cpu_lookup_table);
  52EXPORT_SYMBOL(node_to_cpumask_map);
  53EXPORT_SYMBOL(node_data);
  54
  55static int min_common_depth;
  56static int n_mem_addr_cells, n_mem_size_cells;
  57static int form1_affinity;
  58
  59#define MAX_DISTANCE_REF_POINTS 4
  60static int distance_ref_points_depth;
  61static const unsigned int *distance_ref_points;
  62static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  63
  64/*
  65 * Allocate node_to_cpumask_map based on number of available nodes
  66 * Requires node_possible_map to be valid.
  67 *
  68 * Note: cpumask_of_node() is not valid until after this is done.
  69 */
  70static void __init setup_node_to_cpumask_map(void)
  71{
  72        unsigned int node;
  73
  74        /* setup nr_node_ids if not done yet */
  75        if (nr_node_ids == MAX_NUMNODES)
  76                setup_nr_node_ids();
  77
  78        /* allocate the map */
  79        for (node = 0; node < nr_node_ids; node++)
  80                alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  81
  82        /* cpumask_of_node() will now work */
  83        dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  84}
  85
  86static int __init fake_numa_create_new_node(unsigned long end_pfn,
  87                                                unsigned int *nid)
  88{
  89        unsigned long long mem;
  90        char *p = cmdline;
  91        static unsigned int fake_nid;
  92        static unsigned long long curr_boundary;
  93
  94        /*
  95         * Modify node id, iff we started creating NUMA nodes
  96         * We want to continue from where we left of the last time
  97         */
  98        if (fake_nid)
  99                *nid = fake_nid;
 100        /*
 101         * In case there are no more arguments to parse, the
 102         * node_id should be the same as the last fake node id
 103         * (we've handled this above).
 104         */
 105        if (!p)
 106                return 0;
 107
 108        mem = memparse(p, &p);
 109        if (!mem)
 110                return 0;
 111
 112        if (mem < curr_boundary)
 113                return 0;
 114
 115        curr_boundary = mem;
 116
 117        if ((end_pfn << PAGE_SHIFT) > mem) {
 118                /*
 119                 * Skip commas and spaces
 120                 */
 121                while (*p == ',' || *p == ' ' || *p == '\t')
 122                        p++;
 123
 124                cmdline = p;
 125                fake_nid++;
 126                *nid = fake_nid;
 127                dbg("created new fake_node with id %d\n", fake_nid);
 128                return 1;
 129        }
 130        return 0;
 131}
 132
 133/*
 134 * get_node_active_region - Return active region containing pfn
 135 * Active range returned is empty if none found.
 136 * @pfn: The page to return the region for
 137 * @node_ar: Returned set to the active region containing @pfn
 138 */
 139static void __init get_node_active_region(unsigned long pfn,
 140                                          struct node_active_region *node_ar)
 141{
 142        unsigned long start_pfn, end_pfn;
 143        int i, nid;
 144
 145        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 146                if (pfn >= start_pfn && pfn < end_pfn) {
 147                        node_ar->nid = nid;
 148                        node_ar->start_pfn = start_pfn;
 149                        node_ar->end_pfn = end_pfn;
 150                        break;
 151                }
 152        }
 153}
 154
 155static void map_cpu_to_node(int cpu, int node)
 156{
 157        numa_cpu_lookup_table[cpu] = node;
 158
 159        dbg("adding cpu %d to node %d\n", cpu, node);
 160
 161        if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 162                cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 163}
 164
 165#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 166static void unmap_cpu_from_node(unsigned long cpu)
 167{
 168        int node = numa_cpu_lookup_table[cpu];
 169
 170        dbg("removing cpu %lu from node %d\n", cpu, node);
 171
 172        if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 173                cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 174        } else {
 175                printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 176                       cpu, node);
 177        }
 178}
 179#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 180
 181/* must hold reference to node during call */
 182static const int *of_get_associativity(struct device_node *dev)
 183{
 184        return of_get_property(dev, "ibm,associativity", NULL);
 185}
 186
 187/*
 188 * Returns the property linux,drconf-usable-memory if
 189 * it exists (the property exists only in kexec/kdump kernels,
 190 * added by kexec-tools)
 191 */
 192static const u32 *of_get_usable_memory(struct device_node *memory)
 193{
 194        const u32 *prop;
 195        u32 len;
 196        prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 197        if (!prop || len < sizeof(unsigned int))
 198                return 0;
 199        return prop;
 200}
 201
 202int __node_distance(int a, int b)
 203{
 204        int i;
 205        int distance = LOCAL_DISTANCE;
 206
 207        if (!form1_affinity)
 208                return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 209
 210        for (i = 0; i < distance_ref_points_depth; i++) {
 211                if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 212                        break;
 213
 214                /* Double the distance for each NUMA level */
 215                distance *= 2;
 216        }
 217
 218        return distance;
 219}
 220
 221static void initialize_distance_lookup_table(int nid,
 222                const unsigned int *associativity)
 223{
 224        int i;
 225
 226        if (!form1_affinity)
 227                return;
 228
 229        for (i = 0; i < distance_ref_points_depth; i++) {
 230                distance_lookup_table[nid][i] =
 231                        associativity[distance_ref_points[i]];
 232        }
 233}
 234
 235/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 236 * info is found.
 237 */
 238static int associativity_to_nid(const unsigned int *associativity)
 239{
 240        int nid = -1;
 241
 242        if (min_common_depth == -1)
 243                goto out;
 244
 245        if (associativity[0] >= min_common_depth)
 246                nid = associativity[min_common_depth];
 247
 248        /* POWER4 LPAR uses 0xffff as invalid node */
 249        if (nid == 0xffff || nid >= MAX_NUMNODES)
 250                nid = -1;
 251
 252        if (nid > 0 && associativity[0] >= distance_ref_points_depth)
 253                initialize_distance_lookup_table(nid, associativity);
 254
 255out:
 256        return nid;
 257}
 258
 259/* Returns the nid associated with the given device tree node,
 260 * or -1 if not found.
 261 */
 262static int of_node_to_nid_single(struct device_node *device)
 263{
 264        int nid = -1;
 265        const unsigned int *tmp;
 266
 267        tmp = of_get_associativity(device);
 268        if (tmp)
 269                nid = associativity_to_nid(tmp);
 270        return nid;
 271}
 272
 273/* Walk the device tree upwards, looking for an associativity id */
 274int of_node_to_nid(struct device_node *device)
 275{
 276        struct device_node *tmp;
 277        int nid = -1;
 278
 279        of_node_get(device);
 280        while (device) {
 281                nid = of_node_to_nid_single(device);
 282                if (nid != -1)
 283                        break;
 284
 285                tmp = device;
 286                device = of_get_parent(tmp);
 287                of_node_put(tmp);
 288        }
 289        of_node_put(device);
 290
 291        return nid;
 292}
 293EXPORT_SYMBOL_GPL(of_node_to_nid);
 294
 295static int __init find_min_common_depth(void)
 296{
 297        int depth;
 298        struct device_node *root;
 299
 300        if (firmware_has_feature(FW_FEATURE_OPAL))
 301                root = of_find_node_by_path("/ibm,opal");
 302        else
 303                root = of_find_node_by_path("/rtas");
 304        if (!root)
 305                root = of_find_node_by_path("/");
 306
 307        /*
 308         * This property is a set of 32-bit integers, each representing
 309         * an index into the ibm,associativity nodes.
 310         *
 311         * With form 0 affinity the first integer is for an SMP configuration
 312         * (should be all 0's) and the second is for a normal NUMA
 313         * configuration. We have only one level of NUMA.
 314         *
 315         * With form 1 affinity the first integer is the most significant
 316         * NUMA boundary and the following are progressively less significant
 317         * boundaries. There can be more than one level of NUMA.
 318         */
 319        distance_ref_points = of_get_property(root,
 320                                        "ibm,associativity-reference-points",
 321                                        &distance_ref_points_depth);
 322
 323        if (!distance_ref_points) {
 324                dbg("NUMA: ibm,associativity-reference-points not found.\n");
 325                goto err;
 326        }
 327
 328        distance_ref_points_depth /= sizeof(int);
 329
 330        if (firmware_has_feature(FW_FEATURE_OPAL) ||
 331            firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 332                dbg("Using form 1 affinity\n");
 333                form1_affinity = 1;
 334        }
 335
 336        if (form1_affinity) {
 337                depth = distance_ref_points[0];
 338        } else {
 339                if (distance_ref_points_depth < 2) {
 340                        printk(KERN_WARNING "NUMA: "
 341                                "short ibm,associativity-reference-points\n");
 342                        goto err;
 343                }
 344
 345                depth = distance_ref_points[1];
 346        }
 347
 348        /*
 349         * Warn and cap if the hardware supports more than
 350         * MAX_DISTANCE_REF_POINTS domains.
 351         */
 352        if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 353                printk(KERN_WARNING "NUMA: distance array capped at "
 354                        "%d entries\n", MAX_DISTANCE_REF_POINTS);
 355                distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 356        }
 357
 358        of_node_put(root);
 359        return depth;
 360
 361err:
 362        of_node_put(root);
 363        return -1;
 364}
 365
 366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 367{
 368        struct device_node *memory = NULL;
 369
 370        memory = of_find_node_by_type(memory, "memory");
 371        if (!memory)
 372                panic("numa.c: No memory nodes found!");
 373
 374        *n_addr_cells = of_n_addr_cells(memory);
 375        *n_size_cells = of_n_size_cells(memory);
 376        of_node_put(memory);
 377}
 378
 379static unsigned long read_n_cells(int n, const unsigned int **buf)
 380{
 381        unsigned long result = 0;
 382
 383        while (n--) {
 384                result = (result << 32) | **buf;
 385                (*buf)++;
 386        }
 387        return result;
 388}
 389
 390/*
 391 * Read the next memblock list entry from the ibm,dynamic-memory property
 392 * and return the information in the provided of_drconf_cell structure.
 393 */
 394static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 395{
 396        const u32 *cp;
 397
 398        drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 399
 400        cp = *cellp;
 401        drmem->drc_index = cp[0];
 402        drmem->reserved = cp[1];
 403        drmem->aa_index = cp[2];
 404        drmem->flags = cp[3];
 405
 406        *cellp = cp + 4;
 407}
 408
 409/*
 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
 411 *
 412 * The layout of the ibm,dynamic-memory property is a number N of memblock
 413 * list entries followed by N memblock list entries.  Each memblock list entry
 414 * contains information as laid out in the of_drconf_cell struct above.
 415 */
 416static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 417{
 418        const u32 *prop;
 419        u32 len, entries;
 420
 421        prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 422        if (!prop || len < sizeof(unsigned int))
 423                return 0;
 424
 425        entries = *prop++;
 426
 427        /* Now that we know the number of entries, revalidate the size
 428         * of the property read in to ensure we have everything
 429         */
 430        if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 431                return 0;
 432
 433        *dm = prop;
 434        return entries;
 435}
 436
 437/*
 438 * Retrieve and validate the ibm,lmb-size property for drconf memory
 439 * from the device tree.
 440 */
 441static u64 of_get_lmb_size(struct device_node *memory)
 442{
 443        const u32 *prop;
 444        u32 len;
 445
 446        prop = of_get_property(memory, "ibm,lmb-size", &len);
 447        if (!prop || len < sizeof(unsigned int))
 448                return 0;
 449
 450        return read_n_cells(n_mem_size_cells, &prop);
 451}
 452
 453struct assoc_arrays {
 454        u32     n_arrays;
 455        u32     array_sz;
 456        const u32 *arrays;
 457};
 458
 459/*
 460 * Retrieve and validate the list of associativity arrays for drconf
 461 * memory from the ibm,associativity-lookup-arrays property of the
 462 * device tree..
 463 *
 464 * The layout of the ibm,associativity-lookup-arrays property is a number N
 465 * indicating the number of associativity arrays, followed by a number M
 466 * indicating the size of each associativity array, followed by a list
 467 * of N associativity arrays.
 468 */
 469static int of_get_assoc_arrays(struct device_node *memory,
 470                               struct assoc_arrays *aa)
 471{
 472        const u32 *prop;
 473        u32 len;
 474
 475        prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 476        if (!prop || len < 2 * sizeof(unsigned int))
 477                return -1;
 478
 479        aa->n_arrays = *prop++;
 480        aa->array_sz = *prop++;
 481
 482        /* Now that we know the number of arrays and size of each array,
 483         * revalidate the size of the property read in.
 484         */
 485        if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 486                return -1;
 487
 488        aa->arrays = prop;
 489        return 0;
 490}
 491
 492/*
 493 * This is like of_node_to_nid_single() for memory represented in the
 494 * ibm,dynamic-reconfiguration-memory node.
 495 */
 496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 497                                   struct assoc_arrays *aa)
 498{
 499        int default_nid = 0;
 500        int nid = default_nid;
 501        int index;
 502
 503        if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 504            !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 505            drmem->aa_index < aa->n_arrays) {
 506                index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 507                nid = aa->arrays[index];
 508
 509                if (nid == 0xffff || nid >= MAX_NUMNODES)
 510                        nid = default_nid;
 511        }
 512
 513        return nid;
 514}
 515
 516/*
 517 * Figure out to which domain a cpu belongs and stick it there.
 518 * Return the id of the domain used.
 519 */
 520static int numa_setup_cpu(unsigned long lcpu)
 521{
 522        int nid = 0;
 523        struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 524
 525        if (!cpu) {
 526                WARN_ON(1);
 527                goto out;
 528        }
 529
 530        nid = of_node_to_nid_single(cpu);
 531
 532        if (nid < 0 || !node_online(nid))
 533                nid = first_online_node;
 534out:
 535        map_cpu_to_node(lcpu, nid);
 536
 537        of_node_put(cpu);
 538
 539        return nid;
 540}
 541
 542static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
 543                             void *hcpu)
 544{
 545        unsigned long lcpu = (unsigned long)hcpu;
 546        int ret = NOTIFY_DONE;
 547
 548        switch (action) {
 549        case CPU_UP_PREPARE:
 550        case CPU_UP_PREPARE_FROZEN:
 551                numa_setup_cpu(lcpu);
 552                ret = NOTIFY_OK;
 553                break;
 554#ifdef CONFIG_HOTPLUG_CPU
 555        case CPU_DEAD:
 556        case CPU_DEAD_FROZEN:
 557        case CPU_UP_CANCELED:
 558        case CPU_UP_CANCELED_FROZEN:
 559                unmap_cpu_from_node(lcpu);
 560                break;
 561                ret = NOTIFY_OK;
 562#endif
 563        }
 564        return ret;
 565}
 566
 567/*
 568 * Check and possibly modify a memory region to enforce the memory limit.
 569 *
 570 * Returns the size the region should have to enforce the memory limit.
 571 * This will either be the original value of size, a truncated value,
 572 * or zero. If the returned value of size is 0 the region should be
 573 * discarded as it lies wholly above the memory limit.
 574 */
 575static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 576                                                      unsigned long size)
 577{
 578        /*
 579         * We use memblock_end_of_DRAM() in here instead of memory_limit because
 580         * we've already adjusted it for the limit and it takes care of
 581         * having memory holes below the limit.  Also, in the case of
 582         * iommu_is_off, memory_limit is not set but is implicitly enforced.
 583         */
 584
 585        if (start + size <= memblock_end_of_DRAM())
 586                return size;
 587
 588        if (start >= memblock_end_of_DRAM())
 589                return 0;
 590
 591        return memblock_end_of_DRAM() - start;
 592}
 593
 594/*
 595 * Reads the counter for a given entry in
 596 * linux,drconf-usable-memory property
 597 */
 598static inline int __init read_usm_ranges(const u32 **usm)
 599{
 600        /*
 601         * For each lmb in ibm,dynamic-memory a corresponding
 602         * entry in linux,drconf-usable-memory property contains
 603         * a counter followed by that many (base, size) duple.
 604         * read the counter from linux,drconf-usable-memory
 605         */
 606        return read_n_cells(n_mem_size_cells, usm);
 607}
 608
 609/*
 610 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 611 * node.  This assumes n_mem_{addr,size}_cells have been set.
 612 */
 613static void __init parse_drconf_memory(struct device_node *memory)
 614{
 615        const u32 *uninitialized_var(dm), *usm;
 616        unsigned int n, rc, ranges, is_kexec_kdump = 0;
 617        unsigned long lmb_size, base, size, sz;
 618        int nid;
 619        struct assoc_arrays aa = { .arrays = NULL };
 620
 621        n = of_get_drconf_memory(memory, &dm);
 622        if (!n)
 623                return;
 624
 625        lmb_size = of_get_lmb_size(memory);
 626        if (!lmb_size)
 627                return;
 628
 629        rc = of_get_assoc_arrays(memory, &aa);
 630        if (rc)
 631                return;
 632
 633        /* check if this is a kexec/kdump kernel */
 634        usm = of_get_usable_memory(memory);
 635        if (usm != NULL)
 636                is_kexec_kdump = 1;
 637
 638        for (; n != 0; --n) {
 639                struct of_drconf_cell drmem;
 640
 641                read_drconf_cell(&drmem, &dm);
 642
 643                /* skip this block if the reserved bit is set in flags (0x80)
 644                   or if the block is not assigned to this partition (0x8) */
 645                if ((drmem.flags & DRCONF_MEM_RESERVED)
 646                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 647                        continue;
 648
 649                base = drmem.base_addr;
 650                size = lmb_size;
 651                ranges = 1;
 652
 653                if (is_kexec_kdump) {
 654                        ranges = read_usm_ranges(&usm);
 655                        if (!ranges) /* there are no (base, size) duple */
 656                                continue;
 657                }
 658                do {
 659                        if (is_kexec_kdump) {
 660                                base = read_n_cells(n_mem_addr_cells, &usm);
 661                                size = read_n_cells(n_mem_size_cells, &usm);
 662                        }
 663                        nid = of_drconf_to_nid_single(&drmem, &aa);
 664                        fake_numa_create_new_node(
 665                                ((base + size) >> PAGE_SHIFT),
 666                                           &nid);
 667                        node_set_online(nid);
 668                        sz = numa_enforce_memory_limit(base, size);
 669                        if (sz)
 670                                memblock_set_node(base, sz, nid);
 671                } while (--ranges);
 672        }
 673}
 674
 675static int __init parse_numa_properties(void)
 676{
 677        struct device_node *memory;
 678        int default_nid = 0;
 679        unsigned long i;
 680
 681        if (numa_enabled == 0) {
 682                printk(KERN_WARNING "NUMA disabled by user\n");
 683                return -1;
 684        }
 685
 686        min_common_depth = find_min_common_depth();
 687
 688        if (min_common_depth < 0)
 689                return min_common_depth;
 690
 691        dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 692
 693        /*
 694         * Even though we connect cpus to numa domains later in SMP
 695         * init, we need to know the node ids now. This is because
 696         * each node to be onlined must have NODE_DATA etc backing it.
 697         */
 698        for_each_present_cpu(i) {
 699                struct device_node *cpu;
 700                int nid;
 701
 702                cpu = of_get_cpu_node(i, NULL);
 703                BUG_ON(!cpu);
 704                nid = of_node_to_nid_single(cpu);
 705                of_node_put(cpu);
 706
 707                /*
 708                 * Don't fall back to default_nid yet -- we will plug
 709                 * cpus into nodes once the memory scan has discovered
 710                 * the topology.
 711                 */
 712                if (nid < 0)
 713                        continue;
 714                node_set_online(nid);
 715        }
 716
 717        get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 718
 719        for_each_node_by_type(memory, "memory") {
 720                unsigned long start;
 721                unsigned long size;
 722                int nid;
 723                int ranges;
 724                const unsigned int *memcell_buf;
 725                unsigned int len;
 726
 727                memcell_buf = of_get_property(memory,
 728                        "linux,usable-memory", &len);
 729                if (!memcell_buf || len <= 0)
 730                        memcell_buf = of_get_property(memory, "reg", &len);
 731                if (!memcell_buf || len <= 0)
 732                        continue;
 733
 734                /* ranges in cell */
 735                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 736new_range:
 737                /* these are order-sensitive, and modify the buffer pointer */
 738                start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 739                size = read_n_cells(n_mem_size_cells, &memcell_buf);
 740
 741                /*
 742                 * Assumption: either all memory nodes or none will
 743                 * have associativity properties.  If none, then
 744                 * everything goes to default_nid.
 745                 */
 746                nid = of_node_to_nid_single(memory);
 747                if (nid < 0)
 748                        nid = default_nid;
 749
 750                fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 751                node_set_online(nid);
 752
 753                if (!(size = numa_enforce_memory_limit(start, size))) {
 754                        if (--ranges)
 755                                goto new_range;
 756                        else
 757                                continue;
 758                }
 759
 760                memblock_set_node(start, size, nid);
 761
 762                if (--ranges)
 763                        goto new_range;
 764        }
 765
 766        /*
 767         * Now do the same thing for each MEMBLOCK listed in the
 768         * ibm,dynamic-memory property in the
 769         * ibm,dynamic-reconfiguration-memory node.
 770         */
 771        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 772        if (memory)
 773                parse_drconf_memory(memory);
 774
 775        return 0;
 776}
 777
 778static void __init setup_nonnuma(void)
 779{
 780        unsigned long top_of_ram = memblock_end_of_DRAM();
 781        unsigned long total_ram = memblock_phys_mem_size();
 782        unsigned long start_pfn, end_pfn;
 783        unsigned int nid = 0;
 784        struct memblock_region *reg;
 785
 786        printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 787               top_of_ram, total_ram);
 788        printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 789               (top_of_ram - total_ram) >> 20);
 790
 791        for_each_memblock(memory, reg) {
 792                start_pfn = memblock_region_memory_base_pfn(reg);
 793                end_pfn = memblock_region_memory_end_pfn(reg);
 794
 795                fake_numa_create_new_node(end_pfn, &nid);
 796                memblock_set_node(PFN_PHYS(start_pfn),
 797                                  PFN_PHYS(end_pfn - start_pfn), nid);
 798                node_set_online(nid);
 799        }
 800}
 801
 802void __init dump_numa_cpu_topology(void)
 803{
 804        unsigned int node;
 805        unsigned int cpu, count;
 806
 807        if (min_common_depth == -1 || !numa_enabled)
 808                return;
 809
 810        for_each_online_node(node) {
 811                printk(KERN_DEBUG "Node %d CPUs:", node);
 812
 813                count = 0;
 814                /*
 815                 * If we used a CPU iterator here we would miss printing
 816                 * the holes in the cpumap.
 817                 */
 818                for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 819                        if (cpumask_test_cpu(cpu,
 820                                        node_to_cpumask_map[node])) {
 821                                if (count == 0)
 822                                        printk(" %u", cpu);
 823                                ++count;
 824                        } else {
 825                                if (count > 1)
 826                                        printk("-%u", cpu - 1);
 827                                count = 0;
 828                        }
 829                }
 830
 831                if (count > 1)
 832                        printk("-%u", nr_cpu_ids - 1);
 833                printk("\n");
 834        }
 835}
 836
 837static void __init dump_numa_memory_topology(void)
 838{
 839        unsigned int node;
 840        unsigned int count;
 841
 842        if (min_common_depth == -1 || !numa_enabled)
 843                return;
 844
 845        for_each_online_node(node) {
 846                unsigned long i;
 847
 848                printk(KERN_DEBUG "Node %d Memory:", node);
 849
 850                count = 0;
 851
 852                for (i = 0; i < memblock_end_of_DRAM();
 853                     i += (1 << SECTION_SIZE_BITS)) {
 854                        if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 855                                if (count == 0)
 856                                        printk(" 0x%lx", i);
 857                                ++count;
 858                        } else {
 859                                if (count > 0)
 860                                        printk("-0x%lx", i);
 861                                count = 0;
 862                        }
 863                }
 864
 865                if (count > 0)
 866                        printk("-0x%lx", i);
 867                printk("\n");
 868        }
 869}
 870
 871/*
 872 * Allocate some memory, satisfying the memblock or bootmem allocator where
 873 * required. nid is the preferred node and end is the physical address of
 874 * the highest address in the node.
 875 *
 876 * Returns the virtual address of the memory.
 877 */
 878static void __init *careful_zallocation(int nid, unsigned long size,
 879                                       unsigned long align,
 880                                       unsigned long end_pfn)
 881{
 882        void *ret;
 883        int new_nid;
 884        unsigned long ret_paddr;
 885
 886        ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 887
 888        /* retry over all memory */
 889        if (!ret_paddr)
 890                ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
 891
 892        if (!ret_paddr)
 893                panic("numa.c: cannot allocate %lu bytes for node %d",
 894                      size, nid);
 895
 896        ret = __va(ret_paddr);
 897
 898        /*
 899         * We initialize the nodes in numeric order: 0, 1, 2...
 900         * and hand over control from the MEMBLOCK allocator to the
 901         * bootmem allocator.  If this function is called for
 902         * node 5, then we know that all nodes <5 are using the
 903         * bootmem allocator instead of the MEMBLOCK allocator.
 904         *
 905         * So, check the nid from which this allocation came
 906         * and double check to see if we need to use bootmem
 907         * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
 908         * since it would be useless.
 909         */
 910        new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 911        if (new_nid < nid) {
 912                ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 913                                size, align, 0);
 914
 915                dbg("alloc_bootmem %p %lx\n", ret, size);
 916        }
 917
 918        memset(ret, 0, size);
 919        return ret;
 920}
 921
 922static struct notifier_block ppc64_numa_nb = {
 923        .notifier_call = cpu_numa_callback,
 924        .priority = 1 /* Must run before sched domains notifier. */
 925};
 926
 927static void __init mark_reserved_regions_for_nid(int nid)
 928{
 929        struct pglist_data *node = NODE_DATA(nid);
 930        struct memblock_region *reg;
 931
 932        for_each_memblock(reserved, reg) {
 933                unsigned long physbase = reg->base;
 934                unsigned long size = reg->size;
 935                unsigned long start_pfn = physbase >> PAGE_SHIFT;
 936                unsigned long end_pfn = PFN_UP(physbase + size);
 937                struct node_active_region node_ar;
 938                unsigned long node_end_pfn = node->node_start_pfn +
 939                                             node->node_spanned_pages;
 940
 941                /*
 942                 * Check to make sure that this memblock.reserved area is
 943                 * within the bounds of the node that we care about.
 944                 * Checking the nid of the start and end points is not
 945                 * sufficient because the reserved area could span the
 946                 * entire node.
 947                 */
 948                if (end_pfn <= node->node_start_pfn ||
 949                    start_pfn >= node_end_pfn)
 950                        continue;
 951
 952                get_node_active_region(start_pfn, &node_ar);
 953                while (start_pfn < end_pfn &&
 954                        node_ar.start_pfn < node_ar.end_pfn) {
 955                        unsigned long reserve_size = size;
 956                        /*
 957                         * if reserved region extends past active region
 958                         * then trim size to active region
 959                         */
 960                        if (end_pfn > node_ar.end_pfn)
 961                                reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 962                                        - physbase;
 963                        /*
 964                         * Only worry about *this* node, others may not
 965                         * yet have valid NODE_DATA().
 966                         */
 967                        if (node_ar.nid == nid) {
 968                                dbg("reserve_bootmem %lx %lx nid=%d\n",
 969                                        physbase, reserve_size, node_ar.nid);
 970                                reserve_bootmem_node(NODE_DATA(node_ar.nid),
 971                                                physbase, reserve_size,
 972                                                BOOTMEM_DEFAULT);
 973                        }
 974                        /*
 975                         * if reserved region is contained in the active region
 976                         * then done.
 977                         */
 978                        if (end_pfn <= node_ar.end_pfn)
 979                                break;
 980
 981                        /*
 982                         * reserved region extends past the active region
 983                         *   get next active region that contains this
 984                         *   reserved region
 985                         */
 986                        start_pfn = node_ar.end_pfn;
 987                        physbase = start_pfn << PAGE_SHIFT;
 988                        size = size - reserve_size;
 989                        get_node_active_region(start_pfn, &node_ar);
 990                }
 991        }
 992}
 993
 994
 995void __init do_init_bootmem(void)
 996{
 997        int nid;
 998
 999        min_low_pfn = 0;
1000        max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1001        max_pfn = max_low_pfn;
1002
1003        if (parse_numa_properties())
1004                setup_nonnuma();
1005        else
1006                dump_numa_memory_topology();
1007
1008        for_each_online_node(nid) {
1009                unsigned long start_pfn, end_pfn;
1010                void *bootmem_vaddr;
1011                unsigned long bootmap_pages;
1012
1013                get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1014
1015                /*
1016                 * Allocate the node structure node local if possible
1017                 *
1018                 * Be careful moving this around, as it relies on all
1019                 * previous nodes' bootmem to be initialized and have
1020                 * all reserved areas marked.
1021                 */
1022                NODE_DATA(nid) = careful_zallocation(nid,
1023                                        sizeof(struct pglist_data),
1024                                        SMP_CACHE_BYTES, end_pfn);
1025
1026                dbg("node %d\n", nid);
1027                dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1028
1029                NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1030                NODE_DATA(nid)->node_start_pfn = start_pfn;
1031                NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1032
1033                if (NODE_DATA(nid)->node_spanned_pages == 0)
1034                        continue;
1035
1036                dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1037                dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1038
1039                bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1040                bootmem_vaddr = careful_zallocation(nid,
1041                                        bootmap_pages << PAGE_SHIFT,
1042                                        PAGE_SIZE, end_pfn);
1043
1044                dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1045
1046                init_bootmem_node(NODE_DATA(nid),
1047                                  __pa(bootmem_vaddr) >> PAGE_SHIFT,
1048                                  start_pfn, end_pfn);
1049
1050                free_bootmem_with_active_regions(nid, end_pfn);
1051                /*
1052                 * Be very careful about moving this around.  Future
1053                 * calls to careful_zallocation() depend on this getting
1054                 * done correctly.
1055                 */
1056                mark_reserved_regions_for_nid(nid);
1057                sparse_memory_present_with_active_regions(nid);
1058        }
1059
1060        init_bootmem_done = 1;
1061
1062        /*
1063         * Now bootmem is initialised we can create the node to cpumask
1064         * lookup tables and setup the cpu callback to populate them.
1065         */
1066        setup_node_to_cpumask_map();
1067
1068        register_cpu_notifier(&ppc64_numa_nb);
1069        cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1070                          (void *)(unsigned long)boot_cpuid);
1071}
1072
1073void __init paging_init(void)
1074{
1075        unsigned long max_zone_pfns[MAX_NR_ZONES];
1076        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1077        max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1078        free_area_init_nodes(max_zone_pfns);
1079}
1080
1081static int __init early_numa(char *p)
1082{
1083        if (!p)
1084                return 0;
1085
1086        if (strstr(p, "off"))
1087                numa_enabled = 0;
1088
1089        if (strstr(p, "debug"))
1090                numa_debug = 1;
1091
1092        p = strstr(p, "fake=");
1093        if (p)
1094                cmdline = p + strlen("fake=");
1095
1096        return 0;
1097}
1098early_param("numa", early_numa);
1099
1100#ifdef CONFIG_MEMORY_HOTPLUG
1101/*
1102 * Find the node associated with a hot added memory section for
1103 * memory represented in the device tree by the property
1104 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1105 */
1106static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1107                                     unsigned long scn_addr)
1108{
1109        const u32 *dm;
1110        unsigned int drconf_cell_cnt, rc;
1111        unsigned long lmb_size;
1112        struct assoc_arrays aa;
1113        int nid = -1;
1114
1115        drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1116        if (!drconf_cell_cnt)
1117                return -1;
1118
1119        lmb_size = of_get_lmb_size(memory);
1120        if (!lmb_size)
1121                return -1;
1122
1123        rc = of_get_assoc_arrays(memory, &aa);
1124        if (rc)
1125                return -1;
1126
1127        for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1128                struct of_drconf_cell drmem;
1129
1130                read_drconf_cell(&drmem, &dm);
1131
1132                /* skip this block if it is reserved or not assigned to
1133                 * this partition */
1134                if ((drmem.flags & DRCONF_MEM_RESERVED)
1135                    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1136                        continue;
1137
1138                if ((scn_addr < drmem.base_addr)
1139                    || (scn_addr >= (drmem.base_addr + lmb_size)))
1140                        continue;
1141
1142                nid = of_drconf_to_nid_single(&drmem, &aa);
1143                break;
1144        }
1145
1146        return nid;
1147}
1148
1149/*
1150 * Find the node associated with a hot added memory section for memory
1151 * represented in the device tree as a node (i.e. memory@XXXX) for
1152 * each memblock.
1153 */
1154int hot_add_node_scn_to_nid(unsigned long scn_addr)
1155{
1156        struct device_node *memory;
1157        int nid = -1;
1158
1159        for_each_node_by_type(memory, "memory") {
1160                unsigned long start, size;
1161                int ranges;
1162                const unsigned int *memcell_buf;
1163                unsigned int len;
1164
1165                memcell_buf = of_get_property(memory, "reg", &len);
1166                if (!memcell_buf || len <= 0)
1167                        continue;
1168
1169                /* ranges in cell */
1170                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1171
1172                while (ranges--) {
1173                        start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1174                        size = read_n_cells(n_mem_size_cells, &memcell_buf);
1175
1176                        if ((scn_addr < start) || (scn_addr >= (start + size)))
1177                                continue;
1178
1179                        nid = of_node_to_nid_single(memory);
1180                        break;
1181                }
1182
1183                if (nid >= 0)
1184                        break;
1185        }
1186
1187        of_node_put(memory);
1188
1189        return nid;
1190}
1191
1192/*
1193 * Find the node associated with a hot added memory section.  Section
1194 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1195 * sections are fully contained within a single MEMBLOCK.
1196 */
1197int hot_add_scn_to_nid(unsigned long scn_addr)
1198{
1199        struct device_node *memory = NULL;
1200        int nid, found = 0;
1201
1202        if (!numa_enabled || (min_common_depth < 0))
1203                return first_online_node;
1204
1205        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1206        if (memory) {
1207                nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1208                of_node_put(memory);
1209        } else {
1210                nid = hot_add_node_scn_to_nid(scn_addr);
1211        }
1212
1213        if (nid < 0 || !node_online(nid))
1214                nid = first_online_node;
1215
1216        if (NODE_DATA(nid)->node_spanned_pages)
1217                return nid;
1218
1219        for_each_online_node(nid) {
1220                if (NODE_DATA(nid)->node_spanned_pages) {
1221                        found = 1;
1222                        break;
1223                }
1224        }
1225
1226        BUG_ON(!found);
1227        return nid;
1228}
1229
1230static u64 hot_add_drconf_memory_max(void)
1231{
1232        struct device_node *memory = NULL;
1233        unsigned int drconf_cell_cnt = 0;
1234        u64 lmb_size = 0;
1235        const u32 *dm = 0;
1236
1237        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1238        if (memory) {
1239                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1240                lmb_size = of_get_lmb_size(memory);
1241                of_node_put(memory);
1242        }
1243        return lmb_size * drconf_cell_cnt;
1244}
1245
1246/*
1247 * memory_hotplug_max - return max address of memory that may be added
1248 *
1249 * This is currently only used on systems that support drconfig memory
1250 * hotplug.
1251 */
1252u64 memory_hotplug_max(void)
1253{
1254        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1255}
1256#endif /* CONFIG_MEMORY_HOTPLUG */
1257
1258/* Virtual Processor Home Node (VPHN) support */
1259#ifdef CONFIG_PPC_SPLPAR
1260struct topology_update_data {
1261        struct topology_update_data *next;
1262        unsigned int cpu;
1263        int old_nid;
1264        int new_nid;
1265};
1266
1267static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1268static cpumask_t cpu_associativity_changes_mask;
1269static int vphn_enabled;
1270static int prrn_enabled;
1271static void reset_topology_timer(void);
1272
1273/*
1274 * Store the current values of the associativity change counters in the
1275 * hypervisor.
1276 */
1277static void setup_cpu_associativity_change_counters(void)
1278{
1279        int cpu;
1280
1281        /* The VPHN feature supports a maximum of 8 reference points */
1282        BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1283
1284        for_each_possible_cpu(cpu) {
1285                int i;
1286                u8 *counts = vphn_cpu_change_counts[cpu];
1287                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1288
1289                for (i = 0; i < distance_ref_points_depth; i++)
1290                        counts[i] = hypervisor_counts[i];
1291        }
1292}
1293
1294/*
1295 * The hypervisor maintains a set of 8 associativity change counters in
1296 * the VPA of each cpu that correspond to the associativity levels in the
1297 * ibm,associativity-reference-points property. When an associativity
1298 * level changes, the corresponding counter is incremented.
1299 *
1300 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1301 * node associativity levels have changed.
1302 *
1303 * Returns the number of cpus with unhandled associativity changes.
1304 */
1305static int update_cpu_associativity_changes_mask(void)
1306{
1307        int cpu;
1308        cpumask_t *changes = &cpu_associativity_changes_mask;
1309
1310        for_each_possible_cpu(cpu) {
1311                int i, changed = 0;
1312                u8 *counts = vphn_cpu_change_counts[cpu];
1313                volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1314
1315                for (i = 0; i < distance_ref_points_depth; i++) {
1316                        if (hypervisor_counts[i] != counts[i]) {
1317                                counts[i] = hypervisor_counts[i];
1318                                changed = 1;
1319                        }
1320                }
1321                if (changed) {
1322                        cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1323                        cpu = cpu_last_thread_sibling(cpu);
1324                }
1325        }
1326
1327        return cpumask_weight(changes);
1328}
1329
1330/*
1331 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1332 * the complete property we have to add the length in the first cell.
1333 */
1334#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1335
1336/*
1337 * Convert the associativity domain numbers returned from the hypervisor
1338 * to the sequence they would appear in the ibm,associativity property.
1339 */
1340static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1341{
1342        int i, nr_assoc_doms = 0;
1343        const u16 *field = (const u16*) packed;
1344
1345#define VPHN_FIELD_UNUSED       (0xffff)
1346#define VPHN_FIELD_MSB          (0x8000)
1347#define VPHN_FIELD_MASK         (~VPHN_FIELD_MSB)
1348
1349        for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1350                if (*field == VPHN_FIELD_UNUSED) {
1351                        /* All significant fields processed, and remaining
1352                         * fields contain the reserved value of all 1's.
1353                         * Just store them.
1354                         */
1355                        unpacked[i] = *((u32*)field);
1356                        field += 2;
1357                } else if (*field & VPHN_FIELD_MSB) {
1358                        /* Data is in the lower 15 bits of this field */
1359                        unpacked[i] = *field & VPHN_FIELD_MASK;
1360                        field++;
1361                        nr_assoc_doms++;
1362                } else {
1363                        /* Data is in the lower 15 bits of this field
1364                         * concatenated with the next 16 bit field
1365                         */
1366                        unpacked[i] = *((u32*)field);
1367                        field += 2;
1368                        nr_assoc_doms++;
1369                }
1370        }
1371
1372        /* The first cell contains the length of the property */
1373        unpacked[0] = nr_assoc_doms;
1374
1375        return nr_assoc_doms;
1376}
1377
1378/*
1379 * Retrieve the new associativity information for a virtual processor's
1380 * home node.
1381 */
1382static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1383{
1384        long rc;
1385        long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1386        u64 flags = 1;
1387        int hwcpu = get_hard_smp_processor_id(cpu);
1388
1389        rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1390        vphn_unpack_associativity(retbuf, associativity);
1391
1392        return rc;
1393}
1394
1395static long vphn_get_associativity(unsigned long cpu,
1396                                        unsigned int *associativity)
1397{
1398        long rc;
1399
1400        rc = hcall_vphn(cpu, associativity);
1401
1402        switch (rc) {
1403        case H_FUNCTION:
1404                printk(KERN_INFO
1405                        "VPHN is not supported. Disabling polling...\n");
1406                stop_topology_update();
1407                break;
1408        case H_HARDWARE:
1409                printk(KERN_ERR
1410                        "hcall_vphn() experienced a hardware fault "
1411                        "preventing VPHN. Disabling polling...\n");
1412                stop_topology_update();
1413        }
1414
1415        return rc;
1416}
1417
1418/*
1419 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1420 * characteristics change. This function doesn't perform any locking and is
1421 * only safe to call from stop_machine().
1422 */
1423static int update_cpu_topology(void *data)
1424{
1425        struct topology_update_data *update;
1426        unsigned long cpu;
1427
1428        if (!data)
1429                return -EINVAL;
1430
1431        cpu = smp_processor_id();
1432
1433        for (update = data; update; update = update->next) {
1434                if (cpu != update->cpu)
1435                        continue;
1436
1437                unmap_cpu_from_node(update->cpu);
1438                map_cpu_to_node(update->cpu, update->new_nid);
1439                vdso_getcpu_init();
1440        }
1441
1442        return 0;
1443}
1444
1445/*
1446 * Update the node maps and sysfs entries for each cpu whose home node
1447 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1448 */
1449int arch_update_cpu_topology(void)
1450{
1451        unsigned int cpu, sibling, changed = 0;
1452        struct topology_update_data *updates, *ud;
1453        unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1454        cpumask_t updated_cpus;
1455        struct device *dev;
1456        int weight, new_nid, i = 0;
1457
1458        weight = cpumask_weight(&cpu_associativity_changes_mask);
1459        if (!weight)
1460                return 0;
1461
1462        updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1463        if (!updates)
1464                return 0;
1465
1466        cpumask_clear(&updated_cpus);
1467
1468        for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1469                /*
1470                 * If siblings aren't flagged for changes, updates list
1471                 * will be too short. Skip on this update and set for next
1472                 * update.
1473                 */
1474                if (!cpumask_subset(cpu_sibling_mask(cpu),
1475                                        &cpu_associativity_changes_mask)) {
1476                        pr_info("Sibling bits not set for associativity "
1477                                        "change, cpu%d\n", cpu);
1478                        cpumask_or(&cpu_associativity_changes_mask,
1479                                        &cpu_associativity_changes_mask,
1480                                        cpu_sibling_mask(cpu));
1481                        cpu = cpu_last_thread_sibling(cpu);
1482                        continue;
1483                }
1484
1485                /* Use associativity from first thread for all siblings */
1486                vphn_get_associativity(cpu, associativity);
1487                new_nid = associativity_to_nid(associativity);
1488                if (new_nid < 0 || !node_online(new_nid))
1489                        new_nid = first_online_node;
1490
1491                if (new_nid == numa_cpu_lookup_table[cpu]) {
1492                        cpumask_andnot(&cpu_associativity_changes_mask,
1493                                        &cpu_associativity_changes_mask,
1494                                        cpu_sibling_mask(cpu));
1495                        cpu = cpu_last_thread_sibling(cpu);
1496                        continue;
1497                }
1498
1499                for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1500                        ud = &updates[i++];
1501                        ud->cpu = sibling;
1502                        ud->new_nid = new_nid;
1503                        ud->old_nid = numa_cpu_lookup_table[sibling];
1504                        cpumask_set_cpu(sibling, &updated_cpus);
1505                        if (i < weight)
1506                                ud->next = &updates[i];
1507                }
1508                cpu = cpu_last_thread_sibling(cpu);
1509        }
1510
1511        stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1512
1513        for (ud = &updates[0]; ud; ud = ud->next) {
1514                unregister_cpu_under_node(ud->cpu, ud->old_nid);
1515                register_cpu_under_node(ud->cpu, ud->new_nid);
1516
1517                dev = get_cpu_device(ud->cpu);
1518                if (dev)
1519                        kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1520                cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1521                changed = 1;
1522        }
1523
1524        kfree(updates);
1525        return changed;
1526}
1527
1528static void topology_work_fn(struct work_struct *work)
1529{
1530        rebuild_sched_domains();
1531}
1532static DECLARE_WORK(topology_work, topology_work_fn);
1533
1534void topology_schedule_update(void)
1535{
1536        schedule_work(&topology_work);
1537}
1538
1539static void topology_timer_fn(unsigned long ignored)
1540{
1541        if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1542                topology_schedule_update();
1543        else if (vphn_enabled) {
1544                if (update_cpu_associativity_changes_mask() > 0)
1545                        topology_schedule_update();
1546                reset_topology_timer();
1547        }
1548}
1549static struct timer_list topology_timer =
1550        TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1551
1552static void reset_topology_timer(void)
1553{
1554        topology_timer.data = 0;
1555        topology_timer.expires = jiffies + 60 * HZ;
1556        mod_timer(&topology_timer, topology_timer.expires);
1557}
1558
1559#ifdef CONFIG_SMP
1560
1561static void stage_topology_update(int core_id)
1562{
1563        cpumask_or(&cpu_associativity_changes_mask,
1564                &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1565        reset_topology_timer();
1566}
1567
1568static int dt_update_callback(struct notifier_block *nb,
1569                                unsigned long action, void *data)
1570{
1571        struct of_prop_reconfig *update;
1572        int rc = NOTIFY_DONE;
1573
1574        switch (action) {
1575        case OF_RECONFIG_UPDATE_PROPERTY:
1576                update = (struct of_prop_reconfig *)data;
1577                if (!of_prop_cmp(update->dn->type, "cpu") &&
1578                    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1579                        u32 core_id;
1580                        of_property_read_u32(update->dn, "reg", &core_id);
1581                        stage_topology_update(core_id);
1582                        rc = NOTIFY_OK;
1583                }
1584                break;
1585        }
1586
1587        return rc;
1588}
1589
1590static struct notifier_block dt_update_nb = {
1591        .notifier_call = dt_update_callback,
1592};
1593
1594#endif
1595
1596/*
1597 * Start polling for associativity changes.
1598 */
1599int start_topology_update(void)
1600{
1601        int rc = 0;
1602
1603        if (firmware_has_feature(FW_FEATURE_PRRN)) {
1604                if (!prrn_enabled) {
1605                        prrn_enabled = 1;
1606                        vphn_enabled = 0;
1607#ifdef CONFIG_SMP
1608                        rc = of_reconfig_notifier_register(&dt_update_nb);
1609#endif
1610                }
1611        } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1612                   get_lppaca()->shared_proc) {
1613                if (!vphn_enabled) {
1614                        prrn_enabled = 0;
1615                        vphn_enabled = 1;
1616                        setup_cpu_associativity_change_counters();
1617                        init_timer_deferrable(&topology_timer);
1618                        reset_topology_timer();
1619                }
1620        }
1621
1622        return rc;
1623}
1624
1625/*
1626 * Disable polling for VPHN associativity changes.
1627 */
1628int stop_topology_update(void)
1629{
1630        int rc = 0;
1631
1632        if (prrn_enabled) {
1633                prrn_enabled = 0;
1634#ifdef CONFIG_SMP
1635                rc = of_reconfig_notifier_unregister(&dt_update_nb);
1636#endif
1637        } else if (vphn_enabled) {
1638                vphn_enabled = 0;
1639                rc = del_timer_sync(&topology_timer);
1640        }
1641
1642        return rc;
1643}
1644
1645int prrn_is_enabled(void)
1646{
1647        return prrn_enabled;
1648}
1649
1650static int topology_read(struct seq_file *file, void *v)
1651{
1652        if (vphn_enabled || prrn_enabled)
1653                seq_puts(file, "on\n");
1654        else
1655                seq_puts(file, "off\n");
1656
1657        return 0;
1658}
1659
1660static int topology_open(struct inode *inode, struct file *file)
1661{
1662        return single_open(file, topology_read, NULL);
1663}
1664
1665static ssize_t topology_write(struct file *file, const char __user *buf,
1666                              size_t count, loff_t *off)
1667{
1668        char kbuf[4]; /* "on" or "off" plus null. */
1669        int read_len;
1670
1671        read_len = count < 3 ? count : 3;
1672        if (copy_from_user(kbuf, buf, read_len))
1673                return -EINVAL;
1674
1675        kbuf[read_len] = '\0';
1676
1677        if (!strncmp(kbuf, "on", 2))
1678                start_topology_update();
1679        else if (!strncmp(kbuf, "off", 3))
1680                stop_topology_update();
1681        else
1682                return -EINVAL;
1683
1684        return count;
1685}
1686
1687static const struct file_operations topology_ops = {
1688        .read = seq_read,
1689        .write = topology_write,
1690        .open = topology_open,
1691        .release = single_release
1692};
1693
1694static int topology_update_init(void)
1695{
1696        start_topology_update();
1697        proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1698
1699        return 0;
1700}
1701device_initcall(topology_update_init);
1702#endif /* CONFIG_PPC_SPLPAR */
1703