linux/arch/powerpc/platforms/cell/pmu.c
<<
>>
Prefs
   1/*
   2 * Cell Broadband Engine Performance Monitor
   3 *
   4 * (C) Copyright IBM Corporation 2001,2006
   5 *
   6 * Author:
   7 *    David Erb (djerb@us.ibm.com)
   8 *    Kevin Corry (kevcorry@us.ibm.com)
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2, or (at your option)
  13 * any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/interrupt.h>
  26#include <linux/types.h>
  27#include <linux/export.h>
  28#include <asm/io.h>
  29#include <asm/irq_regs.h>
  30#include <asm/machdep.h>
  31#include <asm/pmc.h>
  32#include <asm/reg.h>
  33#include <asm/spu.h>
  34#include <asm/cell-regs.h>
  35
  36#include "interrupt.h"
  37
  38/*
  39 * When writing to write-only mmio addresses, save a shadow copy. All of the
  40 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
  41 * pmd_regs.
  42 */
  43
  44#define WRITE_WO_MMIO(reg, x)                                   \
  45        do {                                                    \
  46                u32 _x = (x);                                   \
  47                struct cbe_pmd_regs __iomem *pmd_regs;          \
  48                struct cbe_pmd_shadow_regs *shadow_regs;        \
  49                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  50                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  51                out_be64(&(pmd_regs->reg), (((u64)_x) << 32));  \
  52                shadow_regs->reg = _x;                          \
  53        } while (0)
  54
  55#define READ_SHADOW_REG(val, reg)                               \
  56        do {                                                    \
  57                struct cbe_pmd_shadow_regs *shadow_regs;        \
  58                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  59                (val) = shadow_regs->reg;                       \
  60        } while (0)
  61
  62#define READ_MMIO_UPPER32(val, reg)                             \
  63        do {                                                    \
  64                struct cbe_pmd_regs __iomem *pmd_regs;          \
  65                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  66                (val) = (u32)(in_be64(&pmd_regs->reg) >> 32);   \
  67        } while (0)
  68
  69/*
  70 * Physical counter registers.
  71 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
  72 */
  73
  74u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
  75{
  76        u32 val_in_latch, val = 0;
  77
  78        if (phys_ctr < NR_PHYS_CTRS) {
  79                READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
  80
  81                /* Read the latch or the actual counter, whichever is newer. */
  82                if (val_in_latch & (1 << phys_ctr)) {
  83                        READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
  84                } else {
  85                        READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
  86                }
  87        }
  88
  89        return val;
  90}
  91EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
  92
  93void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
  94{
  95        struct cbe_pmd_shadow_regs *shadow_regs;
  96        u32 pm_ctrl;
  97
  98        if (phys_ctr < NR_PHYS_CTRS) {
  99                /* Writing to a counter only writes to a hardware latch.
 100                 * The new value is not propagated to the actual counter
 101                 * until the performance monitor is enabled.
 102                 */
 103                WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
 104
 105                pm_ctrl = cbe_read_pm(cpu, pm_control);
 106                if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
 107                        /* The counters are already active, so we need to
 108                         * rewrite the pm_control register to "re-enable"
 109                         * the PMU.
 110                         */
 111                        cbe_write_pm(cpu, pm_control, pm_ctrl);
 112                } else {
 113                        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 114                        shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
 115                }
 116        }
 117}
 118EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
 119
 120/*
 121 * "Logical" counter registers.
 122 * These will read/write 16-bits or 32-bits depending on the
 123 * current size of the counter. Counters 4 - 7 are always 16-bit.
 124 */
 125
 126u32 cbe_read_ctr(u32 cpu, u32 ctr)
 127{
 128        u32 val;
 129        u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 130
 131        val = cbe_read_phys_ctr(cpu, phys_ctr);
 132
 133        if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
 134                val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
 135
 136        return val;
 137}
 138EXPORT_SYMBOL_GPL(cbe_read_ctr);
 139
 140void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
 141{
 142        u32 phys_ctr;
 143        u32 phys_val;
 144
 145        phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 146
 147        if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
 148                phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
 149
 150                if (ctr < NR_PHYS_CTRS)
 151                        val = (val << 16) | (phys_val & 0xffff);
 152                else
 153                        val = (val & 0xffff) | (phys_val & 0xffff0000);
 154        }
 155
 156        cbe_write_phys_ctr(cpu, phys_ctr, val);
 157}
 158EXPORT_SYMBOL_GPL(cbe_write_ctr);
 159
 160/*
 161 * Counter-control registers.
 162 * Each "logical" counter has a corresponding control register.
 163 */
 164
 165u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
 166{
 167        u32 pm07_control = 0;
 168
 169        if (ctr < NR_CTRS)
 170                READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
 171
 172        return pm07_control;
 173}
 174EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
 175
 176void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
 177{
 178        if (ctr < NR_CTRS)
 179                WRITE_WO_MMIO(pm07_control[ctr], val);
 180}
 181EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
 182
 183/*
 184 * Other PMU control registers. Most of these are write-only.
 185 */
 186
 187u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
 188{
 189        u32 val = 0;
 190
 191        switch (reg) {
 192        case group_control:
 193                READ_SHADOW_REG(val, group_control);
 194                break;
 195
 196        case debug_bus_control:
 197                READ_SHADOW_REG(val, debug_bus_control);
 198                break;
 199
 200        case trace_address:
 201                READ_MMIO_UPPER32(val, trace_address);
 202                break;
 203
 204        case ext_tr_timer:
 205                READ_SHADOW_REG(val, ext_tr_timer);
 206                break;
 207
 208        case pm_status:
 209                READ_MMIO_UPPER32(val, pm_status);
 210                break;
 211
 212        case pm_control:
 213                READ_SHADOW_REG(val, pm_control);
 214                break;
 215
 216        case pm_interval:
 217                READ_MMIO_UPPER32(val, pm_interval);
 218                break;
 219
 220        case pm_start_stop:
 221                READ_SHADOW_REG(val, pm_start_stop);
 222                break;
 223        }
 224
 225        return val;
 226}
 227EXPORT_SYMBOL_GPL(cbe_read_pm);
 228
 229void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
 230{
 231        switch (reg) {
 232        case group_control:
 233                WRITE_WO_MMIO(group_control, val);
 234                break;
 235
 236        case debug_bus_control:
 237                WRITE_WO_MMIO(debug_bus_control, val);
 238                break;
 239
 240        case trace_address:
 241                WRITE_WO_MMIO(trace_address, val);
 242                break;
 243
 244        case ext_tr_timer:
 245                WRITE_WO_MMIO(ext_tr_timer, val);
 246                break;
 247
 248        case pm_status:
 249                WRITE_WO_MMIO(pm_status, val);
 250                break;
 251
 252        case pm_control:
 253                WRITE_WO_MMIO(pm_control, val);
 254                break;
 255
 256        case pm_interval:
 257                WRITE_WO_MMIO(pm_interval, val);
 258                break;
 259
 260        case pm_start_stop:
 261                WRITE_WO_MMIO(pm_start_stop, val);
 262                break;
 263        }
 264}
 265EXPORT_SYMBOL_GPL(cbe_write_pm);
 266
 267/*
 268 * Get/set the size of a physical counter to either 16 or 32 bits.
 269 */
 270
 271u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
 272{
 273        u32 pm_ctrl, size = 0;
 274
 275        if (phys_ctr < NR_PHYS_CTRS) {
 276                pm_ctrl = cbe_read_pm(cpu, pm_control);
 277                size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
 278        }
 279
 280        return size;
 281}
 282EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
 283
 284void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
 285{
 286        u32 pm_ctrl;
 287
 288        if (phys_ctr < NR_PHYS_CTRS) {
 289                pm_ctrl = cbe_read_pm(cpu, pm_control);
 290                switch (ctr_size) {
 291                case 16:
 292                        pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
 293                        break;
 294
 295                case 32:
 296                        pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
 297                        break;
 298                }
 299                cbe_write_pm(cpu, pm_control, pm_ctrl);
 300        }
 301}
 302EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
 303
 304/*
 305 * Enable/disable the entire performance monitoring unit.
 306 * When we enable the PMU, all pending writes to counters get committed.
 307 */
 308
 309void cbe_enable_pm(u32 cpu)
 310{
 311        struct cbe_pmd_shadow_regs *shadow_regs;
 312        u32 pm_ctrl;
 313
 314        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 315        shadow_regs->counter_value_in_latch = 0;
 316
 317        pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
 318        cbe_write_pm(cpu, pm_control, pm_ctrl);
 319}
 320EXPORT_SYMBOL_GPL(cbe_enable_pm);
 321
 322void cbe_disable_pm(u32 cpu)
 323{
 324        u32 pm_ctrl;
 325        pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
 326        cbe_write_pm(cpu, pm_control, pm_ctrl);
 327}
 328EXPORT_SYMBOL_GPL(cbe_disable_pm);
 329
 330/*
 331 * Reading from the trace_buffer.
 332 * The trace buffer is two 64-bit registers. Reading from
 333 * the second half automatically increments the trace_address.
 334 */
 335
 336void cbe_read_trace_buffer(u32 cpu, u64 *buf)
 337{
 338        struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
 339
 340        *buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
 341        *buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
 342}
 343EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
 344
 345/*
 346 * Enabling/disabling interrupts for the entire performance monitoring unit.
 347 */
 348
 349u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
 350{
 351        /* Reading pm_status clears the interrupt bits. */
 352        return cbe_read_pm(cpu, pm_status);
 353}
 354EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
 355
 356void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
 357{
 358        /* Set which node and thread will handle the next interrupt. */
 359        iic_set_interrupt_routing(cpu, thread, 0);
 360
 361        /* Enable the interrupt bits in the pm_status register. */
 362        if (mask)
 363                cbe_write_pm(cpu, pm_status, mask);
 364}
 365EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
 366
 367void cbe_disable_pm_interrupts(u32 cpu)
 368{
 369        cbe_get_and_clear_pm_interrupts(cpu);
 370        cbe_write_pm(cpu, pm_status, 0);
 371}
 372EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
 373
 374static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
 375{
 376        perf_irq(get_irq_regs());
 377        return IRQ_HANDLED;
 378}
 379
 380static int __init cbe_init_pm_irq(void)
 381{
 382        unsigned int irq;
 383        int rc, node;
 384
 385        for_each_online_node(node) {
 386                irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
 387                                               (node << IIC_IRQ_NODE_SHIFT));
 388                if (irq == NO_IRQ) {
 389                        printk("ERROR: Unable to allocate irq for node %d\n",
 390                               node);
 391                        return -EINVAL;
 392                }
 393
 394                rc = request_irq(irq, cbe_pm_irq,
 395                                 0, "cbe-pmu-0", NULL);
 396                if (rc) {
 397                        printk("ERROR: Request for irq on node %d failed\n",
 398                               node);
 399                        return rc;
 400                }
 401        }
 402
 403        return 0;
 404}
 405machine_arch_initcall(cell, cbe_init_pm_irq);
 406
 407void cbe_sync_irq(int node)
 408{
 409        unsigned int irq;
 410
 411        irq = irq_find_mapping(NULL,
 412                               IIC_IRQ_IOEX_PMI
 413                               | (node << IIC_IRQ_NODE_SHIFT));
 414
 415        if (irq == NO_IRQ) {
 416                printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
 417                "for node %d\n", irq, node);
 418                return;
 419        }
 420
 421        synchronize_irq(irq);
 422}
 423EXPORT_SYMBOL_GPL(cbe_sync_irq);
 424
 425